

Comparison of fractional snow detection algorithms for VIIRS retrievals

Kat J. Bormann¹ Thomas H. Painter¹

¹Jet Propulsion Laboratory, California Institute of Technology

- MODIS-derived products have become the workhorse for snow cover monitoring
- MODIS instruments on Terra/Aqua have surpassed their expected life span

- MODIS-derived products have become the workhorse for snow cover monitoring
- MODIS instruments on Terra/Aqua have surpassed their expected life span
- VIIRS instrument on Suomi NPP (企2011) provides data continuity with MODIS

- MODIS-derived products have become the workhorse for snow cover monitoring
- MODIS instruments on Terra/Aqua have surpassed their expected life span
- VIIRS instrument on Suomi NPP (分2011) provides data continuity with MODIS
- The continuation of long-term snow cover records relies on compatible data from the MODIS and VIIRS instruments

- VIIRS binary SCA product (375m) employs the MODIS heritage NDSI algorithm
- VIIRS fSCA product (750m) converts binary to fractional using 2x2 averaging

fSCA is limited to 25% fSCA increments

- VIIRS binary SCA product (375m) employs the MODIS heritage NDSI algorithm
- VIIRS fSCA product (750m) converts binary to fractional using 2x2 averaging

fSCA is limited to 25% fSCA increments

- Existing algorithm cannot meet product perpixel requirement of < 10% uncertainty
- Mixed pixel methods have been suggested (Appel, 2011)

- VIIRS binary SCA product (375m) employs the MODIS heritage NDSI algorithm
- VIIRS fSCA product (750m) converts binary to fractional using 2x2 averaging

fSCA is limited to 25% fSCA increments

- Existing algorithm cannot meet product perpixel requirement of < 10% uncertainty
- Mixed pixel methods have been suggested (Appel, 2011)

Snow detection algorithms

Normalised Difference Snow Index (NDSI, Salomonson & Appel, 2004) $NDSI = \frac{R_{VIS} - R_{SWIR}}{R_{VIS} + R_{SWIR}}$

Snow detection algorithms

Spectral unmixing (SCAG, Painter et al, 2009) MODSCAG MODIS Dands 1-7 snow 0.8 vegetation eflectance soil 0.6 0.4 0.2 wavelength, µm

Normalised Difference Snow Index (NDSI, Salomonson & Appel, 2004) $NDSI = \frac{R_{VIS} - R_{SWIR}}{R_{VIS} + R_{SWIR}}$

Sensors

• VIIRS was designed with spectral continuity for MODIS in mind

wavelength

Sensors

- VIIRS was designed with spectral continuity for MODIS in mind
- Similar, but not the same

Snow detection algorithms

Objectives

 Reconcile snow cover information between MODIS and VIIRS - during common period for data continuation

Objectives

 Reconcile snow cover information between MODIS and VIIRS - during common period for data continuation

2. Apply demonstrated physically-based linear spectral unmixing technique (Snow Cover and Grain size, SCAG, Painter et al., 2009) to VIIRS surface Refl. for finer fSCA retrieval

In this study

- Compare
 - VIIRS Fractional Snow Cover Product (DSCD1KD)

» VIIRS fSCA PRODUCT

 SCAG mixed pixel algorithm applied to VIIRS DSRF1KD

» VIIRSCAG

- To demonstrated MODIS application of SCAG »MODSCAG 500m (coarsened to 1km)
- This preliminary comparison will be conducted at 1km res.

Evaluation scenes

- Clear-sky scenes
- 2013 or 2014 (①NPP VIIRS)

MODSCAG RMSE = 0.10 (Rittger et al., 2012)

Feb 24, 2014

Feb 24, 2014

38°N 37°55'N 37°50'N 37°45'N 37°40'N 37°35'N VIIRSCAG 37°30'N 119°30'W 119°15'W 118°45'W 119°W 1.0 0.0 0.2 0.4 0.6 0.8

Jan 5, 2014

14%

Nepal TILE: h25v06 DATE: A2014005

20% Total scene % snow cover area

25%

Feb 16, 2014

34%

WesternUS TILE: h08v05 DATE: A2014047

Total scene % snow cover area

25%

21%

Results – Snow cover area

- Larger variance between MODSCAG & VIIRS Product for snow cover retrieval
- VIIRSSCAG performs better than VIIRS Product, especially when snow is 'fractional'

- Mean "binary" statistics TP, TN, FP, FN
- N = 13
- Filter fSCA < 0.15

- VIIRSCAG recalls more of the snow pixels
- VIIRS Product hindered by
 - Use of empirical binary mapping (< 50%)
 - Cloud masking issues (well known)
 - < 25% fSCA

	Recall	Accuracy	F- score	fSCA RMSE	fSCA MAE
VIIRS fSCA Product	0.659	0.924	0.720	0.53	0.46
VIIRSCAG	0.834	0.916	0.844	0.24	0.19

- Mean accuracies are similar (Probability that a pixel is correctly classified - ↓ 0.78 @ marginal)
- VIIRSCAG reports improved F-score, which balances FP and FN

	Recall	Accuracy	F- score	fSCA RMSE	fSCA MAE
VIIRS fSCA Product	0.659	0.924	0.720	0.53	0.46
VIIRSCAG	0.834	0.916	0.844	0.24	0.19

- An artifact of the VIIRS Product fractional calculation process is a high mean fSCA error
- MODSCAG fSCA and VIIRSCAG fSCA are generally well correlated – matching sensor zenith angles

	Recall	Accuracy	F- score	fSCA RMSE	fSCA MAE	trivial
VIIRS fSCA Product	0.659	0.924	0.720	0.53	0.46	
VIIRSCAG	0.834	0.916	0.844	0.24	0.19)e

Discussion

- VIIRS Snow Product performs just as well as SCAG over large fully snow covered areas (100% pixels)
- Value of SCAG is greatest for
 - mixed pixels
 - melting snow (patchy snow with weaker signal)
 - mountain snow areas (smaller areas with snow signal)

Discussion

- But, like MODIS-based products (Bormann et al., 2012), VIIRS Product performance in small, regional snowfields (such as Australia) is poor
 - Largely a cloud masking issue
 - Cloud masking in regions with different snow properties?
 - Also some spectral issues

Conclusions

- Main issues with the VIIRS Product issues are not unexpected
 - Cloud masking
 - Large proportion of mixed pixels
 - Mountainous areas, with large mixed pixel perimeters

Conclusions

- Main issues with the VIIRS Product issues are not unexpected
 - Cloud masking
 - Large proportion of mixed pixels
 - Mountainous areas, with large mixed pixel perimeters
- Main benefits of spectral unmixing (SCAG)
 - Finer resolution of fractional cover, 'fringes' (\rightarrow 10%)
 - Performance in spring when snow is receding
 - Vast spectral library provides some resilience to regional differences in snow properties

Future work

- Work with smaller/consistent sensor zenith angles (<20°)
- Evaluate VIIRSCAG with high-resolution snow cover Landsat imagery
- Expand this preliminary evaluation to increase number of scenes
- Reconcile snow cover records with MODIS over common period (2012-present)
- Evaluate other SCAG outputs i.e. vegetation cover and snow grain size

Kat Bormann kathryn.j.bormann@jpl.nasa.gov

Research is currently supported by the NASA Postdoctoral Program

Kat Bormann kathryn.j.bormann@jpl.nasa.gov

Research is currently supported by the NASA Postdoctoral Program

Snow detection algorithms

- Snow Cover and Grain size (SCAG)
 - Spectral unmixing algorithm (Painter et al., 2009)

Snow detection algorithms

- Snow Cover and Grain size (SCAG)
 - 7-band spectral unmixing algorithm (Painter et al.,

2009)

MODSCAG evaluated with 172 high resolution
Landsat ETM+ scenes average RMSE = 0.10
(Rittger et al., 2012)

Resampling spectral libraries

 High-resolution spectral libraries used for MODSCAG were resampled to VIIRS bandwidths

Evaluation scenes

- Range of viewing angles
 - Affects spectral libraries in SCAG

