# A Summary of NOAA Satellite-Derived Snow Products

Sean R. Helfrich<sup>1</sup>, Christopher Grassotti<sup>2</sup>, Peter Romanov<sup>3</sup>, Jeffrey Key<sup>4</sup> and David R. Robinson<sup>5</sup>

1 NOAA/NESDIS/OSPO/NIC <a href="mailto:sean.helfrich@noaa.gov">sean.helfrich@noaa.gov</a>

2 - NOAA/NESDIS/STAR/SMCD

3 - CREST/CUNY @ NOAA/STAR

4 – NOAA/NESDIS/STAR/CIMSS

5 – Rutgers University, Dept of Geography



# OUTLINE

- Historic Product Overview
- Current Product Suite

   IMS (v3) & AutoSnowIce
   VIIRS Binary & Fractional Snow Cover
   ATMS MIRS Snow Products
- Emergent NOAA Snow Products

### **Historical NOAA Snow Products**



# Interactive Multisensor Snow and Ice Mapping System (IMS) Production

#### Satellites

GOES (E & W) MeteoSat (MSG & 7) MTSAT NOAA Automated Snow & Ice AVHRR (Channels 1 & 3) MODIS (Channel 8) ASCAT AMSU (Derived snow, ice, rain)

#### **Other Sources**

Radar Models Surface Observations Webcams Buoys Charts



4 km & 24 km Northern

N. Hem. Snow Cover Jan 2012



Extent

Departure (blue: positive; tan: negative)

### N. Hem. Snow Cover History

**Climatology Maps** 

**Time Series** 



### **NH Seasonal SCE Decadal Anomalies**



### May NH SCE Anomalies: 1967-2014



May 2013 Departure from 1981-2010 Mean

### **IMS Version 3 Capacities – August 2014**

- 1, 4, & 24km Northern Hemisphere Analysis
- Snow & Ice Cover
- ASCII, BIN, GeoTiff, Grib2
- 2x day production
- Improved MetaData
- Automated 2km Southern Hemisphere Analysis
- Date since last confirmed observation
- Snow Depth (with uncertainty values)
- Sea Ice Thickness (with uncertainty values)
- VIIRS, SAR, MODELS, More Surface obs,
- Ability to import derived data sources
- Same underlying Snow & Ice cover resample algorithms -Vital to keeping consistent record

Legacy Version 2

**New to Version 3** 

# **Direct Import of Automated Snow & Ice Cover**

- Analysts will be able to selectively import the data from satellite derived products directly into the **IMS** analysis
- Analysis will have selection box to select snow cover and ice cover from the VIIRS, NOHRSC, and NH AutoSnowlce.
- Human data selection to optimize product use based on expert knowledge and imagery interpretation
- **Combines the speed and reliability** of automated products with the QC and flexibility of Human Analysts



# **IMS Blended Snow Depth**

#### Key features:\_

- 2-D OI Analysis integrated into IMS V3
- Multi-Source Scheme: MW+in-situ + Climatology + Analyst Updates
- IMS Analyst SD and Uncertainty estimates are also ingested into OI as independent data stream
- MW Downscaling based on elevation
- Applies previous day as initial guess



\* NOAA's Global Change Observation Mission (GCOM) AMSR2 SD is first option and expected to go operational this year

Acknowledgement: Cezar Kongoli (NOAA CICS)

## **IMS Blended Snow Depth**

#### **NASA AMSRE-SD**



Acknowledgement: Cezar Kongoli (NOAA CICS)

## **IMS Blended SD Evaluation**

- In Jan 2010, SD Analysis within 20 cm of the GHCN-Daily measurements 86.9% in snow covered areas, while in Feb 2010 within 20 cm 85.1% of the time. This is a very good overall result considering large SD variability, 4-km res. and inclusion of high elevation areas.
- Bi-modal distribution of errors low bias/RMSE in low-elevation areas (4/7cm) and larger bias/RMSE in high elevation areas (35 cm/45 cm)
- RMSE still reasonable over high elevation terrain considering large SD values



Acknowledgement: Cezar Kongoli (NOAA CICS)

### **Global AutoSnowIce Products**



- Automated algorithm
- Multiple satellite sensor data used (optical and microwave)
- Global continuous (gap-free) coverage
- Operational since 2006

On the Web: http://www.star.nesdis.noaa.gov/smcd/emb/snow/HTML/multisensor\_global\_snow\_ice.html

### **IMS vs AutoSnow: Snow Covered Area**



- Over 95% yearly average rate of agreement on the continental-scale binary snow extent
- Most differences are in the mountain regions and occur at the time of fast changes in the snow extent
- IMS has higher daily variability

## **VIIRS Binary Snow Cover**

**Description:** Snow Cover is defined to be the horizontal and vertical extent of snow cover. The binary product gives a snow/no-snow flag.



| snow land cloud No | data |
|--------------------|------|
|--------------------|------|



### VIIRS, AVHRR, MODIS Snow vs IMS

Mean agreement to IMS and cloud-clear fraction of daily automated snow products in 2013 Northern Hemisphere

|           | Agreement to IMS (%) | Cloud-clear(%)* |
|-----------|----------------------|-----------------|
| VIIRS     | 98.0                 | 38.6            |
| MODIS (T) | 97.3                 | 49.1            |
| MODIS(A)  | 97.1                 | 48.3            |
| AVHRR     | 97.9                 | 55.0            |

<sup>\*</sup>Cloud-clear fraction is estimated in 25-60<sup>0</sup>N latitude band

- Binary snow cover meets the accuracy requirement.
- Most issues are related to cloud masking; e.g., somewhat overestimated cloud extent and corrupted land/water mask.
- Some potential exists to improve the algorithm and the product, e.g., geometrydependent threshold values.

### **VIIRS Snow Fraction**

**Description**: VIIRS **Snow Cover** Fraction is derived from the Binary Snow Map as an aggregated snow fraction within 2x2 pixel blocks. The spatial resolution of the product is 750 m at nadir





MODIS fraction

**VIIRS** 

Image

In 2x2 snow fraction (top) snow to no snow transition regions are unrealistically narrow compared to the MODIS based snow fractions.

## **VIIRS Snow Fraction Results**

Granule date: 20130915 time: 0355267



Binary snow map (granule fragment) 375 m spatial resolution, white: snow, green: snow-free land, gray: cloud



Snow fraction map (granule fragment) 750 m spatial resolution, derived through 2x2 pixels aggregation

This snow fraction algorithm has little added value and does not represent the viewable snow fraction and does not meet requirements.

# Microwave Integrated Retrieval System (MIRS): Snow Products

#### **MIRS Algorithm**

• MiRS is a 1-dimensional variational algorithm designed to operate on microwave measurements; entire state vector is retrieved simultaneously based on best fit to observed radiances, subject to additional background constraints

- State vector: T(p), q(p), CLW(p), RWP(p), IWP(p), Tskin, Emissivity
- Snow and sea ice properties retrieved in a post-processing step based on emissivity
- Official NOAA operational algorithm for 8 microwave satellites/sensors

#### **SWE Estimation**

• Offline: Create emissivity catalog based on pre-specified sensor parameters; Based on work by Weng, Yan, and Grody (2001) modeling snow dielectric properties, etc.; Single-layer model

- Result is a sensor-specific lookup table with emissivity stored as a function of snow water equivalent and grain size
- Algorithm: quasi-variational search within lookup table, with cost function containing additional constraints (how far the solution can deviate from a BG SWE and GS ); emissivity spectral gradients used

### MIRS, AMSR 2 and GlobSnow

### Intercomparison









#### 2013-02-21

**Note:** GlobSnow grain size not considered an official product

Acknowledgement: GlobSnow data courtesy of Kari Luojus (FMI)

### MIRS, AMSR 2 and GlobSnow Intercomparison





MIRS SWE better agreement with JAXA AMSR2 SWE than GlobSnow (both microwave algorithms sensitive to similar snowpack properties)
GlobSnow SWE tends to be anti-correlated with Grain Size
Note: GlobSnow grain size not considered an official product

Acknowledgement: GlobSnow data courtesy of Kari Luojus (FMI)

### **VIIRS Snow/Ice Gridding Tests**



#### GMASI



#### **VIIIRS Updated**

| Ice over water    |  |
|-------------------|--|
| Snow over land    |  |
| No Snow over land |  |
| No Ice over water |  |

## **GOES R ABI algorithms**

SNOW FRACTION: Multiple endmember multispectral approach (Painter)

SNOW DEPTH: Snow Fraction based approach for shallow snow depth detection (Romanov)



Snow Fraction ABI Simulation: From ATBD, Painter Et al 2010



Snow Depth Simulation: From ATBD, Romanov & Kongoli 2010

### **Revised VIIRS Snow Fraction Approaches**

The 2x2 pixel aggregation scheme can only provide a small set of values (0, 25, 50, 75, 100% if no missing pixels) and therefore cannot meet the 10% accuracy requirement throughout the measurement range.

A number of different snow fraction algorithms are available; first 2 being tested:

- 1. NDSI-based (Solomonson/Appel, Hall/Riggs)
- 2. Visible reflectance –based (Romanov/Tarpley)
- 3. Multiple endmember multispectral approach (Painter)



*Visible Reflectance example: VIIRS , 375m gridded at 1 km* 

### **AMSR 2 Snow Algorithms for NOAA**

### **SNOW COVER**

#### **Enhanced Grody SSMI algorithm**

- Uses the Grody 1991 approach as the base
- A climatology test: probability of snowfall occurrence derived and updated from IMS snow cover data
- Adapt the algorithm to AMSR2 configuration
- Investigate the utility of the lower frequency channels (10 GHz and below)
- Investigate the utility of TB atmospheric corrections

### **SNOW DEPTH / SWE**

#### NASA AMSR-E SD/SWE approach (Kelly, 2009; Tedesco and Narvekar, 2010)

- Brightness temperature differences at 10, 18 and 37 GHz (the Chang et al. approach) but with non-linear spatially and varying coefficients computed from brightness temperatures at horizontal and vertical polarizations
- Use of 10 & 18 GHz channels over non-forest fraction of the AMSR-E pixel for deeper snow retrievals
- Retrievals of pixel SD are weighted between forest and non-forest fractions
- Algorithm coefficients are tuned to SD, and SWE is estimated using a spatially and seasonally varying snow density climatology.

### **AMSR 2 Snow Products**



(c)



Snow cover area (SCA) detection and snow depth (SD) using AMSR2 measurements (January 15, 2013). (a) AMSR2 SCA, (b) IMS 24 km SCA, and (c) AMSR2 SD.

Acknowledgements: Yong-Keun Lee & Cezar Kongoli

### AMSR 2 Snow Depth



# Questions?



## Extra Slides



## N. Hem. continental SCE climatology



## IMS V3 Input Direct Data

GOES (E & W) MeteoSat (MSG (ch 1,2,3) & 7) MTSAT NOAA Automated Snow & Ice AVHRR (Channels 1,2,3) MODIS (Channels 1,2,7,8) ASCAT AMSU (Derived snow, ice, rain) **NIC Marginal Ice Zone** NIC & CIS Ice Charts Surface Obs (METAR) **NOHRSC SNODAS AFWA Snow Depth** SSMI/S (Derived snow, ice, rain) **MMAB Sea Ice Cons** 

ATMS MIRS Algorithm (SWE, Sea Ice Con, **Snow Grain Size**) VIIRS Snow Cover **VIIRS Ice Age** VIIRS Imagery (11, 12, 13, & 15) **RadarSat & Sentinel SAR imagery US RADAR COOP and SYNOP reports CMC Snow Depth Analysis CMC RIPS 3D var Ice Analysis** US Navy Arctic Cap (ACNFS) Ice Cons & **Thickness** GFS Snow Depth Change (24hrs)

## **VIIRS Binary Snow Cover**

| Parameter                        | Specification Value    |
|----------------------------------|------------------------|
| a. Binary Horizontal Cell Size,  |                        |
| 1. Clear – daytime (Worst case)  | 0.8 km                 |
| 2. Clear – daytime (At nadir)    | 0.4 km                 |
| 3. Cloudy and/or nighttime       | N/A                    |
| b. Horizontal Reporting Interval | Horizontal Cell Size   |
| c. Snow Depth Range              | > 0 cm (Any Thickness) |
| d. Horizontal Coverage           | Land                   |
| e. Vertical Coverage             | > 0 cm                 |
| f. Measurement Range             | Snow / No snow         |
| g. Probability of Correct Typing | 90%                    |
| h. Mapping Uncertainty           | 1.5 km                 |

The probability of correct snow/no-snow detection applies only to climatologically snow-covered regions.
 The accuracy of snow detection does not apply over forested/mountainous areas where snow may be hidden by vegetation or topographic shading.

[Joint Polar Satellite System (JPSS) Program Level 1 Requirements SUPPLEMENT – Final Version: 2.9 June 27, 2013]

### **VIIRS Snow Fraction Requirements**

| Parameter                        | Specification Value       |
|----------------------------------|---------------------------|
| a. Horizontal Cell Size,         |                           |
| 1. Clear – daytime (Worst case)  | 1.6 km                    |
| 2. Clear – daytime (At nadir)    | 0.8 km                    |
| 3. Cloudy and/or nighttime       | N/A                       |
| b. Horizontal Reporting Interval | Horizontal Cell Size      |
| c. Snow Depth Ranges             | > 0 cm (Any Thickness)    |
| d. Horizontal Coverage           | Land                      |
| e. Vertical Coverage             | > 0 cm                    |
| f. Measurement Range             | 0 – 100% of HCS           |
| g. Measurement Uncertainty       | 10% of HCS (Snow/No Snow) |
| h. Mapping Uncertainty           | 1.5 km                    |

### MIRS Snow Emissivity Catalog Example: N18, Spectral Gradients Em23-Em31 (left) and Em23-Em50 (right)



Prepared by C. Grassotti, MiRS Team (NOAA/NESDIS/STAR)

## **Current Validation Results**



Difference of IMS V3 snow depth versus GHCN-Daily measurements in cm. Underestimates of snow depth made up more than 60% of the values, though most IMS V3 estimates were within 20 cm of the measurements.

# **Blending using ATMS**



- ATMS output applies *Microwave Integrated Retrieval System (MIRS)* algorithm. MIRS is MIRS is based on an assimilation-type scheme (1DVAR) capable of optimally retrieving atmospheric and surface state parameters simultaneously.
- MIRS appears to saturation snow depth at about 20-30 cm. This is far under than observed at in-situ stations.
- MIRS does not have a vegetation correction.
- The differential of ATMS and insitu measurement yields "bullseyes" in the NESDIS blended snow.
- Bias correction could help.

NASA AMSR-E Snow Depth algorithm Description (Kelly, 2009)

### Snow Depth/SWE Algorithm Details

Adopted the current version of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) algorithm based on Kelly (2009).

SD=ff \*[p1 \*(T18V-T36V)/(1-b\*fd)] + (1-ff)\*[p1\*(T10V-T36V) + p2 \* (T10V-T18V)]

p1=1/log10(T36V-T36H), p2=1/log10(T18V)

-T18H)

ff: forest fraction product from MCD12Q1 (7km radius averaged)

fd: Vegetation continuous field product from MOD44B (7km radius averaged)

b = 0.6 from the SD comparison with 80 WMO snow measuring stations

T18V: Brightness temperature at 18 GHz, vertically polarized.

T18H: Brightness temperature at 18 GHz, horizontally polarized.

SWE = SD \* snow density (snow density look-up table) (Brown and Mote 2009; Sturm et al. 1995)