

Canada

The Satellite Snow Product Intercomparison and Evaluation Experiment (Snow Water Equivalent): Potential Datasets, Protocols, Metrics, and Open Issues

Chris Derksen, Lawrence Mudryk, Ross Brown, Kari Luojus

EO Product Pl's: Richard Kelly, Marco Tedesco, Shengli Wu... Reference Data: Kelly Elder, Alan Barr... Modeling/Reanalysis Groups: Rolf Reichle, Eric Brun...

Contents

- Objectives and background
- Currently available SWE products and levels of validation
- Challenge #1: How do we best perform comparisons with ground reference measurements?
- Challenge #2: How to integrate non-EO gridded SWE products?
- Challenge #3: Approach to multi-dataset trend analysis?
- Summary of open issues

SWE Inter-Comparison Objectives

- Intercompare and evaluate hemispheric passive microwave derived SWE products generated by different algorithms, assessing the product quality by objective means.
- Evaluate and intercompare temporal SWE trends in order to achieve well-founded uncertainty estimates for climate change monitoring.
- Identify recommendations and needs for further improvements in monitoring seasonal snow parameters from EO data.

Unique considerations for SWE:

- **1.** Limited number and time series (AMSR-E) of EO-derived SWE products
- 2. Inclusion of non-EO gridded products
- **3.** Challenges for alpine areas

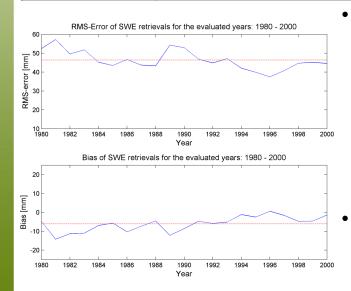
Overall goal for this workshop: achieve *community consensus* on datasets, protocols, metrics, work plan, etc.

Moving forward, all publications should be combined efforts from the satellite Pis, key field dataset contributors, etc.

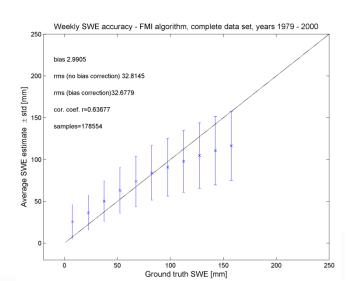
Satellite Derived SWE Products

- Rely on satellite passive microwave measurements: reasonable measurement frequencies, orbital characteristics, etc. for snow applications, but limited by coarse spatial resolution.
- Early algorithm approaches: static, empirical, <u>hemispheric versus regional</u>
- Current algorithm approaches: dynamic, include forward emission modeling, <u>standalone versus synergistic</u>

Candidate SnowPEx SWE Datasets


Dataset	Method	Domain	Time Period	Resolutions	Contact	Reference
ESA GlobSnow	Microwave + ground stations	Non-alpine northern hemisphere	1979- present	Daily/weekly/ monthly 25 km	K. Luojus	Takala et al., 2011
NASA AMSR-E (standard)	Standalone microwave	Northern hemisphere	2002-20 11	Daily/monthly 25 km	R. Kelly; M. Tedesco	Kelly 2009
NASA AMSR-E (prototype)	Microwave + ground station climatology	Northern hemisphere	2002-20 11	Daily/monthly 25 km	M. Tedesco	TBD
JAXA AMSR-E/2	Standalone microwave	Northern hemisphere	2013- present	Daily/monthly 25 km	R. Kelly	Kelly 2009
CMA AMSR-E/ FY-3	Semi-empirical, regression based	China			Shengli Wu	TBD

Spatial coverage	Northern Hemisphere (masking of sub-regions is permitted)		
Time period	Ainimum 2002 onwards (covers AMRE-E period); complete through 2010		
	As long as possible for trend analysis		
Temporal resolution	Daily/Weekly?		
Grid	EASE-Grid 25 km northern		
Environment Environnem Canada Canada	ent Canadă		



Validation of Current SWE Products

Stage 1 Validation	Product accuracy is assessed from a small (typically < 30) set of locations and time periods by comparison with in situ or other suitable reference data.
Stage 2 Validation	Product accuracy is estimated over <u>a significant set of locations</u> and <u>time periods</u> by comparison with reference in situ or other suitable reference data. Spatial and temporal consistency of the product and with similar products has been evaluated over globally representative locations and time periods. <u>Results are published in the peer-reviewed literature</u> .
Stage 3 Validation	<u>Uncertainties in the product and its associated structure are well quantified from comparison with reference in situ or other</u> <u>suitable reference data</u> . Uncertainties are characterised in a statistically robust way over multiple locations and time periods representing global conditions. Spatial and temporal consistency of the product and with similar products has been evaluated over globally representative locations and periods. Results are published in the peer-reviewed literature.
Stage 4 Validation	Validation results for stage 3 are systematically updated when new product versions are released and as the time-series expands.

- Passive microwave derived SWE product validation has not moved beyond CEOS stage 2
- Objective for SnowPEx is to achieve stage 3

Challenge #1: How to best perform comparisons with ground reference measurements?

Surface Networks for Validation

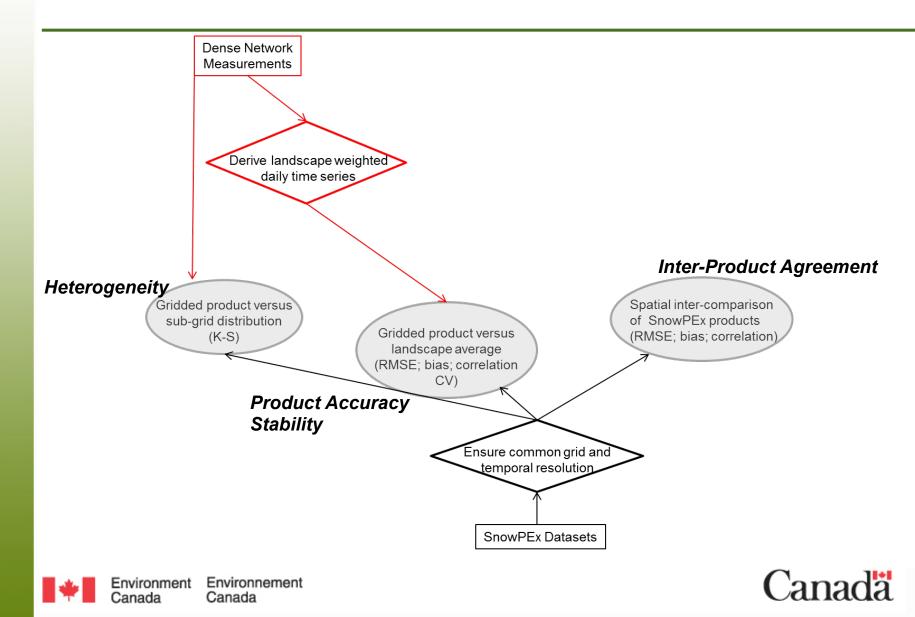
Typical approach is to use climate station or snow course measurements for point versus area comparison:

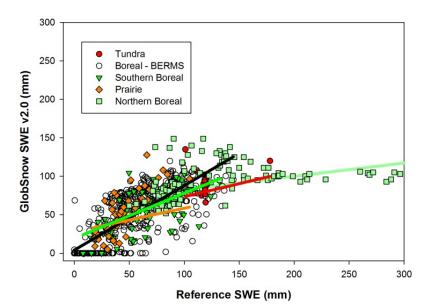
- Maximizes the sample size, but representativeness of the measurements is a major source of uncertainty
- Retrieval techniques such as GlobSnow utilize climate station measurements as part of the retrieval

Alternative approaches:

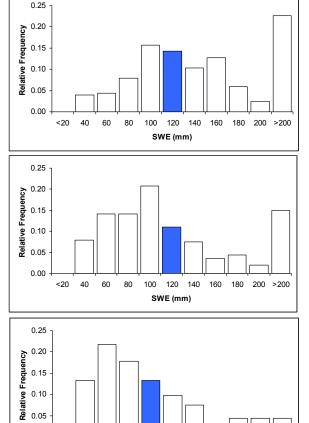
- Differentiate dense from sparse networks (as is being done for SMAP) and focus on the best available data. More limited sample size but should result in a more meaningful comparison.
- Produce gridded SWE products for regions with sufficient site density

Need to ensure sampling across the primary snow-climate classes




Potential Dense/High Quality Surface Observations

Dataset Region		Snow	Snow Method		Temporal	Contact
		Class		Period	Resolution	
Boreal Ecosystem Research	Saskatchewan	Taiga	Sonic snow	1997-2	Daily	H Wheater, U. Sask
and Monitoring Sites			depth	014		
Environment Canada –	Saskatchewan	Prairie	Sonic snow	2011-	Daily	C Smith, EC
Bratt's Lake			depth; manual			
			surveys			
FMI – Sodankyla	Finland	Taiga	Sonic snow	19xx-20	Daily	J. Pulliainen, FMI
			depth; cosmic	14		
EC – Olympics 2010	Southern coast	Alpine	Sonic snow	2008-2	Daily	C. Derksen, EC
	mountains		depth	010		
Trail Valley Creek	Northwest	Tundra	Sonic snow	2002-2	Daily (may	P. Marsh, WLU
	Territories		depth	014	be gaps in	
					mid-winter)	
Fraser	Colorado	Alpine	TBD	19xx-20	Daily	K. Elder, USFS
				14		
Finnish Environment	Finland	Taiga	Manual snow	19xx-20	Monthly	S. Metsämaäki, SYKE
Institute Snow Surveys			course	14		
RusHydroMet Snow	Russia	Taiga;	Manual snow	1966-2	Bi-weekly	O. Bulygina, RIHMI-
Surveys		Tundra	course	014		WDC
Hydro-Quebec Snow Survey	Quebec	Taiga	Kriged snow	1970-2	SWEmax	D. Tapsoba, IREQ
Network			course	005		


Potential Validation Approach

Validation Examples

- Comparison of areally weighted point measurements from Canada with GlobSnow v2.0 SWE retrievals
- Statistical distribution of in situ SWE measurements and GlobSnow v2.0 SWE retrievals (blue column) for a grid cell (tundra) near Daring Lake, Canada

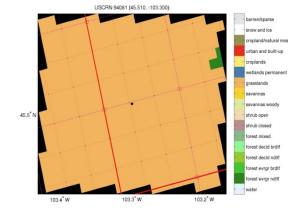
0.00

<20

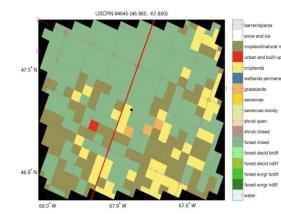
40 60

80 100 120 140 160

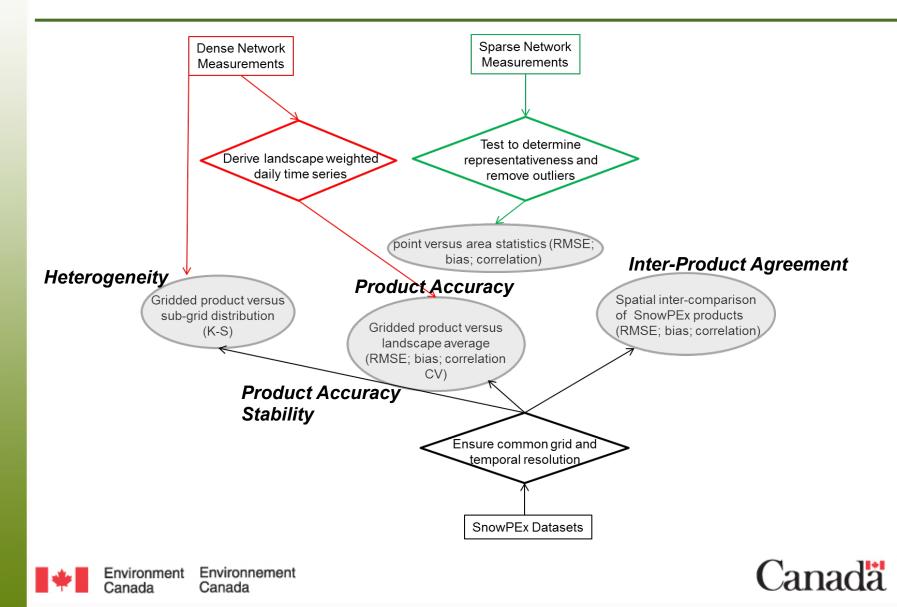
SWE (mm)

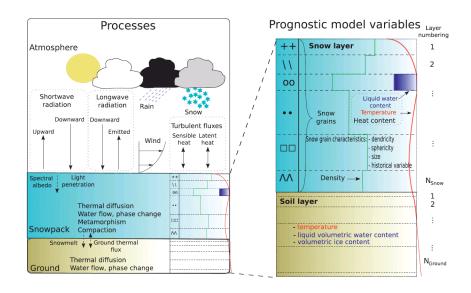


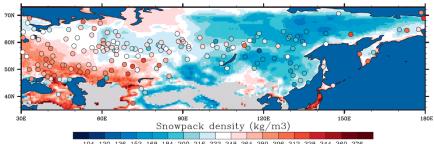
180 200 >200


Potential Sparse Surface Observations

Dataset	Region	Snow Class	Method	Available Time Period	Temporal Resolution	Distribution and QC
SnoTel	Western US	Alpine	Snow pillow SWE	1979-2014	Daily	Available online
BC River Forecast Centre	British Columbia, Canada	Alpine	Snow pillow SWE	Variable by station	Daily	Available online
Alberta Environment	Alberta, Canada	Prairie; Taiga; Alpine	Snow pillow SWE	Variable by station	Daily	Available online


- How to perform a meaningful comparison in mountains at 25 km, even with the available dense networks?
- Sparse networks require pre-screening for site representativeness

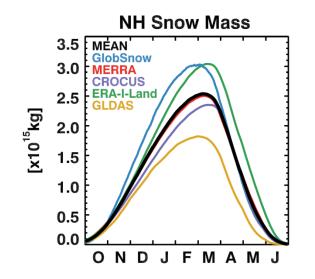

 Example land cover homogeneity for two USCRN stations



Potential Validation Approach

Challenge #2: How to integrate non-EO gridded SWE products?

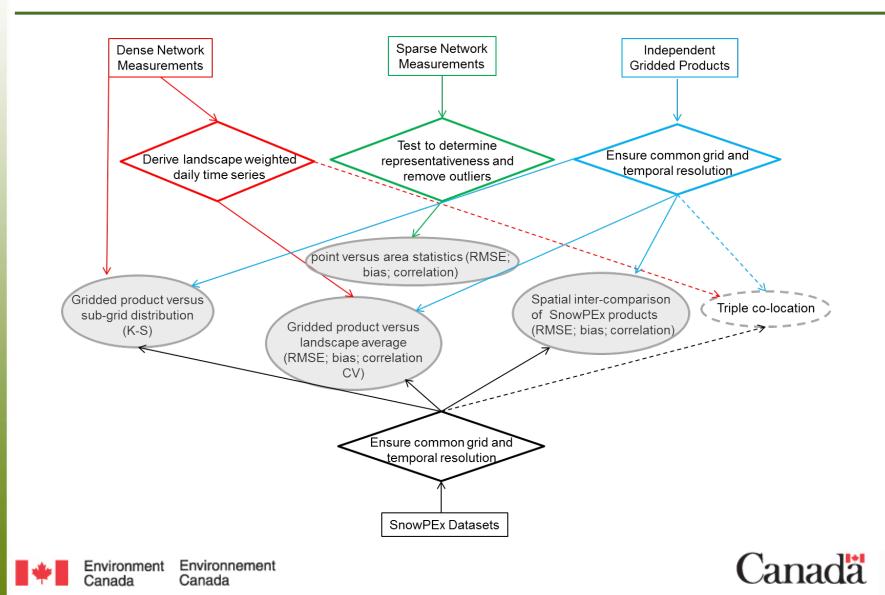
104 120 136 152 168 184 200 216 232 248 264 280 296 312 328 344 360 376



Gridded SWE Products

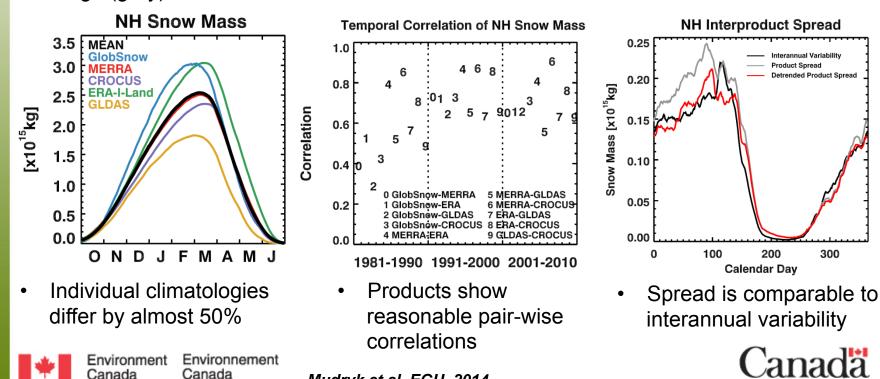
Considerations:

- Limited number of EO derived SWE products
- Short time series (primarily AMSR-E)
- Wide availability of non-EO gridded SWE products with limited validation



Gridded SWE Products

Dataset	Method	Time Period	Res.	Comments	Reference	
MERRA+ SnowModel	· · · · · · · · · · · · · · · · · · ·		10 km	Land areas north of 55N	Liston and Hiemstra, 2011	
MERRA-Standard	-Standard Catchment land surface model driven by MERRA's AGCM (3DVAR assimilation)		0.5 x 0.67 deg		Rienecker et al., 2011	
MERRA-Land	MERRA-standard with revised precip forcing and some hydrological parameterizations	1979-2013	0.5 x 0.67 deg	Discontinuity due to changes to precip forcing	Reichle et al., 2011	
GLDAS-Noah	Noah land surface model driven by GLDAS2.0	1948-2010	0.25 x 0.25 deg		Rodell et al., 2004	
CMCSnow Analysis	in situ obs + snow model forced by GEM forecast temp/precip fields	1998-2013	35 km	Discontinuity in 2007 due to change in precip forcing	Brasnett, 1999	
ERA-interim- HTESSEL (ERA-land)	HTESSEL land surface model driven by ERA-Interim + GPCP v2.1 adjustments	1979-2010	80 km		Balsamo et al., 2013	
ERA-interim- CROCUS/ISBA	CROCUS snow model in ISBA forced by ERA-interim; no precip corrections/adjustments	1979-2013	1 x 1 deg	Only recently applied to entire NH, north of 25N	Brun et al., 2013	

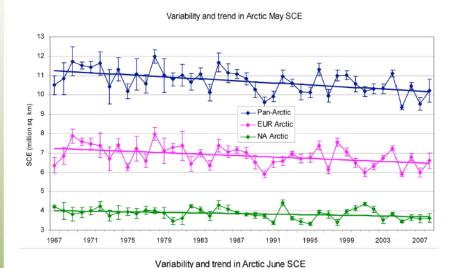

Potential Validation Approach

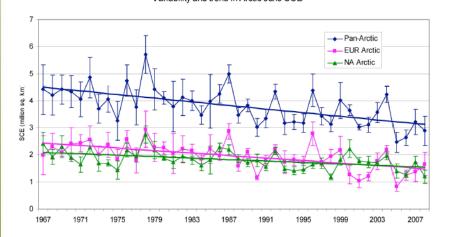
Initial Multi-Dataset SWE Comparisons

range (gray)

Mudryk et al, EGU, 2014

Challenge #3: Approach to multi-dataset trend analysis?





Example of Multi-Dataset Trend Analysis

Estimate of uncertainty in SCE in each year obtained from the standard error (SE):

$$SE = s/\sqrt{(n-1)}$$

which depends on the standard deviation *s* of *n* data sets included in the average anomaly.

The uncertainty estimates included in linear trend analysis which accounts for errors in the dependent variable.

Method allows variable number of datasets each year.

Brown et al., 2010

Summary of Open Issues

Comparison with ground reference measurements

- Should we limit the comparison with ground reference measurements to dense and high quality networks only?
- How do we perform a meaningful comparison in mountains at 25 km, even with the available dense networks? Is there a role here for datasets such as SNODAS or gridded in situ obs?
- What will be the standard time periods (golden years) and temporal resolution (daily versus weekly)?
- Do we limit reference datasets to only bulk snow properties or include more detailed variables (such as snow grain size)

Inter-dataset comparison with independent gridded products

- What is the most meaningful way to include the gridded reference SWE products given that some share common reanalysis meteorology and precipitation forcing?
- Is the triple co-location approach suitable for gridded SWE products?

Multi-dataset trend analysis

- Can datasets used in trend analysis cover different time periods?
- Do we include all gridded SWE products in the trend analysis?
- How do we combine trends from datasets with different masks?
- How best to combine SWE and SE trends?

