Snow Extent Products of the EC FP7 Project CryoLand

Thomas Nagler, Gabriele Bippus & Elisabeth Ripper **ENVEO**

Sari Metsämäki **Finnish Environment Institute**

Rune Solberg Norwegian Computing Center

opernicus

CryoLand – Copernicus Services Snow and Land Ice (EC FP7 Project 2011-2015)

PRIMARY OBJECTIVE

Develop, implement and validate an operational, sustainable service for monitoring snow and land ice as a Downstream Service within Copernicus Initiative of European Commission and ESA.

The project prepares the basis for a future cryospheric component of the Copernicus Land Monitoring Service.

Contents:

- Overview of CryoLand Snow Product
- Specs and Example Product of Pan European product
- Processing Line and Algorithm
- FSC Uncertainty map
- Validation method and results
- Intercomparison with other SE products
- Strength and weaknesses of the product

Cryoland Snow Products

Product Type	Spatial Resolution	Temporal Coverage	Coverage	Latency Time	EO Sensors	
Snow extent, Pan-European	500 m	Daily, full year	35N – 72 N 11W – 45E <1 day		MODIS, (VIIRS, Sentinel 3)	
Snow Water Equivalent Pan- European	10 – 25 km	Daily, dry snow season	35N – 72 N 11W – 45E	<2 day	SSMI/S, AMSR2	
Melting snow area	50-100 m	Daily, Melting Period	Mountain Regions	<1 day	Radarsat, ASAR (archived), Sentinel S1	
Snow extent FSC ALPS	250 m	Daily, full year	Alps	<1 day	MODIS Sentinel S1, S3	
Snow extent FSC, Baltic region	500 m	Daily, winter / spring	Baltic Sea area	<1 day	MODIS Sentinel S1, S3	
Multitemp Snow extent, Scandinavia	250 m	Daily, full year	Scandinavia	< 1day	MODIS, SAR	
Snow Surface Wetness	1000 m	Daily	Scandinavia	<1 day	MODIS, Sentinel S3	
Snow Surface Temperature	1000 m	Daily	Scandinavia	<1 day	MODIS, Sentinel S3	

Product Name	CryoLand PanEuropean Fract. Snow Extent				
Sensor and applied spectral bands	MODIS (VIIRS; Sentinel-3 SLSTR & OLCI): 550 mm; NDSI				
TEMPORAL CHARACTERISTICS					
Period (Start – End)	Nov 2000 → Current				
Temporal resolution (1 day, 1 week,)	Daily; since Dec 2013 in NRT (Latency < 1 day)				
SPATIAL CHARACTERISTICS					
Spatial resolution / Pixel size	~500 m (0.05 deg)				
Spatial Coverage	Pan-European Domain; 72°N 11°W – 35°N 50°E				
Map Projection / Datum	Geographic Lat / Lon, WGS84				
IF APPLICABLE: CLOUD SCREENING					
Algorithm / Product	MODIS Cloud product				
IF APPLICABLE: VALID / NON-VALID ARE	AS				
Invalid/masked areas	Open Water Areas				
Product Format	GEOTIFF				
Products accessible at	http://cryoland.eu				
Contact Person Name email	Thomas Nagler Thomas.nagler@enveo.at				

Processing Chain

- Input Satellite Data: MODIS (VIIRS, Sentinel 3)
- <u>Auxiliary Data</u>: Surface Classes (Corine 2006, ESA GlobCover 2009, SRTM Water Body Map)
- Cloud Screening: apply MODIS Cloud product
- Binary snow pre-classification using NDSI threshold map (temporally and spatially variable thresholds)
- <u>SCAmod</u> algorithm applied on pixels classified as snow (500 m transmissivity map and predefined reflectance thresholds for forest canopy, bare ground and wet snow)
- <u>Merging of FSC maps of different swaths</u> looks for highest solar elevation angle and lowest sensor look angle.
- <u>Product:</u> Fractional Snow Cover Map and Uncertainty Map

Snow Mapping Algorithm

STEP 1: Detection if SNOW is possible

- NDSI threshold is linearly changing with:
 - Latitude: 58°N (-0.10) 35°N (+0.50)
 - Elevation: above 500 m a.s.l. decrease of NDSI with 0.01 per 100 m elevation
 - Seasonal Cycle of NDSI threshold
 - Specific surface classes: rice fields, permanent irrigated lands, salt marshes, salines, and inter-tidal flats from Corinne Land Cover 2006 data set: +0.70
- Brightness Temperature: if $T_B(10.78\mu m-11.28\mu m) >= 283 \text{ K then FSC} = 0$

STEP 2: For regions where SNOW is possible , apply SCAMOD for calculating FSC (Metsämäki et al, 2005, 2012): FSC=1/t² $\rho \downarrow obs + (1-1/t^2) \rho \downarrow forest - \rho \downarrow ground / \rho \downarrow u$

(ρ_{obs} observed reflectance at 0.550 μ m)

Typical reflectance values for: $\rho_{wetsnow} = 0.65 \rho_{forest} = 0.08 \rho_{ground} = 0.10$

FSC and Uncertainty map

Uncertainty calculation applies law of error propagation to SCAMOD Function. Total error is the sum of the error of the variables transmissivity t^2 , reflectance of ground, forest, swet now (ρ_{ground} , ρ_{forest} , ρ_{snow}). Variables are assumed to be independent of the envelopment of t

Processing Line for SE Product Intercomparisons

Reference Data Sets for Quality Assessment

Quality Assessment of SE Products is performed in different environments:

- <u>Fractional SE</u> <u>products</u> from high resolution optical images:
 - Very High resolution images (IKONOS, SPOT5, Quickbird)
 - Landsat TM/ETM+
- In-situ snow transects measured operationally by SYKE, in Finland

Landsat ETM+ SE Maps

Dozier & Painter (2004)

•NDSI + NIR •Added thresholds for $B_{0.55\mu m}$, $B_{0.8\mu m}$ and $B_{1.6\mu m}$

Klein et al (1998)

 NDSI and NDVI based
Added thresholds for B_{0.55μm}, B_{0.8μm} and B_{1.6μm}

ENVEO MS Unmixing

 MS Unmixing Bnd 1-5 with 2 endmembers (snow/ snowfree)

Salomonson & Appel (2006) •NDSI

•Added Thresholds for $B_{0.55\mu m}$, $B_{0.8\mu m}$ and $B_{1.6\mu m}$

Ukraine 23 March 2010

Intercomparison of Cryoland FSC vs. LS

Date	Location	Nui	Corr Coef	unbiased RMSE	BIAS	Corr Coef	unbiased RMSE	BIAS	
			Salomonson (fsc)			Klein (bin)			
			ΤΟΤΑΙ			_ area			
5 Apr 2005	ALPS (mountains)	137219	0.91	16.84	-1.44	0.90	17.24	-1.10	
30 Apr 2005	SWEDEN (forest)	135765	0.90	17.69	-6.89	0.87	20.10	7.26	
7 Mar 2010	ROMANIA (gentle)	127492	0.95	14.38	2.66	0.92	17.38	4.43	
23 Mar 2010	UKRAINE (flat)	140086	0.88	18.15	13.74	0.87	20.03	13.81	
			FORESTED area						
5 Apr 2005	ALPS	46855	0.71	19.21	-4.15	0.69	19.33	-3.47	
30 Apr 2005	SWEDEN	80501	0.89	18.55	-7.48	0.85	21.39	10.33	
7 Mar 2010	ROMANIA	5552	0.94	16.41	-5.59	0.96	12.43	3.49	
23 Mar 2010	UKRAINE	15611	0.72	25.58	14.68	0.70	29.04	20.43	
			UNFORESTED area						
5 Apr 2005	ALPS	90364	0.94	15.24	-0.03	0.93	15.93	0.13	
30 Apr 2005	SWEDEN	55264	0.91	16.31	-6.04	0.90	17.11	2.78	
7 Mar 2010	ROMANIA	121940	0.95	14.17	3.03	0.92	17.56	4.48	
23 Mar 2010	UKRAINE	124475	0.91	16.99	13.62	0.90	18.41	12.98	

Validation Results CryoLand FSC vs. In-Situ

MODIS SCAMOD – Pan European Product In-situ Snow transects vs. FSC Finland

Mean Absolute FSC Difference MOD10 versus CryoLand / MODIS 1.3.-31.5.2010

Time series of weekly Max. Snow Extent

Pan-European Domain March – May 2010

snow extent

snow free

cloud

open water

 \bigcirc

Strength and Weaknesses

- Each FSC map is provided with uncertainty map.
- FSC product has been validated with independent snow information (snow data from high resolution sensors, insitu data) in different environments (ongoing).
- Cloud screening (MODIS Cloud product) problems in patchy snow areas, cumulus clouds in late spring/summer are not detected show often up as snow.
- Snow Algorithm:
 - Need of accurate and up-to-date auxiliary information (transmissivity map, reflectance values of different surfaces, inaccuracies / errors in auxiliary data directly propagate to FSC.
 - In mountain regions, topographic correction is critical. Currently, a statistical topographic correction is used.
- 14 years time series of daily FSC product of Europe available (Dec 2000).
- Covers only Pan-European Domain, an extension is possible but currently not planned.

Strength and Weaknesses of Cryoland PanEuropean FSC product

FSC Retrieval

- + Multi-spectral Pre-classification rules significantly reduces misclassifications, and extend the applicability of the algorithm, which was original designed for boreal forests, to other environments.
- + Algorithm is applicable to the main surface classes, with and without canopy layer, and accounts for forest canopy.
- + Low computational costs and fully automatic processing; therefore suitable for global / hemispheric time series production
- Need of accurate and up-to-date auxiliary information (transmissivity map, reflectance values of different surfaces), generation of these data sets is currently labor intensive.
- Inaccuracies / errors in auxiliary data directly propagate to FSC.
- Complex terrain: sensitive to topopgraphy (variations of illumination) as only one band is used for FSC calculation. Simple topographic corrections improves results, but not sufficient in rugged terrain. Better topographic correction of reflectance would improve product in mountain terrain.

