

NESDIS Global Automated Satellite Snow Product: Current Status and Recent Results

Peter Romanov

NOAA-CREST, City University of New York (CUNY)
Center for Satellite Applications and Research (STAR), NOAA/NESDIS

Outline

- Overview of the system/product
- Examples of product
- Performance in 2013-2014
- Planned Improvements

Global Multisensor Automated Snow/Ice (GMASI-Autosnow) Mapping System: Overview

Objective: Generate snow/ice cover product for use in NWP models and other operational applications.

Approach:

Synergy of optical and microwave retrievals to achieve continuity of snow maps.

Application of auxiliary environmental datasets and consistency tests to improve characterization of the snow cover

Product:

Global continuous (gap-free) maps of snow cover distribution generated daily at 4 km nominal spatial resolution

Algorithm Details

- Decision-tree threshold-based classification schemes
- Repeated daily observations used whenever available
- Climatology-based consistency checks/filters
- Optical snow retrievals are complemented with microwave data (blending)
- Blending strategy accounts for weaknesses of individual techniques
- Recurrent gap-filling (uses previous day snow map as the "first guess")
- Exclusion regions
 - Low elevation (<1km) regions in tropics (25N-25S) [assumed snow-free]
 - Antarctica [assumed always snow]
- Other datasets used by algorithms
 - Climatological snow occurrence (IMS-based, weekly)
 - Climatological surface temperature (ISCCP, monthly)
 - Surface elevation

For full details see ATBD at http://www.star.nesdis.noaa.gov/smcd/emb/snow/documents/Global_Auto_Snow-Ice_4km_ATBD_February_2014.pdf

Technical Specifications

Product Name	GMASI-Autosnow 4 km	
Sensor(s) and applied spectral bands	METOP-A[B] AVHRR, bands 1,2,3a,4	
	DMSP –F16,17,18 SSMIS, 19vh, 22v,37v,85v	
	MSG SEVIRI bands 1,2,3,6	
	GOES- E, W Imager bands 1,2,4	
Temporal Characteristics		
Period (Start – End)	2006-current	
Temporal resolution	Daily	
Spatial Characteristics		
Spatial resolution / Pixel size	0.04 ⁰ (~4km)	
Spatial Coverage	Global	
Map Projection	Plate Carrée	
Product Format	Flat binary, geotiff, grb	
Product accessible at	Operational:	
	http://satepsanone.nesdis.noaa.gov/	
	southern_hemisphere_multisensor.html	
	http://satepsanone.nesdis.noaa.gov/	
	northern_hemisphere_multisensor.html	
	Quasi-operational:	
	http://www.star.nesdis.noaa.gov/smcd/emb/snow/HTML/	
	multisensor_global_snow_ice.html	
Contacts		
Name	Peter Romanov	
email	peter.romanov@noaa.gov	

Daily Snow/Ice Map

Current day snow/ice map becomes available at ~10AM UTC the next day

2013-2014 Season

Snow and ice fraction is obtained by aggregating 4 km retrievals within 10x10 grid cell boxes

Validation Approach

- Validation data sources
 - In situ snow depth observation data
 - WMO
 - US Coop (subsetted by NOAA CPC)
 - IMS analysis
- Parameters we validate/compare
 - Binary snow extent (IMS, station data)
 - Snow area extent (IMS)
 - Snow cover duration (IMS, station data)
- Validation schedule
 - Daily (binary extent, area extent)
 - Yearly (duration)

Autosnow vs SYNOP & Coop

- Daily point-to grid comparison
- Agreement:
 - 80-90% in winter
 - over 90% yearly average
- Most stations are in the CONUS region

Percent of correct "snow" and correct "nosnow" identifications

Station data are not quality controlled

Last record: Jul 9, 2014 Agreement, %: 99.9

Mean Agreement, % Last year: 93.6 Last month: 99.9 Last week: 9

Binary Snow Cover: Autosnow vs IMS compared daily

- IMS resampled to Plate Carre projection
- Grid-to-grid match-ups over N.Hemisphere, N.America, Eurasia
- Agreement , continental-scale
 - 90-95% in winter
 - over 95% yearly average (96.2% in the last year)

Autosnow vs IMS Comparison: Consider Climatic Snow Occurrence

Climatological Snow Occurrence

No data

Water

Snow possible

Autosnow-IMS Mean Agreement (2013-2014)

Region	Agreement, %	
	All Land Area	"Snow Possible"
Northern Hemisphere	96.2	90.9
Eurasia	96.5	91.6
North America	95.6	90.0

Agreement drops by ~5% if the comparison is reduced to the region where snow may or may not exists at the time of observation ("snow possible").

Snow Extent Monitor

- Less short-term variations in the Autosnow time series as compared to IMS
- Land-water masks are different. This may affect the agreement.
- Autosnow vs IMS Northern Hemisphere snow extent mean abs. difference:
 - Daily: 3.3% (October-March)
 - Yearly: 1.5%

Snow Extent Anomalies

Correlation of daily snow extent anomalies, Autosnow vs IMS:

- 0.85 in North America
- 0.94 in Eurasia

Snow Cover Duration

Snow Duration, IMS

Snow Duration 2013-2014, Autosnow

Autosnow vs IMS Duration, NH

Mean bias : -1.1 days Mean abs difference: 11.2 days

Largest differences are in the mountains. Some disagreement may be caused by resampling.

Autosnow-IMS Snow Duration Difference 2013-2014 winter season

Autosnow: Problems

- Shallow snow, snow in forests, misinterpretation of clouds, topographic/ vegetation/cloud shadowing.
- None of the sensors can "see" through precipitating clouds
 - Delayed reproduction of changes in the snow cover distribution/extent
 - Short-term snow on-off events are often missed
- Alternating use of optical and MW observations may cause spurious variation in the mapped snow cover
- Snow mapping errors may affect the blended product for several following days.
- No true validation possible in the Southern Hemisphere (SH).

Further Plans

- Improve resolution to 1-2 km globally (2 km SH snow map has been implemented operationally in 2013)
- Add AMSR2/GCOM-W1: improved spatial resolution
- Replace AVHRR with VIIRS: improved spatial resolution, potentially better cloud detection
- Reprocess historical data, fill in existing data gaps

Summary, Recommendations

- Autosnow provides adequate and accurate characterization of the global snow cover. Autosnow demonstrates better agreement to IMS than to in situ data.
- Disagreement between snow cover datasets increases with narrowing of the comparison region around the snow cover boundary.
- Snow cover climatology has to be accounted for when evaluating the binary snow cover products.
- When comparing the estimated snow area extent difference in the land/ water mask should be addressed.

THANK YOU

Links

NESDIS STAR Automated snow remote sensing page:

http://www.star.nesdis.noaa.gov/smcd/emb/snow/HTML/snow.htm

NESDIS OSDPD Operational Automated Snow Maps:

http://satepsanone.nesdis.noaa.gov/northern_hemisphere_multisensor.html http://satepsanone.nesdis.noaa.gov/southern_hemisphere_multisensor.html

Peter Romanov

peter.romanov@noaa.gov

BACKUP SLIDES

Southern Hemisphere

- Snow is mapped solely with optical data
 - METOP AVHRR: South America, Australia, New Zealand
 - MSG SEVIRI: Southern Africa
- Ice is mapped solely with microwave data
- Antarctica is assumed always snow covered

Merging optical and MW snow

Weekly Climatic
Three-Category Map
of Snow Occurrence

Strategy depends upon snow occurrence probability and elevation

"Snow Persistent": Use snow from both optical and MW

"Snow Possible": Use optical snow when clear, MW when cloudy

"Snow Unlikely": Use optical only, only elevated areas (H > 1 km)

Optical snow mapping

Snow identification: Decision-tree threshold-based technique

Temporal consistency test used with geo satellite data for better snow/cloud discrimination

Gaps due to clouds (40-60% of land area)

Routine snow retrievals are performed with

- MFTOP AVHRR
- GOES-E, -W Imager
- Meteosat SEVIRI

Microwave snow mapping

DMSP SSMIS: Spectral identification + Temporal consistency test

- Snow retrievals from 3 DMSP satellites (6 overpasses per day)
- "Confirmed" snow: snow detected 3 or more times during a day
- Only "confirmed snow" over plain areas is used in the blended map