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Abstract—This paper discusses results from 12 months of a 

Round Robin exercise aimed at the inter-comparison of 

different cloud detection algorithms for Proba-V. Clouds 

detection is a critical issue for satellite optical remote sensing, 

since potential errors in cloud masking directly translates into 

significant uncertainty in the retrieved downstream 

geophysical products. Cloud detection is particularly 

challenging for Proba-V due to the presence of a limited 

number of spectral bands and the lack of thermal infrared 

bands. The main objective of the project was the inter-

comparison of several cloud detection algorithms for Proba-V 

over a wide range of surface types and environmental 

conditions. Proba-V Level 2a products have been distributed to 

six different algorithm providers representing companies and 

research institutes in several European countries.  

The considered cloud detection approaches are based on 

different strategies: Neural Network, Discriminant Analysis, 

Multi-spectral and Multi-textural Thresholding, Self-

Organizing Feature Maps, Dynamic Thresholding, and 

Classification based on Cloud Optical Thickness. The results 

from all algorithms were analysed and compared against a 

reference dataset, consisting of a large number (more than fifty 

thousands) of visually classified pixels. The quality assessment 

was performed according to a uniform methodology and the 

results provide clear indication on the potential best-suited 

approach for next Proba-V cloud detection algorithm.  
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I. INTRODUCTION 

Proba-V provides global daily observations of Earth 

‘surface in the VNIR-SWIR region of the spectrum [1]. The 

quality of the Proba-V products is a key element to 

guarantee the achievement of the objectives of the mission, 

which are related to the monitoring of the land use and land 

cover and also to the understanding of the long-term 

behavior of the vegetation. The production of multi 

temporally composited cloud-free mosaics of land surfaces 

is crucial to yield information for the study of terrestrial 

vegetation structure and dynamics, and land cover mapping.  

The cloud detection algorithms are highly dependent on the 

available spectral bands. The lack of TIR channels or 

dedicated cirrus band as the 1.38 micron band makes the 

cloud screening for Proba-V more challenging. The new 

operational Proba-V algorithm for cloud detection, which is 

an evolution of the legacy model used for SPOT-VGT [2], 

relies on the use of climatology of reflectances to define a 

dynamic threshold on the Blue band, which depends on the 

surface cover and on vegetation conditions. This method 

still presents some drawbacks, in particular a dependency on 

illumination and viewing geometry and some remaining 

misdetection at the edges of each status class (e.g., 

land/water). 

Recent years have seen an increasing interest in cloud 

detection from satellite imagery using different approaches. 

Cloud detection algorithms, indeed, can assume many 

forms, from single thresholding method to more elaborate 

multi-temporal, Bayesian and machine learning approaches 

[3, 4, 5]. 

With this in mind and in order to inter-compare the 

performances of different cloud detection algorithms for 
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Proba-V and to potentially identify the way to improve the 

current method, the European Space Agency (ESA) and the 

Belgian Science Policy Office (BELSPO) decided to 

organize a dedicated Round Robin exercise. 

The main objectives of the Round Robin were twofold. The 

first objective is to provide better understanding of the 

advantages and drawbacks of the various techniques for 

various clouds and surface conditions.  

The second objective is to collect lessons learnt on cloud 

detection in the VNIR and SWIR domain for land and 

coastal water remote sensing and reuse them in the frame of 

Sentinel-2 and Sentinel-3 missions.  

Such an inter-comparison between six fundamentally 

different cloud detection approaches is of obvious great 

importance to assess the performance of the methods. More 

importantly, the implementation in the operational 

processing chain of a potential best candidates would enable 

to improve the overall accuracy and stability of geophysical 

products derived from Proba-V data. 

 

II. ROUND ROBIN DESIGN 

The design of the Round Robin was based on the definition 

of three types of datasets, which were relevant for the 

Proba-V intercomparison: the Input Reference Scenes, the 

Validation Dataset and the Test Dataset.  

 

The Input Reference Scenes are the Proba-V Level 2a 

products, consisting of TOA reflectances in the 4 Proba-V 

bands, radiometrically and geometrically corrected, 

projected and resampled to the chosen spatial resolution. 

The products were provided with one single resolution, 

which is 333m. The available data set consists of 331 

products acquired in four days covering the four seasons: 

21/03/2014, 21/06/2014, 21/09/2014, and 21/12/2014.  

An important aspect is that no training dataset was provided 

to the participants to avoid that the algorithms were tuned 

on this dataset.  

 

For validation dataset, we intended the ensemble of pixels 

on which the quality assessment of the various algorithms 

had to be made. The validation dataset consisted on a 

relatively high number (53000) of carefully chosen pixels, 

extracted from the Input Reference Scenes. 

This dataset was selected in order to be statistically 

representative of the different pixel classes, which were 

pertinent for our scope. The main pixel classes represented 

in the validation dataset were settled as clear sky, thick 

clouds, and semi-transparent clouds over different surfaces 

such as land, snow/ice and coastal water. Three different 

classes of semi-transparent clouds were identified: thick, 

average/semi-dense, and thin. The statistical distribution of 

the classes was representative of mean global clouds cover 

condition, having 60% of cloudy pixels (half of which semi-

transparent clouds), and 40% of clear pixels. A large portion 

of thick clouds was saturated. They were marked as 

oversaturated.  

The distribution of surface type was in-line with the typical 

observation scenario of the Proba-V sensor, acquiring 

largely over land (70%), with the remaining 30% equally 

distributed over coastal, inland water and snow/ice. 

In addition of being statistically significant, the validation 

dataset needed to be global and representative of different 

seasons, meaning that the selected pixels needed to be 

equally spread over the globe for the four seasons, allowing 

correctly representing the different climatological conditions 

and land cover types. Finally, different geometries of 

observation were included (sun and viewing geometries) in 

order to represent different illumination condition and 

atmospheric path radiances. 

The validation dataset was hidden to the Round Robin 

participants, in order to avoid that algorithms were adjusted 

to the pixels, where the actual quality assessment was made.  

 

The test dataset represented a small but statistically 

representative subset of the validation dataset. The purpose 

of the test dataset was to provide to the participants example 

of pixel classification criteria and nomenclature. The test 

dataset was therefore limited, but still provided a 

representative example of all the pixel classes. 

 

III. CLOUD DETECTION ALGORITMS 

Various cloud detection algorithms were developed in the 

framework of this Round Robin. Table 1 summarizes the 

cloud detection algorithms and the auxiliary data, which is 

deemed necessary to constraint a specific algorithm (e.g., 

land cover maps, surface albedo). The difference between 

the algorithms lies in the different approaches used to select 

and separate cloudy pixels from clear pixels. 

  
TABLE I: Cloud Detection Algorithms developed in the framework of the 

Round Robin and list of the auxiliary data needed for each algorithm.  

Algorithm 
Name 

Methods Auxiliary Files 

ALGO 1 Cumulative Discriminant 
Analysis 

Seviri and Modis cloud 
mask; Globcover mask 

ALGO 2 Cumulative Discriminant 
Analysis 

Seviri cloud mask; 
Globcover mask 

ALGO 3 Cumulative Discriminant 
Analysis 

Modis cloud mask; 
Globcover mask 

ALGO 4 Multi-spectral and multi-
textural thresholding 

Land Cover data of the 
ESA CCI 

ALGO 5 Multilayer Perceptron 
(MLP) Neural Network 

None 

ALGO 6 Kohonen Self-Organizing 
Maps 

Modis cloud mask 

ALGO 7 Dynamic Thresholding Land Cover data of the 

ESA CCI; GlobAlbedo 
surface reflectance 

ALGO 8 Classification based on 
Cloud Optical Thickness 

ERA-interim; DEM 

(GTOPO 30); 

GlobAlbedo surface 

reflectance 

 

The approaches considered in this contest are the following 

ones: 

ALGO1-3: The main methodology adopted for 

discriminating clouds is Cumulative Discriminant Analysis 



(CDA), described in detail by [6]. In a one-dimensional 

problem (1 spectral band) it considers empirical estimates of 

the cumulative functions of reflectance, x, in clear and 

cloudy conditions, ḞClear(x) and ḞCloudy(x), respectively. The 

Discriminant Analysis produce a decision rule Г(x;X), with 

X being the training data set. The methodology relies 

therefore on a classification of binary variables (1=clear; 

2=cloudy) depending on a threshold ϴ, needed to classify a 

given pixel as clear or cloudy. The system needs a training 

dataset and a reference cloud mask. 
The training data set in this case was a subset of the full 

Proba-V scenes for which a cloud mask is estimated by a 

consolidated algorithm (silver standard). The following 

three cloud masks have been considered as silver standard: 

a) Joint SEVIRI and MODIS cloud mask. It is obtained 

retaining only scenes where the SEVIRI and MODIS 

cloud masks were agreeing (ALGO1). 

b) SEVIRI cloud mask. It is obtained starting from 

radiance measured from the SEVIRI sensor on-board 

geostationary METEOSAT Second Generation (MSG) 

satellites every 15 minutes within a radius of about 60 

degrees around the point at zero latitude and longitude 

at 3km spatial resolution (ALGO2). 

c) MODIS cloud mask. It is obtained from radiance 

measured by MODIS sensor on-board Terra and Aqua 

EOS satellites at 1km spatial resolution and with a time 

difference of maximum 30 minutes between 

corresponding Proba-V and MODIS scenes (ALGO3). 

In order to have as homogeneous reflectances as possible, 

different training sets have been setup according to different 

types of surface underlying scenes. Surface type has been 

estimated from the GlobCover map [7], based on land cover 

maps from the 300m MERIS sensor on-board the ENVISAT 

satellite. Five surface typologies have been defined, such as 

water, vegetation, bare land, urban, and snow/ice.  

ALGO4: The methodology of the cloud detection 

algorithm consists of thresholding image derived 

parameters, which consists of multispectral indices (band 

ratios, band differences, NDIs), texture parameters, and 

local parameters derived from intermediate results with 

moving windows of various sizes. As auxiliary data, the 

water surfaces of the Climate Change Initiative (CCI) Land 

Cover data from 2010 are used.  

The developed methodology, as it is based on thresholding 

image parameters, belongs to the most commonly used 

cloud screening approaches. However, the procedure 

presented is a completely new adaptation of such methods to 

Proba-V data, and does not incorporate known thresholds or 

parameter definitions from the literature. It has been 

developed empirically, step by step, with a trial and error 

procedure, selecting and interlinking finally the best 

working and feasible single steps, parameters, thresholds 

and their combinations. The algorithm is structured into 

three major processing steps with clearly defined 

substructures each. The processing has been implemented in 

the Spatial Model Editor (2016) of ERDAS Imagine, a 

graphical tool for performing interlinked sequences of 

image and GIS data processing. The procedure consists of 

three models that have the following functions:  

1. Cloud/haze/snow/ice retrieval producing 66 spectral 

classes without thematic assignment to either one of the 

target classes yet.  

2. Generation of image parameters for the subsequent 

filtering and thematic assignment. 

3. Filtering and thematic assignment of the 66 classes 

derived in (1) to Clouds, Haze, Snow/Ice, and Thin/Partial 

Snow/Ice, and addition of some cloud pixels in gaps, buffers 

and water areas.  
  ALGO5: The proposed cloud masking process 
relies on the extraction of meaningful physical features (e.g. 
brightness and whiteness) that are combined with spatial 
features to increase the cloud detection accuracy [8]. In 
short, the four Proba-V spectral channels (4 TOA reflectance 
bands), ten physically-based spectral features, and the mean 
and standard deviation at two different scales for each pixel-
based feature were considered. In order to train statistical 
machine learning models from real data, a representative 
number of samples had to be labeled as cloud-contaminated 
or cloud-free samples. To label in a semi-automatic way a 
sufficient number of pixels from the Proba-V images, the 
user-driven methodology proposed for MERIS in [9] to the 
Proba-V images was adapted, where the labeling of cloud 
clusters found in the image is done by an expert. Then, a 
supervised pixel-based classification, based on the TOA 
reflectance and on the manually labeled training set, is 
applied to these features providing the pixel label ('cloud' or 
'cloud free'). Although several advanced supervised 
classification algorithms have been tested, the multilayer 
perceptron (MLP) neural network [10] has been selected due 
to its good performance and capability of ingesting a large 
number of training samples. 
  ALGO6: The Proba-V Cloud detection algorithm 
has been performed using a generic tool based on a 
classification with unsupervised Kohonen self-organizing 
maps (SOM) [11]. The SOM performance for cloud 
classification has been assessed and trained on MODIS and 
Landsat dataset and the results have been validated against 
MODIS CLOUD masks. 294 classes have been gathered in 
three groups: clear, cloudy, partially cloudy. In a second 
step, the topological map has been derived to fit PROBA V 
spectral bands and applied automatically to the PROBA-V 
dataset.  

ALGO7: This cloud detection algorithm is based 

on adjusted thresholds on the reflectances in the Blue and 

SWIR channels. The approach is based on the usage of 

climatological maps of albedo (monthly averages obtained 

from the GlobAlbedo dataset). In addition to the 

GlobAlbedo dataset, also a 10 years global climatology of 

monthly means of MERIS reflectances in the blue band was 

used. This auxiliary information is used to design a 

“dynamic threshold” algorithm, with cloud tests customized 

for each status class (land, water, snow/ice, unknown land 

cover) [12]. 

ALGO8: This cloud detection algorithm relies on 

the estimation of the cloud optical thickness (COT) in the 

NIR and RED bands. The COT algorithm is based on look 



up tables of coefficients derived from radiative transfer 

calculations using the radiative transfer code MOMO [13, 

14], respecting the full range of observation and sun 

geometries, variations of the underlying surface (Lambertian 

above land, or wind roughened water surface above water  

[15]), and variations of cloud optical thickness and height.  

For the determination of the COT, auxiliary surface albedo 

(utilizing MERIS Albedomap data [16]) and wind speed 

(from the meteorological re-analysis ERA-Interim) are used. 

Eventually, if the COT exceeds a particular threshold (here 

1), a pixel is considered to be cloudy. Above land the RED-

COT and above sea the NIR-COT are used, since typically, 

the respective surfaces are darker in these bands and the 

information gaining contrast is increased. A cloudy pixel is 

restored as snow covered, if the NDSI exceeds 0.45 and the 

2m surface temperature (from ERA-Interim) is below 5°C.  

 

IV. QUALITY ASSESSMENT AND RESULTS 

In order to perform the Quality Assessment of the different 

algorithms, a tool, named PixBox [17], has been used. The 

PixBox tool has been populated by the pixel classified by 

visual inspection, which were used to create the validation 

dataset. The PixBox tool ensures a comprehensive set of 

statistical quality metrics in order to finally inter-compare 

the performances of the various algorithms. These metrics 

are based on confusion matrices, which allow assessing the 

classification accuracy by pixel-wise comparison of the 

considered mask with respect to the reference PixBox 

classification. 

Performance metrics include the overall accuracy (OAA) of 

the algorithm, defined as the total number of correct 

classifications divided by the total number of sample points, 

the producer’s accuracy (PA), which reflects the proportion 

of sample points correctly classified as X over the number 

of points observed to be X and the user’s accuracy (UA), 

i.e., the proportion of sample points correctly classified as X 

over the number of points predicted to be X. The difference 

between producer’s and user’s accuracy is the difference 

between defining accuracy in terms of how well the cloudy 

or clear pixels can be mapped (producer’s accuracy) versus 

how reliable the classification is to the user (user’s 

accuracy). The OAA, the PA and the UA indices have been 

used to study the performance of the different algorithms for 

cloud detection under different conditions. 

 

 
Fig.1: OOA, PA and UA indices characterizing the eight participating 

algorithms. 

 
Fig. 2: Reliability of the eight participating algorithms as measured by the 

Krippendorff’s Alpha coefficient. 

 

In particular, the behavior of the algorithms for different 

surfaces, such as land, bright surfaces, coastline and water 

has been studied. Furthermore, it has been also investigated 

how all algorithms behave with respect to semi-transparent 

clouds. 

 

Figure 1 shows the OAA, the PA and the UA for all 

algorithms per measure. All overall accuracies are larger 

than 85% and two algorithms have an OAA > 90%. Algo 3, 

6 and 8 show high values in the UA CLOUD, but compared 

to Algo 4 and 5, they have low values in PA for clouds 

indicating that they are omitting clouds. 

Algo 1, 2 and 7 show highest producer’s accuracy for 

clouds, indicating that the clouds are detected with high 

probability but that also clear cases are classified as cloud, 

as indicated by the lower producer’s accuracy for clear.  

The Krippendorff’s Alpha coefficient has been calculated in 

order to have a good measure of reliability. Alpha assumes 

the value 1, if the agreement between what it is identifies as 

cloud by the algorithm and the reference observations is 

perfectly matched, whereas Alpha is 0 when there is a 

systematic disagreement. Figure 2 shows the Krippendorff’s 

Alpha coefficient for each participating algorithm. Overall 

all algorithms are of very good quality. The Quality 

Assessment was further complemented by visual inspection 

of several RGB images to identify issues in cloud borders 

delineation. 

 

V. CONCLUSION 

Accurate cloud detection is an important step for building a 

stable retrieval process for geophysical products from 

Proba-V data. Throughout this project an inter-comparison 

of the performances of different cloud detection algorithms 

for Proba-V was carried out.  

Each algorithm has strong and weak points. Algo 4 and 

Algo 5 are in a very good position. Algo 1 and Algo 2 are 

very similar, but Algo 2 is more clear-sky conservative, 

flagging clear surfaces as cloud while having a good 

detection of semi-transparent clouds. Algo 3, 6 and 8 are the 

ones detecting less clouds, but they have very little 

commission errors, e.g. at coastlines or in inland waters or 

over bright surfaces. Algo 7 is the most conservative and 

therefore detects small clouds, cloud borders and semi-

transparent clouds but is flagging many clear pixels. 
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