
esa sP-221

.
Microwave remote sensing
applied to vegetation

Proceedings of an EARSeLWorkshop
organised by Working Group 4
and held at NLR,Amsterdam, The Netherlands
on 10-12 December 1984

GEN107

..esa
european space agency





esa sP-221
January 1985

Microwave remote sensing
applied to vegetation

Proceedings of an EARSeLWorkshop
organised by Working Group 4
and held at NLR, Amsterdam, The Netherlands
on 10-12 December 1984

european space agency I agence spatiale europeenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX 15, France



11

Proceedings published ESA Scientific and Technical Publications Branch,
and distributed by ESTEC, Noordwijk, The Netherlands

compiled by W.R. Burke

printed in The Netherlands

Price code E2

International serial ISSN 0379 - 6566
nwriber

Copyright © 1985 by European Space Agency



lll

CONTENTS

Introductory addresses

Introduction xi

J.W. Trevett

Agricultural interest in remote sensing

Th.A. de Boer

xiii

Keynote paper

Microwave remote sensing and vegetation: problems, progress and

solutions - a review 3

L. Krul

Session A

The structure of plants and the biomass related to microwave

studies (abstract only)

T. Le Toan

13

Active microwave mapping of vegetation

G.M. Foody

15

A review of radar analyses of woodland

P.N. Churchill, A.I.D. Horne & R. Kessler

25

Session B

Multiple-input segmentation algorithm for SLAR imagery

J.J. Gerbrande

35

Optimisation of agricultural crop identification in SLAR images:

hierarchic classification and texture analysis

P. Hoogeboom

41



IV CONTENTS

Crop mapping with X-band radar (abstract only)

H.W.J. van Kas teren
49

Session C

Microwave emission from vegetation: general aspects and

experimental results

P. Pampaloni & S. Paloscia

53

Modelling of vegetation: effect of biomass and structure of a

wheat canopy on radar backscatter (abstract only)

T. Le Toan, A. Lopes & A. Malavaud

61

Variation of the radar backscatter of vegetation through the

growing season

G.P. de Loon

63

Session D

Analysis of digital radar data from SAR-580 in relation to

soil/vegetation moisture and roughness

K. Blyth

71

Some preliminary results on land use evaluations by texture

analysis of SAR-580 data over the test site Freiburg

R. Kessler & R. Waltenspiel

85

SAR image segmentation using digitised field boundaries for crop

mapping and monitoring applications

M.G. Wooding

93

Texture analysis of SLAR images as an aid in automised

classification of forested areas

D.H. Hoekman

99

Session E

Microwave remote sensing of agricultural crops in Canada

J. Cihlari, R.J. Brown & B. Guindon

113



CONTENTS v

DUTSCAT, a 6-frequency airborne scatterometer

E.W.P. Attema & P. Snoeij

127

Human and automatic interpretation of radar images of land cover

P. ChurchiZZ & A. Wright

131

Postscript

Remarks on the systematics of application

A.R.P. Janee

143





VII

PARTICIPANTS

A. ANTHONY
Abt. Luftbildmessung und Fernerkundung
University Freiburg
Werderring 6 D
D-7800 FREIBURG
F. R. Germany

E. P. W. ATTEMA ,
Delft University of Technology
Dept. of Electrical Engineering
Microwave Laboratory
Mekelweg 4
P. 0, Box 5031
2600 GA DELFT
The Netherlands

P. BINNENKADE
National Aerospace Laboratory
Anthony Fokkerweg 2
1059 CM AMSTERDAM
The Netherlands

K. BLYTH
Institute of Hydrology
Maclean Building
Wallingford, OXON. OXlO 8BB
United Kingdom

J. BODECHTET..· ,
Arbeitsgruppe Geowissenschaftliche
Fernerkund
University of Munich
Luisenstrasse 37
D-8000 Munich 2
F. R. Germany

T. de BOER
Centre for Agrobiological Research (CABO)
P. O. Box 14
6700 AA WAGENINGEN
The Netherlands

J. van de BRINK
Delft University of Technology
Dept. of Electrical Engineering
Microwave Laboratory
Mekelweg 4
P. O. Box 5031
2600 GA DELFT
The Netherlands

N. I. J. BUNNIK
National Aerospace Laboratory
Anthony Fokkerweg 2
1059 CM AMSTERDAM
The Netherlands

W. R. BURKE (Editor)
Scientific and Technical Publications Branch
ESTEC
P. O. Box 299
2200 AG NOORDWIJK
The Netherlands

P. CHURCHILL
Hunting Technical Services Ltd.
Elstree Way
Boreham Wood, Herts. WD6 !SB
United Kingdom

J. CIHLAR
Canada Centre for Remote Sensing
717 Belfast Road
OTTAWA KIA OY7
Canada

G. P. DE LOOR
Physics Laboratory TNO
P, O. Box 96864
2509 JG THE HAGUE
The Netherlands

J. DE ROOVER
BELFOTOP-EUROSENSE SPRL
J, Vander Vekenstraat, 158
B-1810 WEMMEL
Belgium

C. ELACHI
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
PASADENA, CA 91109
U.S.A.

G. M. FOODY
Department of Geography
University of Sheffield
SHEFFIELD SIO 2TN
United Kingdom

J. J. GERBRANDS
Delft University of Technology
Dept. of Electrical Engineering
Microwave Laboratory
P. O. Box 5031
2600 GA DELFT
The Netherlands



vm LIST OF PARTICIPANTS

D. H. HOEKMAN
Dept. of Surveying, Photogrammetry & Remote
Sensing
Wageningen Agricultural University
6, H. van Suchtelenweg
P. O. Box 339
6700 AH WAGENINGEN
The Netherlands

P. HOOGEBOOM
Physics Laboratory TNO
P. O. Box 96864
2509 JG THE HAGUE
The Netherlands

A. JANSE
Dept. of Soils
Wageningen Agricultural University
6, H. van Suchtelenweg
P. O. Box 339
6700 AH WAGENINGEN
The Netherlands

H. w. J. van KASTEREN
Centre for Agrobiological Research (CABO)
P. O. Box 14
6700 AA WAGENINGEN
The Netherlands

Y. KERR
Centre National d'Etudes Spatiales/LERTS
18, avenue Edouard Belin
F-31055 TOULOUSE
France

R. KESSLER
Abt. Luftbildmessung und Fernerkundung
University of Freiburg
Werderring 6 D
D-7800 FREIBURG
F, R. Germany

P. M. KNOLL
20, Grande Rue
F-91590 JOUY
France

L. KRUL
Delft University of Technology
Dept. of Electrical Engineering
Microwave Laboratory
Mekelweg 4
P. O. Box 5031
2600 GA DELFT
The Netherlands

T. LE TOAN
Centre d'Etude Spatiale des Rayonnements
C.E.S.R.
9, avenue du Colonel Roche
31029 TOULOUSE
France

W. MEHL
Joint Research Centre of the
European Communities
Ispra Establishment
I-21020 ISPRA (Varese)
Italy

G. J. L. NOOREN
National Aerospace Laboratory
Anthony Fokkerweg 2
1059 CM AMSTERDAM
The Netherlands

A. PALOSCIA
Istituto di Analisi Ambientale e
Telerilevamento Applicati all'Agricoltura
(I.A.T.A.) - CNR
Via Pian dei Giullari, 42
I-50125 FIRENZE
Italy

P. PAMPALONI
Istituto di Analisi Ambientale e
Telerilevamento Applicati all'Agricoltura
(I.A.T.A.) - CNR
Via Pian dei Giullari, 42
I-50125 FIRENZE
Italy

A. J. PARSONS
Dept. of Geography
University of Keele
KEELE, Staffs. ST5 5BG
United Kingdom

J. PERBOS
eentre National d'Etudes Spatiales/LERTS
18, avenue Edouard Belin
F-31055 TOULOUSE
France

N. PIERDICCA
TELESPAZIO S.P.A.
Via Alberto Bergamini, 50
I-00159 ROME
Italy

M. RICOTI'ILLI
TELESPAZIO S .P.A.
Via Alberto Bergamini, 50
Via Alberto Bergamini, 50
I-00159 ROME
Italy

M. van SLIEDREGT
Delft University of Technology
Dept. of Electrical Engineering
Microwave Laboratory,
Mekelweg 4, P. 0. Box 5031
2600 GA DELFT
The Netherlands



P. SNOEIJ
Delft University of Technology
Dept. of Electrical Engineering
Microwave Laboratory
Mekelweg 4, P. O. Box 5031
2600 GA DELFT
The Netherlands

J. W. TREVETT
Hunting Technical Services Ltd.
Elstree Way
Boreham Wood, HERTS. WD6 ISB
United Kingdom

N. WALKER
Queen Mary Hall
Queen Elizabeth College
Campden Hill Road
Kensington
LONDON W8
United Kingdom

W. WIJMANS
ESRIN-EARTHNET
Via Galileo Galilei
c. r , 64
I-00044 FRASCATI
Italy

LIST OF PARTICIPANTS IX

M. G. WOODING
UK National Remote Sensing Centre
Space Department
Q 134 Building
Royal Aircraft Establishment
Farnborough, HANTS. GUl4 6TD
United Kingdom

A. WRIGHT
Marconi Space Systems Ltd.
Browns Lane
The Airport
Portsmouth, RANTS. P03 5PH
United Kingdom

SECRETARIAT

M. GODEFROY
EARSeL Secretariat
292, rue Saint Martin
F-75003 PARIS
France





XI

INTRODUCTION

j.W. Trevett

HUNTING TECHNICAL SERVICES LIMITED
Chairman EARSel Working Group 4

The Working Group had, over the past four years, been
totally committed to the European SAR-580 Campaign.
All of the members had been involved in various aspects of
research on these data and the workshops connected with that
campaign had been seen as workshops of the Working Group.

In a similar manner the reports of the campaign were
regarded as reports of the Working Group also, since the reports

were contributions by the members. At the same time the group
has held other meetings, and produced reports that have also
been issued as ESA publications.

With the completion of the SAR-580 Campaign it was
necessary for the Working Group to reconsider its future
activities. In order to do this it was thought advisable to take
stock of the current researches related to microwave technology
and vegetation in order to better evaluate the future actions that
should be taken.

It was against this background that this workshop
was convened and took place in Amsterdam.

The workshop was considered most successful, there
was attendance of up to forty members overall, with a very
high standard of presentation as can be evidenced by this final
report. More important perhaps was the considerable discussions
that took place both during the meeting and in the social events.

The workshop was particularly fortunate in obtaining
the attendance of Dr C. Elachi from the Jet Propulsion
Laboratory in Pasadena, his final major keynote address, coming
as it did so soon after the flight of SI R-B, was greatly appreciated
by all who attended.

The workshop was also fortunate in having Dr Cihlar
attending from Canada. Canada are members of EARSeL so this
was seen as a positive example of involvement as well as
presenting a valuable insight into Canadian activities.

The workshop ended with a discussion meeting of the
Working Group. This meeting was attended by Dr J. Bodechtel
who as EARSeL Chairman was able to present members with
the changing and improved role of EARSeL and the expectations
for the future

Following from these new objectives of EARSeL and
arising out of the papers and discussion presented at the
workshop, the Working Group drew up the following policy

points setting out the future activities and
group. These objectives were discussed
unanimously agreed by all present.

objectives of the
at length and

This Working Group Makes the Following Proposals

1. That the next long term objective of the group is the
successful use of the ERS series for land applications.
Firstly the use of data from ERS 1 and associated research

and experiments.
Secondly ERS 2.
And thirdly the possible ERS 3 with its concentration on

land applications.
To this end the group should become the coordinating body
within EARSeL and linked to ESA for research and
planning projects connected with land use and vegetation

studies.

2. That in connection with 1 above this group should
cooperate with the Working Group on microwaves and
geology which should play a comparable role.

3. It is considered that for a successful ERS campaign that
there is a fundamental need for more real SAR data from
airborne campaigns preferably C-band and with multi
temporal, multi-look capability.

4. This Working Group should seek to identify a. group of
representative test sites for future campaigns and should set

up a method of cooperative studies for these test sites
including interchange of data.

5. That recognising the need for some standard methods of
data collection and mindful of the problems previously

encountered, this group never the less believes the objective
to be worthy of consideration and as a first step constituent

laboratories be asked to outline their own methods and
these replies to be compiled into a reference and discussion
document.

6. That further meetings and workshops are desirable and the
next workshop is proposed for Freiburg in October 1985
with a principal objective to include a one day field trip in

the Freiburg test area. To make a comparative on-the-spot
study of SAR-580 1 and 2 data, SI R-B data and field
conditions and methods used.

7. That regular meetings of the group are essential to meet

Proc. EARSet \vi1rksl10JJ '.\!!icrowave re111ote sensing ll/!fl/ied to regetution'. A111sterdu111. 10-12 December 1984
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these objectives and that the Council of Ministers should
be requested to approve funding to ensure that such
meetings can take place.
Unless such funding is available it will be difficult to meet
these objectives.
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AGRICULTURAL INTEREST IN REMOTE SE!ISING

J'h.A. de Boer

Member of the RS-board in the
Netherlands for the Min. of Agriculture

and Fishery

INTRODUCTION

It is an honour to me to give this address as a
representative of the Ministry of Agriculture and
Fishery in the Remote Sensing Board in the
Netherlands (BCRS).

First, 1 like to give some general ideas about
the importance of information gathering.

To manage agriculture in a socio-political and
technical sense as a national activity, a lot
of information is necessary. The same applies and
even more so to agriculture in an international
scope, like in the European CoIIlillonMarket.

One has only to look at the importance of
statistics in the political struggle between
industry, agriculture and the environment.

Many national and European measures are based on
studies of statistical information. I agree that
statistics in itself are not sufficient to take
measures. We also have to know the processes
behind the statistical data and the impact on the
society as a whole, of the measures taken.

So one can state that statistical patterns are a
result of processes. This is a rule we can also
apply to ecological and soil patterns.

It means that people with scientific disciplines
needed for the above-mentioned subjects can give
an interpretation of the processes by studying the
patterns.

If we agree with the above-stated argument, we
cannot deny that remote sensing techniques,
besides the already existing techniques of data
gathering, are of importance.

Still, this does not mean that administrators
(for example in the Dutch Ministry of Agriculture
and Fishery) are convinced of the need of remote
sensing. Some of them argue that the information
collection system at this moment is good. But
sometimes when, because of unfavourable weather
conditions, such as too high rainfall, drm1ght
and of a negative impact on the environment of
agricultural activities, there is an interest in
remote sensing. The same applies co R3 as a moni
toring instrument to control the execution of legal
obligations in agriculture (crop rotation) and
landscape protection.

As remote sensing community we had to find
arguments for the adminstrators and politicians,

Proc. EA RSeL W!Jrksliop · .\!f icrowave remote se11»i11gupplied to 1·egetu1ion', Am»terdum. l0- l 2 December l 984
(ESA SP-227. J unuary l 985).

why remote sensing techniques are sometimes better
in quality, speed or cost-benefit. We also have to
realize that at this moment most of the techniques
are still at a research and developing stage. Remote
sensing systems that give data with sufficient
frequency in time, connected with a high speed
data handling system and automatically working up
to the information ready for specific application,
are not yet existing.

1 am convinced that those systems can be produced
in the future. But even then it will be difficult
to convince the administrators in countries with
existing dense information situations. An exception
could be common markets and other international
interests, where the classical systems of agricul
tural data collection work too slow for adequate
measures.

I see a faster introduction into developing coun
tries with a low information level and a geographic
ally poor infrastructure. Already to day we see
application of satellite information .of various
windows for pattern information use in plan devel
oping projects. I am thinking of large scale soil
and vegetation (grassland, crops and forests) maps,
water resources inventory for irrigation and so on.
It is also used in planning roads and habours, which
is of interest in developing agricultural activities.

RADAR AND AGRICULTURE

For a long time aerial photographs have already
been used as a technique for field inventories
as a tool in agricultural development plans and for
monitoring purposes.

This means that the importance of remote sensing
techniques was already recognized in the world of
agricultural research and administration.
So when I, as an agriculturist, first came into
contact with a physicist specialized in radar
techniques, I understood that this could be an
important remote sensing technique for agriculture.
But I also understood that the only possible way
to research and develop this radar technique for
remote sensing application, was and is to work in
an interdisciplinary group. The physicist, Paul
de Loor, was of the same opinion and so the first
step was taken towards the Dutch ROVE-team. The
meaning of the first letters in English is Radar
Observation of Vegetation.

The Dutch researchers who will present their papers in
this Earsal Workshop have done their research in
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the framework of ROVE.
We learn from each other continuously in the inter
disciplinary project teams, which are arranged
around the subjects soil, crop classification,
forest, modeling, etc.

The interest of agricultural research in radar as
a remote sensing technique is based on the differ
ent properties of microwaves.

Among others, I mention the possibility of pro
ducing information under a wide range of atmos
pheric conditions by day and by night.
This is an important possibility, because
agriculturists are interested in dynamic processes,
such as the growth of crops,the development of
diseases, the course of water availability in the
soil, etc.

This means that the time solution of the used
remote sensing technique is very important. In
many parts of the world the atmospheric conditions
are such that in other remote sensing windows the
frequency of information is insufficient to study
processes in agriculture. Up to now, this is worse
still with satellite remote sensing.

For some large scale vegetations, such as
savannah's in semi-arid regions the geo-stationary
weather satellites give a defective possibility.
The time frequency is very high, but the space
resolution very low and mostly too low. However,
in the last y,earsinformation aoout the biomass
increase during the growing season for cattle
management problems has been gathered with these
satellites in the visible red and near infrared
bands.

Another interesting property of radar is the wide
areas that can be imaged simultaneously from planes.
If the sensor is carried in a spacecraft the
swath-wide advantage is lost.

A third value of radar is that polarization of the
illumination may be controlled and at the same
time also the illumination angle.

With longer wavelengths, in theory, vegetation
covers (even in forests?) may be penetrated. Until
now, we do not have enough facts about this phe
nomeaon and about the interaction between the type
of vegetation cover and radar backscatter in rela
tion to the soil backscatter.

In the thermal infrared window, of course with the
drawbacks of sensitivity to atmospheric conditions,
we can already estimate the water availability to
crops.

A very hopeful result with longer wavelengths was
shown by the SIRA mission. In the desert in Egypt
an old alluvial system of the Nile underneath
meters of sand was imaged. With geological know
ledge, estimation of the place of ground water
sources were possible in this arid region.
However, first more systematic research has to be
done on those longer wavelengths, before something
can be said about the application possibilities
for monitoring of water availability to crops.

With the results from the ground-based pulse-
radar experiments and SLAR flights based on these
experiments, we obtained for the short wavelengths
insight into some possibilities concerning informa
tion gathering for agriculture.
With two flights at selected moments of the
growing season most of the crops in the Netherlands
can be recognized for 80-100%. Estimation of crop
type areas is important to market planning. How
ever,more information about the crops is needed to

make a yield forcast per crop. In the first place
the increase in area of leaf per ground area (leaf
area index) during the growing season. This,
together with weather characteristics ,with a
growth simulation model, gives an assessment of the
yield. Information is also needed about the health
situation, if not connected to the leaf area index.

The relation of radar backscatter and leaf area
index in the studied short wavelengths is not clear
until now. The impression is that the influence on
the backscatter rate stops already at low values
of this index. Influences of the wind velocity and
direction on the backscatter also disturb this
relation.

Important features of the bare soil during and
after sowing are the water content of the topsoil
and the roughness. Soils with a special texture are
slicked after rainfall. This means a poor condition
for sowing, germination and emergence of the germ
plant. Information about these soil features is
important to get insight in the starting period of
crops.

Radar backscatter can give this information, but
there are many interactions between the features
on the backscatter. By using different illumination
angles and polarization it seems possible to get
information about the features. But until now, no
procedure for application is ready.

Very important is a good callibration of the
system, so that a comparison can be made of the
amount of backscatter at different moments.
Otherwise training samples on the ground are needed
each time in the sequence, and so we are in the
same situation as with the so-called passive
techniques.

With visual interpretation of radar images we also
use the texture in the image areas with an average
difference in density, so that we can distinguish
coniferous and deciduous forests and sometimes
crop types. In automatic classification this image
texture phenomenon should also be studied.
Undoubtedly, the roughness differences ef the forest
parcels (crown shape) and the crop"fields are
involved.

CONCLUSION

My conclusion is that radar is a promising tech
nique for information gathering from crops and
vegetations important to the management of agri
culture.

However, more insight is needed into the back
scatter mechanism with the objects and the inter
action of different features of the objects.
Especially, more knowledge is needed about the
longer wavelengths in relation to the mentioned
mechanism. The image texture also has to be worked
out for application.

For some plant physiological features, such as leaf
colour and leaf temperature other electro-magnetic
windows are needed. The same applies when higher
spacial resolution is necessary.
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MICROWAVE REMOTE SENSING AND VEGETATION; PROBLEMS, PROGRESS AND SOLUTIONS, A REVIE\11.

Prof. ir. L. Krul.

Delft University of Technology,
Dept. of Electrical Engineering
Microwave Laboratory, Delft.
The Netherlands

ABSTRACT

Traditionally radar is used as an instrument for
position and/O:r velocity measurements. These mea
surements can be performed in a rather straight
forward way since there exists a direct physical
relationship between the unknown quaptities and
the measured ones. In radar-based remote sensing
however the object information is contained in
the radarsignal in a rather complex way.

As for as the approach to this problem is con
cerned the remote sensing community seems to be
divided in two groups. The first group considers
the microwave region as just another window to be
used in combination with the ones already existi~g
in other wavelength regions. The second part of
the community on the contrary is trying to solve
the problem by fundamental investigations in the
interaction between microwaves and remote sensing
objects.

Although both view points are quite understandable
it should be recognized that each one has its own
limitations. Therefore we can not expect that each
approach by itself will lead to operational remote
sensing applications. The answer is to be found
by combining both approaches.

1. INTRODUCTION

Agriculture and forestry are areas of qreat eco
nomic inportance both within the European Communi
ty and throughout the world. Therefore an ever
lasting effort exists to develop tools that can
support activities in these fields. It therefore
seems logical that since quite a long time people
havepursued the use of remote sensing in this re
spect. It is clear that the era of space technolo
gy offers greater possibilities in this respect
then there have ever been before.

A common aspect of all remote sensing systems is
that they depend on the use of electromagnetic
waves to cover the distance between the sensor
and the object to be observed. Consequently, in
microwave remote sensing, the physical and/or bio
logical quantities have to be extracted from the
electromagnetic wave parameters.

Traditionally radar is used as an instrument for
position and/or velocity measurements. These

measurements can be performed in a rather straight
forward way: position follows from time delay and
antenna resolution whereas velocity is fo1imdby
measuring Doppler shift. The unknown quantities are
related to the measured ones by elementary physical
relationships, no complicated transformations are
necessary.

The application of radar in remote sensing however
presents a completely different situation since
in this case the radar signal is the combined re
sult of spectral, structural and material influen
ces. Therefore the way in which the object infor
mation is contained in the radar signal is of a rath
er complex nature. Measurements of this type are
often called "indirect" in contradistinction to
those characterized by a "direct" relation between
the quantity to be measured and the signal.

As will be ·explained in section 2 indirect mea
surements ask for the solution of a complicated
calibration problem. Calibration is not only a
technological problem but it also demonstrates a
need to develop suitable models that can describe
the interaction between the electromagnetic waves
and the objects.

The radar technological aspects such as linearity
and stability are beyond the scope of this review.
The interaction modelling however will be discussed
quite extensively in section 2. Models can be de
veloped in several ways. Our choice here is in
favour of the ~emi-empirical models i.e. models
based on simplified descriptions of the phenomena
supplemented by physical parameters which are
determined experimentally.

In general the physical parameters, necessary for
the development of the interaction models, are
measured by means of groundbased or airborne scat
terometers [Refs 1,2]. At the same time however
these small scale remote sensing measurements can
be seen as the origin of new stimuli to bring
remote sensing into an operational state. In sec
tion 3 several examples of such measurements in
cluding their consequences will be given.

Calibration will raise the technological standards
in radar. At the same time however new possibilties
are created. As an example we mention the possibil
ity to provide radar systems with a memory function.

Proc. EARSeL Workshop· .\1icrmrnre remote sensing applied to veget ation, Amsterdam, 10-12 December 1984
(ESA SP-227, January 1985).
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For conventional radars such a memory function
could imply that the traject ory of a target can
be extracted from successive position measurements.
In relation to remote sensing, as we will see, it
is useful to interpret the trajectory as the de
scription of a proces: change of position

2. MODELLING ASPECTS

As was pointed out already in the introduction the
scattered or reflected radar signal has to be con
sidered as a multivariable function, say S(s1, s21
····Sn,). Although one may feel inclined to con
sider the complete knowledge of the function S as
a main objective such knowledge will not be of
great help in solving the measuring problem of
remote sensing. For this the inverted relations
would have to be known and such inversions can only
be performed for one variable at a time.

The theoretical quantification of the influence of
the different parameters of biological objects on
the radar signal turns out to be extremely diffi
cult. One of the major complications is that some
of the variables are described by measures that are
only meaningful in a statistical sense.

A rigorous theoretical description being impossible
in general a semi-empirical approach is followed
instead. This type of approach is based on simpli
fied description of the interaction between micro
waves and targets. Then, as a next step, the re
lations arrived at in this way are verified and
calibrated by experiments.

In order to proceed with this approach consider
S to be a function of one variable only supposing
that the remaining set of variables can be kept
constant. Under these assumptions the function
S(s), after calibration, is easily inverted to find
s(S).

In most cases however there will exist additional
(unknown) relations betweens and some other
variable. Examples are that biomass can be related
to plant structure and soil moisture can be depen
dent on vegetation cover. Such relations mean that
the assumed conditions do not hold and consequently
the calibration of S against s will depend on e.g.
crop type.

For this reason the calibration problem is subdi
vided into two parts. As a first step we calibrate
the power relations by means of technically well -
defined objects. To this end passive point targets
such as corner reflectors [ref. 3] or distributed
targets like the Death Valley in California

[ref. 4] can be used. Also proposals for, so-called,
active calibration have been considered [ref. 5].
Having performed the power calibration in this way
suitable interaction models have to be introduced
to link the actual objects to the targets used for
calibration and to the relate the radar signal to
the quantity to be measured.

One of the basic assumptions in modelling is that
the radar return of a resolution cell can be re
placed by that of a collection of N scatterers.
Within this concept it is conceivable that each
scatterer is a representation of a number of neigh
bouring surface elements, that in a given direction
add more or less coherently; the remaining surface
area becomes non-reflecting.

L. KRUL

Since a coherent addition means that the phase
distribution is narrow and the one-dimensional
phase shift being inversely proportional to A, the
surface covered by one single scatterer is, at
least in the quasi-optics approximation, propor
tional to A2 • In connection with the statistical
averaging, to be introduced later, it is important
that N is sufficiently large. This requires that
the resolution cell dimensions increase with A.

The approach described here results in a discrete
distribution of scatterers. In general the density
of scatterers will not be uniform since their dis
tribution is determined by the surface characteris
tics.

. h h kth . l.bWit t e scatterer giving rise to a contri u-
tion Uk=uk exp (j¢kl at the receiver, the total
voltage U for N scatterers will become:

N
U = L uk exp (j¢kl

1
(1)

For the sake of simplicity we will take all uk
indenendent o~ look angle (isotropic scattering)
antiequal t.o one.

10/...

Fig. 1: Resolution cell to be considered

The configuration to be considered is presented
in figure 1. The resolution cell is supposed to
be a square whereas the scatterers are positioned
in a regular grid. In a vertical plane through
a row of scatterers we find ¢k to be composed of
two terms (back scattering siEuation)

¢ = -
4n

{kp sin e - h cos e}k A k
(2)

The first term (figure 2a) represents the phase
shift along the resolution cell, the second term
(figure 2b) gives the phase difference of the
scatterer with height hk with respect to that of a
scatterer with zero height.

The total received power can be written as

N N
uu* =L exp (j¢kl L exp (-i¢zl (3)

It is instructive to start with a calculation of
received power for the simple limiting case where
all heights are equal to zero:
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N N
UU*=L exp{-j ~rrkp sin8}L exp{j4~lp sin8}

1 1

=F(8). (4)

p sine

0 p 2p
(al

kp

hk cos e
{ b)

Fig. 2: a) Phase shift of the scatterers
along the resolution cell,

b) phase difference with respect to
reference plane.

In fig. 3a as an example F(G) is given for a square
of 10 \ x 10 \ with 625 scatterers. With the number
of scatterers in combination with area of the reso
lution cell the distances between the scatterers
are too small for the scatterers to behave indepen
dently. The resulting coupling effects have been
taken into account by applying thE energy conser
vation theorem [ref.6]. In fig. 3 we have the same
resolution cell and the same N but the scatterers
have heights h~(eq.2) taken randomly from the
Gaussian distribution

p(h/\)= ;}/2ii' exp{-h/\)2 /2o2} (5)

with G = -/ < (h/),) 2 > = 0a_ 3. The characteristic
difference between fig. 3 and 3b is that, as a
result of the introduction of random heights, the
main lobe (8=o) becomes much smaller where as, out
side the main lobe, the regular interference pattern
is replaced by a random amplitude structure.

Obviously the calculation of uu* will give a dif
ferent answer for each resolution cell since each
cell will have its own collection of heights.
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29.
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Fig. 3: a)Coherent scattering of a square 10 \
x 10 \ with 625 scatterers,

b)same resolution cell but scatterers
have random heights (Gaussian distri
bution with o = 0,3).

Therefore, it only makes sense to consider the
ensemble average < uu*>. Although not impossible
it is rather time consuming to arrive at a reason
able estimate for < uu*> averaging the results for
a large enough number of realizations based on
different series of height samples. It has been
demonstrated before that it is advantageous to
introduce statistics in a different way resulting
in {Refs. 7,8]

< UU*> = F(8)exp(-s2)+2{1-exp(-s2 )} (6)

where the distribution given by eq. (5) is used,
s=4rro cos 8 and F(8) corresponds to eq. (4).

From eq. (6) it is concluded that< uu*>'consists
of two terms, the ratio of which is determined by
the parameter S. The first term of the right hand
side of eq. (6) is the coherent term that, with
s=o, corresponds with eq. (4). The second term is
the one that remains for large a-values. This term
corresponds with the, so-called, incoherent addition
of the scattered contributions. Note the cross-over
point at 8=8 where < uu*> is independent of sur-
face roughne§s. The corresponding incidence angle
follows from the equation F(8 ) = 2. With large
enough o only the incoherent term remains and

N
< ou=> = < L u 2> = N < u 2>k k

Consequently the radar cross section res of the re
solution cell under consideration in formed by the
sum of the radar cross sections of the N scatterers.
From a physical point of view the-res with number
k is expected to depend on the size ak of the area
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which it is representing. Therefore we write

res

0
where o is called the differential radar cross
section or the radar cross section per unit area.
Often6 instead of o0, the scattering coefficient
y = O /cos6 is used.The model described by eq. (6)
was used quite succesfully to fit bare soil mea
surements [8], as demonstrated in fig. 4.

20
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-20

70 se 30 10
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Fig. 4: The complete model for ba~e soil
scattering, the dotted points
represent a series of measure
ments.

A second example of the semi-empirical approach that
was proved to be very useful is the so-called,
cloud model. In the cloud model, as it is formulated
by Attema and Ulaby [Ref.9], soil moisture and plant
moisture per unit area_are the dominant object para
meters. The underlying ideas are that the microwave
dielectric constant of dry vegetative matter is
much smaller than the dielectric constant of water;
a vegetation canopy is usually composed of more
than 99% air by volume. Therefore, the canopy can
be modelled as a water cloud, the droplets of which
are held in place by the vegetative matter. As a
first step, it is assumed that this cloud consists
of small spherical droplets with the same radius and
with a uniform random spatial distribution (fig. 5).

e

•

Wh
c
D

0

h

Fig. 5: Cloud model geometry.
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The radarbackscattering properties of such a low
density cloud can be calculated by using the radar
equation for distributed targets. A_fter a few der
ivations and the introduction of the usual approx
imations finally we may write the scattering coef
ficient as:

res
yveg= 2Q

2NQh)}
{1 - exp(- sin6 (7)

where

res is the
Q is the

of one
N is the
h,6 are as

radar cross section of one droplet
so-called attenuation cross section
droplet
number of the droplets per unit volume
indicated in figure 5

It is convenient to simplify this formulation a
bit further. Since all water particles are as
sumed to be identical in shape and size we may
replace the ratio rcs/2Q by a parameter C. If we
define W as the watercontent of the cloud per unit
volume (kg/m3), N is proportional tow and there
fore 2NQ can be replaced by DW, where D is the
second modelparameter. Eq. (7) becomes:

Yveg = c [1 - exp(-DWh/sin6)] (8)

In eq. (8) there is one single crop parameter Wh
representing the amount of water per unit surface.
This quantity Wh is equal to the biomass per unit
area times the volumetric moisture content of the
plant. Since the equivalent dropsize is unknown
the model parameters C and D must be determined
for each crop by non-linear regression analysis.

Because the vegetation layer is partially trans
parent for microwave radiation the return from the
underlying soil myst be taken into account. Assuming
that the soilscattering adds incoherently to the

vegetation s~att~ring ysoil can simply be.added
to y , taking into account the attenuation by the
veger~~ion layer. In this way we arrive at the
cloudmodel equation

[ DWh ] DWhy =c 1-exp(- -. -6) + y .1exp(- -. -6) (9)
veg sin soi sin

For the radar backscattering coefficient ysoil we
may use eq (6).

In the development of the model described by (eq.9),
using radar backscattering measurements of 8 dif
ferent crops, at X-band throughout the growing
season, it turned out that the attenuation para
meter D is rather insensitive to the incidence
angle. For crops with relatively large leaves
(sugacbeets, potatoes and peasJ the scattering
parameter C is angle dependent.

The analysis showed further that the appearance of
so-called ears in the cereals has a dramatic effect
on the geometry and consequently on y. After this
stage of growth the assumption of vegetation homo
geneity does not apply any longer and the model
must be extended to a two-layer model with
separate values for C and D, (Hoekman et al.[Ref
10]) Recently it was suggested to improve the cloud
model further by the introduction of •polarization
dependence (Allen et al. [Ref.11])
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3. EXPERIMENTAL ASPECTS

The modelling work just described can only exist
when it is supported by measurement programs. Such
measurement programs consist of two parts: the
scatterometer measurements and the physical or
biological measurements. Especially the development
of models for the radar scattering of forests suf
fers from a lack of suitable measurement data. This
seems the more important since the knowledge ob
tained by the work on other vegetation types
cannot be extrapolated in the direction of forests.
The main reason for this is that the majority of
agricultural crops have a life cycle of one or
two years where trees can reach ages of hundreds of
years.

Apart from supporting the modelling work scattero
metry can also help, in a practical way, to bring
microwave remote sensing in the operational state.
Interaction models are describing physical laws
and call for(measured) parameter values in an
actual situation at a given point of time. For the
study of operational applications however infor
mation over large. area's and time periods will be
required.

The way in which scatterometry can be useful in
this respect is illustrated by the well-known
simulations of crop classification by using
radar imagery [Ref.12]. The set-up for this inves
tigation can be outlined as follows: First a set
of SLR-images is simulated numerically u~ing
scatterometer data collected earlier. The data
covers the same region but is taken at different
times. Next this image is offered to a classifier
which has been trained using the same statistics
as used for simulating the data.

Having selected a target region, a description of
the radar scattering of the relevant crop-types
will be needed. Such a description can be composed
of a deterministic and a stochastic part. One of
the more important results of this study was that
classification results are improved by the intro
duction of multi-temporal analys~s. Consequently
the radar system has to be a calibrated one in
order to make classification successful. Further
down other examples of scatterometer data use will
be given

Speaking in general terms the practical approach
starts from the idea that each extra observation will
c.ddsome information and in this way will help
to meet the remote sensing objectives. Such a
statement however can only be maintained when the
extra-observation can be:considered as statistically
or physically independent. Before an appropriate
choice can be made we therefore have to consider
the potentialities very carefully.

Since the use of electromagnetic waves is a common
factor in all remote sensing systems any observed
radiation originating from the surface of the earth
will have to do with at least one of the character
istic wave parameters frequency (or the equivalent
wavelength), phase angle, polarization or look
angle. The first aspect is probably the most actual
one and therefore will be discussed below in some
detail. Whereas polarization and phase angle are
random variables in the optical regions they are
well defined for microwaves. Since the phase in
formation is used already in synthetic aperture
radars to improve resolution only the use of pola
rization remains, its potentialities will be

reviewed later on. Although there seems to be a
lot of information in the way radar scattering de
pends on the look angle it is not realistic to
assume that in the near future this loo~ angle can
be scanned over on appreciable interval.

The existing experience is that, at given inci
dence angle, the scattered energy will depend on
wavelength (colour) . In this context the concept
"spectral signature" is used to describe, in the
frequency domain, a pattern of features whose
shapes, locations and relative intensities are
uniquely characterizing a particular material or
object. Up to the present each wavelength window
is considered to have its own signature. There
seems however to exist a growing interest to combine
the different windows in order to improve remote
sensing results. Such combinations however can
only be successful if the information gathered in
the different windows is complementary.

Basically the spectral signature is the result of
the interaction between waves and objects. This
interaction can take place on two levels: the ma
terial and the structural interaction levels.
Material interaction means that some energy of the
incident wave is absorbed by the object material.
This absorption can be either of a resonant or a
continuous nature. Fine examples of the first cate
gory are shown by minerals in the infrared region
[ref. 13]. From the electromagnetic point of view
absorbing materials can be characterized by a com
plex dielectric constant E=E'-jE".
Structural interaction effects are divided in fre
quency regions which have to do with dimensional
scales relative to wavelength. We distinguish three
different regions: the Rayleigh region where the
scale length is small compared to wavelength, the
Mie region where the scale is comparable with
wavelength and finally the optical region where
the dimensional scale is large with respect to
wavelength. The structural effects of course are
superimposed on the material ones.

With reference to the cloud model mentioned in
the previous section it may be interesting to use
the signature of a water drop for illustration. As
a first order approximation a water drop can be
considered as a small dielectric sphere. The
scattering by such spheres was studied by Mie as
early as 1908, a summary of his theory is given
by Kerr [Ref.14].

The scattering cross section Q (which is equivalent
to the radar cross section whe~ scattering is
isotropic) of a small sphere of diameter 2a at a
wavelength A, long enough for the Rayleigh approx
imation to be valid, is found to follow from:

where P=2Tia/\ and c3 is a rather complicated func
tion of only E' and E". In fig. 6 Q is presented,
normalized to the geometric cross s~ction of the
sphere as a function of P for a water sphere with
a temperature of 20° C (E' and E" are temperature
dependent) .

Where the Rayleigh approximation shows a A-4
dependence for Q , the Mie region is characterized
by an oscillatin~ pattern caused by interference
and diffraction phenomena. The amplitude of this
oscillation is decreasing gradually towards the
optical region. Complex targets like vegetation
canopies cannot be described by one dimension only.
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Fig. 6: Scattering cross section of a
sphericalwater drop at 20°c as a
function of p=2rra/A where 2a is the
diameter of the sphere.

In fact such targets have to be characterized by a
statistically distributed range of dimensions. Un
fortunately most dimensions are likely to be of the
same order as the wavelengths in the microwave re
gion i.e. 1-30 cm which means that the complicated
Mie interaction is dominant.
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Fig. 7: Growing curves for oats at 10 and 35 GHz,
measured at 30° incidence angle.

In fig.7 a set of two growing curves for oats is
presented. These curves are the result of ground
based measurements at 10 and 35 GHz. Two such sam
ples however are not sufficient to derive the spec
tral signature for oats and the same will hold for
other crop types. Since these signatures in fact
are quite essential in selecting optimum frequen
cies for multiband systems more measurements have
to be made and the development of interaction models,
incorporating the wavelength dependence, has to be
pursued. As long as such supporting knowledge is
not available the best approach seems to be to
make the frequency separation as large as possible.

L. KRUL

The aspect that remains to be discussed is the
influence of polarization on scattering. Obviously
polarization effects have to do with structure: A
structure that is conducting in the direction of
the electric field component of the wave will have
an intenser interaction than a conducting structure
perpendicular to the electric field. Combinations
of polarization are named after the electric field
orientation for transmitted and received waves:
V (ertical) or H(orizonta]). Basically there are
three possible combinations VV, HH and VH (or HV).
The last two combinations will not be attainable in
the near future since the level of the so-called
cross polar component is 10 - 20 dB lower than the
direct components which would require an equivalent
increase of transmitted power.

+10 ROVE 1980t ~[dB]
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-10 OATSVVJ ----c;~H
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Fig. 8: Growing curves for oats and sugarbeets at
10 GHz, incidence angle 30° and two pola
rization states VV and HH.

Fig. 8 shows two examples of the influence of pola
rization on growing curves, measured at 10 GHz.
Sugarbeets practically do not show any difference
between both polarization states. This means that
there exists, at least on the average, no preferen
tial conductivity direction. This conclusion is
conformable to the structure and orientation of
the large (with respect to wavelength) leaves. Oats
is a crop type with stems and the scattered power is
larger for vertical than for horizontal polarization.

In addition to multiband or multipolarization
applications there are other options to be consid
ered during the next few years. One example in the
agricultural field may illustrate this.

The memory function of the radar that becomes avail
able after calibration of the system offers the
possibility for a meaningful comparison between
measurements of different years and over large
area's eg. on a European or even on a worldwide
scale; in this respect radar is unparallelled. Up
to now biomass is considered to be a key factor in
yield prediction. High repeatability, in combina
tion with the memory function can offer an alter
native by monitoring the grey tone development as a
function of time. Yield can be predicted by aver
aging the grey tone over a large area and by com
paring the result with corresponding curves of
other years of wich the yield is known.
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THE STRUCTURE OF PLANTS AND THE BIOMASS RELATED TO MICROWAVE STUDIES

T. LE TOAN

Centre d'Etude Spatiale des Rayonnements - CNRS - Universite Paul Sabatier

One of the most important objectives of the research on remote sensing of
vegetation canopies is to be able to estimate vegetation growth stage and the
stress level.

Toward the goal of estimating parameters related to vegetation biomass and
structure, considered as indicators of the vegetation growth condition, studies
have been carried out in the past few years in the area of microwave remote
sensing.

This paper will present the state_of_ the-art concerning agricultural crops.
Results obtained from systematic scatterometer experiments and from SAR data
interpretation will be summarized.

It will be pointed out that the arrangement of plants and their components
in space effects the relative contribution of plant elements, the angular
variation ?nd the polarisation dependence of the radar responses.

Relationships between radar backscatter coefficient 0° and some plant para
meters (LAI, water content ...) will be discussed.

Finally, the conclusions will show the need for further investigations
both in conducting experiments and developing models in view of the diversity
of vegetation and environmental conditions.

----~---

Proc. EARSC'L Workshop' .Vficrmrnre rrnwt<' srnsi11gapt,fi<'d to vcgctation, Amsterdwn, I0-12 Decembe» 1984
(ESA SP-227, .l anuarv 1985).
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ACTIVE MICROWAVE MAPPING OF VEGETATION

G M Foody

Department of Geography
University of Sheffield

Sheffield S10 2TN
UK

ABSTRACT

A comparison is made between the use of per pixel
and per field sampling methodologies for 1and
cover mapping. As a result of the changing view
ing geometry land cover map accuracy was found to
be low and spatially variable. In an area of flat
terrain land cover map accuracy could be increased
by making allowance for the variations in viewing
geometry. This was achieved by dividing the image
into sectors defined by range distance and treat
ing each sector independently. In this study,
using SAR 580 data, it was found that the use of
tonal and textural information collected on a per
field basis for a sectored image gave the highest
land cover map accuracy. However, land cover map
accuracy was still spatially variable.

Keywords: Sectoring, per field, texture, per
pixel.

1. INTRODUCTION

To accurately map vegetation with remotely sensed
data it is necessary for the spectral responses
of the vegetation classes to be separable from
each other and from non-vegetated scene components.
However, the spectral response of a cover type is
usually a function of the viewing geometry (Refs
1, 2). Since the relationship between the spectral
response and viewing geometry is different for
each cover type class separability will vary with
viewing geometry, which ~or SAR can be represented
by the incidence angle (Figure 1). For flat
terrain, which is assumed throughout, class separ
ability will therefore vary with the range distance.

This spatial variation of separability has several
implications. (1) Two cover types separable at one
viewing geometry (8) may be inseparable at another,
for instance the industrial and commercial classes
(Figure 1). (2) Two classes separable across the
whole range of viewing geometries can still be
confused. This can occur with the heavy vegetation
and arid desert sand classes. If viewed at the
same or similar geometry the two are clearly separ
able. However, the spectral response from these
cover types will be within a broad range of back
scatter and so image grey levels (DN). As indicated
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Figure 1. Variations in the backscattering co
efficient with incidence angle for sev
eral terrain classes at 9.375 GH2. A
and B represent the ranges of 6° covered
by the arid desert sand and heavy veget
ation classes respectively. (Modified
from Ref l's adaption from Ref 3).

on Figure 1 these overlap for the two classes and
so would be misclassified unless the effect of the
viewing geometry is accounted for. Thus a back
scattering coefficient of -15 dB could be either
the arid desert sand measured at around 30° incid
ence angle or vegetation at 70° incidence angle.
(3) From the two factors already discussed the
location of the training sites for a supervised
classification will affect the overall inter-class
separability. Locating training sites within a
narrow range of geometries will not provide a high
degree of overall separability because the spectral
response of the targets will change with the

Proc. EARSeL Workshop' Microwave remote sensing applied to regetation', Amsterdam, l0- l 2 December l 984
(ESA SP-227, January 1985).
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viewing geometry. Distributing the training sites
across the entire range of geometries will also be
inappropriate because 6f (2) above.

For SAR 580 data further complexity is added
through the effects of the antenna pattern and
gain. For flat terrain both are related to the
incidence angle and so can be considered as part
of the viewing geometry effect, the overall effect
of which is to introduce a systematic spatial var
iation in image tone (respresented here by DN)
across the swath (Figure 2).

Figure 2. x band HH SAR 580 image of part of the
test area illustrating the tonal vari
ation across swath. (Near range at the
top).

This must be allowed for before a classification
is attempted. The aim of this paper is to invest
igate what effect the spatial dependency of DN has
on land cover accuracy and to relative efficiency
of different methodologies for classifying land
cover.

2. SECTORING

A result of the varying viewing geometry was to
introduce a spatial dependency of DN. The measur
ed spectral response of a target is therefore in
part determed by its spatial position relative to
the radar. This has been found to be a problem
with SAR data for land cover mapping (Ref 4).

Short of calibration a simple radiometric balancing
technique could be applied to the radar data to
reduce the viewing geometry effects. Although
these methods have been shown to be of value (eg
Refs 5, 6) there are problems with their use (Refs
7, 8). Therefore another approach, that of sector
ing, will be used.

For flat terrain the effect of viewing geometry
is to cause a systematic variation in tone across

imaged swath (Figure 2). Since the factors resp
onsible for this are related to the incidence angle
it is possible to divide the image up into sub
images defined by incidence angle or range distance.
Each sub-image or sector can then be treated ind
ependently from the rest of the image and classif
ied separately before recombining the sectors to
produce the overall classified image (Ref 7) .
This assumes that within each sector the variations
in incidence angle, antenna pattern and gain
present are small enough to be ignored. The
method therefore makes allowance for the spatial
dependency of DN present in the SAR data.

3. DATA AND METHODS

The study area was the flat floodplain of the River
Thames near Dorchester, UK. Optically processed
parallel polarised (HH) X-band SAR data were
collected for this area on 13 July 1981 as part of
the European SAR 580 campaign. Near the time 05 the
overflight land cover information for a 100 km
area was recorded by fieldworkers and oblique
colour aerial photography acquired to produce a
five class (water, grass, arable, forest and urban)
land cover map which was used as ground data.

A 1:25,000 scale topographic map of the area show
ing field boundaries along which the SAR data were
digitised for the analysis. It was therefore
possible to digitally overlay the map on the SAR
data, which was an aid to sampling on a per field
basis. This method was advantageous since sampl
ing on a per pixel basis is an unreliable method
of estimating the backscatter from an areally
extensive target (Refs 9, 10). Per field sampling
not only gives a more reliable estimate of image
tone but also allows the inclusion of textural
information into the classification. Such proced
ures have been shown to be of benefit to land
cover mapping with SAR 580 data (Refs 11, 12).
For comparison both per pixel and per field sampl
ing structures were used.

The image was divided into four sectors of equal
size in the ground range direction. For both the
per pixel and per field sampling structures strat
ified random samples were taken for training and
testing the classification. These samples were
stratified by sector and land cover type. In this
way each sector could be treated independently of
the others or combined with them. It was there
fore possible to train a classifier with t~e
training statistics derived from any one sector
and test its accuracy in that or any other sector.
With the former situation the sector is treated
independently of the rest of the data for both
training and testing the classification. When
all four sectors are treated in this way and the
results later grouped, the image will be referred
to as having been 'sectored'. If, however, the
sectors are not considered independently and the
image as a whole is treated as a single unit it
will be referred to as 'pooled'.

For the per pixel sample a total of 847 pixels
were used to train a parallelpiped classifier. A
further 963 pixels were used to assess the
accuracy of the resulting classification. W-ith
the per field sampling structure the tonal and
textural variables (Table 1) were derived from
65 random pixels sampled from the fields. Train
ing statistics were derived from a total of 112
fields and an additional 130 fields were used to
assess the classification accuracy. In this case
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discriminant analysis was used as the classifier.

Mean DN
L X
nx

Standard Deviation j s, <~- x>'

X min

X max

~ <x - X)3
n

s; ( x- x)'
n

(/~<x~xl')3

Minimum DN

Maximum DN

Third Moment
about the Mean

Skewness

Fourth Moment about
the Mean

s; ( X.::.....X
n

s; (x....::_ X)
n

(/'E <x~ x>'0
4

Kurtosis

Coefficient of variation (%)

DN Range

/'Z<x~xl'
.100

~ x
n

X max - X min

Table 1 variables used in per field classificat
ions (X = individual sample value; n =
number of samples)

Although this is different to the per pixel sample
the class boundaries for the parallelpiped class
ification were determined by probaility assess
ments as they are in discriminant analysis

With both the per pixel and per field samples the
land cover classification accuracy was assessed
by the method of 13. The confidence limits at
the 95% level were determined from the binominal
expansion.

4. RESULTS AND DISCUSSION (1) - PER PIXEL

The classification accuracies obtained from this
sampling methodology were low (Table 2), How
ever, three points can be noted. Firstly, the
accuracy from the sectored data set is higher
than that from the pooled data set. Secondly,
each sector is generally classified with a higher
accuracy when the training statistics were derived
from its own area (Figure 3). Thirdly, when the
training statistics were derived from a central
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sector (2 or 3) the other central sector was
classified with a higher accuracy than the edge
sectors and vica versa.

Land cover map accuracy (%)

Sectored Pooled

31.9 (29-35) 23.5 (21-26)

Table 2 Comparison of the results from the per
pixel sample for the sectored and pooled
data sets. 95% confidence limits in
brackets.

OVERALL ACCURACY OVERALL ACCURACY

40 18 5% 40 ~ 23 1%

30 ' 30
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20 n 20

« 10 < 10
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4 3
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II '~ JO - 30
!

20
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~
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Sector Sector
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23 5%
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POOLED

40

30

20,
:¢ 10

Sector

MOSAICKED

~ tncrcetes the sector from which the tr1in1ng st atrsttc s were developed

Figure 3. Effect of training site location and sect
oring on land cover map accuracy from the
per pixel sample. Mosaicked refers to
the sectored data (sector 1 = near range,
4 = far range) .
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From Flgure 3 it is evident that care is needed in
determining from where in the image the training
statistics are derived. If the training statistics
are derived from one sector then not only does the
overall classification accuracy vary but so too
does the spatial distribution of the accuracy.
The effect does not disappear if training statist
ics are derived across the whole image since the
two central sectors are still classified with a
higher accuracy than are the edges, which are the
near and far ranges.

However, sampling on a per pixel basis appears in
appropriate. The low classification accuracies
are in part related to the narrow bandwidth and the
coherent nature of the sensor, which gives rise to
speckle. This can result in two pixels from a
homogeneous cover type exhibiting considerably
different DN. As a result of this the spectral
responses of the land cover types are broad and
overlap giving rise to errors of classification.
Attempts to reduce the effect by low pass spatial
filtering has little effect with the pooled data
(Figure 4).

10

3'3 ... 11 •. 11"' 1Jx13 rs •.rss s s

Filter window size (pixels) -

Figure 4. The influence of low pass median filters
of various sizes on land cover map
accuracy from the per pixel sample
with the pooled data.

A further problem with this sampling technique
is that only tonal information has been used. A
classification employing tonal and textural inform
ation with a different sampling structure to the
per pixel one used could be expected to increase
the classification accuracy.

5. TEXTURE

Image texture is a difficult phenomenon to measure.
It is closely related to tone (Ref 14) but it
allows two areas which have the same overall tone
to be distinguished on the basis of microtonal
patterns (Ref 15). Texture can therefore be
thought of as being the systematic variations of
DN within an area.

Various approaches exist for quantifying texture
for use in a digital classification. Perhaps the
most commonly used methods are those based
around the use of grey level cb-occurence matrices
(Refs 16-18). With these texture,is considered
to be represented by the spatial distribution and
spatial dependence of DN inside the small local
area making up the·matrix. However, the textural
variables derived from the matrices can be
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difficult to interpret and depending on the number
of grey levels, computational pr0blems may arise
during their calculation (Refs 10, 17, 18).

Another approach to texture analysis is to use the
frequency distribution of DN. Probability
density distributions could be used to discriminate
between the cover types (Refs 19, 20). Simple
statistical measures can be determined to quantify
these distributions, and so be used as textural
variables (Table 1). These variables can also
be calculated on a per field basis. This may be
preferable if field boundaries are known and it is
reasonable to assume a homogeneous cover type
within each field. Sampling on a per field basis
also conforms to standard fieldwork methods of
land cover data collection and presentation (Refs
21, 22).

6. RESULTS AND DISCUSSION (2) - PER FIELD

It was noted in section 4 that sampling on a per
pixel basis was not suitable for SAR data. How
ever, there is no significant change in classif
ication accuracy if a per field sampling structure
is adopted with only tonal information (mean DN)
employed in the classification of the pooled data
set (Table 3).

Variables used in Land cover map accuracy (%)
classification Sectored Pooled

All Variables, Direct 54.6 (45-63) 52. 3 (43-61)

All Variables, Step- 56.1 (47-65) 48.5(39-57)
wise

Mean and Standard 61. 5 (51-70) 35.4(27-45)
Deviation

Mean DN 53. 1 (44-62) 23.1 (16-32)

Standard Deviation 41. 5 (33-50) 35.4(27-45)

Minimum DN 47.7(39-57) 25.4 (18-34)

Maximum DN 51. 5 (42-60) 25.4 (18-34)

Third Moment about 33.1(25-42) 17.7(11-26)
the Mean

Skewness 29.2(22-39) 19.2 (13-27)

Fourth Moment about 41. 5 (33-50) 26.9(19-36)
the Mean

Kurtosis 26.1 (19-35) 23.8(17-32)

Coefficient of 24.6(18-32) 16. 1 (10-.24)
variation

DN Range 36.9(29-46) 33.0(25-42)

Table 3. Summary of classification accuracies
from the per field samples . 95%
confidence limits ip brackets.

Since both classifications use only tone it can
be concluded that for the pooled data set there
is no benefit to be gain.edby changing the
sampling methodology alone. This indicates that
either tonal information is of litt£e value in
the classification or that other factors, such
as the tonal imbalance across the swath, are of
m~re importance than the effect of the sensor
coherence in causing low land cover map accuracies.
The latter is more likely since there is a much
larger difference in the accuracy between the
sampling methodologies when the image is sectored.
It also indicates why low pass spatial filtering
of the data had little effect (Ref 8) (Figure 4).
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For both the pooled and sectored data sets the
inclusion of textural information resulted in
increased classification accuracy. In all cases
the accuracy was higher when the image was sector
ed (Table 3). The advantage of sectoring the
image over treating it as one unit is shown graph
ically in Figure 5. The pattern is similar to
that found with the per pixel sample, with the
highest accuracies being obtained for the data
derived from the central sectors. Whilst the
accuracies obtained from the data derived from
the far range may be acceptable, those from the
near range may not. In nearly every case the
lowest accuracy was obtained from the data derived
from the near range. For some studies this may
be a justifiable reason for ignoring this part
of the data, but it will be included here.

Although spatial filtering was found to have little
effect on land cover map accuracy for the pooled
data it may have for individual sectors. The SAR
data for sector 2 was spatially filtered with a
low pass median filter with a 3 x 3 pixel filter
window size (Ref 23). The data were then class
ified using the same fields for the training
and testing stages of the classification. Whilst
the accuracy with which the data could be class
ified increased for some of the variables it
decreased for others (Table 4).

3x3 Filtered
(%)

48. 1

59.3

Unfiltered
(%)

40.7

51.8

All Variables Direct

All Variables Step
wise

55.6 55.6

55.6 55.6

59.3 51.9

44.4 40.7

59.3 70.4

40.7 44.4

25.9 33.3

48. 1 55.6

14.8 22.2

29.6 29.6

51.9 48. 1

Table 4. Comparison

Mean and Standard
Deviation

Mean DN

Standard Deviation

Minimum DN

Maximum DN

Third Moment about
the Mean

Skewness

Fourth Moment about
the Mean

Kurtosis

Coefficient of
Variation

DN Range

of the classification
accuracies derived from the unfiltered
data and from the median filtered data.

The highest accuracy obtained from this sector
with the unfiltered data was 70.4% whereas it
was 59.3% for the filtered data. Whist these
results are far from conclusive, low pass spatial
filtering may not provide any significant increase
in accuracy, and was not used further in this
study.

A spatial variation in accuracy is evident in
Figure 5. This is also shown in Table 5 which
gives the chi-squared statistic, transformed from
the Wilk's lambda, and its significance (Refs 24,
25) for each variable and each sector treated inde
pendently as well as .for the entire image pooled.

Wilk's lambda is a measure of the within-group
variation as a proportion of the total (Ref 24).
The smaller it is the more successful is the
discrimination between the groups. Since the aim
of the classifier is to minimise Wilk's lambda the
data in Table 5 illustrate two features. Firstly,
different variables classify the data with different
accuracies for any sector. Secondly, for any one
variable the accuracy with which it can be used to
classify land cover varies from sector to sector
and so is spatially variable.

Classifications using more than one variable are
likely to be superior to those using dust one.
It may be considered that the more variables and so
information used the higher the accuracy will be
(Ref 26). However, this is not always the case
(Ref 27). Indeed the use of all 10 variables
(ie Direct - assuming each variable is tolerant
(Ref 25)) gave an accuracy close to that obtained
when using just the mean DN, for the sectored data.
Whilst the difference was much larger for the pooled
data the inclusion of further variables may later
lead to the same effect. It is apparent, therefore,
that the variables to be used need to be carefully
chosen. For instance a stepwise selection of var
iables to be used in the classification could be
made. With this technique the variables enter the
classification in an order determined by their
discriminating power, given the variables already
selected (Refs 24, 25). Usually not all of the
variables are entered. Such a classification can
only be considered optimal rather than maximal and
requires the calculation of all the variables even
though not all will be used. Short of trying all
the possible combinations of variables the mean and
standard deviation could be used. These were chosen
because of the relatively low Wilk's lambda for
each of them and because they were usually amongst
the first variables chosen during the stepwise
classifications. This combination gave an accuracy
of 61.5% (51-70%) when sectored, the highest
accuracy that was obtained.

The choice of which textural variable to use is,
however, more complicated than it may seem. Diff
erent variables can discriminate the different
cover types with varying efficiency. This discrim
inating power is, however, spatially variable,
resulting in the spatial variability of accuracy
noted above. This can be illustrated by considering
that with the pooled data set 50% of grass fie'1i!ls
could be correctly classified in the far range,
but none in the near range for a classification
using just the standard deviation of DN. Convers
ely with the third noment about the mean, 60% of
grass fields were identified in the near range and
none in the far range. The differences are less
for the sectored data set. In both cases 25% of
grass fields were correctly classified in the far
range and 40% in the near range. There therefore
appears to be not only a spatial dependency of
accuracy but also a spatial variation in how well
each cover type is classified, although the two
are not independent and are also related to the
proportions of each cover type in each sector.
However, vegetation appears to be more separable
after sectoring than do the urban and water classes,
though the differences for the latter classes are
small (Table 6) . Sectoring SAR data therefore
seems a suitable method to use for vegetation
mapping.
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Pooled 29 21 18 4 36 14 7 21 3 25 18 0 21GRASS
Sectored 32 39 43 36 18 39 39 32 25 32 11 39 25

Pooled 62 58 33 6 27 13 13 6 23 21 12 2 23
ARABLE

Sectored 67 63 69 52 54 46 60 36 42 46 27 17 36

Pooled 56 56 6 0 6 6 0 19 38 19 94 63 19
FOREST

Sectored 38 38 56 56 19 44 31 31 25 13 38 31 19

Pooled 48 48 56 68 52 60 64 32 12 20 16 16 52
URBAN

Sectored 72 72 60 60 44 56 52 28 8 48 36 20 48

Pooled 78 67 100 100 89 67 89 33 33 100 11 67 100
WATER

Sectored 33 56 89 89 78 67 78 33 33 78 22 22 78

Table 6. Comparison of the accuracy with which individual cover types are classified
when using pooled and sectored data (%).

7. SUMMARY AND CONCLUSIONS

Sampling on a per pixel basis is unsatisfactory
for land cover mapping with SAR. An improvement
can be made by allowing for the spatial dependency
of DN by sectoring the data. A more suitable method
involves sampling on a per field basis, including
textural information and sectoring.

Whilst the highest classification accuracy obtained,
61.5% (51-70%), may not be as high as that obtain
able from data collected by other sensors it must
be noted that only X band HH data have been used.
Multi-feature radar data will probably yield high
er accuracies. The use of more and therefore
narrower sectors would also be preferable. With
both more data and narrower sectors the classific
ation of less generalised vegetation classes may
be attempted.

The six main conclusions of this study are:-

(i) As a result of the changing viewing geometry
the typical DN of a cover type is spatially
variable.

(ii) Since the spectral response of a cover type
is a function of the viewing geometry for
any given cover type it will vary across
the swath. As different cover types exhibit
different spectral responses the separab
ility of the cover types will vary across
the swath.

(iii) The location of training sites is therefore
important, and will control not only the
overall land cover map accuracy but also

the spatial distribution of this accuracy.

(iv) Even if the image is sectored, land cover
map accuracy will vary across the swath,
because of (ii) above. Land cover map
accuracy is spatially variable.

(v) Different variables have different
efficiencies in discriminating between the
cover types at different spatial positions.

(vi) As a result of the above factors, it may
not be valid to give a single accuracy fig
ure for a classification of the entire image.
Whilst such a procedure may be justifiable
in making general comparisons between diff
erent classification method sor study areas
it could be misleading. Accuracy may be
better expressed per sector and per cover
type, or at least some measure such as the
maximum and minimum accuracies obtained.
Thus a more precise accuracy assessment for
the classification of the sectored data
using the mean and standard deviation would
be to state a minimum accuracy of 34.5%
(18-54%) and a maximum of 75.5% (61-86%).
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ABSTRACT

With the launch of a number of satellite borne
SAR's in the next decade, the need to research
the potential of imaging radar to made land use
determinations becomes apparent. This paper re
views the woodland aspect of land use. In so
doing two major themes are studied. The first
major theme is to assess and review the ability
of imaging radar to make woodland determinations
and to summarize the optimum radar parameters re
quired. The second major theme is to review the
imagery and methods used in the analysis of
imaging radar data of woodland. In conclusion
this paper states that imaging radar has demon
strated great potential in making woodland deter
minations, but as yet insufficient data exists to
ascertain its full potential and to fully define
optimum system parameters for the analysis of
woodland. Further, it is noted that more work
needs to be undertaken on the elimination of speckle
and the incorporation of some texture or pattern
measures in machine classification.

Keywords: Synthetic Aperture Radar, Woodland,
Forest Interpretation.

INTRODUCTION

Imaging radar, and particularly Synthetic Aperture
Radar (SAR) , has been used on a worldwide basis
for the study of land use. To date the majority
of the studies have been undertaken in areas
predominantly covered with cloud; specifically
tropical West Africa, Central and Southern America
and Indonesia. However, with the launch of a
number of satellite borne SAR's in the next decade
(ERS-1, Radarsat, J-ERS), the ability, and the
need, to expand this capability to other areas
of the world and the need to assess the full
potential of SAR in land use analysis becomes
apparent ..

Predominent in the study of land use is the ability
of SAR to make woodland determinations. It is
apparent from the review of studies to date that
although woodland has been extensively imaged,
the interaction of microwaves with woodland canopies
is not fully understood. Fundament research utiliz
ing volume scatter models and scatterometers has
not been undertaken to the same extent as for
cropland.

Despite this, results from studies undertaken in
West Africa, Central and Southern America, Indonesia
and more particularly in the Canadian and European
SAR 580 aircraft campaigns and the space-borne
Seasat and SIR-A studies have indicated that SAR
can be applied to woodland analysis. In reviewing
the conclusions of these studies this paper has
examined two main themes.

The first major theme of this paper is to assess
and review the ability of SAR to make woodland
determinations and to summarize the optimum radar
parameters for so doing. It is apparent from studies
to date that it is generally possible to delineate
woodland from non-woodland, and that it is possible
to make broad, and sometimes specific species and
age determinations. Further, it has been found
possible, using airborne SAR, to delineate forest
boundaries and in some cases, with the aid of ground
data, areas of disease and windblow. However,
many factors remain unclear, for example: the
degree to which radar waves penetrate the canopy;
the effects of weather (solar radiation, wind,

rain) on backscatter; and the effects of diurnal
change on backscatter (moisture on the leaf, leaf
turgidity, leaf angle).

The second major theme is a review of the imagery
and methods used in the analysis of SAR data of
woodland. This aspect is partially controlled
and complicated by the application to be undertaken.
Indeed the applications to date have ranged from

the general delineation of woodland from other
land uses to the calculation of stand density.

The overall conclusion of this paper is that SAR
has potential in woodland analysis. In order for
the full potential of SAR to be realised for the
forthcoming satellite programmes limitations in
terms 01 the amount of existing data need to be
rectified. Specifically there is a requirement
for a multi-temporal, multi-location, multi-frequency,
multi-polarization, multi look-angle data base,
backed by research utilizing volume scatter models
and scatterometer data.

WOODLAND APPLICATIONS OF IMAGING RADAR

Forestry and woodland has not been extensively
studied by investigators using active microwave
remote sensing. Survey using airborne imaging
radar has been undertaken over large areas of forest
land, particularly in Central and Southern America

Proc. EARSeL Workshop' \1icr01rnre remote sensing applied to regetation', Amsterdam, 10-l 2 December l 984
(ESA SP-227, January l985).
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and West Africa. Little work has been undertaken
however to ascertain the form of the interaction
of microwaves with woodland or to analyse the ability
of imaging radar to undertake more detailed species,
age, yield and crop state determinations. In this
study, trees as a form of land cover have been
grouped as follows:-

Single trees - hedgerow, parkland or urban trees
Tree groups - small clumps and rows of trees
Woodland - tree cover of 0.25 ha minimum size,

20m mimimum width and 20% minimum crown
closure

Early Development

Imaging radar has been used extensively, and success
fully, throughout the world on a commercial basis.
Since the limited declassification of radar in

the 1950's radar has been used to survey vast tracts
of previously unmapped land, much of it covered
by woodland. Although the prime motive for many
of the overflights was not, however, vegetation
mapping, but geological survey, it became apparent
from an early stage that radar did permit the classi
fication of vegetation classes, albeit on a generally
broad scale. Table 1 lists the major commercial
surveys to date.

Project/CountryDate AreaSurveyed
(Km2)

UnitedStates 1965/66 500,000

ProjectRamp 1967and 40,000
(E.Panamaand 1969
N.W.Colunbia)

ProjectRadam/ 1970/76 8,500,000
RadamBr'azil
(Brazi.l)

Nicaragua 1971 80,000

Peru 1974/75 6oo,ooo

Imaging
Systen

Westinghouse

Westinghouse

AeroServices/
Goodyear

Westinghouse

AeroServices/
Motorola

Nigeria 1976177 Motorola950,000

Venezuala 1975/76 AeroServices900,000

ProRadam
(Colt.nnbia)

Mid 1970's AeroServices320,000

Table1. Majorcomer'ctalAirborneRadarSurveys

In addition overflights have been undertaken of Indo
nesia, New Guinea, the Philippines, the Solomon
Islands, Western Australia, Togo, Guatemala, Ecua
dor, the United States, Canada, Scotland and South
East England.

Some of the surveys were prompted by a real need
to map vegetation. Nigeria provides a particularly
good example of this where a complete county-wide
land use/vegetation map was provided by imaging
radar (Hunting Technical Services 1978, Parry and
Trevett 1979). Other surveys with a geological
mapping requirement have also permitted the analysis
of vegetation. It was noted for example in one
of the earliest of these, Project Ramp, that six
types of woodland could be delineated (Viksne,
1970):

(a)
(b)

Evergreen rain forest
Mixed semi-deciduous and evergreen forest
(jungle)
Sub-montane forest
Palm forest, wetlands
Swamp with low trees
Fresh water and brackish swamp with tall
trees

( c)
(d)
( e)
(f)

This has been corroberated by other studies, parti
cularly Nicarag_ua where eleven classes of woodland
could be delineated (Hunting Geology ! Geophysics
1972, Martin-Kaye 1972):

(i)
(ii)
(iii)

Hardwood forest
Hardwood mountain and hill forest
Hardwood forest on severely dissected low
hill land
Riverain hardwood forest
Riverain hardwood forest with cultivation
Hardwood forest with cultivation and grazing
Hardwood mountain and hill forest with culti
vation and grazing
Hardwood forest remnants in savannah
Swamp forest
Swamp savannah with scattered woodland
Low swamp forest with palms

(iv)
(v)
(vi)
(vii)

(viii)
(ix)
(x)
(xi)

The Ability of Imaging Radar to Make Woodland
Determinations

More recently the results of the Canadian and the
European SAR 580 Campaigns, in conjunction with the
results of other investigations in the United States,
Canada and Europe has permitted more in-depth studies
of particular aspects of the ability of imaging radar
and SAR in particular, to make woodland determina
tions.

The Delineation of Woodland From Non Woodland. Fun
damental questions such as the ability of radar to
delineate woodland from non-woodland are not yet
completedly clear from the literature. Generally
woodland has been found to be clearly discerned
from non-woodland on radar imagery. Daus and Lauer
(1971), for example, stated that by using K-band
radar in the Sierra Nevada mountains, California,
they were able to delineate timber from all other
vegetation types.

The ability to delineate woodland from non-woodland
was later confirmed by Parry (1974) using X-band
radar and Le Toan (1980) using L-band radar of the
Foret Landaise in France. In the European SAR
580 Campaign, with optically processed data L
band was found to provide the most obvious tonal
separation of general woodland from other land
cover classes (Horne and Rothnie 1984). However,
experimenters also reported success with both X
and C-bands. Further, analysis of satellite Seasat
imagery demonstrated that woodland over 5ha could
be readily discerned (Hunting Geology ! Geophysics
1981).

Problems have, however, been encountered. Ulaby (1980)
f'oind that he was unabe to successfully delineate wood
land from corn using L-band radar over Huntingdon
County, Indianna, and Beaubien (1980) in the Canadian
SAR 580 Campaign found that he ~able to discern
between woodland and non-woodland in Canada using
X and L-band.

More particularly classification problems were
noted in the European SAR 580 Campaign in the con
fusion between felled or recently planted woodland
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cover and other non-woodland cover types (Horne
and Hildebrandt 1984). Both Le Toan (1980"""")a.lid
~wlton et al (1981) have also -;:;-otedthe inability
of radar imagery to delineate between older clear
cuts and emergent crops.

Forest Boundary Delineation. Identification of
woodland types requires similar responses from
similar crop types in different parts of the image.
Where crop type boundaries are to be recognised,

tone and texture differences need only be noted
for adjacent stands. In comparing boundary identi
fication to forest stock maps in the European
SAR 580 Campaign Horne and Rothnie (1984) found
that 85 per cent -;;r-b"oundaries were visible on
X-band, dropping to 66 per cent with the less
detailed C-band. HH polarisation was best suited
to the linearity of crop and road boundaries.
These results compared to 90 per cent success

rates with black and white photography and 94
per cent with colour. Most main mapped boundaries
were identified, omissions being slight crop age
differences, small intimately mixed stands and
differences between pure and mixed crops of similar
species. Some minor roads at right angles to
line of flight were also missed.

Species Classification. Within forest and woodland
areas the ability of imaging radar to delineate
broad species categories has been apparent from
an early stage. Morain (1967) using the Westing
house real aperture system found he could delineate
pine forest, juniper woodland, grassland and sage
bush on Horsefly Mountain, USA. Peterson et al
(1969) confirmed Morain's conclusions. In a later
study of K-band radar imagery Peterson (1969)
was able to delineate ponderossa pine, juniper
woodland, white fir forest, hardwood forest, sage
bush areas, shrub areas, grassland and recent

burns.

The ability of imaging radar to image large areas
of previously unmapped territory, and produce
maps incorporating broad woodland categories was
further proven in the late 1960' s and the early
and mid 1970's in Central and Southern America
and West Africa, as has been stated previously.

The delineation of species within woodland remains
however, a largely unresearched area. From an
early stage it was established that image tone
and texture was vital to vegetation delineation
and that the vegetation tended to govern the tex
ture of the image, whilst topography governed
the tone (Daus and Lauer 1971). Bertholome (1983)
placed this in the context of woodland when he
stated that the texture of the image was specifi
cally related to tree species.

However, the degree to which tree species can
be delineated on SAR imagery is not yet fully
determined, and only a few investigators have
attended the problem. The results of these inves
tigations tend to be mixed, and are isolated to
a few Test Areas. Churchill et al (1983 and 19811),
for example, found that by using X-band SAR 580
imagery they were able to discriminate clearly
by texture between coniferous woodland and older
stands of mixed and deciduous woodland in Thetford
Forest, England. Conversely, Kessler et al (1983)
were not able to delineate 22 year old stands
of Douglas Fir from 25 year old stands of oak
by texture on X-HH imagery. Indeed it was only
the darker tone of the coniferous woodland that
permitted a successful classification.

Age Classification. Several investigators to
date have noted that broad age groups may be
delineated within woodland, particularly coni
ferous forest. Goodenough (1980) and Lee (1980)
both noted during the Canadian SAR 580 campaign
that shorter, less mature trees exhibited a
smoother texture than the more mature woodland.
This feature is confirmed for satellite borne

SAR sensors; young growth was found to be distin
guished from mature stands on Seasat imagery
(Hunting Geology! Geophysics, 1981).

Le Toan et al (1980) were more specific. They
noted that for Maritine Pime (Pinus Pinaster)
in the Foret Landaise in France three age classes
could be denoted using L-band and HH and HV imag
ing radar:

( i)
(ii)
(iii)

O - 4 years
4 - 10 years
::> 10 years

Indeed,
between
years.

a quasi-linear
radar response

was noted
from 9-3

correlation
and tree age

Churchill et al (1984) were similarly able to make
broad age group determinations within Scots Pine
(Pinus Sylvestris) and Corsican Pine (Pinus Nigra)
in Thetford Forest, England, using X and C HH and
HV polarized SAR 580 imagery. They reported a
lightening of tone and a roughening of texture with
increasing age. This was thought to be associated
with thinning practice resulting in decreased stand
densities with a resultant roughening of the canopy.

Crop State and Yield Determinations. Very little
work has been undertaken in attempting to assess
crop state and yield potential in woodland. Daus
and Lauer (1971) firmly stated that it was not
possible to assess timber quality and stand volume
using real aperture SLAR imagery. However, using
SAR certain relationships have been noted between
backscatter characteristics and crop state and
yield potential. Bertholome (1983), for example,
noted that texture in deciduous woodland corres
ponded to the size and density variation of the
stand. In addition Le Toan et al (1980) were able
to distinguish two stand density classes using
L-band imagery of Maritine Pine (Pinus Pinaster).
They were:

(i) <
(ii) /

1,000/ha
1,000/ha

In the European SAR 580 Campaign, Anthony (1984)
used stereograms of X and C-band imagery for the
counting of single tree crowns in woodland condi
tions. Stands had to be middle aged to mature to
give sufficient crown separation. It proved to
be necessary to calculate correction factors to
allow for lack of illumination of the lower storey
trees in the overall canopy.

In non-woodland situations, a crown width of at
least 10 metres was needed for successful identi
fication (Horne and Rothnie, 1984). Large trees
and tree clumps showed most clearly in L-band
although the detail and radar shadow of X-band
also aided identification. Location was an impor
tant factor, urban trees and small trees in hedge
rows being impossible to count.

Despite these indications, as Hoekman (1984)
states, there is a need for a thorough knowledge
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of the interaction of microwaves with forest and
free structures before conclusions on the feasibi
lity of forest inventory can be utilized.

Similarly, little work has been undertaken in assess
ing disease and crop dramage in woodland using
radar imagery, and that which has been undertaken
has produced mixed results. Goodenough (1980)
found during the Canadian SAR 580 experiment that
he was unable to delineate trees damaged by pine
beetle.Churchill et al (1983) found that by using
X-band SAR imagery clearings and disturbance could
be delineated with the aid of ground truth, and
could, in turn, be related to the effects of fames
annossus or windblow.

Crop Geometry Effects. Crop geometry has been seen
by many researchers to be of importance to radar
backscatter. It has been proved possible to
differentiate between high and low vegetation.,
Sic~o-Smit for example in his study in the
Mahogany forest of the State of Goi'as in Brazil
found he was able to successfully delineate swamps,
savannas and shifting cultivation from the surround
ing high forest. This he was able to do with the
aid of radar shadow and differences in tone and
texture (Sicc-Smith 1974).

Hardy was able to make a similar di~tinction in the
Yellowstone National Park in 1971. He found that
of the seven conifer species in the park, each of
them unique in form when observed from the ground,
only Douglas Fir was distinguishable to the radar.
The primary reason he found for this was that this
particular species of fir grows in relatively pure,
somewhat open stands, and is the tallest growing
conifer in the park.

Hardy pursues this point when he states that fea
tures such as tree heigh and general shape may
affect the image appearance, particularly if the
stands are pure but of different species. He
found such macro-characteristics to have a major
influence on the image textural characteristics of
each plant community. He further states that
micro-characteristics such as leaf shape, length
and orientation might create a species image
signature (Hardy et al 1971).

Canopy Penetration. The degree of penetration of
radar waves into the canopy is unclear from the
literature. The EASAMS report in 1973 (Vol. CR-
138) states that if the forest is viewed at a low
incident angle the tree trunks will scatter the
incident radar waves to such an extent as to hide
the ground beneath. The report further states that
if woodland is viewed vertically it may be pene
trated by radar waves, especially in winter when
there are no leaves.

Davis (1973) in his study of the Saginaw Forest
confirms that the tree canopy may be penetrated by
radar waves. He further states that in his study
X-band penetrated the canopy to a far greater
extent that L-band. However, this overflight took
place in the spring before the deciduous trees were
in leaf, and this factor may have had a consider
able bearing on the results.

In contrast Shuchman and Lowry (1977) found that
longer wavelengths will penetrate the vegetation
to a far greater extent.

_Macdonald am Waite (1978) partially confirmed the
aoility oflong wavelengths to penetrade woodland
vegetation. They noted that the backscatter from
forest land using L-band were essentially the same
for full and partial foliage development. They
therefore assumed that the backscatter was caused
by a combination of branches, trunks and even the
ground below. From this Macdonald and Waite also
concluded that at low incident angles L-band was
of no use for delineating seasonal changes in
vegetation types.

Further evidence has been provided by Macdonald et
al (1980) who detected variation in the Seasat
image for supposedly homongenous tree canopies. It
was established that the variation occurred where
standing water was located on the ground.

To test radar penetration of the forest canopy in
the European SAR 580 Campaign Churchill et al (1983)
erected corner reflectors at various levels in a
continuous pine canopy. No reflectors were visible
on X or C-bands, indicating a penetration/reflec
tion of less than 6 metres. This limited penetra
tion seems confirmed by the lack of lower canopy
illumination in crown enumeration studies Anthony_
et al (1984) and by radar shadowing behind linear
tre;-features Curtis (1984). Work by Sieber (1984)
indicates that X-band reflects from tree leaves
while L-band has more penetration, reflecting from
tree branches.

Topographical Effects. It is apparent from the
literature that topography is regarded as being of
prime importance in governing the strength of
radar return. Parry (1977), for example, states
that it is apparent that the prominent patterns on
radar imagery are the product of surface morphology.
Daus and Lauer (1971) note that topographical vari
ations affect the image of identical stands, whilst
Beaubien (1980) states that he was unable to de
lineate coniferous woodland from deciduous because
of the effect of slope. This has been further
corroberated by Viksne (1971) and Hardy (1971).

Other Variables. Other variables that might effect
the backscatter response from woodland have not yet
been studied in any significant manner. Variables
such as diurnal effects, weather and management
practice have as yet received very little attention
from investigators.

Optimum System Parameters for the Analysis of
Woodland. It is noted in attempting to define the
optimum system parameters for the analysis of wood
land by radar that the results from which these
conclusions are drawn are defined by the following
variables:

(i) The Test Site over which the sensor was
flown (in terms of management practice,
species and age)

(ii) The time of year at which the sensor was
flown

(iii) The weather at the time of flight

(iv) The time of day at which the sensor was
flown

( v) The sensor (in terms of bands and polariz
ation availability) that undertook the
flight
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(vi) The application requirement (broad land use
classification to compartment ride delin
ation).

There is no data set that will permit a range of
frequencies and polarizations to be compared over
a time series .. Further, with particular regard to
the European SAR 580 Campaign, conclusions with
regard to wavelength are defined by the poor
quality of the C-band data.

Wavelength .. The optimum wavelength for the analy
sis of forestry is not clear from the literature
and seems to some extent to be defined by the
desired application. In regeneration and cutover
areas Pala (1980)'found that, during the Canadian
SAR 580 campaign , by using X-band data little
detail could be discerned, although feature boun
daries could be clearly defined. Conversely
L-band imagery was found to provide much greater
detail and, with density slicing, the delineation
of regene~ation and failure areas was permitted.
Indeed it was found to be possible to delineate
three levels of regeneration:

(i) Good
(ii) Medium
(iii) Poor

Pala concludes by suggesting that coarse resolu
tion L-band may serve surveillance needs.

For mapping clearcut areas Lee (1980) found that
recently cleared areas could be delineated on both
X and L-bands; this was confirmed by Goodenough
(1980). Goodenough further states that the X-HH
channel is best for visual analysis overall.

Macdonald et al concur with this conclusion. They
found during experiments with SAR over Arkansas
using Ka, X and L-band that the L-band provided
substantially reduced dynamic range in comparison
to the other frequencies, thus inhibiting deline
ation. This they found to be not surprising due
to the larger wavelength of the L-band and its
increased ability to penetrate the canopy, The
general requirement for a shorter wavelength for
forestry analysis is further supported by Rubec
(1980), Kessler (1983), Bertholme (1983) a;::;;;--
Horne ~ al (1984) ..

Due to the varying requirements for woodland and
forestry analysis, and the varying responses for
each waveband, the need for a dual or multi-channel
approach has been noted by many investigators.
This approach has been particularly noted by in
vestigators in both the Canadian and European SAR
580 Campaigns.

Polarization. The majority of investigators to
date have suggested that for forestry analysis the
optimum polarization is like polarized. Knowlton
~al (1981), for example, states that an X-band
radar with HH polarization is best for deciduous/
coniferous delineation. This is confirmed by
Goodenough (1980), Wu (1983) simialrly suggests a
like polarized radar (VV) for forest classification.

Peterson (1969), however, states that the forest/
non forest boundaries were more perceptible on
cross polarized radar. A similar distinction was
found for burned areas.

Resolution. Moore (1979) found that for resolutions
less than lOm interpretation accuracy was less than
37 percent for woodland species. Moore also estab
lished that there was a negative exponential reduc
tion in interpretation with resolution.

In comparison Inkster (1980) found that interpreta
tion accuracy was a weak function of resolution
upto a threshold beyond which it decreased rapidly.
Inkster concurred with Moore in respect of the
minimum resolution of lOm; he stated that at re
solutions coarser than lOm interpretation ability
decreases rapidly. He further states that to be
able to delineate between clear cut areas covered
with stands of various species becomes difficult
at resolution coarser than 6m.

Incident Angle and Look Direction. In respect of
the optimum incident angle for forest land evalu
ation, too little work has been completed to make
any firm conclusions. Hardy et al (1971) has
stated that for accurate interpretation a given
ground element should be imaged in the near, mid
and far ranges. This is also suggested by Lewis
(1971).

Rubec (1980) suggests that shallow incident angles
are best for land classification, whilst Wu (1983)
states tha5 no chagge in the image is apparent
between 40 and 58 for X-band.

The results from investigators also suggest that
flight lines and the number of flights are impor
tant in obtaining optimum data. Hardy et al (1971)
found that flight lines perpendicular to the major
topographic features gave the best data for vege
tation analysis. Macdonald and Waite (1971) have
indicated that for unknown topographic configura
tions four orthogonal looks are desirable when the
orientation of tho geologic structures is known.

Multi-temporal Imagery. The need for a multi
temporal approach to woodland analysis has been
suggested by several investigators, however very
little has beenundertaken in that field, due partly
to a lack of multi-temporal imagery. Hoekman (1984)
for example, suggests that for the analysis of
woodland at least one overflight in summer and one
in winter ought to be undertaken. The need for a
multi-temporal approach is exemplified by Davis
(1973) who was able to delineate four forest types
using X-band like polarized multi-temporal data.
They were deciduous trees, deciduous bush, long
leaf pines and short leaf pines.

Bush et al (1976) have also attempted a multi
temporal approach. Using ground based scattero
meter measurements they attempted to define diffe
rences between autumn and spring stands of decidu
ous woodland. They established that the radar
scattering coefficient a 0

as measured in the spring
can be substantially larger, by as much as 10 dB.,
than the rr 0

measured in the autumn. They also
found that this effect was most apparent between
incident angles of 30° - 50°.

Table 2 presents a summary of these results:
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Description Opt:imumRadarParameters Sensor
Band Polariz- Graz~ Resolution

ation ~

Woodland
frailnon- x HH - 2m SAR
woodland

Deciduous
fran x HH - - SAR
coniferous

Species x & c HH &Jo - SAR

Age x & c HH lOm or less SAR

Regenera-
tion L ! ! Coarse SAR

Table 2. OptimumRadarParametersfor Woodland

IMAGERY AND METHODS USED

To date the majority of interpretors and investi
gators have utilized optically processed imagery.
This is particularly true of the commercial surveys
of the 1960's and 1970's, and also true for many
of the investigators in the Canadian and European
SAR 580 campaigns. In general, the optically pro
cessed imagery took the form of hard copy that
could be manually interpreted using traditional
estimators such as tone, texture, contexture and
interpreter experience.

Certain investigators have attempted to pursue the
analysis of optically processed data further, par
ticularly in the Canadian and European SAR 580
Campaigns. Kessler et al (1983) applied densito
meter analysis to back up their visual interpreta
tion results .. Further, other investigators have
used optically processed data on colour additive
viewers to advantage (Churchill et al 1983). In
deed, the application of colour was found to
greatly enhance the ability to manually interpret
radar imagery of woodland.

The analysis of digitally processed imagery has
been undertaken by far fewer investigators, due
generally to the fact that there is far less avail
able digital iamgery of woodland.

As with the optically processed data, colour compo
sites were found to greatly enhance manual inter
pretation. It was noted,however, in the European
SAR 580 Campaign that there was a need to radio
metrically balance the imagery for variations in
scene brightness to permit the most accurate ana
lysis of imagery (Wooding, 1983). Colour composites
of radiometrically balanced data with X-HV in red,
X-HH in green and C-HH in blue gave the best image
for delineation of woodland from non-woodland and
for forest type separation while use of two C-band
channels assisted the tonal separation of pine
species (Churchill et al 1984). Kessler (1984) got
best results from a composite of C-HH (low pass
7 x 7 filter) on red, X-HH (low pass 5 x 5) on green
and a ratio of X-HH (5 x 5)/CHH (7 x 7) on blue.
Both experimenters found visual analysis of enhanced
digital data gave best results.

Despite the success of colour composites for manual
interpretation, considerable problems have been en
countered when applying traditional pixel by pixel
classification algorithms. Two reasons have been
stated for this; firstly the presence of speckle

that is inherently incorporated in SAR images, and
secondly the fact that pixel by pixel classifica
tions do not incorporate estimators such as texture
which have been found to be of considerable impor
tance in making optical forest type determinations.

Some initial work has been undertaken utilizing a
median and a Marconi Research Centre designed
PRSMT speckle removing filter over imagery of
woodland (Hunting Technical Services and Marconi
Research Centre, 1984b). Recent work on texture
measures of woodland areas, particularly the
Spatial Grey Level Dependancy Mabix, has demonstra
ted that certain very rough textures can be de
lineated from other textures by machine (Churchill
and Wright, 1984, Hunting Technical Services and
Marconic Research Centre, 1984a).

It is worth noting that in the addition to the
analysis of imaging radar data, there has been very
little work utilizing scatterometer data and
scatter models, in contrast to the work on cropland.
As such much of the fundamental work on the under
standing of the interactions of microwaves with
woodland has yet to be undertaken.

CONCLUSIONS

From work to date it is apparent that the following
general conclusions can be drawn:

(i) Imaging radar shows potential for forestry
applications, particularly when radar's all
weather capability is taken into account.

(ii) Insufficient data exists to define fully
optimum radar parameters, for woodland
analysis but L-band was found to provide
the best woodland/non-woodland separation
X-band is most suited to detailed studies.

(iii) Visual interpretation of enhanced imagery
has proved more successful than automated
digital analy8is to date

(iv) Multi-channel SAR is most suited to forest
studies but new algorithms need to be
developed to utilize textural and pattern
aspects if automated classification is to be
improved

(v) Data quality needs to be improved to correct
system, naviation and processing errors

(vi) More imaging radar data is required if the
potential of multi-look, multi-angle, multi
directional, multi-channel, and diurnal and
seasonal variations is to be fully tested.

(vii) Fundamental research using scatterometers and
scatter models needs to be undertaken in
order to understand the interaction of micro
waves with woodland

(viii) Some of the applic.ations discussed are reso
lution dependant and could not be achieved
with current space borne SAR systems. There
is a case for continued use of airborne SAR
in addition to satellite systems.
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MULTIPLE-INPUT SEGMENTATION ALGORITHM FOR SLAR-IMAGERY

Jan J. Gerbrands

Delft University of Technology, Department of Electrical Engineering
P.O. Box 5031, 2600 GA Delft, The Netherlands

ABSTRACT

One of the research goals of the Dutch ROVE team is
the development of methods for the automated quan
titative analysis of SLAR images for crop identifi
cation and classification purposes. A major step
in this analysis is the automated segmentation of
the image into the agricultural fields. The segmen
tation procedure discussed here is based on a se
quential split-and-merge approach.'The procedure
allows for the simultaneous segmentation of multi
temporal or multi-angular views of the same scene
yielding one segmentation plan. The criteria for
merging, splitting or grouping the tentative re
gions are based on the random scatterer model for
natural backgrounds like vegetation.

Keywords: digital image processing, image analysis,
segmentation, split-and-merge algorithms.

1. INTRODUCTION

In the Netherlands, the multidisciplinary working
group ROVE (Radar Observation of Vegetation) in
vestigates the properties and possibilities of ra
dar in the context of remote sensing as a tool in
agriculture and forestry for vegetation mapping,
crop classification, etc. In ROVE the following
institutions participate: the Centre for Agrobiolo
gical Research CABO, the Physics and Electronics
Laboratory TNO, the National Aerospace Laboratory
NLR, and various laboratories of both the Agricul
tural University Wageningen and Delft University
of Technology. An expose of the ROVE program has
been published recently (Ref. 1).

In the ROVE project, a specially developed SLAR
system is used with digital data recording and ac
curate absolute signal handling. The recorded data
are subject of intensive preprocessing, including
geometric and radiometric corrections. As these
tasks are performed at NLR and TllO,they will not
be discussed here. The digital images emerging from
the preprocessing stages contain square pixels.
Each pixel corresponds with a ground area of 15 m
by 15 m, and its value is obtained by averaging
over approximately 30 uncorrelated radar observa
tions.

One of the research goals of ROVE is the develop
ment and implementation of methods and algorithms
for the automated quantitative analysis and, even-

tually, for the automated interpretation of the di
gital SLAR images. A major step in the analysis is
the automated segmentation of the image plane into
regions, which correspond to the agricultural
fields. The segmentation algorithm discussed here
is based on a sequential split~and-merge approach.
The method allows for the simultaneons segmentation
of multi-temporal or multi-angular views of the
same scene, yielding a single-segmentation plan.
The criteria for merging or splitting tentative
regions are derived from the random scatterer model
for natural backgrounds like vegetation.

2. THE IMAGE MODEL

In this section we define an image model which
forms the basis for the segmentation procedure.
The image model is based on a random scatterer mo
del for the radar observations. Natural backgrounds
like vegetation behave like distributed targets.
If the illuminated area is large enough to contain
a sufficient ~umber of uncorrelated scatterers, the
probability density function of the amplitude of
the envelope of the received signal is a Raleigh
distribution. From this distribution it can be de
rived that the probability function of a single
observation of the reflection coefficient y shows
a standard deviation of 5.6 dB. In relation to a
dynamic range of some 20 dB for crops and vegeta
tion, this value of the deviation is unacceptably
large. The value of a pixel in our digital image,
however, is obtained by averaging over approxima
tely 30 uncorrelated observations, yielding a stan
dard deviation of 1.0 dB. In this model, the devi
ation is independent of crop type, etc. This leads
to the following image model. The agricultural
fields are represented by regions in the image
which differ in mean value (depending on crop type,
crop coverage, moisture, etc.) and the within
region variance is the same for all regions. This
variance wilJ in the sequel be denoted as o2. Fur
thermore, the pixel values are assumed to be Gaus
sian, as they are obtained as the average value of
a reasonably large number of uncorrelated observa
tions.
This image model is illustrated in Fig. 1.

The variability in the pixel values is still too
large to allow for direct classification of pixels
into crop types. This implies that the traditional
approach is to be chosen in which the image is
first segrientedinto regions. The reflection coef
ficient may then be averaged over the pixels belon-

Proc. F:ARSeL Workshop' .Vficrowove remote sensing applied to vegetation', Amsterdam, 10-12 December 1984
(ESA SP-227, January 1985).
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ging to one region to obtain a more accurate es
timate of y, thus facilitating the classification
of regions. The segmentation problem is the main
issue in this paper.

The difference between the mean reflection coef
ficients of adjacent agricultural fields, as ob
served in our images, may be in the same order
as the standard deviation of the noise. This pro
hibits the use of simple segmentation procedures
like multi-thresholding or straight-forward edge
detection. Obviously, one has to use locally
averaged estimates of image properties.

The image model described above suggests the
following approach. Let us observe a small por
tion of the image by looking at the pixels with-
in an observation window. If all pixels in the
window lie in the same agricultural field, as
illustrated by window Win Fig. 1, the pixel values
are all samples from the same Gaussian distribu
tion with mean value µ1 and variance a2• If, how
ever, the pixels originate from more than one agri
cultural field, as indicated by window W' in Fig.
1, the pixel values are samples from a mixture of
Gaussian distributions with different mean values
but identical variances. The variance of the mixed
population is larger than a2, as we will show for
the case of two classes. If we have a fraction Pl

w

__ .,,,...w•
.,....·""

Figure 1. Image model with Gaussian distributions
for the regions. W and W 1 are observation
windows.

of pixels from a Gaussian distribution with mean
value µl and a fraction P2 of pixels from a dis
tribution with mean µ2, the mixed variance is

which is larger than o2, except when the means are
identical or when one of the fractions is zero.
This corresponds with the single field situation.

So we can use the sample variance s2 of the pixel
values in the window to test the following hypo-

theses:

a2 = o2
w
02 > 02
w

If Ho is rejected, we conclude that the window con
tains (parts of) different agricultural fields. We
may now divide the window into smaller subwindows
and repeat the test for each subwindow. In princi
ple, one could start with a large window containing
the entire iimage. It is computationally more attrac
tive to use a split-and-merge algorithm.

3. SPLIT-AND-MERGE

The split-and-merge approach to image segmentation
as developed by Pavlidis and Horowitz (Refs. 2,3)
belongs to the family of sequential region growing
techniques (Ref. 4). Image processing algorithms
are called sequential if the processing in one part
of the image may be influenced in any way by the
results of processing some other part of the image.
Major advantages of sequential methods are easy
adaptation to local image properties and natural
exploitation of adjacency and connectivity. A major
disadvantage, however, is the dependency on star
ting points and processing order.

The split-and-merge algorithm can be described most
easily by introducing the quartic picture tree QPT.
If we start with a square image of size 21 x 21,
this image can be divided into its four quadrants.
Each of these quadrants can be divided into qua
drants recursively. This process can be described
with a quartic tree. We start at level 0 with one
node, which represents the complete image. The node
at level 0 has four sons at level 1, which repre
sent the four quadrants, and so on. Nodes which
are not developed further are called terminal nodes.
The leaves of the tree at level 1 correspond with
the pixels of the image.

3.1. Initialisation

The algorithm starts with a tentative partitioning
of the image into squares of size 21-k, which cor
responds with a choice of starting level k in the
QPT. Each node at level k is assigned some attri
butes that are of importance for the segmentation
problem, e.g. the mean and variance of the values
of the pixels in the corresponding square in the
image. At this stage all nodes at level k are ter
minal nodes.

3.2. Merging

In the merging operations any quadruplet of sons
of the same father is tested for a possible merge.
The merge decision depends on their attributes. If
the four sons can be merged, the attributes of the
father are computed and the quadruplet of sons is
deleted from the tree. This procedure is repeated
for all quadruplets at level k, then for all possi
bly emerging quadruplets,of terminal nodes at level
k-1, and so on. If no more merges can be accom
plished, we return to the starting level k.

3.3. Splitting

Each remaining node at level k is now tested for a
possibly necessary split operation. If splitting
is necessary, the four sons are created at level
k+1 in the QPT and their attributes0are computed.
This process is recursively repeated.
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In principle, the merging operations could proceed
up to level 0 in the tree if the image consists of
one single region. On the other hand, the splitting
operations may very well proceed to level L, which
corresponds with the pixel level. After completing
all possible merges and all necessary splitting
operations, the image has been segmented by means
of a partioning with squares of various sizes. The
smallest squares may be just single pixels. All
pixels in a square are assumed to belong to one
single region, because evidently no further split
ting was necessary.

3.4. Grouping

The next step is called the grouping stage. This
process is guided by the region adjacency gr~ph
(RAG), where the nodes represent the regions and
an edge between two nodes indicates adjacency of
the two regions. When the grouping procedure starts,
all nodes represent square regions. Select one of
the squares with maximum size and test all adjacent
squares for a possible merge on the basis of cer
tain grouping criteria. If an adjacent square can
be absorbed. the attributes of the resulting re
gion are computed and the RAG is updated. The
growth process of the current region stops when the
grouping test fails for all current neighbors. The
procedure is then repeated starting from a newly
selected starting square. As the squares which re
sult from the merge and split stages may be as
small as single pixels, the regions which are crea
ted by combining squares of various sizes may have
any shape.

4. DECISION CRITERIA

In this section we specify the tests for the split,
merge and grouping decisions for the segmentation
of the SLAR images with a split-and-merge algorithm.

The decision to split a square containing n pixels
is based on a statistical test for the hypotheses

o2 = o2
w

o2 > o2
w

where ~ is the variance of the distribution under
lying the window population and o2 is the known
variance derived from the radar observation model.
Usually one would test the sample variance s2 of
the square in a one-sided test involving the Chi
square distribution, which, however, may be appro
ximated by a Gaussian distribution. In this way we
arrive at the following critical region:

s2 > o2 (1 +u /2/ ;;:;-)a

with ua defined by Pr(~ 2_ ual~ E N(O, 1)) =a where
a= Pr(Ho rejected I Ho) is the significance level
of the test, which is defined as the probability
that the hypothesis Ho is rejected while it actual
ly holds. This corresponds with a decision to split
the square in a situation where the square actually
contains pixels from one agricultural region only.
The value of a should not be chosen too small, be
cause that would lead to unacceptably large values
for the probability that Ho is not rejected when it
actually does not hold, i.e. the decision no to
split the square although it actually contains pi
xels from more than one region. An error of this
type can never be corrected in later stages of the
split-and-merge algorithm. A somewhat larger value
of a will obviously lead to some unnecessary split
ting actions, but errors of that type may be correc-

ted by the grouping procedure.

The decision to merge a quadruplet of sons of the
same parent in the merging stage is based on exact
ly the same test. The sample variance of the parent
square is computed and used in the test. If Ho is
not rejected, the parent square may exist and the
four sons are merged.

In the grouping procedure, the decision to merge
two adjacent regions is based on the u-test for
differences of means with the following hypotheses:

where µ1 and µz are the population means of the
two regions. We use the absolute valued of the
difference between the two measured sample means
with the following critical region:

with ui defined by Pr(u >Ula I a E N(0,1)) = ~a2a - - 2 -

where a is again the significance level of the test
and where n1 and n2 are the number of pixels in the
regions.

5. CLEANING

The segmentation map resulting from the described
procedure will be somewhat fragmented, in the sense
that many small regions remain in existence along
the boundaries of the actual fields. Due to the
pixel size of 15 m by 15 m, these pixels often con
tajn a mixture of various crops, roads, ditches,
etc. One can decide to leave these small regions un
classified or decide to let them be absorbed by an
adjacent region with similar greylevel. Usually we
eliminate regions with an area less than 20 pixels.
This is based on the following heuristics: the ac
curacy in the reflection coefficient estimated over
less than 20 pixels is hardly sufficient for region
classification purposes; in our agricultural test
region fields are much larger than 20 pixels; eli
mination of all segmentation fragments below this
threshold yields a clean segmentation result.

6. MULTIPLE INPUT IMAGES

~~e reflection coefficient does not depend on crop
type only, but a.o. on growth stage and grazing
angle as well. A single SLAR image does not carry
sufficient information for relatively simple tasks
as single crop detection. For more general classi
fication purposes, the use of multiple SLAR images
is therefore unavoidable (Ref. 5). These multiple
images can be obtained at various grazing angles
(by flying along the same track at various altitu
des) or at various stages in the growth process
(by flying on various dates) or by a combination
of both. For automated processing the multi-angular
and/or multi-temporal views of the same scene must
be in registration.

In the classification stage of the complete analy
sis scheme, the objects to be classified are the
agricultural fields. The use of multiple images,
say q, leads to the use of a q-dimensional feature
vector for each field. The feature values can only
be evaluated correctly if the detected field boun
daries are identical in all images. If the multiple
images are segmented independently, this is very
unlikely to happen. Common boundaries in the segmen
tation plans of the multiple images will almost
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never have identical positions and specific boW1-
daries that are present in the segmentation plan
of one of the images may be missing in another. It
is therefore necessary to obtain one single segmen
tation plan of the underlying scene on the basis
of the multiple views of that scene. In principle,
one could still segment the multiple images sepa
rately, take a logical OR of all binary valued
boW1dary maps to obtain one combined boW1dary map
and recompute the feature values for all emerging
regions from the original images. This approach,
however, will lead to an extremely fragmented seg
mentation result, containing numerous small regions
which are hard to classify. It is possible to ex
tend the split-and-merge procedure itself in the
sense that it will produce one segmentation plan
for the underlying scene on the basis of multiple
input images, i.e. simultaneous segmentation.

Two adjacent fields in the scene may be quite in
distinguishable by viewing from one angle but be
quite distinct from another angle. The same holds
for multitemporal views: two fields may have rather
similar reflection values in May, but quite dis
tinct reflection coefficients in July. We take the
position that if there is a significant difference
between two parts of the scene at any time or from
any angle, these parts should be identified sepa
rately. This leads to the following proposal to
combine the multiple inputs into one common segmen
tation plan. The split-and-merge algorithm has I'lul
tiple input images, but only one grid of squares.
The decision to split a square, merge four squares
or group regions together is based on statistical
tests performed on each of the input images sepa
rately. The answers from the multiple tests are
combined in the following way.

The decision to merge a quadruplet of squares in
Lhe common segmentation plan requires all indepen
dent tests to be in favour of such a merge. This
can be described as a logical AND on all multiple
positive merge decisions. In the splitting phase
of the algorithm, a square in the common plan is
split as soon as any of the separate tests indi
cates a split. This corresponds with a logical OR
on multiple positive split decisions. Finally, two
regions are linked in the grouping phase if and
only if again all input images support such a deci
sion.

7. EXi\.MPLE

We have implemented an experimental split-and-merge
segmentation algorithm on a VICOM digital image
processor. The program accepts up to four input
images of size 256 x 256 pixels. Larger input ima
ges must be divided into subirna.ge s , which are then
processed independently.

Figure 2 gives an example of a SLAR image of one of
four test regions (Flevopolder, July 1980, 660 m).
From this image two subimages of 256 x 256 pixels
were segmented. Figure 3 shows the segmentation re
sult, The gray values in Fig. 3 represent the mean
values of the various regions. The region bounda
ries are displayed in Fig. 4. The most important
output of the segmentation package is a file con
taining for each region its identification code
and average reflection for each input. This file
can then be used in our software package for sta
tistical pattern recognition to classify the re
gions.

Figure 2. ROVE SLAR image Flevopolder, July 1980,
660 m.

Figure 3. Segmentation result 512x256 pixels,
regions displayed by mean values,

Figure 4. Region boundaries of se~entation result
of Fig. 3.
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8. CONSISTENCY

In Section 2 we mentioned that, in principle, one
could start with one large window covering the en
tire image. In that case one would apply many
splitting operations, followed by the grouping
phase. The opposite approach would be to start with
a raster of tentative squares at the pixel level,
and apply many merging operations and the grouping
stage. It is computationally more attractive to
start at an intermediate level to minimize the re
quired computation time. The question then arises
whether the segmentation result depends on the
starting level or not. Theoretically the result is
independent from the starting level if and only if
the decision criteria in the merging, splitting and
grouping constitute a legitimate uniformity 'predi
cate. The most important constraint for an uniform
ity predicate is that if the predicate is true for
a region, it should be true for all subsets of the
region.

Well-known uniformity criteria are, for example,
that all pixels in the region have identical gray
value or that the difference between maximum and
minimum gray value lies below a certain threshold.
Criteria of these types are not applicable to the
SLAR-segmentation problem. On the other hand, the
tests on region mean values or region variances
developed above do not constitute a legitimate uni
formity predicate: if the variance of a large re
gion is below a specific threshold, this is not
necessarily true for all subsets of the region.

It is quite disappointing to learn that our tests,
which are so nicely based on the physics of the
imaging process, are not acceptable from a mathe
matical point of view. We have therefore attempted
to quantify the effect of the choice of the star
ting level on the resulting segmentation, by mea
suring the similarity between various segmentation
results in an experimental study. The details of
this study have been reported before (Ref. 6).
From this study we concluded that the effect of the
choice of the starting level is neglectable.

9. CONCLUDING REMARKS

In general, the segmentation results obtained with
the split-and-merge algorithm discussed here are
quite acceptable. Interactive tuning of the few
parameters which are selectable at runtime requires
some experience. The overall processing time is
certainly not neglectable: a three-input 512x256
scene requires in the order of 50 minutes, both
on a special purpose image processing computer
(e.g. VICOM) and on a general purpose minicomputer
(e.g. PDP-11/34) supplied with a fast floating
point processor. A similar split-and-merge program
has now been implemented on the RESEDA facility of
the Dutch National Aerospace Laboratory NLR.
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OPTIMIZATION OF AGRICULTURAL CROP IDENTIFICATION IN SLAR IMAGES: HIERARCHIC CLASSIFICATION AND
TEXTURE ANALYSIS

Peter Hoogeboom

Physics and Electronics Laboratorium TNO
PO box 96864

The Hague, The Netherlands

ABSTRACT

In 1980 a large SLAR flight program was
carried out over an agricultural area in The
Netherlands. A classification study on this multi
temporal dataset (Ref. I) showed that high accuracies
are obtained from a simultaneous classification of
3 flights. In this paper the results of a follow-
on study will be discussed. The goal is to obtain
the best possible classification result in the
earliest possible stage of the growing season.
Therefore the SLAR flights from Apri 1, May, June
and July were analyzed and the hierarchic
classifier is introduced. Very satisfying results
were obtained from a combination of 3 flights: I in
May, 2 in July at different incidence angles.

In a next part of this paper, within field
texture is investigated as a possible extra feature.
Texture measures were determined from the Gray
Level Co-Occurence Matrix (Ref. 2), which is known
to be rather sensitive for small texture elements,
in the order of pixel dimensions. Sofar the within
field variations do not seem to contribute suh-
stantial ly to a classification process,

I, INTRODUCTION

In this paper the results will he discussed
from a follow-on study on previous classification
experiments (Refs, I, 3). This study forms a part
of a broader national remote sensing research
program for agriculture and forestry, carried out
by the ROVE-team (Radar Observation on VEgetation),
a collaboration of several institutes (Ref. I),
This study was carried out in a cooperation between
the Information Theory Group of the Delft University
of Technology and the Physics and Electronics
Laboratory TNO (formerly Physics Laboratory TNO) in
The Hague.

The testsite on which the study is performed
is situated in the Flevopolder, a reclaimed land
area, Figure I shows a part of this µolder, including
the testarea, The latter contains 195 agricultural
fields, of which 164 were suitable for this experi
ment (crop type known, reasonable dimensions).
Frequently used crop types in this area are winter
wheat, potatoes and sugarbeets (80 % of total area),
Onions and peas are also important crop types, but
grown on smaller fields and therefore make up only
8.5 % of the area. These 5 most occurring crop types
were used in designing the classifier.

Proc. L.·IRSeL ~ViJrkshop '.\!licrrmlll"e rr11w1esensing upplicd lo reget(l{ion'. A111s1erdu111.10-12 December 1984
(ES.4 SP-227 . .l unuurv 1985).

Figure I, Map of the Flevopolder with the testarea
indicated (near 'Biddinghuizen'). The
map shows an area of 35 x 35 km. The
testarea measures 3.7 x 6.2 km.

The area was imaged with an X-band SLAR system,
using digital recording, on 5 different dates
throughout the growing season, At each flight date
recordings were made from 3 different altitudes,
resulting in 3 incidence angle ranges, and from 2
opposite sides of the testarea. This flight campaign
resulted in a multi temporal. and multiangular data
base of the area. A selection of these flights is
shown in fig. 2, The development of the radar back
scatter through time can be viewed from this
selection, The sampling interval is appr, I month.
For July two images are shown: one is flown at 660 m
altitude, like the other images shown, which results
in a grazing angle range from 7.5° to 16° (right to
left in the images). The second July image is flown
at 1600 m, resulting in grazing angles between 18°
and 35".

for comparison a croptype map is shown in figure
3. This figure results from the radar images, after
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18/04/80 L 07/05/80 L 10/06/80 L

11/07I80 L 11/07I80 H 12/08/80 L

Figure 2. X-band SLAR flights over the testarea on the indicated dates. Dimensions: 3,7 x 6,2 km.
L = low altitude, 660 m (16° - 7.5° grazing angle)
H = high altitude, 1600 m (35° - 18° grazing angle)

registration and field segmentation, The segmentation
is done manual by drawing the field boundaries in
the image on an image processing system. Only the
3 main croptypes could be indicated here, because
of the limited separability of gray tones in a
black and white image after reproduction. However
80 % of the area is covered by these 3 croptypes.

The advantage of field segmentation of the
radar data is two fold:
1. The influence of speckle on the classification

result is reduced to practically zero, This also
holds for small inhomogeneities within the fields.

2. The amount of data is tremendously reduced, since
we end up with one value per image for every
field, thus 164 values for one image.

For the classification experiment the radar
data of the 6 mentioned images were combined with
the groundtruth into one datafile, For every field
there are 7 features, i,e, the true field label
(croptype) and 6 average backscatter coefficients. Figure 3. Croptype map of the testarea for the 3

main croptypes.
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2, CLASSIFICATION EXPERIMENT

The purpose of the experiment was to design a
classifier on basis of the radar data of the 5 most
important croptypes. The classifier should be able
to distinguish between these croptypes as early as
possible in the growing season, This is different
from the previous experiment (Ref, I), where we
used the flights of June, July and August for
classification, For operational applications an
early result would be much more useful. Certainly,
an improvement over the older experiment should be
possible, considering the high contrast in the
early season flights (fig. 2, April and May). Figure
4 shows the development of the radar backscatter
coefficient throughout the growing season for the
4 most important croptypes, Although the digital
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Figure 4, Development of radar backscatter
throughout the growing season for some
croptypes, X-band SLAR, horizontal
polarization, 15° grazing angle.

radar images have known intensity scales, an
absolute calibration lacks in these measurements,
Therefore the average backscatter coefficient of
the sugarbeet fields was determined in the images
and compared to calibrated ground based measure
ments, which were always taken at the same date
and in the same area. The resulting correction
factor was applied to the whole image. The data
in figure 4 is for horizontal polarization and 15°
grazing angle, The frequency is 9.4 GHz (X-band).

From figure 4 it can be seen that a large
contrast exists between winterwheat and the other
croptypes in April and May. In June the contrast is
very small, while all the crops are in their
growing stage. In July a good contrast is present
between all the croptypes, whereas in August the
development of the backscatter coefficient of
potatoes interferes with the one for winterwheat.

The large contrast between winterwheat and

the other croptypes in the early growing season
only exists at low grazing angles. It can be
explained as follows: the wintercrops, like winter
wheat, are planted before winter and start growing
in this area in April. The other croptypes are
planted in April and May an show their biomass not
before the end of May. Although the ground coverage
by the new plants is small, the backscatter at low
grazing angles is increased, because the smooth
soil alone gives a very small amount of backscatter
at these angles, so the small leafs sticking out of
the ground contribute considerably to the total
backscatter. At larger grazing angles say around
40°, the backscatter from the fields is much
increased and the previously described effect is
smaller, resulting in very little to no contrast
between these croptypes.

Thus we should be able to distinguish between
winter- and summer crops from one flight in April
or May, and since our testarea contains mainly one
wintercrop, namely winterwheat, we should be able
to identify all winterwheat fields. Figure 5 shows
the histogram of the field averaged radar backscatter
coefficients of the SLAR image from May. From this

.,.,..._ E>ISTJtJarnac ...-

Figure 5. Histogram of the May flight: winterwheat
(right) is separated from the other
croptypes.

figure it is clear that the winterwheat fields can
be completely separated from the:other fields,
simply by applying a threshold level.

Now that the winterwheat is identified, we
must try to classify the remaining fields from other
flights. This demonstrates the hierarchy in our
classifier in contrast with the previous classifi
cation experiment (Ref. I) where the time dependence
of the radar backscatter throughout the growing
season was used as discriminator.

Safar the design of the classifier was straight
forward and rather simple. However to derive an
optimum result more elaborate methods should be
used to investigate the data. Our main purpose is
to make a selection from the available features per
field. Eigenvalue or principal component analysis
can be used to reduce the dataset into a set of
uncorrelated features. This is done by a dataprojec
tion on two or more Eigenvectors, which are
determined from the covariance matrix of the dataset.
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Figure 6. Feature space plots of May vs July and the 2 July-features (low and high altitude).

An evaluation of the dataset using this method
showed that the first two eigen vectors contained
91 % of the total variance, which means that the
other four eigen vectors may be deleted. The first
eigen vector is mainly determined from the April -
and May-features, whereas the second eigen vector
is in fact a combination of the two July-features,
so the two flights at different altitudes.

Since the datasets from April and May are
highly correlated (correlation coefficient 0.91),
the dataset of May was chosen as before and further
more we selected the two July-features. Figure 6
shows feature space plots for May versus July and
for the 2 July features. A cross reference of the
labels used in this and other figures can be found
in Table I. In both plots clusters of croptypes

crop type label label

potatoes A 1
sugarbeet B 2
winterwheat T 3
peas E 4
onions u 5
oats H 6
winterbarley GR 7
beans BO 8
grass seed GZ 9
spinach SP IO

Table I: legend to plotlabels

can be distinguished. A projection on one of the
axes makes the classes inseparable, except for the
wheat in -May of course and the sugarbeets in July.
The combination of the two July features means that
we deal here with angular dependences to obtain
discrimination, The short time interval between
these two measurements more or less guarantees that
the differences are only caused by the change in
incidence angle. Therefore the clusters are rather
small. Even the winterwheat seems to be separable in
this plot, but since this can be done in May, no
further attention is paid to it. To reduce the

dataset, we now introduce a linear combination
determined as the first eigenvector of the two July
features, to optimise the separability of the crops.

Figure 7 shows the plot of May versus the
combination of the July features. Figure 8 shows a
histogram of the July data projected on the new
axis. Winterwheat fields are excluded in this
histogram. The peaks are from left to right potatoe,
peas, onion and sugarbeet. The classes can be
separated with the parametric Bayes classifier for
normal distributions,

A test of the designed classifier on the same
data as used for the design, produced a very high
classification result, which is not surprising.
However since we have no other data available, it
is difficult to test the classification algorithm.
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Figure 7. Plot of May versus the projection feature
(linear combination of the 2 July features)
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Figure 8, Histogram of the projection feature.
Peaks are (left to right) potatoe, peas,
onion and sugarbeet.

C L A S S I F I E R L A B E L

I 2 3 4 5 6 7 8

T I 33 I I

R 2 36

u 3 53

E 4 I I 5 I

5 2 I 11

L 6 3 I

A 7 3

B 8 I 4

E 9 3 I I

L 10 I

Table 2. Classification result after automatic
field segmentation of the testarea (see
table I for legend of labels).

To perform some sort of test, the data from fig. 2
was automatically segmented using a split and merge
algorithm (Ref, 5) and then classified. This brings
a little variation in the data, because the field
boundaries now differ from the ones in the manual
segmentation, Of course, this is only a small effect,
therefore care should be taken in the interpretation
of the classifier results, Table 2 shows these
results. The first 5 classes were used for opti
mizing the design of the classifier. Classes 6 - 8
represent a very small amount of data and cannot be
considered to be representative. Class 8 (beans) is
not planted until July, so in July these fields are
still almost bare, and therefore easy to recognize
(see fig. 2), Classes 9 and 10 are not considered
in the classifier and therefore identified as other
croptypes.

3. TEXTURE ANALYSIS

Safar we have only considered the use of field
averaged backscatter coefficients as input to a
classification algorithm. The reason is that the
within field variations are believed to be caused
by speckle, a phenomenon of coherent illumination.
This leads to a multiplicative noise in the images,
with a standard deviation of 5,6 dB for a I look
image. The pixels in the SLAR images have 30 indepen
dent samples, which reduces the standard deviation
to I dB and converts the negative· exponential
distribution of the individual measurements to a
nearly normal distribution.

In some cases however, the inhomogeneities in
the illuminated area may cause larger standard
deviations and even produce textural effects. In
such cases texture could be used as a feature for
classification (Ref. 6). In theory it is even pos
sible that the speckle statistics are influenced by
the microstructure. It is for the optimization of
the classifier of interest to know what contribution
may be expected from statistical measures to the
classification result. Therefore experiments were
conducted on the dataset of figure 2 and on a SAR
image (SAR 580, d.d, 3/7/81, X-band, HH polarization)
of the same area,

First of all the standard deviation per field
was calculated for the SLAR images of April and
July (low altitude). Figure 9 shows the results.
In April there is a difference in standard deviation
between the bare fields and the vegetated fields.
The standard deviation of the vegetated fields is
in the order of I dB, which corresponds to our
expectation on basis of the speckle. The bare fields
however, have larger and more varying standard
deviations, which is probably caused by variations
in rou8hness and soil moisture of the top layer.
Fur the vegetated fields the influence of the under
lying soil on the backscatter is reduced by the
attenuating effect of the vegetation. However, the
difference in average backscatter between bare and
vegetated fields is much larger than the difference
in standard deviation. Therefore an important
contribution to the classification is not expected
from this feature in April,

In July, when all the fields, except beans, are
fully covered, the standard deviation is always
around !dB, the expected value from the speckle
noise. No contribution to the classification result
can be expected in this case,

The principal component analysis, discussed
earlier, confirmed these findings, when it was ex
tended with the field standard deviations as features.

Although we find little or no contribution from
the standard deviation to the classification, this
does not necessarily mean that there is no texture.
One needs higher order statistics to investigate
this. An often used method to measure texture in
images is based on the Gray Level Co-Occurence Matrix
(GLCO or GLCM, Ref. 2), which provides a sensitive
means of measuring small scale textures in images.

The GLCO is a matrix of relative frequencies P..
with which 2 n~ighboring resolution cells separatea1J
by a distance d occur on the image, one with gray
level i , the other with gray level j, Such a matrix
can be produced by counting all _the gray level pairs
i,j with the specified distance d between them.

From the GLCO several textural measures can be
calculated (Refs. 2, 7). One of them, which is used
here, is the correlation measure:

M M
GLCO-CORR L L

i= I j= I

2i .j ,p . . - m . th
lJ , Wl

s2
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Figure 9. Within field standard deviation versus field-averaged backscatter coefficient for the SLAR flights
of April and July (some labels differ from table I: Gz~z, W~~. B0->P, SP~S).
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Figure 10, The GLCO-CORR measure plotted for varying horizontal pixel distance for the SLAR flights of May
and July (low altitude). Three crop types are used: potatoe (A), winterwheat (T) and sugarbeet
(B). They are plotted in separate columns to keep them recognizeable,

m = mean and s = standard deviation of the sums
of the rows or columns. A second measure used here
is the Gray Level Difference vector (GLD), This is
in fact a histogram (relative frequencies) of gray
level differences. It can be computed from the GLCO
matrix. The measure that is used here is:

M
GLD-MEAN: L i.P.

i=l i

Figure IO shows the computation of GLCO-CORR
for the SLAR flights in May and July. In May the wheat
fields are distinguishable, with a few exceptions
whereas potatoe and sugarbeet are mixed, In July all
the croptypes are mixed. This result is similar to
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Figure II. Plot of the GLD-Mean measure for May
at varying pixel distances.

the result from the standard deviation. There is
not much dependence on the distance between the
pixels as it is varied from 2 to 10 pixels.

Figure 11 shows the GLD-MEAN for the SLAR
flight of May and calculated for the same horizontal
distances as before. The total range of the measure
now increases with the pixel distance. The separa
bility seems to be a little better than for GLCO
CORR, but once again hardly any extra information
is added, if compared with the field averaged
backscatter data.

Other textural measures based on the GLCO and
the GLD were tested as well, but no significant
extra information could be derived, also not if
these measures were plotted in feature space plots,
The conclusion based on this information must be,
that for agricultural fields texture does not play
an important role in these X-band SLAR images.
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The growing interest in texture stimulated us
to do some calculations on a SAR image which was
taken in the same area, but at a diff erent time
(July 3, 1981). It is a SAR 580 image, X-band, with
horizontal polarization. The pixelspacing in this
image is 3 m, whereas the SLAR image had 15 m spacing
between pixels. The increased resolution should in
principle enable a better expression of smaller scale
texture, On the other hand the speckle in this 4 look
SAR image is higher than in the SLAR image, which is
a 30 look image. Figure 12 shows a plot of the GLCO
CORR measure for the SAR 580 image, both with horizon
tal and vertical step. The plots look very similar,
with no separation of any of the 3 crop types.

After having completed the first plot, the idea
arose that field A4 (potatoe) perhaps had a different
row direction, compared to the other potatoe fields.
However, since the vertical and horizontal steps
show the same result, this is not likely. The row
direction in these fields is not known to us, but is
probably parallel to the horizontal or vertical field
boundaries (see fig. 1-3), which corresponds with
the horizontal and vertical steps taken for the GLCO.

As before the conclusion seems to be, that the
radar images investigated, show no textural variations
within the agricultural fields, that can be applied
for crop identification.

4. CONCLUSIONS

In this paper a follow-on study into the possi
bilities of crop identification was presented. The
goal was to optimize the classification result from
a previous study by adding early season SLAR flights
and by investigating the potential of small scale
texture in agricultural fields.

A hierarchic classification procedure is proposed,
The success of this classifier is based on the
separability of winterwheat or rather wintercrops at
low grazing angles (5° - 15°) in the early growing
season (April, May) and the ability to discriminate
other crop types in the mid-season on basis of their
an~ular dependence in the grazing angle range 5° -
35 , Field averaged radar backscatter values are used.

The test of the classifier was performed on the
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Figure 12, Plot of the GLCO-CORR measure for an X-band SAR 580 image at varying pixel distances, horizontal
(left) and vertical,
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same dataset as was used for the design of the
classifier, although for the test the fields were
segmented in a different way (automatic instead of
manual). Care should be exercised in the interpre
tation of the test results, since the success per
centages may be over estimated in this situation,

Further investigations should incorporate a
test in ecologically different area's and area's
with different and more varied crop distributions,
Also the use of angular dependence should be further
investigated, In The Netherlands a research project
is running to cover these subjects.

The use of features other than the average
radar backscatter, i,e, the standard deviation and
GLCO textural measures, has sofar not shown to
provide a significant contribution in crop classifi
cation, Although it is in theory not impossible,
that small scale texture (even if it is smaller than
the resolution of the radar) in agricultural fields
is imaged by the radar, no sign of it was found in
SLAR images and a SAR 580 image. If subresolution
structures like row direction, plant distance, etc,
influence the speckle statistics in an image, then
this could perhaps be better judged from the raw
SLAR data, where no averaging of single measurements
has taken place, This was not investigated sofar.
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CROP MAPPING WITH X-BAND RADAR

H.W.J. van Kasteren

Centre for ~grobiological Research (CABO)
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6700 AA Wageningen~ The Netherlands

During the years 1976 through 1981, the Dutch ROVE team (Radar research on vege
tation) collected a data bank of X-band scatterometer measurements. In trial
fields, a number of crop types were grown and sampled at least once a week for
growth analysis. Backscatter measurements for HH, HV and VV polarisation were
also made, at grazing angles of 15 to 80 degrees.
In this paper, an analysis of the data is made for the purpose of crop classi
fication, and the results are compared with SLAR flight data.
Most crops show a specific time sequence in radar backscatter. Apart from the
influences of the crop calendar, crop morphology and canopy structure seem to
be more important factors in explaining backscatter patterns than, say, biomass
or soil moisture content. For this reason (sensitive response to crop structure)
crop types anf growth stages do show a specific backscatter pattern as a function
of the grazing angles used. Consequently, a combination of multitemporal and
multiangular observations offers a good chance of identifying crops with X-band
SLAR. The number of images needed and the choice of optimum time and angle
depend on the agricultural system observed (main crop type, field size) and the
required accuracy.
A difficulty inherent in radar backscatter on vegetation is a considerable
degree of speckle and variation, caused by interactions between crop type, soil
type and weather. Analysis of the ROVE data set shows that the highest infor
mation content (ratio of variation between crops to variation within crops) is
achieved by measurements made in the period of stable growth (after almost com
plete soil coverage and before ripening) with grazing angles between 30 and 60
degrees. VV polarisation is preferable to HH polarisation. A second measure
ment (at different time or angle) increases classification accuracy, but further
repetition yields only small increases.
In 1983 and 1984, the Dutch SLAR equipment was used to test the concept in a
practical, operational environment. Test areas of 4 x 20 km were flown over
three times per growing season. Only grazing angles not exceeding 40 degrees
could be used. The Reseda image-processing system was used to bring the images
into registration, to apply a median filter and to classify according to crop
type with the aid of training samples. The results are in good agreement with
expectations based on the ROVE data set.
On average, 80% of fields were classified correctly (potatoes 85%, sugar beet
95%). This would appear to be a satisfactory result for such purposes as a
general survey for crop statistics, or as a basis for stratified sampling and

Proc. E.-IRSl'L IVorkshop · \! icro» ure l"L'lll01<'.1rn.1i11g upplied 10 regew1 ion·. 1ms1erdom. 10-12 Deccmbev 1984
iES.·1 SP-227. Jw11uir1 1985).
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for field checks in mapping activities. (For studies on improving the classi
fication algorithm, see the papers to be presented at the workshop by Messrs.
P. Binnenkade, J.J. Gerbrands and P. Hoogeboom.)
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MICROWAVE EMISSION FROM VEGETATION: GENERAL ASPECTS AND EXPERIMENTAL RESULTS

P.Parnpaloni, S.Paloscia

C.N.R. - I.A.T.A. - Firenze (Italy)

ABSTRACT

The objective of this research was to i.nvestigate

the relationships between microwave (MW) emission

and crop physical parameters.

The knowledge of crop radiometric features

is important both to evaluate the influence

of vegetation on Soil Moisture Content (SMC) measu

rement and to assess the possibility of measuring

some vegetation parameters which are useful in

agriculture management.

Much research has been carried out to estimate the

reduction in scnsitivity of SMC measurements due

to vegetation cover. Several theoretic models, ba

sed either on coherent or incoherent theory, have

been developed to account for emission due to the

vegetation layer. In this paper we show the results

of experimental investigations carried out on diff~

rent crops with two ground based X and Ka band ra

diometers.

Keywords: Microwave emission, crop MW signatures,

vegetation water detection.

1. INTRODUCTION

An efficient use of microwave (MW) sensors in remo

te sensing requires a deep knowledge of the electro

magnetic characteristics of the observed media.

To this end theoretical and experimental studies

with different approaches are still necessary, al

though much research has been carried out over

the past years.

MW radiometry is a good way to study the dielectric

properties of soil and vegetation in their natural

environment. Most of these studies have so far been

devoted to the relationshi p between MW emission

and Soi1 Meisture Content (SMC)of bare and vegetated

soils (Ref. 1 ). Since MW emission depends on phy

sical and morphological characteristics of the emi!

ting medium, soil texture, roughness and tillage

have been recognized as factors which affect SMC

measurements (Refs. 2, 3, 4 ); the observation

parameters which minimize these spurious factors

have been established. For canopy covered soi ls,

vegetation is probably the most important factor

to affect the accuracy and the sensitivity of SMC

Proc. EA RSeL ~vorkshop · vl icrowave remme sensing applied t o l'egetation·, Amsterdam, l0-12 December 1984
(ESA SP-227.Januarr 1985).

measurements.

1.1 Experiments

Experiments performed under Laboratory conditions

and from aircraft (Refs. 1, 5, 6 ) have shown

that the screening effect of vegetation increases

as both biomass and observation frequency increase.

The sensitivity reduction to SMC measurements, ear

lier reported by Kirdiashev (Ref. 5 ) has been con-

firmed by Wang (Ref. 7 ), Jackson (Ref. 8 ).
Shutko (Ref. 6 ) found that the influence of grain

crops, alfa-al fa and grass is high in the cent i
meter band, while L band emission from such vege

tated covers is fairly similar to bare soil emis

sion. On the other hand wide leaf crop emission

(e.g. corn or sorghum) can decrease as 1 increases.

This behaviour can be explained by the increase

of wide leaf reflection properties with the de
crease jn

Results of several investi gati ons, carried out by

NASA researchers over many years, have shown that

even L band data are affected by the presence of

vegetation. Reduction in SMC measurement is rather

low under pasture and very high under trees (Ref.

9). The sensi ti.vity reduction factor due to corn

has been computed by Ulaby (Ref. 10 ) at 1.4 and
5 GHz.

Meteorology, Agriculture and Hydrology can largely

benefit by a timely knowledge of SMC gained on an

appropriate space scale. In agriculture SMC is an

important parameter for the estimation of evapo

transpi ration, the knowledge of which is fundamen

tal for correct jrrigation scheduling and yield

forecast. When SMC is not easily available or when

trans piration mainly depends on meteo parameters,

a direct information on plant water conditions is

very useful. Moreover the speci fication of rela

tionships between MW features and vegetation para

meters, such as leaf area index (LAI) and biomass,

could greatly improve the accuracy of remote sen

sing systems even in crop monitoring and identifi
cation.

An integrated multi band remote sensing system can
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indeed explore several layers of the Soi 1-Plant
Atmosphere-Conti.nuum; i.f rad i.at.i.on at frequencies
as low as 1 GHz penetrates most herbaceous crops
and even soil, at higher frequencies most emission
comes from vegetati. on.
A frequency dependent response to di.fferent compo
nents of a corn crop was found by 0'Neill et al.
(Ref. 11); C band emission appears to be affected
more by leaves and cobs, whi.le stalks mai.nly in
fluence L band emission.
The different response of bare soil and vegetation
to two linear polarizations of the X band emission
enables one to detect the soil covering index. Ob
servations of alfa-alfa growth cycle have shown
a correlati.on between X band polari.zati.on index
(PI) and LAI (Ref.12). Ka band PI from a corn crop
was found to be dependent on plant water conditions
(Ref .13).

1.2 Modelling

Physical properties of canopy covers can be obtai
ned by remote sensing data with the aid of adequate
theoretical models which allow one to investigate
the interaction mechanisms of electromagnetic ener
gy with so i.I and vegetati.on having recourse to fun
damental physical laws.
Radiation from natural medi.a , which vary in a ran
dom pattern in space and time, can be "described
by means of the transport equation (Ref. 14). This
theory is not as mathemati.cally rigorous as the
analytical one in that it was developed on the ba
sis of addition of powers rather than of fields,
nevertheless its usefulness in solving many physi
cal problems has been largely proved. Moreover Ish~
maru (Ref. 15, 16) demonstrated that the brightness
used in the transport theory and the mutual cohe
rence function used in the analyti.cal theory are
related through a Fourier transform.
In a plane parallel stratified medium with randomly
distributed scatterers embedded in a low loss die
lectri.c, the radiative transfer equation can be
written as follows:

dB(1,µ) Wi'µ = -B( T, µ) + - .1P' (µ ,µ')B(1 ,µ')dif+J(z) (1)
di: 2

where:
z is the normal to plane of stratification
B(1, µ) is the brightness: average power flux

density within an unit frequency band
per unit solid angle (w m-2 Hz-1steraa1)
) z,k dz is the optical depth (dimensionless)
z. e

cos e cosinus of the polar angle
-1

ka+ ks volume extinction coeff. (m )
µ

k
e

ka = volume absorption coefficient
ks = volume scattering coefficient
W = ks/ke albedo per single scattering
P' ( µ,µ') is the normalized phase function

plicable1where there is azimuthal
metry x;f.1p' ( µ,µ') = 1

J(z) is the source function

Since the emission coefficient i.s given in terms
of absorpti.on coefficient by Kirchoff's law, it is:

J(z) = ka ~ = (l-W)2k;
ke X X

where k is the Boltzmann constant.
The absorpti.on coefficient can be related to the
complex dielectri.c constant of the medi.um (e: =e '+ je: ")
by means of the relationship:

ka = ( 2TT ( E ' ) Y,j),,) E "/e: '

The scattering coefficient is given by:

ks = Ncrs

where N and crs are respectively density and cross
section of the scatterers.
By usi.ng the linear relationship between the brigh!
ness and the bri.ghtness temperature(Tb)established
by the Rayleigh Jean's law, Eq.(l) can be written
as follows:

Tb ( µ, µ') W (1
µ =-Tb(1,µ)+-) P'(µ,µ•)Tbh ,µ•)+(1-W) T

d'r 2 -i
(2)

In a simple model developed by Bashari.nov and
Shutko (Ref. 17) vegetation is treated as an absor
bing non scattering (W=O)medium havi.ng both con
stant temperature and absorption factor bounded
by soil surface. The brightness temperature Tb abo
ve the canopy, obtai.ned by solving the radiative
tranfer equation for this two-layer model, is
given by:

Tb=(l-Rs)Ts exp(-1/µ)+Tv(l- exp(-1/µ))+RsTv exp(-1/µ)
(1- exp(-1/µ)) (3)

where 1 = kaz is the vegetation optical depth, t is
the thickness of the vegetation layer , Ts and Tv
are the soil and vegetation temperature and Rs is
the soil reflectivity. The soil contribution as well
as the direct and reflected (by the soil) vegeta
tion emission are clearly df.st i.nguishab I e in this
equation.
The optical depth of vegetation was linearly corre
lated to plant water content per unit area (mv)
by Ki.rdiashev et al.(Ref.5) in the following equa-
tion:

T = g sec 8 10-5 rnvc"
3X

This relationship however contains a plant shape
parameter g.the knowledge of which requires a lot
of measurements.
A more sofisti cated model, studied by Mo et al.
(Ref.18) assumes that vegetation is an uniform la
yer of absorbing and scattering material bounded
by the soil surface and by air. The model is based
on the radiative transfer equation written as in
Eq.1, which is invariable in form under the follo
wing transformations:

ap- P (µ,µ~ = 2a6(µ,iJ)+(l-a)P*(µ,µ)

sim- T* = (1-a W) (4)
(1-a)W

W* ---
1-aW

For a layered medium in local thermodinamic equili
brium at temperature T, the radiant energy in the
MWregion is given by the Rayleigh Jean's equation.

where 2a is the fraction of radiation scattered in
the forward direction, 6 (µ,µ') is tha delta function
and P*(µ ,µ ') a phas e function which is not strongly
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peaked in the forward di.r-ect i.on (Ref. 19).

Solvjng Eq.l under the transformations of

Eq.4 and including scattering only in the forward

direction (P*( µ, µ' )=0) the observed brightness

temperature Tb is:

(1-Rr( µ)Ts)exp(-t*/µ) + (l-W*)Tv(l-exp(-1*/i.J)+
Sp

+ R~P (l-W*)Tv(l-exp(-t"/µ))exp(-1*/µ) (5)

where: p j s for H or V polarization and Rr is the

reflectivity of soil which may be rough. sp

Eccept for the factor (1-W*) this equation is for

mally identical to Eq.3. The two equations coinci

de when the scattering is negligible.

If the optical depth is very large, we have:

Tbp = ( 1-W*)Tv

This model then suggested that for high absorbing

media the brightness temperature is indipendent

from the angle of observation.

Authors found that thei.r model is in good agree

ment with experimental data from L and C bands

over corn, soybean and wheat. The linear relation

sh.i.p between optical thickness and plant water

content per unit area was confirmed, moreover the

effective canopy single scattering albedo W* was

found to be dependent on vegetation type.

The wide theoretical treatment of radiative pro

perties of layered media, carried out by Ulaby

et al. (Ref. 20 ) leads to similar conclusions of
Eq. 5.

An important aspect in development and prati cal

use of radiative transfer models is connected to

the knowledge of the dielectric properties of the

natural media and to the relationships between

their dielectric constants and those of their con
stituents.

Plant materials are heterogeneous systems which

contain free and bounded water; in the MW region

free water is much more important than the bounded

one, because the latter has dielectric properties

similar to those of dry materials. Di.electric cha

racteristics of vegetation have been investigated

mainly by De Loor, Carlson and Ulaby and Jadlike

(Ref. 21 -24). Relationship between the dielectric

constant of a heterogeneous mixture and that of

its components have been given by De Loor who trea

ted plant material as a mixture with high water
content.

Laboratory measurements utilizing waveguide reso

nator techniques were carried out by Carlson (Ref.

23) at 8.5 GHz and by Tan (Ref. 25) at 9.5 GHz.

Dielectric constant measurements of leaf and stalk

materi.als as a function of volumetric water con

tent have been recently carried out by Ulaby and

Jadlicke in 1-8.5 GHz band. Experimental results

have been compared with several multicomponent

models of vegetation constituent parts (bulk vege

tation air, bounded and free water). A very good

fit to data is obtained when one uses a three-com

ponent model in which air and water are considered

random needle-like inclusions in bulk vegetation.

Ulaby's paper however points out that further

work must be car-ried out to better understand

the role of free and bounded water in heteroge-
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neous materials

2. EXPERIMENTAL RESULTS

Vegetatjon emission measurements were carried

out on different test sites through 1980-84 by

means of truck mounted MW and infrared (IR) radio

meters. The IR sensor was a commercial type opera

ting on the 8-14 µ m band, with a temperature accu

racy of ± 0.5 K. The X (10 GHz) and Ka (36 GHz) band

radiometers, described elsewhere (Ref 26) are Djcke

type radiometers with two simultaneous V and H po

larization outputs and an internal calibration sy

stem which takes into account a variable tempera

ture load and a precision noise source. In addition

to these systems, an external blackbody was used

to obtain an accuracy of 1 K or better. Relative

accuracy between the two polarizations can be more

than 0.2 K.

Ground truth data were simultaneously collected

and recorded together with MW data (Ref .27). Crops

measured were corn, alfa-alfa and wheat.

2.1 Soil and vegetation emission

The basic parameter used to express MW emission

was the normalized brightness temperature obtained

from the ratio between MW and IR outputs.

Previous research (Ref .10) showed that at frequency

higher than C band most emission from canopy cover

is due to plants. Nevertheless we measured a contrj

bution from so i 1 under vegetation even from Ka
em:ission.
Measurements, carried out before and after flooding

of a corn field, show that emission is

sensitive to SMC and soil temperature. The nor

malized temperature difference ti Tn between wet

and dry conditions, as a function of the incidence

angle e , is shown in fig.l (a) X band and b) Ka

band). From these diagrams we can deduce that in

this field (plant height = 120 cm, density = - 6

plants/m2 ) the normalized temperature is indipen

dent of SMC if 8= 40-50°. This con dition can change

according to the crop type, plant density and

height. Moreover, since vegetation and soil thermo

metric temperatures often have similar and correla

ted values, separating the contri butions from the

two media is rather difficult. The contribution

from soil under ripe wheat (90 cm tall, 280 plants/

/m2) was estimated (Ka band, e = 0.;.40°)using the

radiative transfer equation, for a two layer model,

and a multilinear regression analysis carried out

between measured values of Tv, Ts and Tn (Ref.27 ).

In this analysis we only used those measurements

where Tv and Ts could be considered statistically

indipendent; nevertheless it is rather difficult

to rigorously verify these conditions jn a natural

environment.

Our observations and those by other experimenters

seem however to confirm that, at frequencies equal

or hi.her than X band, and with an incidence angle

higher than 30-40°, the soi1 contribution to the

observed MW amission of a canopy cover is negligi

ble for most crops.

Emission of several crops measured on different

test fields shows that small variations occur be-
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tween well developed crops; moreover, the range
of normalized temperature (Tn) among different
crops may be s i.milar to the range of variations
due to di fferences in plant physical cond it.i.ons .
Nevertheless, high accuracy Tn measurements,
from X and Ka bands, show that spectral signatures
of some crops can be identified. The bidimensional
diagram of fig.2 is a simplified sketch of the ave
rage behav i.our' of corn, wheat, alfa-alfa and bare
so i.I , as resulting from many-years' observations.
This diagram confirms that a broad leaf culture,
such as corn, has almost the same emissl on from
X and Ka bands, whereas emission of wheat and alfa
al fa j ncreases wi th frequency; the highest di ffe
rence between two frequencies was found for bare
soil, where roughness height var i.at i.ons were of
the order of a few centimetres, while the highest
emission at both frequencies was found in wheat

crop.
An example of s imultaneous observatl ons of corn
and alfa-alfa ls represented in the same bidimen
s ianal di agram of fig. 3, where the two clouds of
polnts can be separated.
A sh i ft of experlmental pol nts from left to r i.ght
and from the lower to the upper s i.de was observed
dur ing the day, maybe due to a change in the phy
sical conditions of the crop. This daily variation
gives a significant contribution to the spread of
the measurements ; therefore, observations carried
out at the same time of day should however allow
one to aohi eve a clearer j dentl.fj cation of the two

crops.
The spectral response of bare soU and well develo
ped cultures suggested the advisability of explo
r i.ng the re la ti onships between MWemiss ion and the
crop coverage of soil, or perhaps the canopy leaf
area index (LAI), in greater depth. The latter is
in effect one of the main j mportant parameters in
yleld forecast models.
In fig.4 the difference f1 Tb (= TbKa- Tbx ) between
the Ka and X band brightness temperature of a corn
crop, measured at midday, is compared with the LAI
as a function of time (days) during the growth cy
cle. In a first approximation the trend of the two
parameters, f1 Tb(t) and LAI(t), versus the time
can be represented respecti.vely by a decreasing
and an increasing exponential function.
If the results of the measurements are represented
in the tiTb, LAI plane (fig.5), a linear relation
ship appears between the two var i ables; this may
mean that 6Tb decreases in time while the LAI ln
creases with about the same tlme constant.
Only fj ve LAI measurements are aval lab le for this
growth cycle, however other points can be added
to the diagram of fl.g.5 (stars) by us i.ng 6 Tb meas'.:'_
r-ementsand s i.muLtaneous values of LAI obtained from
fj g , 4. All these points lie very near to the re

gress Jon llne.

2.2 Crop water conditions

Whereas the difference between Ka and X band emis
sl on seems to be an Jndex of the crop coverage of
sol 1, ernission from the Ka band has different va
lues in two linear V and H polarizations dependl ng

on the percentage of water content in
the observed medium. This behaviour has been
already pointed out for bare so i.L at lower
frequencies (Ref. 28 ) . Data from Ka band taken
during the growth cycle of corn show that the pola
rlzation index (PI= (TbV-TbH)/Y,(TbV+TbH))measured
at an incidence angle e = 50°, has very low values
when vegetation is in stress conditions and increa
ses when the plant reassumes water (Ref. 13 ) . The
diagram of fl.g.6 shows the temporal behaviour of
the two V and H polarizatl.on outputs from the Ka
band radlometer employed for the observation of
corn, with e =50°. Two different conditions of
heavy water stress and good plant health are marked
in this diagram;
almost equal in

the two polarization outputs are
the first phase (stress) , whi.Le

they are different to each other when vegetatlon
ls well watered.
On the basis of this and other simllar observations
further research was carried out to investigate
the relatl onship between the PI and plant water
content.
A non linear relationship was first recognized be
tween PI and the Crop Water Stress Index, as defi
ned by Idso et al. (Ref. 29 ) . Afterwards, s i.muI ta
neous measurements of PI and leaf water potential
( ijlt) were compared and correlated with the follo
wing Li.near- r-eLat iorish i.p :

PI = 14 - 0.46 ijlt (6)

As shown in the diagram of f ig , 7 the s ens i.t iv ity
of PI to ijlt is rather low, nevertheless j f we compa
re the ijlt values computed by means of Eq.6 for a
corn crop, wlth the water available to the plant
ln the soll, we obtained the diagram in flg.8 which
shows a rather good agreement between these two
parameters and confirms the capacity of Ka PI j n
sensing ijlt .

3. CONCLUSIONS

Theoretical and experimental research demonstrated
the potent) ality of MWradiometry in SMCmeasure
ment. Vegetation cover however reduces this sensi
tivity above all at wavelenghts lower than 20 cm.
The effect of vegetation can be studied bf refer
ring to the radiative transfer theory and cons) de
ring the canopy cover as unlform absorbent and sea!_
tering medium. At wavelenghts lower than 3 cm most
em)ssion comes from the plants and can give infor
mation on vegetation type and condltions.
The results of measurements carried out on diffe
rent test sites have shown that the difference be
tween Ka and X band brightness temperatures depends
on the crop leaf area index. Moreover, a sensitivi
ty of the Ka band polarization index to plant water
content was determined for corn and a Li.near- rela
t.iorish ip between this MWparameter and the leaf
water potential was found.
Many questions still remain open such as the rela
tive role of absorption and scattering and the dif
ferent contributions of stalks, leaves and fruits
to the emltted power.
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MODELLING VEGETATION :
EFFECT OF BIOMASS AND STRUCTURE OF A WHEAT CANOPY ON RADAR BACKSCATTER

T. LE TOAN, A. LOPES, A. MALAVAUD

Centre d'Etude Spatiale des Rayonnements
CNRS - Universite Paul Sabatier

Due to the wide variety of parameters involved in the radar backscatter on
vegetation canopies, it is necessary to use generalized models to explain the
radar backscatter behaviour of a class of vegetation canopies with similar
structure.

This paper will discuss some results of modelling applied to a wheat canopy
in order to understand the angular behaviour and the value of the radar back
scatter coefficient, in relation with the structure and the biomass of the
canopy.

Results obtained with experimental data acquired with in_situ scatterometer
and examples from airborne images will be presented.

Proc. EARSeL Workshop·.\! icr1J1rnre re111otesrnsing applird to regetution', .4111sterda111,I 0-12 December 1984
iES.4SP-227 . .Januarr1985).
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VARIATION OF THE RADAR BACKSCATTER OF

VEGETATION THROUGH THE GROWING SEASON

G.P. de Loar

Physics and Electronics Laboratory TNO
PO Box 96864 The Hague

The Netherlands

ABSTRACT

In the period between 1975 and 1981 the ROVE
team (Radar Observation of VEgetation) in the
Netherlands collected data on the radar backscatter
of crops through the growing season. Using these
data general trends in the behaviour of the radar
backscatter through the growing season (temporal
signatures) can be determined for a number of crops.
The results are reported. Comparisons are made
with data from the literature and with the vegetation
model developed by Attema and Ulaby. This last
model can be used also to obtain information on the
soil under the vegetation.

I. THE TEMPORAL SIGNATURES OF CROPS AT MICROWAVE
FREQUENCIES

Figure I gives an example of the seasonal
dependence of the radar return for a number of
crops as measured by the ROVE team (Ref. 1) in 1980

"''

"''

"'N'

~ 20
APR
1980

20 30 9
JU<

1930 10
HAY

LE6£ND• e SUGAP&:ETS •POTATOES + S. ~HEAT X OATS

for 10 GHz and a grazing angle 8 of 30°. Up till
June 2 the coverage of the soil by vegetation is
still small, so the soil plays the most important
role in the reflection. After that date differences
begin to occur due to the increasing influence of
the vegetation. In this figure the peak on May 7 is
due to a variation in soil moisture due to 10 mm
rainfall shortly before the measurement. Further
sudden peaks in the bare soil measurements later in
time are indications for such sudden variations in
soil moisture. They then also occur in the vegetation
measurements but to a lesser extent: the canopy has
a damping effect, The slow decrease in the radar
return y of the bare soils through time is caused
by the effect that due to rainfall and slaking the
roughness of the soil decreases through time. As
can be seen the total range in y is small: in the
order of a 10 to 15 dB. It is within this range
that discrimination between crops, or within crops,
must be done.

Having available a number of such data sets as
a function of time it becomes possible to show that

29 9
JUL

19 29 8
llJG

18 28 1
SEP

11

e B.SOIL 2

Figure I. The radar return parameter y as a function of time; ROVE data 1980; 10 GHz, HH polarization;
grazing angle 8 ;30°.

Proc. EA RSeL Workshop· .Hicrovave remote .\e11si11gapplied to rt'gl'tlltion'. Amsterdam. l0-12 December 1984
iESA SP-227.Januarr 1985).
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Figure 3, The variation in the temporal signature for peas due to varying meteorological conditions.
ROVE data; IOGHz, VV polarization, 8 = 20°.

the shape of such curves is typical for specific
canopies. The measurement procedure used by the
ROVE team (measurement of IO to 15 fields in one
day at 2 frequencies and 3 polarization conditions;
Ref, I) is particularly suited to adapt the number
of observations per week to the growing stage,
Since also measurement series are available for
several growing seasons it so becomes possible to
determine "temporal signatures" for specific crops.
Figure 2 gives an example for peas in 1980. Even
small variations, as e vg • the period of flowering,
can be indicated because of the high density of the
temporal measurements. This general behaviour can
vary somewhat from year to year due to variations
in the meteorological conditions but the general
trend remains the same as figure 3 demonstrates.
Similar variations (lengthening, resp. shortening
of the growing cycle) occur for the other crops and
in the same way in the same year,

This enables us to determine these general
trends and figure 4 finally gives them for a number
of crops. Figure 5 gives a similar example for data
sets taken at Kansas University by Ulaby (Ref. 2).
When we compare these last two figures two things

can be remarked. Growth and growing stage is depen
dent on the place on earth and the meteorological
conditions, For instance both figures show curves
for wheat. They are similar in behaviour and values
for y but in figure 5 growth started earlier and
the growing cycle is shorter also. Such variations
have to do with latitude (climate) and are - in
general - smaller than the variations in time due
to loca1 meteorological conditions as mentioned
above.

Using the similarity in shape of the temporal
pattern of the radar return y for a specific crop
Smit developed a method to use these temporal
changes for crop type inventory purposes (Ref, 3).
His proposal was later verified by the ROVE team
(Ref. 4) with good results. Table I gives an example.
In this example the data were taken at X-band and
RH polarization and grazing angles under 20°,
Correct classification increased from 35% for one
look to 88% for three looks in time. As we see in
table I very good classification results are
obtained for sugarbeets and potatoes after two
flights already. At this moment it is investigated
if this property can be used for the control on
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Figure 5.

Table I.
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Fre<iuency 17 GHz
Polarization: VV
Angle of Incidence: 50" (If)

May June July Aug.

Typical temporal patterns of the scattering coefficient o0 (; ysin8) for three crops in Kansas
(USA) after Ulaby (Ref, 2). 17 GHz, VV polarization, 8; 40° (¢;90°-8).

11/7 10/6 + 11/7 11/7 + 12/8 10/6 + 11/7 + 12/8

croptype number % of area
of fields cc nc ic cc nc t c cc nc Le cc nc ic cc nc tc

sugarbeets 40 40 0 0 40 0 0 40 0 0 40 0 0 100 0 0

potaLoes 40 12 28 0 39 1 0 32 7 1 39 0 1 97.1 0 2.9

wheat 58 0 54 4 3 49 6 39 14 5 42 12 4 76.2 18. 9 4.9

onions 22 5 17 0 7 15 0 13 4 0 19 3 0 88 .5 11. 5 0

oats 5 0 5 0 2 3 0 I 4 0 4 1 0 87.3 12. 7 0

peas 12 3 9 0 6 6 0 5 7 0 5 7 0 45.1 54. 9 0

beans 5 3 2 0 5 0 0 4 l 0 5 0 0 100 0 0

182 63 115 4 102 74 6 139 37 6 154 23 5 88.0 9.6 2.4

Classification results (X-band; HH polarization) for I, 2, and 3 flights, after Hoogeboom (Ref. 4);
cc is correctly classified; nc is not classified; ic is incorrectly classified.
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crop rotation for potatoes.
The procedure for such crop type inventories

will differ per area in the world due to differences
in growing speed at different latitudes as we have
seen (fig. 4 and 5). Ulaby et al. (Ref. 2) so
developed a completely different procedure for
Kansas (USA). They used two time segments per
season which they covered each with 4 looks taken 3
to 9 days apart, These time segments were determined
by the presence of specific crops in each segment.
The first was determined by the occurence of winter
wheat (fig. 5) which was harvested in late June or
early July and the second by the milo and soybeans,
We also give their results as an example in table 2
(Ref. 5), They are for data taken between 1974 and
1976. We give results only for one frequency (14.2
GHz) and polarization (VV) to make comparison
possible with the results reported above in table],

y = C[I-exp(-DWh/sin6)] + G(6).exp(K.m -DWh/sin6)s

or with T = exp(-DWh/sin6) and M(6) = G(6).exp(K.ms)

y = C (1-T) + M(8),T

with M(6) the return of the soil under the vegetation,
approximated by G(6), the properties of the dry soil,
and a loss term due to the water content m of the
soil. W is the watercontent of the vegetatton in
kg/m3 and h (in m) the measured height. C is a
constant representing the backscatter of the vege
tation canopy as such and D is the two-way attenu
ation in m3/kg/m of the vegetation layer. To express
D in dB we must multiply it by 4,343.

Knowing W, h and m from observations in situ
it is, in principle, po~sible to determine G(6), T,
and the model parameters C and D from measurements

GAHHA
vv

after look
A I 2 3 4

1.4
1.2

7.I 53.0 75,0 93.0 95.S
2,8 68.7 96.7 99.0 99.8 0.8
8,7 49.7 83.S 85.3 88.2 0.6" ••

segment
-

1974
1975
1976

segment 2
-

1974
1975
1976

7. I
2.8
8,7

45.S
54.7
82.4

70.0
67.2
85. I

80,5
75.8
85.S

88.0
80.3
88. I

A: average time between looks (days)

Table 2, Percent correct crop classification at
14,4 GHz; after Ulaby (Ref, S),

The results reported by Hoogeb.oom and Ulaby
are comparable. Seen the fact that these good
results were obtained for different procedures, at
very different places in the world and different
incidence angle ranges justify the hope that radar
can be used for vegetation inventories using the
temporal variation in the radar return. The final
procedures used, however, may depend on the place
on earth.

2. PROPERTIES OF THE SOIL UNDER A CANOPY; OTHER
PROPERTIES OF THE CANOPY

The measurement series of the radar backscatter·
versus time also gave an impetus to the modelling
of the radar return. Such models are very useful,
among others, to investigate the problem of
measuring the properties of soils through a
vegetation canopy. For this purpose we used the
model developed by Attema and Ulaby (Ref. 6) and
later extended by Hoekman et al. (Ref. 7),

Since the dielectric permittivity of the dry
matter of plant material is at least an order of
magnitude smaller than that of water, where this
plant material is only in the order of a few percent
of the total volume of the canopy and since the
volume scattering is the predominant mechanisme for
the radar backscatter of vegetation, Attema and
Ulaby (Ref, 6) proposed to model a vegetation layer
as a cloud of water droplets. For details of this
model and its derivation the reader is referred to
the references mentioned. The following formula for
the radar return is then obtained:

SUGARBEETS
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60 GRAZING ANGLE
x : measurement
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Figure 6, Measured data (crosses) compared with the
model of Attema and Ulaby (Ref. 6), after
Hoekman (Ref. 8); ROVE ..data of 1979, X
band, VV polarization.
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of y, Attema undertook such an effort on the data
collected by Ulaby's group at Kansas University and
Hoekman undertook a similar exercise for the ROVE
data of 1979 (temporal data). They both did a
regression analysis to the groundtruth supported
data mentioned, For details of these analyses the
reader is referred to their work (Refs. 6, 7).

In figure 6 we give an example of the results
obtained by Hoekman (Ref, 8) on the ROVE data for
1979. It gives the contributions of the soil and
the vegetation layer separately, together with the
surface data for soil moisture and Wh •.G(6), the
radar return of the dry soil under the vegetation,
can also be determined and compared with measurements
of the same soil, corrected for soil moisture. An
example of such a comparison is given in figure 7
(ROVE data of 1980),

0

I. .

G(Q); 10 GHz

-s rdB E

10 T ;r·..'..
-15 -1- -:.:
-20 - 0 measured

-20 -15 -IO dB -5 0

Figure 7. Comparison of the radar return y of the
(dry) soil under a vegetation layer as
obtained from direct measurements and
through the model.

Knowing D the attenuation [exp(WhD)] of the
microwave radiation by a crop can be determined,
Table 3 gives an example. It shows that accuracy of
the determination of the backscatter properties of
the underlying soil will diminish when going to

Attenuation at 6: 15° 20° 45° 80°

Sugarbeets r : 61 46 22 16
Potatoes 28 21 10 7
Peas 21 16 8 6
Winter wheat 47 36 17 12
Sunnnerwheat 55 42 20 14
Oats 32 24 12 8
Barley 55 42 20 15

Table 3. Average attenuations in dB for fully grown
crops (ROVE data) as a function of grazing
angle; 10 GHz, VV polarization.
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lower grazing angles, due to the larger attenuations
of the canopies involved. It also means that the
backscatter itself is then primarily (and sometimes
wholly) determined by the canopy only at these lower
grazing angles.

3. CONCLUSIONS

The radar backscatter of crops shows typical
temporal patterns depending on species. The place
and length in time of this temporal signature can
vary with latitude (climate). This means that optimum
classification procedures for crops vary depending
on the place on earth.

The vegetation model developed by Attema and
Ulaby(vegetation modelled as a water cloud) proves
to be a useful tool to obtain information about the
vegetation canopy and the underlying soil.
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ANALYSIS OF DIGITAL RADAR DATA FROM SAR-580 IN RELATION TO
SOIL/VEGETATION MOISTURE AND ROUGHNESS

K. Blyth

Institute of Hydrology, Wallingford, Oxfordshire, England

ABSTRACT

A comprehensive survey of soil and vegetation
characteristics was undertaken in two test areas in
southern England to evaluate the capabilities of
digitally processed X and L band synthetic aperture
radar, collected during the European SAR-580
Experiment, to detect spatial and te~poral varia
tions in soil and vegetation moisture. One test
area lay on homogeneous clay soils where local
variations in soil moisture would be minimised to
simplify the study of vegetation effects. The
other area was of mixed soils and varying subsurface
permeability where local variations in soil moisture
would be maximised. Here, flat, bare-earth sites
were preferred to simplify the study of soil
moisture effects. This paper describes field sam
pling methodology, digital data extraction
techniques, radiometric balancing of digital data
and the effects of soil and vegetation moisture
and roughness on radar relative backscatter.

Keywords: Soil Moisture, Vegetation moisture,
SAR-580, Digital Processing, Microwave, Backscatter,
Surface Roughness

1. INTRODUCTION

Our prime interest in the European SAR-580 Experi
ment was to determine whether variations in soil
moisture of both vegetated and unvegetated fields
could firstly be identified and secondly be quanti
fied using the available synthetic aperture radar
configurations.

The theoretical basis explaining the possible re
lationship between radar backscattering coefficient
a0 and soil moisture is well documented (eg.Ref.l)
and several excellent field scatterometer programmes
have been undertaken both in USA (eg.Ref .2) and
Europe (eg.Ref.3) to identify the optimum radar
configurations for soil moisture monitoring. It is
not possible to give a detailed description of the
results of these experiments, but a reasonable con
sensus of opinion exists on the most useful starting
point for radar studies of soil moisture in terms of
radar frequency, polarisation and angle of incidence.

Figures 1 and 2 show that an increase in moisture
content of either soil or vegetation causes an
increase in the electrical conduction properties of
the medium (permittivity) which in turn influences
the degree of internal backscattering of microwave
radiation. Unfortunately these effects are
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Figure 1. The relative dielectric constants versus
volumetric water content for four soils
measured at 5 GHz (from Ref.4)

generally secondary to the influence of local
roughness and surface slope which must be.con
sidered in relation to the angle of incidence of
the radar beam to the ground surface. However,
results from work in Oklahoma (Ref .6) based on ex
tensive ground data sets relating to aircraft
acquired radar have confirmed the earlier findings
of ground-based scatterometer experiments which
show that the effects of surface roughness can be
greatly reduced by careful selection of the radar
parameters. Maximum correlations of o0 with soil
moisture were obtained at C-band frequencies pro
vided that the cross-over region between diffuse
and specular reflection was used and which occurs
at incidence angles around 7-15° where the influence
of surface roughness is minimised as shown in
Figure 3. At angles approaching nadir, 'smooth'
soils induce specular reflection of the radar
resulting in a high return signal whilst at grazing
angles most of the power is reflected away from
source. In contrast, for 'rough'.surfaces, diffuse
reflection occurs at angles approaching nadir
resulting in a relatively weak return signal, but

Proc. EARSeL Workshop· .\1icr0\rnre remore sr11si11gapplied ro regrrurio11'. Amsrerdam, 10-12 December 1984
(ESA SP-227.January 1985).
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Figure 2. Relative dielectric constant of leaves
as a function of water content (from
Ref. 5)

at grazing angles diffuse reflection is still
occurring; the rougher the surface, the higher the
return.
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Figure 3. Angular response of scattering coefficient
in relation to surface roughness at
4.25 GHz (from Ref.7)

2. TEST SITES AND THEIR INSTRUMENTATION

The SAR-580 Experiment provided the first oppor
tunity to compare radar data with measured ground
conditions within our two test areas which were
selected primarily to study the relationship of
soil moisture with radar backscatter. GBS (approx.
50 km2) is an area in Buckinghamshire of homogeneous
clay soils where local variations in soil moisture
would be minimised. Seven test sites were chosen
here to sample a variety of vegetation densities on
various slopes and aspects relative to the look
direction of the radar. GB12 (approx. 75 km2) is
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an area in the Thames Valley in Oxfordshire of mixed
soils with underlying geology of varying permea
bility where local variations in soi·lmoisture would
be maximised. Where possible the 10 test sites
were located on flat, bare-earth to reduce the
factors affecting radar backscatter. However, as
a delay of 4 weeks was encountered on the first
aircraft pass, many of the sites had some vegetation
cover. For both GBS and GB12, test sites were
located within the planned radar swaths to sample
the full range of available incidence angles (6)
with a concentration on the 6 = 5°-20° region. Un
fortunately drift in the aircraft inertial navig
ation system caused it to fly a path which was con
sistently too far away from the test areas with the
result that for all 5 passes, no near nadir data
was acquired, the steepest angle being 25°. Table 1
summarises the ground conditions at each site which
in most cases comprised a single field unit.

2.1 Corner Reflectors

To successfully relate 0° to soil and vegetation
conditions, both within a single scene but especially
between different scenes, accurately calibrated
data is required. To aid this calibration, two
pairs of calibrated corner reflectors were installed
by the Royal Aircraft Establishment in both test
areas (Figure 4.) Sites were chosen near to
Ordnance Survey triangulation points which were
used to accurately locate the height and position
of the reflectors and azimuth and inclination
angles were carefully set in relation to the planned
aircraft flightpath and altitude. In addition, 6
non-calibrated reflectors were installed in GBS and
5 in GB12 to aid geometric rectification of the
radar data.

Figure 4. RAE calibrated corner reflector showing
elevation adjustment and absorbant
padding to reduce spurious ground re
flections.

2.2 Automatic Instrumentation

Didcot Automatic Weather Stations located within
both of the test areas recorded at 5 minute in
tervals the following meteorological data:- wind
speed and direction, solar radiation, net radiation,
air temperature and humidity, rainfall. Whilst all
of these data may not be essential for this type of
study, they provide a useful record of conditions
at the time of radar operation which will be of
value in time-separated studies. Windspeed can
affect the perceived shape of tall crops and the
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Table 1

Field no Soil Type Land Use Actual L Io Soil Moisture
29.6.81 13.7.81 X&L x x

(a) GB12 094 170 171

A Sandy alluvium Early potatoes Early potatoes 60 55 35 Spray irrigation
B " " Late potatoes Late potatoes 55 50 35 " "
c Gault clay Long hay Mown hay 35 25 50 Wet
D " " Bare earth-smooth Bare earth-smooth 35 25 55 Dry
E Alluvium Bare earth-mixed Bare with rough 50 45 55 Medium

grass
F Limestone Young maize Young maize 50 45 * Dry

gravel
G " " v. young maize/ Young maize/ * 60 * Dry

cabbage cabbage
H River gravel Bare earth-smooth Bare/young veg. * * 40 Spray irrigation
J " " Bare earth-smooth Bare/young veg. * * 40 Spray irrigation
M Gault clay Bare - v. rough Bare - rough 40 30 45 Dry surface

(b) GB8 093 172

N Oxford Clay Sheep pasture-steep Sheep pasture * * Medium
0 " " Dry hay stubble Stubble + regrowth 55 60 Dry
Q " " " " " " " " 50 55 Dry
R " " Cattle pasture Cattle pasture 50 55 Dry
s " " Long hay Sheep grazed hay 25 35 Medium
T " " Barley Barley 35 45 Medium
u " " Cattle pasture Long hay 40 50 Dry

presence of surf ace water after rainfall or heavy
dew may also affect radar returns.

* Test sites not recorded by radar

3. DATA COLLECTION ON EACH OVERFLIGHT DAY

In each of the 17 fields, at least 20 volumetric
soil samples were taken of the top 50 mm of soil
and where possible 150 mm cores were extracted,
some of which were sliced into 20 mm sections.
When vegetation was present in significant amounts,
5 bulk samples were taken per field over either
0.25 m2 or l m2 for the estimation of vegetation
biomass and moisture content. Some manual air and
soil temperature measurements were made and cloud
and atmospheric conditions were recorded.

Within a maximum period of 3 days, measurements of
surface roughness were made at all sites. Alloy
plates of dimension 1000 mm x 300 mm bearing a
20 mm grid pattern were used to make a photographic
record of both soil and vegetation roughness,
generally at the four corners and centre position
of the soil moisture sampling network. To record
soil roughness, the plate had first to be hammered
into the soil. Initially this process was found to
be very difficult in all but the lightest of soils.
The process was made easier by welding spikes to
the bottom rear edge of the plate to provide some
initial support in the soil and then by attaching
a cutting edge of hardened steel along the bottom
edge of the plate. Finally a grooved striking '
block was positioned over the top edge of the plate
to prevent damage during hammering (Figures 5 and 6).
This plate was also used to record details of crops
up to 300 mm high, but for taller crops a plate of
similar dimensions and markings was held above
ground level on two vertical tubes hammered into
the ground. The plate was adjustable for height
and levelness via thumbscrews locating the plate to
the vertical tubes and before making a photographic

Figure 5. Soil roughness reference plate seen
from rear

record of the vegetation canopy, the distance from
the top of the plate to local ground level was
measured to enable mean crop height to be determined
(Figure 7). At each sample point, the plates were
aliened by prismatic compass to lie both oarallel
and at 90° to the aircraft flightline.

At the same 5 sites per field as the above measure
ments, vertical photograpQS were taken from a height
of 3 metres to provide a record of leaf area.
However, this value differs considerably from the
leaf area seen by the radar. To record this,
oblique photographs were taken from the same look
direction (using prismatic compass) and incidence
angle (using clinometer) as the radar. Figures 8
and 9 illustrate the difference in geometry of the
crop seen from vertical and oblique viewpoints and
the importance of including reference scales with
in such photographs to enable reasonable estimates
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Figure 6. Rough soil surface in relation to 20 mm
grid marked on 1000 mm long plate

Figure 7. Tall barley seen against 20 mm
reference grid

of leaf area to be made at a later date. Wide
angle, oblique photographs of each field were taken
from a height of 4 m. This extensive photographic
record was invaluable for determining surface
changes which had occurred during the 2 weeks
separating the radar overpasses. Due to the
large number of similar photographs acquired, the

Figure 8. Vertical photograph of maize to
determine crop cover

Figure 9. Oblique photograph taken from expected
look direction and angle of radar

use of a data back on the camera was found to be an
essential aid as it provided a unique reference
number on each image.

3.2 Landuse Survey

Limited manpower precluded a detailed land use
survey, but major categories and growth stages were
noted within the visibility of metalled roads. On
8 July, midway between the two radar passes, vertical
35 mm colour and panchromatic aerial photography was
taken of both test sites using a light aircraft.
The data was subsequently found to be of great
value for extending the limited land use survey and
for providing in-field information on crop cover
and other anomalies which were depicted on the
radar data. Variations in density of new crops
such as maize were readily apparent from the air
but went undetected from ground observation alone.

4. DATA PROCESSING

4.1 Soil Samples

Around 600 soil samples were oven dried to deter
mine their free water content. The majority of
these were volumetric samples taken from the top
50 mm of soil and where possible at least one
150 mm deep sample per field, the core of which
was sliced to provide information on the near
surface soil moisture profile between 0-20 mm,
20-40 mm, 40-60 mm and 60-150 mm. In some fields
of very rough bare earth, the surface soil was un
consolidated which prevented accurate volumetric
samples from being obtained. In these situations,
samples of both the hard, dry surface soils and the
moister sub-surface layers were taken for subsequent
gravimetric analysis. Mean soil and vegetation
moisture values are summarised in Table 2. Single
bulk samples of around 5000 grams weight were taken
for each of the GB12 test sites to determine soil
texture in terms of the fractions by weight of
sand (2.0 to 0.05 mm), silt (0.05 to 0.002 mm) and
clay (<0.002 mm).
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Table 2

Mean Soil Moisture Mean Vegetation Moisture

Site No 'I.by weight standard deviation 'f, by volume 'l. field capacity '!, by weight . g/m:a

29 June 1981

GB12
A 10 1. 8 12 BO ? 5500
B 8 2.0 9 58 96.9 3544
c 89 1. 0 51 415 41. 4 999
D 14 5. 5 11 17 - -
E 41 8.7 31 194 51. l 85
F 11 2. 3 14 76 95 .4 20
M surf ace 5 0.7 6 19 - -
sub-surface 15 5.9 13 55 - -

GB8
0 39 6.8 34 109 67.2 333
Q 63 14. 6 60 175 ? minimal
R 38 3.8 42 105 ? minimal
s 53 6.5 31 147 B0.0 1837
s· 50 1. 6 33 139 76.7 374
T 22 3.3 22 60 69.7 1669
u 71 8.B 50 196 75.0 261

13 July 1981

GB12
B 10 2.1 13 75 90.2 5120
B' 11 2. 4 14 83 - -
c 85 20.9 51 397 67.2 5707
D 12 3.6 10 40 - -
E 34 6.0 36 159 76.6 343
F 9 2.9 14 59 94. 2 250
G 7 1.4 8 49 ? ?
H 9 .3. 2 12 64 - minimal
J 8 4.3 10 54 - minimal
M surface 5 1.1 7 20 - -
sub-surf ace 19 6.B 20 71 - -

GB8
0 30 3.0 25 82 64.5 588
Q 44 8. 7 44 122 50 .1 520
R 32 3.8 38 90 80. 3 223
s 38 14. 4 43 105 72 .2 1567
s: 35 14. 7 23 97
T 20 2. 7 24 55 41. l 1127

It is necessary to take account of the texture of
soils as well as their moisture content as both
affect the dielectric properties and hence the
volume backscattering properties of both bare
earth and vegetated fields. The most commonly
used method of comparing soils of different texture
is to relate to their 'field capacity' or 'wilting
point'; terms which describe the free water holding
properties of the soil. Both of these conditions
are time-consuming to determine by experiment, so
indirect methods based on the texture of the soil
have been developed. Schmugge et al (Ref.8) per
formed a multiple regression analysis on 100
different soils for which the texture and moisture
characteristics were known. The results of these
regressions enable reasonable estimates of the
field capacity of any soil to be determined in terms
of its proportions of sand, silt and clay using the
following relationship:-

FC = 25.1 - 0.21 sand + 0.22 clay

where FC =field capacity (%by weight) and the
proportions of sand and clay are also expressed in
terms of% by weight.

Field capacities of all soil types used in the
experiment were calculated using the above ex
pression to enable all soil moisture values to be
normalised to percentage of field capacity.

4.2 Vegetation Samples

Depending on the density of vegetation at each site,
bulk samples, carefully cropped to ground level, were
collected within quadrats of either 0.25 m2 or 1 m2
to obtain samples of a manageable size. These were
weighed wet and after oven drying to determine
water content per square metre of vegetation and
also vegetation dry biomass per square metre
(Table 2). The former is of major importance in
determining the effect of vegetation on radar back
scattering.

Over recent years several models have been developed
to try and quantify the effects of vegetation on
radar backscatter. For example, Tsang et al (Ref.9)
suggest that the backscattering coefficient o0 of
vegetation-covered soils viewed from an incidence
angle of G can be expressed as:

where 0~(0)is the vegetation backscattering co
efficient, 0~(8) is the soil backscattering co
efficient and T is the radar path length through
the vegetation which varies with incidence angle.

The vegetation scattering component 0~(8) can be
approximated by

o0(0)v
n cos

2T
8 (l _ e-2T/cos 8)
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where n, which depends on the canopy water content
per unit area (Ref.10) is a vegetation volume
scattering factor. Mo et al (Ref.6) have recently
tested a two part model based on the above relation
ships describing the combined radar scattering from
a vegetation covered soil and have found it to per
form well against observed values of o0• They con
firmed that coherent scattering from the soil sur
face is most important at angles approaching nadir
(where vegetation effects are reduced) while vegeta
tion volume scattering is dominant at larger in
cident angles (>30°). It was hoped that simple
models like the above could be tested on SAR-580
digital data, but the absence of suitable radar
calibration unfortunately introduced an unacceptable
number of unknowns into the values of relative
backscatter. Under these circumstances, only broad,
general conclusions could be safely drawn.

4.3 Surface Roughness Measurements

When recording soil and vegetation roughness
against the calibrated alloy plates, the scale and
angle of photographs varied from image to image.
To compile a comparable record of surface data
from which statistically acceptable estimates of
surface roughness could be made, it was necessary
to firstly rectify the images. This was achieved
with the aid of a Zeiss Sketchmaster; a desktop
instrument which, by means of a split-image view
finder, enables the operator to superimpose a hard
copy photographic image held in the vertical plane,
with a sheet of graph paper held in the horizontal
plane. Scale differences and image distortions
were removed by instrument adjustment until the
calibration lines seen on the alloy plates were in
agreement with those on the graph paper. The
outlines of both soil surfaces and vegetation were
then traced onto the graph paper to provide a
permanent and directly comparable record of surface
roughness at each site. Figure 10 is a scaled
record of a typical maize crop where both soil and

Site F young maize
d80u = 5-1mm
dveg ::i 167·3mm

/
/

I 100mml

Figure 10. Rectified record of soil partially
covered by vegetation

vegetation details are recorded, whilst Figure 11
shows the profile of a tall barley crop with mean
height about 1 metre above ground level. The
difficulty in defining such a crop 'surface' is
evident and will vary both as a result of operator
interpretation and of the wavelength of radar in
use.

The surface roughness data were now in a form
suitable for digitizing at 2 mm increments on a
coordinate digitizer, this representing an increment
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Site T - Barley
Memn hetght -1000mm

I 100mm l

Figure 11, Rectified record of upper layers of
tall vegetation

in the field of 10 mm. Values of r.m.s, height (d)
and correlation length (£) could then be readily
extracted. However, the surface roughness as per
ceived by the radar is dependent on both the wave
length of the radar and on the angle of incidence
of the radar beam relative to the soil surface.
Mean surface slopes were therefore determined for
each field relative to the direction of the radar
in order to calculate the effective angle of in
cidence at each site. Rayleigh's criteria were
used to determine whether surf aces were rough or
smooth at both X and L band under the prevailing
conditions of each radar pass, viz:

a smooth surface has a r.m.s. height of

< 8 cos 8

a rough surface has a r.m.s. height of

> 4 cos 8

where A = SAR wavelength and 8
incidence of radar.

effective angle of

Tables 3a and 3b show the results for each test site
based on soil surface roughness only as at this
stage no suitable model could be found to describe
the surface roughness of vegetation,

5. DATA ANALYSIS

Our interest in this particular experiment was res
tricted to the study of soil moisture effects on
radar backscatter, so only digital radar data was
used. As previously mentioned the most significant
correlation of soil moisture to o0 have been obtained
at C band at incidence angles of 5°-20°, However
it appeared at the start of the experiment that
there were problems with the calibration of the
SAR-580 C-band, so X and L band data were requested
in preference. At the outset of our experiment, it
was intended that with the aid of the field in
stalled corner reflectors, geometric and radiometric
rectification of the digital data would be carried
out to a relatively high precision to enable the
position of data extracts to be controlled relative
to survey measurements taken in the field. Un
fortunately the deviation of the final aircraft
flightlines from the planned flightlines was so
great that in many cases the corner reflectors
could not be detected. As there appeared to be no
means of calibrating the data over the test areas,
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Roughness Estimates for GB12, Thames Valley

Table 3a

Site Approx r.m.s. Pass 094 Pass 170 Pass 171
roughness (d) in mm X band L band X band X band

A 100 • • R R

B 100 • * R R

Bl 10 • • I R

c 25 R s R •
D 4.5 s s I *
E 35 R s R R

F 7.5 I s I *
G 10 * * I •
H 6.5 • • * I

J 10-5.5 • • * I

M 45 then 25 R I R *

Based on Rayleigh's criteria:- S

R = rough

* denotes site not imaged by radar.

smooth, I - intermediate,

s \
= < e8 cos

R x
= > e4 cos

Table 3b

Soil Roughness Estimates for GBB, Grendon Underwood

Site Approx r.m.s. Pass 093 Pass 172
roughness (d) in mm X band L band X band

0 10 R s R

Q 17.5 R s R

R 15 R s R

s 18 R s R

T 10 R s R

u 20 R s R

a less rigorous approach was chosen in the extrac
tion of digital values.

5.1 Extraction of Pixel Values

Extraction of digital vaLue s from the CC'!''swas
carried out interactively using both the NERC
I2S System 101 and the NRSC GEMS image processing
facilities. Polygons were defined in relation to
the position of soil and vegetation samples within
each field site and care was taken to position the
polygons well within the field boundaries to avoid
edge effects. In general, 4 or 5 polygons per site
were selected with the aim of detecting any major
in-field variations. Each polygon normally com
prised several thousand pixels with the smallest
plots comprising about 500 pixels. A balance had

to be accepted between over generalisation of sur
face variation through the selection of large plots
and running the risk of introducing errors through
the local effect of random coherent speckle on very
small plots.

5.2. Radiometric Rectification of Digital Data

The method of normalising the antenna variations
followed the procedure suggested by Sieber (Ref.11).
Adequate land-use information was not available to
enable the procedure based on a single crop type to
be used, although this would have undoubtedly pro
duced a more accurate correction. The method
adopted was to calculate the root mean square
(r.m.s.) pixel value of each line of a whole image
as supplied on CCT. The assumption is made that
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each line passes over an area of 'average' or
'typical' land use and that no large areas producing
unusually high or low pixel values are present in
the image such as large urban areas, factories etc.
or large water bodies. On the assumption that
there is no major change in land-use across the
radar swath, the line by line r.m.s. values should
replicate the gain pattern of the antenna. An
example showing the results of this procedure for
the Thames Valley test area is given in Figure 12
and it can be seen that the main lob~ and side
lobes of the antenna are clearly defined in the
X band HH image. In contrast Figure 13 is the
result of the same procedure carried out on an
L band HH image, also of the Thames Valley area
which shows much more variability and skewed
antenna pattern.
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Figure 12. Radiometric profile of XHH image
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Figure 13. Radiometric profile of LHH image

Under normal procedure, each line of the original
image is divided by the r.m.s. value of its corres
ponding line after smoothing of the r.m.s. line
profile. This has the effect of increasing pixel
values lying towards the darker edges of the image,
thus effectively normalising the image to a
standard level of illumination.
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Examination of the line by line r.m.s. pixel value
graphs for all of the passes obtained over our two
test sites showed some marked variations such as
poor dynamic range, unusually high signal variation
as in the L band image of Figure 13 and other
anomalies which are not fully understood. The
majority of results given here are from passes
which produced 'antenna diagrams' of shape similar
to that shown in Figure 12 i.e. exhibiting full use
of the available dynamic range and of conventional
shape with no marked anomalies.

6. RESULTS

Based on the above criteria, five images were iden
tified as being suitable for comparison in that
their 'antenna diagrams' could be overlaid with
only very minor adjustment required to obtain
superimposition. Over GB8 at Grendon Underwood pass
X09301 of 29.6.81 was compared with pass Xl7202 of
13.7.81. Similarly pass X09401 was obtained over
GB12, the Thames Valley site on 29.6.81 and passes
Xl7001 and Xl7101 were flown over the same area on
13.7.81 along flightlines lying 90° to one another.

6.1 GB12 Thames Valley

As a result of poor reproduction of flightline
position, only one test site appears in all three
images - Site E. On examination of the field data
it was found that neither the soil moisture, surface
roughness nor sparse vegetation had varied appreci
ably over the two week period between flights. It
was therefore decided to use this site as a refer
ence between the three passes rather than relate
conventionally to maximum power within each band.
Site E therefore appears as OdB in Figures 14 and
15. Figure 14 shows backscatter in dB's relative
to Site E, against soil moisture values expressed
as a percentage of field capacity for each area of
interest within the 9 test sites and Figure 15 deals
similarly with vegetation moisture. In addition
to the three corresponding X band passes, pass
L09401 has been included for comparison even though
its 'antenna diagram' is markedly different to the
others. Again site E appears as OdB after normali
sation.

The two immediately apparent features of Figure 14
are the bunching of data which retain individual
test site identity, and the absence of any general
relationship between relative backscatter and soil
moisture. If the shapes of the bunches are con
sidered, there appears to be a predominance of
major axes running horizontally rather than verti
cally, suggesting a marked lack of sensitivity to
soil moisture. The only suggestions of an increase
of relative backscatter with increasing soil mois
ture are to be found at sites G and H at X band and
site B at L band. Site G is problematic as it lay
at the far edge of the radar swath at a shallow
incidence angle where the detection of soil moisture
effects would be unexpected. If a relationship were
to be expected, it would be at site H, a flat flood
plain of homogeneous alluvial soils which was sub
jected to spray irrigation resulting in what was
expected to be an ideal control site. As previously
mentioned, the only drawback lay in the relatively
narrow widths of differently cultivated and irrigated
strips. It was felt at the time of data extraction
that difficulty in accurately identifying the areas
of interest for polygon delineation may have led to
cross-contamination of digital extracts relative to
the wet and dry areas on the ground. Even so, the
resulting difference of only ldB relative to a 40%
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Figure 14. Effects of soil moisture on relative backscatter for Thames Valley sites.

FC increase in soil moisture can only be descrihed
as poor. Site B was a potato field which again had
been subjected to local spray irrigation but which
had an almost complete canopy of dense vegetation.
On examination of both the L band and X band data,
no obvious dLff ez-en'cecould be detected between
the sprayed and unsprayed areas even after smoothing
and contrast stretching of the digital data, un
like site H where variations over this essentially
bare earth site could be seen. This suggests that
the vegetation canopy was obscuring variations in
underlying soil moisture.

Site B was also the only field other than the OdB
reference site E to be imaged by both X band passes
on 13th July. The fact that its relative back
scatter is the same for both passes (Figure 15)
suggests that the radiometric correction of the
two passes has been reasonably successful and that
neither the furrow direction or soil variabilities
below the vegetation canopy are affecting the
X band return signal.

Site F provides the opportunity to look at the
effect of change over the two week period between
flights. During this period soil moisture levels
fell from about 75% FC to about 60% FC, but an in
crease in relative backscatter was experienced.
This could have been due to the fact that the
young maize crop on this site increased its mean
moisture content during this period from 19.5 g/m2
to 208 g/m2 (Figure 15) ; more than a 10 fold
increase. Again, however, this only corresponds to
an increase in relative backscatter of ldB.

The only other point of significance in Figure 15
is site C, a rough wetland site with soil moisture
values off scale on Figure 14. The higher return
signal in L band relative to X band on 29th June
could conceivably be due to the effect of underlying

saturated soil, but more detailed measurements would
be required to prove this. The large difference in
return signals for the two X band passes is con
sistent with the increase in vegetation moisture
over the 2 week period, but may also have been
enhanced by uncorrected antenna effects.

B potatoesc rough wetland
E bare earth c
F maize <!)
a 094X

" OIML
• 170X

•J 0 171x

II~

I c0
0••1 F B

E /.---.-, ~B0 @ / ·~>~• '.!-...;JI".l!: F
ii ~! F c

·2 0
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Figure 15. Effects of vegetation moisture on rela
tive backscatter for Thames Valley sites
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Site M experiences a remarkable increase in relative
backscatter over the two week period of about + 6dB
even though no change in soil moisture occurred.
Although the field is classified as rough by
Rayleigh criteria on both occasions, the change is
undoubtedly associated with its change in surface
roughness. For pass 094X site M had a r.m.s.
roughness factor (d) of 45 mm as a result of sub
soiling which threw up large clods of earth in a
random fashion over the surface. By the time of
pass 170X the field had been disced to break up
the clods resulting in a r.m.s. roughness of around
25 mm. Thus although the absolute roughness of the
field had been reduced, its backscattering efficiency
at the X band wavelength of 32 mm had increased; a
factor which could not have been readily predicted.
L band data was only available for the first series
of flights because of a failure in the system
shortly before the second flight. Although the L
band data is limited, the results do appear to be
somewhat more predictable than X band in that a
smooth surface with a relatively high soil moisture
such as site F produces a brighter backscatter
than site D which is also smooth but at a lower
moisture level. Site M, although of similar soil
moisture to site D, appears brighter, presumably
as a result of its rougher classification, whilst
site B, the potato field, again of similar
moisture level, is 3 and 4dB brighter than site M
and D respectively, thus carrying on the progression
from smooth, to intermediate, to rough.

It is unlikely that any more than general obser
vations such as the above can be made from Figures
14 and 15 primarily as a result of the small
number of comparable data points. Although 3 radar
passes were obtained over this test site, only a
small proportion of data collected in the field
could be put to use. If all 10 test sites had
been imaged on 3 occasions, the data set would
probably have been large enough to draw more con
crete conclusions. Nevertheless, the results from
GB12 highlighted the problems associated with soil
moisture sampling of bare earth fields.

Bell et al (Ref.12) laid down recommendations for
sampling soil moisture over large fields and it is
generally accepted that at least 20 samples are
required per field to define within-field varia
bilities. Volumetric soil sampling is time con
suming both in the field and in the analysis of
soil samples. It is therefore not practicable to
sample a large number of fields at such an inten
sive level. In the case of SAR.580 the local
surface soil moisture variation appears to be greater
than the variation recorded in the digital data
after speckle reduction. There would therefore
appear to be little point in describing the soil
moisture variability through intensive sampling
if the radar is not capable of resolving this
variability. Jackson (Ref .13) has suggested that
the problem of surface soil moisture variability
can be partially overcome by sampling in the
0-150 mm depth range rather than the 0-50 mm range,
beyond which radar wavelengths will not penetrate.
His assumption is that there will be some corre
lation between surface and sub-surface soil moisture.
Certainly for SAR.580, a more meaningful data set
may have been produced by taking two or three
150 mm core samples over 40 or 50 fields rather
than 20-25 samples in 10 fields. This procedure
would be recommended for future radar studies pro
vided that the whole soil surface profile was
relatively damp. Problems are still likely to
arise when a dry surf ace crust forms over damp

subsoil.

Prior to this experiment it was thought that a bare
soil surface would be simpler to deal with than one
covered with vegetation as the number of parameters
to be modelled would be fewer. This may not neces
sarily be the case as a vegetation cover such as
short grass will not greatly influence surface
roughness as perceived by the radar, but it will
prevent drying of the surface soil so as to retain
a good correlation between surface and sub-surface
soil moisture levels.

It was hoped to test the above 'procedures in re
lation to the SIR-B L band experiment in October
1984. Flat, permanent short grassland sites were
identified within U.K. to sample a range of soils
and soil moisture regimes which were determined
through permanent neutron access tube measurements
and by core sampling to 150 mm depths. Unfortunately,
at the time of writing it appears that no radar data
will become available for these sites.

6.2 GB8 Grendon Underwood

Figures 16 and 17 show the results of two X band
passes over the Grendon Underwood test area where
soils were of an homogenous clay and various types
of vegetation were present in all cases. The in
dications are once again that X band at relatively
shallow incidence angles is poorly· correlated with
soil or vegetation moisture. During the 14 days
between passes, drying of the test area occurred
and this is reflected in the general reduction of
.soil moisture values over this period.

Sites 0 and Q were both mown hay where interference
from the vegetation would be·minimal, as indicated
by its low moisture content (Figure 17). A wide
spread of surface soil moisture is evident within
these fields, ranging from about 65% to 230% field
capacity but this is recorded within a range of only
l.5dB on the radar digital data. A reduction in
soil moisture is evident in both fields over the 2
week period. Sites R and U are of grazed pasture
where the vegetation ranged from shortly cropped
grass to short grass plus fine grass seed heads.
For pass Xl7202 on 13 July, a considerable soil
moisture variation existed between these fields,
(Figure 16) , low vegetation moisture levels were
evident (Figure 17) but no significant difference
in relative backscatter was observed. Conversely,
taking site R alone, although both vegetation and
soil moisture levels are almost identical for both
passes, the backscatter (relative to Q max) for
site R on 13 July is 2.5dB higher than for 29 June.
The reason for this is unclear. Only 2 factors are
known to have changed:- 1) the mixed pasture, being
subjected to cattle grazing was slightly shorter for
the second pass and the number of tall seed heads
had been reduced, 2) the angle of incidence of the
radar had changed from 50° to 55°. Neither of these
changes would normally be associated with an increase
in radar backscatter and it can be seen that most of
the other sites exhibited a reduction in relative
backscatter from 29 June to 13 July. It must be
assumed therefore that the above two changes have
combined to produce an increase in perceived sur
face roughness resulting in increased relative back
scatter.

Site S was a field of hay, one half having been
established for several years, comprised a wide
mixture of grasses, nettles and other weeds. The
other half (S') had been freshly seeded and was
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therefore of a single uniform fine grass species.
Figure 16 indicates that little difference exists
between the two halves in terms of soil moisture,
but the fine hay produces a 3-4dB brighter signal
than the coarse hay, even though the former has a
much lower vegetation moisture content as shown
in Figure 17. Again this suggests that the per
ceived surface roughness at X band is probably of

greater influence to radar backscatter than either
soil or vegetation moisture. The fine hay was cut
and left to dry some days prior to the second over
flight and a reduction of relative backscatter of
about 6dB was the result, demonstrating that in this
case, the X band response was greater from the
vegetation itself than from the underlying soil.
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Site Twas a field of tall barley which progressively
ripened during the 14 days between passes. This is
illustrated in Figure 17 by a fall in vegetation
moisture of around 30%, whilst during the same
period, no appreciable change in soil moisture was
recorded. A 4dB reduction in relative back-
scatter occurred during this period, thus supporting
the findings at site S that the structure and
moisture content of tall vegetation has significant
influence on X band values of relative backscatter.

It must be appreciated in interpreting the informa
tion in Figures 16 and 17 that large system
variations may be present between the two passes
which could make some of the observations invalid.
Because of these possible unaccountable errors,
coupled with the marked lack of sensitivity to
variations in soil/vegetation moisture, there was
no suggestion that proceeding with more complex
soil/vegetation models such as outlined by Mo
(Ref.6) would have yielded more meaningful results.

7. CONCLUSIONS AND RECOMMENDATIONS

It was known prior to the planning of this ex
periment that any possible effects of soil or
vegetation moisture on the relative backscatter
of airborne radar data would be small in relation
to the effects of surface roughness and angle of
incidence, and that in order to detect such varia
tions a well calibrated radar system would be
required. On paper, SAR.580 could not provide the
ideal instrument set up for such a purpose.
Nevertheless it provided us with the first oppor
tunity to work with radar over our own test areas,
so efforts were made to make as much use as
possible of the data through indirect calibration
via a network of ground based corner reflectors.
It was unfortunate that these corner reflectors
could not have been used to obtain a reasonable
intercalibration of the various passes, as from a
soil moisture point of view, the lack of calibra
tion was disastrous. Although attempts at radio
metric balancing were made via image line smoothing
in the azimuth direction to try and reproduce an
antenna diagram, these were inadequate for our
purposes and evidence of major errors exists.

No evidence of a consistent relationship between
either surface soil moisture or vegetation moisture
against radar backscatter could be seen in the data
which was reduced in volume by the non-imaging of
a number of test sites. The lack of such evidence
is not unexpected as no data was available at
incidence angles of 5-15° where the effects of
surface roughness would have been minimised.

Whilst the result of our experiment was inconclusive
for this particular radar. configuration, the ex
perience gained during the course of the experiment
in the use of radar for hydrological purposes has
been great especially in ground data collection,
radar calibration and digital data handling. The
experiment has greatly increased our knowledge of
methods of field survey and ground control in
relation to radar remote sensing programmes and
has indicated that a) soil and vegetation sampling
over many fields at less frequent spatial intervals
may be more fruitful than intensive ground sampling
within a few fields, b) bare earth sites may not be
the best places to build up our understanding of
soil moisture/radar interaction; short grassland
sites could be simpler to model. Further work is
required in the modelling of surface roughness of
tall vegetation as perceived by radar of different

K. BLYTH

frequencies as this is very difficult to quantify
at present. Efforts should be made to define
standard measurement procedures for the quantifi
cation of vegetation shape and roughness for
different radar frequencies to allow intercomparison
between data sets. Future work in soil/vegetation
moisture estimation should centre on C-band SAR
within the 5-20° range of incidence angles, with a
future eye on multifrequency systems which may
provide the opportunity of directly estimating
surface roughness.
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SOME PRELIMINARY RESULTS ON LAND USE EVALUATIONS BY TEXTURE ANALYSIS

OF SAR-580 DATA OVER THE TEST SITE FREIBURG
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ABSTRACT

The study presents first results on
texture investigations of digital
SAR-580 data in X-HH of testsite
Freiburg, performed at the Department
of Photogrammetry and Remote Sensing
of the University of Freiburg, West
Germany. Different training sites of
forest and agricultural classes
have been tested with an texture
analysis programme, which informs
about the statistical distribution
of radar reflection intensities. The
results show textural properties of
the here tested sites by demonstrating
the statistical variations of back
scatter intensity graphs along an
adjustable boundary, which is located
parallel to the mean inttmsityvalue.

Keywords: SAR-580, digital evaluatio~
texture, forestry, agriculture

1. INTRODUCTION

The present study is extract and preliminary
result of texture analyses by the Departmentof
Photogrammetry and Remote Sensing of the
University of Freiburg, West Germany. The
results so far were obtainedwith image data of
the European SAR-580 campaign.The image data
of the test-site Freiburg were previously
analysed by the Department by means of
traditional optical and digital evaluation
methods (5). These analyses have shown among
other things, that a Standard Maximum
Likelihood Classification,commonlyused within
the IANDSAT imagedata evaluation,makes little
sense within the SAR-580 image data evaluation
and that other evaluationmethods are required.
Other analytical procedures, described and
successfully tested by various authors, result
frcrn the analysis of visible structuresand
textures of image surface targets (cf.2,3,4).
This paper contains sorrecalculationexarml.eson
texture, investigatingtexture as a regular tonal
variationwithin a certain image section (1). It
is neant to be a concise extract of current inves
tigationresults which are as vet not statistical
ly secure and may not be regarded as a basis for
scientificproof.

2. SAR DATA DE.SCRIPTION

For the purpose of the present investigation,
digitally processed SAR-580 data in X-HH have
been used. The data are frcrn the European
SAR-580 campaign and have been been taken on
July 7th, 1981, registeredas Pass 14508of the
Test Site D 6 Freiburg.The data recordingwas
acquired in steep angle and at a flight
altitude of 20.000 ft. Supporting data frcrn
underflights and ground truth experimentsare
available.

3. GROUND TARGEI'S

The investigated test site Mundenhof/Mooswald
is a flat agriculturaland wooded area in the
Rhine Valley to the West of Freiburg.The area
has previously been described (5,6).For the
purpose of demonstrating the analysis, 8
training sites, representing3 forest crops, 4
agricultural crops and 1 example of a water
surface, have been selected (Table 1). The 4
agricultural classes are located in the
Mundenhof Farm, the 3 forestry classes are
situated in the Mooswald forestedarea around
the MundenhofFarm. Figure 1 shows an optically
processed SAR-580 enlargement of the area
including informationabout the locationof the
training sites.

4. EVALUATIONME:l'HODS

The investigations were conducted with the
Mcdule TEXAS (Texture Analysis by means of
Boundary Values) of the programmesystem FIPS
(Freiburg Image Processing System).For image
management, the data bank system PODIUM
(Polygon-OrientatedDigital Image Utilization
Management System) is used. The softwareruns
on the UNIVAC 1100/82 of the Freiburg
University CcrnputerCentre. For the purposesof
the present investigation, SAR-580 radar data
with a 16 bit resolution of the reflection
intensity were used. The geometricalsize of
one pixel corresponds to approximately3 x 3
meters.

Proc. EARSeL Workshop' .'vficrowave remote sensing applied to regetation', Amsterdam, l 0-12 December 1984
(ESA SP-227, January 1985).
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Figure 1: SAR - 580 optically processed enlargement in X-HH showing the

test site Mooswald/Mundenhof and the numbered training sites

1 - 8 as described in Table 1.

The software module Texas processes rectangular
image sections line by line, of optional size.
Each image line is read and, if necessary,
filtered in order to subsequently determine the
texture parameters. The results of all
individual lines of the image sections are
added up or the mean value is ascertained.
There is a choice of two different types of
filters:

1. Blockfilter: n pixels each are grouped
together and simultaneously replaced by
the mean group value.

2. Smoothing filter: the filtered value of
each pixel is calculated separately from
the mean value of the original pixel and
of the (n-1)/2 pixels to the left and
right. Therefore, only odd values of n can
be used.

The image line is processed as follows (cf.
Figure 2): After filtering, mean value and
standard deviation of the reflection intensity
along the line are determined. The mean value
is represented in Fig. 2. Equidistant above and
below the mean, an upper and a lower boundary
are fixed, whose distance from the mean value
(boundary distance) is either measured in units
of the standard deviation or absolute. The
continuous parts of the image line, whose
reflection values are greater than the upper
boundary, are called bright spots. Dark spots,
on the other hand, remain below the boundary.

bright spots

higher
boundary

lower
boundary

Figure 2. Process Schedule of the TEXAS module.

The following parameters are quantitatively
acquired for bright and dark respectively (cf.
1):

1. Number of spots
2. Average length of spots
3. Relative portion of the complete image

section

Further parameters, worthy of investigation,
are:

1. The mean local frequency (number of
intersections between mean value line and
intensity curve)

2. The roughness of a line (the mean
difference of intensity between two neigh
bouring pixels)

3. The auto-=rrelation function (the
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probability,with which the value of a
neighbouringpixel can be deduced from the
value of a given pixel)

Table 1.

site type
no.

1 Young Douglas Fir, Age 22 Years

2 Oak, Age 25 Years

3
Mixed decidious Forest With Pre-
dominantely Robinia, S'JAge 100 Years

4 Water Surf ace

5
Corn Field, Not Fully Grown, Short
Time Before Flowering

6 Meadow, Fully Grown

7 Winterwheat Field, Ripe

8 Summerwheat Field, Fully Grown, But
Not Yet Ripe

5. DISCUSSION

5. 1 Evaluationof unfiltered images

For the purpose of clarifying the numerical
results, the outcome of the digital image
evaluations is transferred into graphical
representations and discussed.The texture
parameters under discussion here are designated
as follows:

Bright Spot Number = bsn
Dark Spot Number = dsn
Bright Spot Average Length = bsal
Dark Spot Average Length = dsal
Bright Spot Relative Portion = bsrp
Dark Spot Relative Portion = dsrp

For the purpose of this investigation,sections
of equal size, containing 16 lines and 49
columns, were chosen for all training areas.
When using unfiltered image sections, this
amounts to 784 pixels per training area. Mean
value and standarddeviation of the unfiltered
training areas are shown in Table 2.

Figures
dark spots

and
of

2 show the number of bright or
various land use classes for

Table 2.

relative boundaries, which deviate from the
mean value. The curves are falling, as
expected. On the bright spots, the curves are
parabolic, similar to an exponentialfunction,
exceeding the 4-fold standard deviation.The
numerical curves of the dark spots show a steep
drop and terminateapproximatelyat the 2-fold
standard deviation. This result was to be
expected in the present image statisticswith
mean values between the grey value steps 4000
and 6000 and standard deviationsbetween 2000
and 3000 grey value steps. Within the range
between the mean value and the standard
deviation, the number of dark spots is in all
cases greater than the number of bright spots.
This relation is inverted starting from the
boundary value of approx. 1.2-fold standard
deviation. All classes of land use showed
little variability among each other.
Representing land use classes depending upon
absolute grey value boundaries (Figs. 5 and 6),

young do11cr]aq Jir

rohinia

wn t e r- surface

Figure 3: Number of bright spots depending upon
relativeboundaries.

a distinct variabilityamong the classes shown
can be discerned,which is due to the influence
of the standard deviation,which,in turn, can
only be filteredout by using relative boundary
values. The theoreticalconsiderationsof this
paper aim at extracting and recognizingthe
pure texture features, which are independent
from the standarddeviation.For this end, the
relative boundaries appear to be the more
suitable medium.

sF5 SF
9

HF
5 IJF 9 unfiltered

training pixel e ;; pixel e ;; pixel
s ;; pixe 1

e i pixel e i
area no. no. no. no. no.

1 720 1937 '!993 I 11'7 soz s 720 149b l'i009 720 109'! 5009 n 2b9'! 4982
2 720 1708 )'.109 I 1319 59tl2 720 1b99 5977 720 130tl 5977 7t l 3120 5979
3 720 1U I 5bb5 I b 1490 5b79 720 1010 .,097 720 1514 5b97 7t l 3'!M 5722
4 720 271 881 b5 212 00., 720 275 877 720 207 877 ,, '!'lb ssa
5 720 100) b505 b5> 141b lb'!88 720 197b b'!20 720 13'<0 b'!20 78 3'!'!0 b51b
b 720 l})q 3951 b5b '.Ill 1391!1 720 141'< 39b7 720 9'<3 39b8 7tl'< re e a 3952
7 720 200b '!7tl9 b5b 151!5 1'!793 720 19tl1 l'<tl51 720 17tl2 14tl51 7tl'< 3075 '<tl32
tl 720 1>h4 4263 h'h '1'17 14243 720 14.44 l'!26tl 720 976 111268 784 2312 4300
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Figure 4: Number of dark spots depending upon
relative boundaries.
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Figure 5: Number of bright spots depending upon
absolute boundaries.
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Figure 6: Number of dark spots depending upon
absolute boundaries.

The parameter in Figures 7 and 8 "Average
Length of Bright and Dark Spots" displays flat
falling, not very varied and similar curves,
which cover the areas between 1 and 3 pixels of
average lengths. The course of the curve
indicates a relative independence of the
parameter fran the boundary distance to the
mean value. It is to be expected that with
increasing distance fran the mean value, i.e.
on the right end of the curve, the statistical
relevance decreases. The examples fro~ Figs. 7
and 8 are not separately reperesented for
absolute boundaries.

summerwheat

young oak
water surface

·;.·:-..:_-::..-.:::=--::.:..-: ~:::~~-----

Figure 7: Mean length of bright spots, numbered
in Pixel units, dependent upon
relative boundaries.

~wurnerwhea t

young oak

water surface

Figure 8: Mean length of dark spots, numbered
in Pixel units, dependent upon
relative boundaries.
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Figure 9: Relative portion of bright
spot pixels depending upon
relative boundaries.
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Fig. 10: Relative portion of dark
spot pixels depending upon
relative boundaries.
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Fig. 11: Relative portion of bright
spot pixels depending upon
absolute boundaries.
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Fig. 12: Relative portion of dark
spot pixels depending upon
absolute boundaries.

The mean course of the curve of the relative
of bright and dark spots correspondsto
the exponentialfunction (Figs. 9 and
relative portion of the spots of the
illustrated lies in its mean value

between 40 and 50%, while the portion
spots lies in its mean value between 50

portion
that of
10). The
examples
approx.
of dark

and 60% higher correspondingly.The curves of
the dark and the bright spots intersectroughly
at 1.2-fold standard deviation.The curves of
the relative boundaryvalues vary only slightly
in ccrnparisonto each other. Ha.vever, upon
using absolute boundaries, a pronounced
variability due to the influence of the
standard deviation can be seen (Figs. 11 and
12). This correspondsto the result in 5.1

4.2 Evaluationof filtered images

Filtering is one possibilityto eliminate image
noise. In the course of visual radar image
analyses it was derronstratedthat ground
structures and textures can be made visible by
means of filteringtechniques (1).

Table 2 shows the statisticalvalues for the
unfiltered original sections , as well as for
the filters used in this case. For statistical
evaluation of the filteredsections only that
part of an image line is used which is fully
covered by the filter.This is the reason why,
due to the type of filter used, sane marginal
pixels are not analysed and why smaller pixel
numbers are listed in the table for the
filtered image sections. After filtering,the
intensity mean value is essentiallymaintained.
Smaller deviations result by disregardingthe
unfiltered marginal areas. The standard
deviation is greatly reduced by filtering.This
is to be expected since individual"highlights"
above or below strongly influencethe standard
deviation. These extreme pixels are suppressed
by the filter to a larger or smallerdegree,
depending on the choice of filter length used.

Figures 13 to 16 show the graphic results of
parameter analyses of the mean length of the
bright spots in 5 training areas each. It can
be seen that the variabilityamong the classes
is higher in filter factor 9 than in filter
factor 5 and that it is greater in the block
filter than in the smocthing filter.Figure 17
shows an example of the parameter number of
bright spots for filter SF 9. Figure 18 shows
the course of the parameter relativeportion of
bright spots for filter BF 5 and figure 19
shows the parameter mean length of dark spots
for filter SF 9. Parameter analyseswhich aim
at finding a connection between parameter
values and object characteristics are a
necessary further step in the investigations.
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Figures 13 to 16: Mean length of bright spots
(number in pixels) depending upon relative
boundaries for 4 different filters.
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Fig. 17: Number of dark spots depending upon
relative boundaries for filter SF 9.
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Fig. 18: Relative portion of bright
spot pixels depending upon
relative boundaries for
filter BF 5.
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Fig. 19: Mean length of dark spots (numbered in
pixels) depending upon relative bound
aries for filter SF 9.

6. illNCLUSION

The investigationshave shown that radar images
have texture characteristics which can be
described by means of dark and bright spots and
which can be calculated digitally. These dark
and bright spots occur rrore frequently in
number and in relative portion in the vicinity
of the reflection intensity mean value.of an
image object. The parameter "mean length of
bright spots", however,appears evenly
distributed with its parameter values around
the mean within the intensity spectrum. The
texture parameters introduced in this paper
were tested on examples of varying land use
classes without submitting a statistical proof.
Investigations are not concluded yet but a
tendency can already be recognized, indicating
low separability for unfiltered radar images
using the evaluation methods herein described.
It was also shown that a separability exists
nonetheless due to the standard deviation.
Filtering methods were examined which were
supposed to eliminate the texture-overlaying
image noise. The ccrnparison of the resulting
curves of various land use classes lead to a
pronouncedly higher variability of the texture
parameter values in the case of filtered image
examples. Since only few examples have been
tested, no firm opinion can be expressed with
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regard to the texture characteristics of
individual land use classes.
This experiment is =ntinued at the Department
of Photograrrrretry and Remote Sensing,
University of Freiburg, with the aid of new
SAR-580 and SIR-B irn3.gedata with the aim of
describing possible texture parameters and
filter techniques for the purpose of land use
classifications.
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SAR IMAGE SEGMENTATION USING DIGITISED FIELD BOUNDARIES
FOR CROP MAPPING AND MONITORING APPLICATIONS
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ABSTRACT

Conventional image classification techniques as
used for the analysis of optical remote sensing
data operate on a pixel by pixel basis and are
therefore unsuited to the classification of
speckled SAR images. As one development of
special significance to agricultural applications,
this paper is concerned with the use of digitised
field boundary data to carry out segmentation of
images into fields which are then treated as
separate units for backscatter measurement and
image classification.

This technique is demonstrated with reference to
the analysis of SAR 580 data for the GB6 test
site in E. Anglia. Digitised field boundaries are
overlain on SAR 580 images geometrically corrected
to fit the UK National Grid. Image analysis
includes the preparation of images showing mean
backscatter values for individual fields, the
measurement of backscatter for different crop
types and the analysis of changes in backscatter
on different imaging dates. Relationships between
backscatter and ground data are examined in the
context of both crop mapping and monitoring crop
growth.

1. INTRODUCTION

Synthetic aperture radar images are characterised
by speckle, or noise, which is an inherent pro
duct of the radar imaging process. Variation in
SAR image pixel values of as much as 5 or 6 dBs
are common for uniform areas of ground and exten
sive averaging is required to obtain a reliable
value for the detected backscatter (Smit, 1978).
In order to develop fully the application of SAR
data it is important, therefore, that specialised
image analysis techniques are used. Conventional
techniques such as those used widely for the
classification of optical remote sensing images
cannot be used satisfactorily for the analysis of
speckled SAR images because they operate on a
pixel by pixel basis. Image segmentation techniques
which are used to subdivide images into areas
which can then be analysed as separate units are
of special interest in this context.

One approach to SAR image segmentation which is
currently receiving attention involves the use of
automated image smoothing, pixel bonding and edge

detection techniques to identify field and
woodland boundaries and obtain averaged back
scatter values (Quegan and Wright, 1984). The
development of an automated technique of this
type is clearly necessary if large area crop
classification of spaceborne SAR images is to be
developed, however, the techniques are complex
and high levels of accuracy have still to be
demonstrated.

An alternative approach whereby SAR image seg
mentation is achieved by using digitised field
boundary data is the subject of this paper. This
approach is based on the digitising of field
boundaries from large scale maps and the geometric
transformation of SAR images. Following the
registration of maps and images, techniques are
used for automated backscatter measurement and
the generation of segmented images.

Airborne SAR 580 images for the GB6 test site in
E. Anglia are used to demonstrate these techniques
and their relevance to crop mapping and crop
monitoring applications. Attention is focussed
on small images of a test area measuring
2.5 x 1.5 km which has a range of crops, including
winter and spring cereals, sugar beet and potatoes
which are the most important crops grown in the
region. Problems caused by the lack of SAR 580
data calibration and details of the method of
radiometric balancing used to compensate for
systematic variations in scene brightness have
been described as part of a previous paper
(Wooding, 1983). SAR 580 images used here are
radiometrically balanced XHH digitally processed
images for two dates in June 1981. The basic
processing which has been carried out has involved
3 x 3 smoothing to obtain amplitude images with
9 m pixels.

2. IMAGE TRANSFORMATION AND MAP DIGITISATION

In order that a SAR image and a digital map of
field boundaries can be registered, the image is
geometrically transformed to the same projection
as the map. Standard programmes developed for
the transformation of optical satellite data were
used for the geometric transformation of the
SAR 580 images. Unsystematic image distortion due
to aircraft movement means that the use of these
techniques is liable to more inaccuracies than
occur when working with satellite images. Never
theless, acceptable results of to within 2 pixel

Proc. EARSeL Workshop' .VficrO\rnre remote sensing applied 10 regetation'. Ams1erdu111, 10-12 December 1984
(ESA SP-227, January 1985).
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Figure 1. XHH image taken on 30 June

Figure 2. Field boundary map superimposed on
the XHH image taken on 30 June
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accuracy have been achieved using approximately
20 UK National Grid control points for SAR 580
images covering 10 km x 7 km. Resampling associ~
ated with the geometric correction involved
linear interpolation and the generation of 10 m
pixels. Fig 1 is an extract for the test area
taken from the geometrically corrected XHH image
dated 30 June 1981.

Field boundaries are shown on UK Ordnance Survey
maps at scales larger than 1:25,000. Adjustments
to these boundaries need to be made to.take
account of changes since the maps were produced
and any within-field cropping differences.
When working with relatively high resolution air
borne SAR images, these images themselves may be
used for this purpose. Aerial photography or
high resolution optical satellite data obtained
in the same growing season as the radar image
would seem to be important as additional sources
of information when low resolution spaceborne SAR
images are being studied.

Standard manual map digitising equipment and
associated software were used to produce a
digital map of field boundaries for the test area
using a 1:10,000 scale Ordnance Survey map.
This digital map was initially in vector format,
but then a vector to raster conversion was
carried out to produce a map with 10 m pixels
suitable for registering with the raster image
data. In producing this raster map, a field
boundary width of 5 pixels was chosen. This was
useful both for covering up small inaccuracies in
the geometric registration of the image with the
map, and for removing the headlands; the edges of
fields which often have more variable crop growth.
Fig 2 shows the field boundary map superimposed
on the SAR image.

3. AUTOMATED FIELD BACKSCATTER
MEASUREMENTS AND GENERATION

OF SEGMENTED IMAGES

Image analysis software at the UK National Remote
Sensing Centre has been developed to enable mean
and standard deviation digital values to be cal
caulted for individual fields. Fields are given
digital values on the field boundary map which is
then used as a mask overlying the SAR image to
calculate the number of pixels and the mean and
standard deviation of pixel values, or amplitude
values, falling within the area of each field.

Mean and standard deviation amplitude values were
used to calculate a measure of power (I) for each
field in the test area, as below:

I = (mean)' + (std)' ( 1)

This was followed by the calculation of backscatter
values for each field in the form of the
Backscatter coefficient (a0) relative to the field
with the maximum power (I0),using the formula,

a 0 (dB) 10 loglO (f)
0

(2)

The field with the highest backscatter, therefore,
has a backscatter of 0 dBs. Other fields have
negative values in dBs relative to this maximum.

Segmented images are generated by feeding field
backscatter values into the image to replace the
speckle by a uniform density value. This is
illustrated for the test area in Fig 3, where
25 density levels for each dB have been used to
accommodate the range of 0 to -8.5 dB within
a total of 256 levels.

4. CROP MAPPING AND CROP MONITORING

Automated backscatter measurement for individual
fields and the preparation of segmented images
have been demonstrated based on the use of digital
maps of field boundaries. The use of digital maps
of sample areas, such as areas used for ground
data collection, is another alternative which
would provide a similar basis for backscatter
measurement. In considering the application and
value of these techniques for crop studies it is
important to distinguish between crop mapping and
crop monitoring applications. While it may be
impractical to consider the use of digitised
field boundaries for operational large area crop
mapping, the use of these techniques for crop
mapping of sample areas,or for monitoring crop
growth in sample fields distributed over a large
area,can both be contemplated. Moreover, these
techniques would seem to be particularly appro
priate for experimental studies to investigate
relationships between radar backscatter and ground
conditions.

The potential of radar for crop mapping has been
demonstrated by work carried out in
The Netherlands, where a crop classification
accuracy of 90% was achieved using airborne SLAR
images taken on three dates in 1980; 10 June,
11 July and 12 August (Hoogeboom, 1982). The
selection of optimum flying times has been found
to be important and this was based on the analysis
of temporal curves for the backscatter of different
crop types obtained from ground based scatterometer
work.

The two flying dates on which SAR 580 data were
collected for the GB6 test site were only two
weeks apart, on 16 June and 30 June, and so
based on the Dutch experience, the images are far
from being optimally timed for crop mapping
purposes. Examination of the segmented image for
30 June (Fig 3) in conjunction with a crop map
(Fig 4) reveals a tendency for sugar beet and
potato crops to have higher backscatter than the
cereal crops and grass, and carrots to have
the lowest backscatter values of around -8 dBs.
A plot of these backscatter values for 30 June
against those measured from the XHH image for
16 June is presented in Fig 5. This indicates
that the majority of crops fall within a much
narrower range of dBs on the first date, approxi
mately 3 dBs as against 6 dBs on the 30 June.
It further illustrates the relatively large
variability in backscatter of different crops,
although values for both dates can be seen to
follow a similar overall pattern.

This variability in backscatter is caused by a
particularly large range in growth stage for
most of the crops during this period of the
growing season. For example, sugar beet crop
cover varied between approximately 10% and 65%
within the test area on 16 June and between 20%
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Figure 3. Segmented image for 30 June

Figure 4. Crop map
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and 85% on 30 June. Crops such as carrots and
field beans were only just emerging at this time
and in most cases the backscatter is essentially
that of bare soil. Cereal crops had more uni
formity in terms of growth stage at this time and
this is reflected in more consistency, within
2 dBs on both dates, in the backscatter of winter
wheat, spring wheat and spring barley. That
winter barley crops have a large range of values
is explained by the susceptibility of this crop
to wind damage and the fact that crop roughness
was dramatically increased in some fields.

Although field backscatter measurements and seg
mented images have been usefully employed in this
analysis, the results do indicate the limited
value of images taken at this time for crop
mapping purposes.

The potential for radar crop monitoring is
dependent upon the existence of relationships
between crop growth parameters and radar back
scatter. Results obtained from the analysis of
backscatter measurements made for 1 hectare
sample areas of crop which had been field sampled
indicate that such relationships, at least to
a limited extent, do exist for sugar beet and
potato crops (Wooding, 1983). For example, a
correlation with crop cover and associated crop
growth parameters was found for sugar beet crops
within the 5% to 65% cover crop range. However,
considerably more work is required in this area
fully to evaluate different wavebands and polar
isations, temporal factors and a wide range of
crops in order to establish what the potential
really is.

Change detection is a relatively simple operation
using segmented radar images. This is illustrated
by Fig 6 which has been obtained by subtracting
the XHH segmented image for 16 June from that
taken on 30 June. With the crop type annotation
it can be seen clearly that the largest differences
in backscatter, shown by the lightest tones, are
associated mainly with the sugar beet and potato
crops. It was these crops which were growing most
strongly during this two-week period. Most of
the cereal crops have dark tones indicative of
little change. The use of such change detection
techniques undoubtedly has an important role to
play both, in developing our understanding of
relationships between crop growth parameters and
radar backscatter, and in developing methods of
crop monitoring.

5. CONCLUSIONS

The integration of digital map data with image
data is of widespread importance for the develop
ment of applications of remote sensing. In this
paper the usefulness of digital maps of field
boundaries to provide a basis for the segmentation
of SAR images has been demonstrated. Image seg
mentation is an essential first step for the
analysis of speckled SAR images for crop mapping
and crop monitoring purposes.

This approach to image segmentation may be compared
with the alternative approach involving image
smoothing and edge enhancement. Advantages are
the relative simplicity of the techniques which
are used, the high levels of accuracy which can be
achieved regardless largely of image quality, and
the flexibility which is available to subdivide an
image into units which do not possess definite

boundaries. These may be within-field sample
areas, fields which are poorly depicted on space
borne images, or any other meaningful ground units.
The main disadvantages are the necessity for images
to be geometrically corrected, and the time
involved in preparing the field boundary maps.
The approach which has been demonstrated is seen,
therefore, as being particularly valuable for
experimental work, in general, and for future
operational crop monitoring. The Ordnance Survey
have long term plans to digitise fully the
preparation of its maps and this could eventually
be an important source of field boundary maps for
large area crop mapping.

Future developments of the techniques which are
planned include a facility to edit field
boundaries on a display of the field boundary map
superimposed on the image, and the development
of a segmented image database system fully to
exploit and extend the analysis possibilities
that exist after image segmentation.
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ABSTRACT

Texture is considered to be an imnortant discrimi
nating tool in forest type classification. This is
emohasized by the fact that differences and tempo
ral dynamics in radar backscatter level in most
forests are relatively small. Experiments were
oerformed in order to elucidate the usefulness and
behaviour of statistical texture measures derived
from gray level co-occurence and gray level dif
ference counts. As a test case a fine resolution
SLAR image was choosen of the Speulder forest at
the Veluwe. It features stands of tree species in
the pole ohase together with mature beech forests
occuring in various spatial structures related to
canopy roughness. The proposed measures reveal the
ootential to discriminate these forest structures
well. An integral classification approach for
forests is suggested by the results of this ana
lysis.

Keywords: active microwave remote sensing, forest
texture analysis, forest classification.

1. INTRODUCTION

Classification results of Dutch forests using X
band SLAR imagery, obtained during the 1982.11983
measurement campaign, have been reported before
(ref. 1).

It was shown that a multitemporal and monospectral
(X-band) anproach, e.g. one image taken in winter
and one in summer, is likely to yield good results
of main species classification. Simulated two
dimensional classifications yielded overall error
fractions ranging from 10 - 16/,in the Roggebot
zand test area and 14 - 28% at the Veluwe test
area. However these results are only indicative.
They are valid under the assumption of a priori
knowledge of boundaries, the exclusion of small
stands, stands with strip cutting and stands with
a mixed species composition and the absence of
transition zones. In the case of the Roggebotzand
test area, which is a young forest in the pole
ohase, with relatively large and homogeneous
stands, automatic segmentation procedures can be
applied, A few tests with multi-dimensional Snlit
& Merge (ref. 2) were successful. At the Veluwe
test area this technique would largely fail because
of the abundance of small oarcels, parcels with
strip cutting and the presence of mature beech

forests with coarse textures. Since nresence of
different texture classes and transition zones is
characteristic for most natural forests more ad
vanced techniques for the automatization of clas
sification are desirable. It will be shown that
use of image texture has great potentials.

Based on the gained experiences of the last cam
paign a new series of experiments were executed
during the summer of 1984 for the nurnose of fur
ther (physical) modelling of radar backscatter of
forests. (a) A flying scatterometer system was
employed yielding accurate C-band data, both VV
and HH-polarized, of forest parcels at 15, 30, 45,
60 and 75 degrees incidence angle. (b) The Dutch
X-band SLAR was emnloyed with an increased range
resolution (7.5 m instead of 15 m) yielding
imagery with fine resolution, very useful for tex
ture analysis of forests. (c) And with the SLAR an
external calibration experiment using corner re
flectors was performed in order to determine ab
solute radar backscatter levels of forest stands.
Some huge corner reflectors were placed under the
forest canony yielding data on the attenuation of
X-band microwaves in the canopy. Lower bounds for
one-way attenuation factors of noplar and oak
canooies could be determined.

The measurement results have not all been analysed
yet. In this paner only the first results of the
texture analysis shall be presented.

Textu~emay be viewed as a global pattern arising
from a deterministic or random repetition of local
subpatterns or orimitives with or without a pre
ferred direction.
It is one of the characteristics useful in discri
minating objects or regions of interest in an
image.
On the other hand textural phenomena are useful in
the characterization and identification of nhy
sical objects like forests (refs. 3,4).
Therefore, in remote sensing, it is of interest to
extract from remotely sensed data information on
the nhysical texture. lvhich can be done in the
case of SLR-imagery by (automized) interpretation
of image tone, image texture and radar speckle.

In this naoer only the relation image texture -
nhysical texture is dealt with. It anplies to

Proc. EA RSeL vVorkslw(J '.Hicrmrnre remote srnsing ll(Jplied to l'rgetu1io11'. A111s1erdu111,I0-12 December 1984
(ESA SP-227. Junuorv 1985).
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physical subpatterns with spatial dimensions
greater then or equal to the spatial resolution of
the imaging system. Whereas image tone and radar
speckle implicitly can give information about smal
ler physical subpatterns.

The method discussed here only deals with the em
pirical relation between image texture and phy
sical texture for this case. In order to arrive
at general applicable (physical) models for the
relation image texture - physical texture the
effect of the choice of sensor parameters, the
imaging geometry and radar backscatter models
should be included. This is beyond the scope of
this paper. A pragmatic procedure is proposed to
get insight into the feasability of texture trans
formations as an aid in automized classification
of forests.

Many approaches and models to derive textural
phenomena out of digitized images have been used
e.g. Fast Fourier Transforms (FFT), gray level run
lengths, solit spectrum orocessing, variance fil
ters, gray level co-occurence (GLCO) matrices,
gray level difference (GLD) vectors etc. (refs.
5-9). In this study analysis has only been done
with GLCO and GLD, since these aoproaches have
been found among the most useful for analysing
the content of a whole variety of remotely sensed
imagery (refs. 10-12). However there is no reason
to suggest that the other approaches might not
have given useful results for this case.

2. THE 'DRIEERSINGELS' BEECH FOREST TEST AREA

A part of the Speulder forest; the 'Drieersingels'
beech forest complex and its surroundings, is se
lected as a test area for texture analysis. It
features several large stands of old beech forest
with distinct structures of tree crown canopy and
one large stand of oak forest. Further it com
prises small stands of Douglas fir, Scots pine,
yound beech, larch, agricultural sites and stands
with strip cutting and clear cut areas. The mature
beech forests can be differentiated, for the pur
pose of this analysis, in three major classes
according to the tree crown canooy structure of
its eco-units.

In the mature beech forests structure differences
emanate mainly from forest management. The first
structure (henceforth referred to as type 1) is
characterized by a smooth physical texture of
the canopy as can be perceived in the aerial
ohotogranh (fig. 1). The second structure (type 2)
is characterized by a rough texture of the canopy.
The crown coverage is in the order of 60 - 70%
whereas type 1 has a crown coverage of almost 100%.
The third structure (type 3) has a smooth texture
like tyoe 1, has a crown coverage of 60 - 70%
like tyoe 2, but has large (30 x 30 meter) gaps
in the canony which are small clear cut areas
created for forest regeneration experiments.

A more detailed division incorporating crown dia
meters, mixing percentages with other tree spe
cies like birch and oak, undulations of the canopy,
emerging trees, crown shapes etc. can easily be
made by use of stereoscopic pairs of aerial photo
graphs with a large scale. But this refinement
will not be used in the initial approach as des
cribed here.

3. DEFINITION OF TEXTURAL FEATURES

In this study textural phenomena are described with
statistical measures derived from the elements of
the GLCO-matrix and GLD-vector.The elements of the
gray level co-occurrence matrix (GLCO-matrix) con
tain the relative frequencies of pixel pairs, in
the oicture segment of interest, characterized by
their mutual distance and gray level values. The
i,j-th entry in the GLCO-matrix p(i,j) is defined
as the relative frequency of pixel pairs, for each
possible pixel pair realization in the picture
segment, for which the source pixel with gray level
i is at position (x, y) and the target pixel with
gray level j is at position (x, y)+o (with a the
so-called displacement vector).

The elements of the gray level difference vector
(GLD-vector) contain the relative frequencies of
pixel pairs characterized by their mutual distance
and absolute gray level difference. The i-th entry
in the vector v(i) is defined as the relative fre
quency of pixel pairs, for each possible pixel
pair realization in the uicture segment, for which
the source pixel with gray level k is at position
(x,y) and the target oixel with gray level k+(i-1)
or k-(i-1) is at oosition (x,y)+o.

Thus for the GLCO appraoch as well as for the GLD
aoproach the results are dependant on a i.e. dis
placement length l<ll and displacement direction ¢.

If Ng is the number of gray levels in the digitized
image then some of the most commonly used textural
features extracted from the GLCO-matrix, also being
the ones used in this analysis, are defined as:

I) Angular Second Moment (GLCO-ASM) :
Ng Ng 2
l: I: o(i,j)
i= I j=I

2) Contrast (GLCO-CONT):
Ng Ng 2
l: I: o(i,j) * (i-j)
i= I .i= I

3) Correlation (GLCO-COR):

Ng Ng • • (i-mv) (1'-mv)l: I: 0(1,j) * ----•-- --~
Sx Sy

mx, my, Sx and Sy stand for the mean values and
standard deviations of the row and column posi
tions of the counts in the matrix.

4) Entropy (GLCO-ENT):
Ng Ng
-r r o(i,j) * log (p(i,j))
i=I j=I

5) Inverse
Ng Ng
l. I:
i= I j= I

i,,lj

Difference Moment (GLCO-IDM):

(. .) I
p 1 J * --------------' I + (i-j) (i-j)

6) Maximum Probability (GLCO-MAX PROB):
max o(i,j)
i,j

Some of the commonly used textural features ex
tracted from the GLD-vector, also being the ones
used in this analysis, are



102 D.H.HOEKMAN

7) Angular Second Moment (GLD-ASM):
Ng 2
l: v(i)
i=I

8) Entrooy (GLD-ENT) :
Ng

v(i) * log(v(i))-l:
i=I

9) Mean (GLD-MEAN):
Ng
l: (i-1) * v(i)
i= I

In order to add to statistical reliability the gam
ma values in the (logarithmically scaled) SLAR
image were rescaled from the original 0.2 dB per
gray level to 0.4 dB ner gray level.

Since some values of the implemented textural
features depend on the number of gray levels taken
into account and in order to get easy manageable
figures some normalizations were made so that new
values for each feature range from 0 to 100 except
for GLCO-COR which ranges from -100 to 100. It
should be noted that these ranges are based on
extreme conditions of the distributions of the
probabilities in the GLCO-matrix and GLD-vector.
It can be nroved however that for some of the dis
tributions no corresponding subimage can be con
structed. So in fact the range is smaller for some
of the features.

The GLCO-matrix and the GLD-vector and consequently
values of textural features depend on the displace
ment vector, i.e. disolacement length and displace
ment direction. Deoendency on displacement direc
tion however is not related to texture. Instead of
choosing another direction the image could as well
be rotated; the texture remains the same, the
values of textural features don't. To avoid this
problem directional averaging of values of tex
tural features in all directions is needed. It
follows from the mathematical description of the
9 features given here that a displacement a yields
the same result as a displacement - o therefore it
suffices to average over values of textural featu
res corresoonding to disolacement directions ran
ging from 0 - 180 degrees. To preserve the rela
tion with ohysical distances as close as nossible
the displacement vectors corresponding with the 4
disolacement lengths implemented were choosen as
illustrated in the figure below.

4

4

3 3

4 3 4

2 2 2

2 2

2 3x

Fig. 2. Discrete Euclidian distance or
length from source oixel (x) to target
the displacement vectors used for this
shown.

disolacement
oixel. Only
analysis ate

Since the 9 features described here have been cal
culated for 4 disolacement lengths we eventually

arrive at 36 textural features, which all describe
the textural ohenomena in an indicated region or
subimage in a somewhat different way. The measures
in general showed to be strongly correlated. Upon
inspecting the various measure definitions this
is quite obvious. This phenomenum is elaborated
by the theory of generalized texture measures (ref.
13). As a result a combination of I, 2 or 3 of
these features will do in practice as well as all
36 jointly to describe the textural content of a
particular scene, as will be shown later on.

4. DEFINITION OF ANALYSIS PROCEDURES

It is well-known that two general ways exist to
extract textural information of a given scene in
a quantitative way. The first makes use of a
oriori knowledge of the boundaries of objects, the
second doesn't. In the first aporoach pre-defined
regions (corresponding with picture segments) will
be classified based on textural and spectral
features of that region. This approach has proved
to be successful for landuse classification on
Landsat-MSS images (ref. 14).

In the second aoproach regions are not (yet) de
fined. Classification and/or segmentation will
then be based on the soectral and local textural
characteristics assigned to individual pixels. A
texture characteristic of a oixel is defined as
the value of a textural feature calculated in a
small rectangular area of which this ni.xel is the
centre nixel. Ry scanning a small rectangular
window (e.g. II x II pixels) across the image,
textural characteristics can be assigned to each
Pixel in the scene, exceot for small strins along
the border of the image. The resulting image is
then called texture transformed.

Use of texture transforms allready has been nroven
useful in nanchromatic aerial ohotograohy (ref. IS)
and Land sa t+ltS'S (refs. 16,13).

To account for both conceots two analysis oroce
dures: the Gross Texture Analysis (or GTA) and the
Moving Window Analysis (or t•:WA)will be defined
here. Both nrocedures make use of large polygonally
shaped regions, consisting of only one physical
texture class, indicated in the image by a human
observer (but this can also be done autom~zed e.g.
by using an expert system containing maps of the
region of interest). The assumption of homogeneity
of nhysical texture in these 'training areas' is
based on ground truth information. The regions
should be made as large as necessary to ensure the
statistical reliability of the distribution of the
orobabilities in GLCO-matrix and GLD-vector.
The first nrocedure, named GTA or Gross Texture
Analysis, calculates values of textural features in
this large region. Since the number of possible
oixel nairs is substantial and the distribution is
characteristic for the texture class under re
search, the results are accurate.
The second nrocedure, named ''HA or Moving 'Jindow
Analysis, calculates textural values in a small
rectangular area (or snatial window) inside the
indicated (large) region. Since the number of
nossible oixel nairs is small the results can be
non-accurate. '."hiscalculation is reoeated how
ever for all nossible snatial window oositions in
the region yielding, for a given window size, the
mean feature values and the standard deviations of
the feature values. The number of soatial window
realizations should be taken large to ensure re-
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Fig. 3 (left column at the top): Results of GTA
for 6 large areas renresenting the 6 major texture
classes in a two-dimensional textural _feature
space.

Fig. 4 (right column at the ton): Results of MWA
for 6 large areas representing the 6 major texture
classes in a two-dimensional textural feature
space. The bars indicate the +/- one standard de
viation interval of the textural values for each
class. The window size is 15 x 15 nixels.

Fig. 5 (right column in the middle): Results of
!'WA for window size II.

Fig. 6 (right column at the foot): Results of HWA
for window size 7.

liable results. The results of this procedure are
very helpful in analysing the usefulness of texture
transforms.

5. DEFINITION OF PHYSICAL TEXTURE CLASSES

Based on ground truth information 14 relatively
large regions with homogeneous physical texture
properties were indicated. After an initial GTA
performed on these regions 6 major texture classes
could be identified in the image.

These major texture classes in the image repre
sent the following physical textures:

1) Type 1 beech forest (for descriptions of type I,
2 and 3 beech forest see chapter 3.2).

2) Type 2 beech forest.
3) Type 3 beech forest.
P) Young forest in the so-called pole phase, but

also mature beech forest with a very smooth
physical texture.

M) Mixed areas e.g. beech forest with small stands
of pine or Douglas fir. Mixtures of very small
stand in the pole phase (with different radar
backscatter properties).

E) (Edges) Strips of increased radar backscatter
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Fig. 7 (right column at the top): The mean values
of GLCO-CONT(3) for the 6 texture classes as a
function of window size. The results of the GTA
(value for whole region) are indicated with
crosses.

Fig. 8 (right column irtthe middle): The mean
values of GLCO-COR(I) for the 6 texture classes
as a function of window size. The results of the
GTA (value for whole region) are indicated with
crosses.

Fig. 9 (right column at the foot): The mean values
of GLD-ENT(4) for the 6 texture classes as a
function of window size. The results of the GTA
(value for whole region) are indicated with
crosses.

(due to layover) and strip of radar shadow re
sulting from boundaries between parcels with
relevant height differences. Formally speaking
this is not a real texture since there is no
repetition of subpatterns. Strip cutting is
sometimes falling into this class and sometimes
in class 'M' depending on the geometry of the
strips and the geometry of radar imaging.

These classes were found to be characteristic for
the test area. Of course also other texture clas
ses are present in the image but they appear less
frequent or correspond with transition zones be
tween e.g. type I and type 2 beech forest.

6. THE OPTIMIZATION OF FEATURE CHOICE AND
WINDOW SIZE

The analysis was continued with 6 large training
samples of physical textures, each representing
one of the major texture classes found in the
image. Therefore results should be interpreted
with care since they are only related to these 6
samples. For these areas a MWA with sizes S, 7,
9, II, 13 and IS and a GTA were performed. With
the aid of a search program the features with the
best discriminating power (for these 6 classes and
window size 9, 11 and 13) were found to be GLCO
Correlation at displacement length I (GLCO-COR(l))
and GLD-Entropy at displacement length 4 (GLD-
ENT (4)).

The search was continued in order to find a second
best feature in combination with the first one. It
yielded four combinations, namely:

GLCO-COR(I) with GLCO-CONT(3),
GLCO-COR(l) with GLCO-COR(4),
GLD-ENT(4) with GLCO-COR(I),

and GLD-ENT(4) with GLCO-COR(4).

Further combinations with third best features
didn't imnrove the discriminating power mentionable.

A lot of experience was gained in the sometimes
capricious behaviour of these measures. Some of
the most relevant results are summarized in the
next figures. Figure 3 shows the texture values ob
tained with GTA for the 6 classes under research in
a two-dimensional textural feature space. Figures
4-6 show the texture values obtained with MWA for
different window sizes in the same two-dimensional
feature space. The bars indicate the +/- I stan-
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Fig. 10 (right column at the top): Mean standard
deviation of the 6 texture classes under research
as a function of window size for the measure GLCO
COR( I).

Fig. II (right column in the middle): Mean stan
dard deviation of the 6 texture classes under re
search as a function of window size for the
measure GLD-ENT(4).

Fig. 12 (right column at the foot): Results of
MWA for window size 11 in a two-dimensional feature
soace. This combination of features differs from
the one in fig. 5.

dard deviation interval. Figures 7-9 show the mean
values for a specific feature for the 6 classes as
a function of region size i.e. for the whole region
(GTA) and for several window sizes. Figures 10--1 I
show the mean standard deviation of the 6 classes
for a specific textural feature as a function of
window size. Figure 12 is the same as figure 5 but
for another combination of best features.
Upon considering the outcome of the search f0r
best features and their mathematical expressions,
a few facts become apparant with respect to tex
tural phenomena observable in the different major
texture classes. GLCO-COR(l) is related to coarse
ness. It is sensitive to the size of clusters of
more or less the same gray level and the contrast
between these clusters. An image cluster size
corresponds with sizes of shapes found in the
physical forest canopy. GLCO-COR(4) acts as the
inverse of GLCO-COR(I). This can be explained by
the ratio of spatial dimensions of these clusters
and the pixel size. However when the coarseness is
very high e.g. at edges COR(4) acts like COR(I)
and as a result the combination of COR(I) and
COR(4) is useful in discriminating the edges (see
figure 12).
GLD-ENT(4) was found superior to GLCO-ENT(4). This
is explained by the lower sta[istical reliability
of GLCO-ENT. GLD-ENT(4) is related to the variance
of the gray level distribution. The same is true
for GLCO-CONT(3) as can be seen in table I and
the figures.

TABLE I. Statistics of gray level distributions of
the 6 selected areas.

class s.d. of gamma
(dB)

I.00
I .04
I. 42
I.62
I .96

(P)
(I)
(2)
(M)
(3)

mean gamma
(dB rel)

0.00
-0.66
-0. 18
-0.88
-I .04

(E) -0.90 I.66

~hese data indicate that other approaches e.g. a
combination of an edge detector, a variance filter
and GLCO-COR might be a good alternative. It was
found, for this case, that GLCO-COR combined with
a variance filter has a slightly better perfor
mance with respect to classification accuracy then
GLCO-COR combined with GLCO-CONT(3) or GLD-ENT(4).

It can be noticed from the figures 7-9 that the
mean values of the features are denendant on
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Vig. 13 (right column at the ton): X-band SLAR
image of the test area, recorded at August 14th
1984, with nixel size 7.5 x 7.5 m, ground range
resolution -9 m, azimuthal resolution -10 m and
an angular range of 22 (right) to 32 (left) degrees
grazing angle. In each Pixel an averaging is ner
formed over 15 indePendant samnles. The size of
the area shown is -1600 x 1250 meters.

Figs. 14-16 (left column): Texture transforms of
the SLAR image in fig. 13 made with GLCO-COR(l),
GLCO-COR(4) and GLD-ENT(4) and window size 11.

window size but not for all features in the same
way. GLCO-CONT(3) doesn't show relevant depen
dancy for these window sizes, GLCO-COR(l) shows
a gentle decrease of mean values with decreasing
window size, while GLD-ENT(4) shows a significant
decrease. For this last feature the difference be
tween the mean values for the 6 classes also de
creasesdramatically. This can be exnlained out
of the mathematical formulation of this measure
and the small number of pixel pairs at small win
dow sizes.
The standard deviations of the features are also
dependant on window size. The general trend is an
increasing standard deviation with decreasing
window size as is shown in figures 10 and 11.
If tex uo-a]. reeol.ui.ion of a specific texture
measure is defined as the mean of standard de
viations of the feature values, obtained from
cnJA, for all textural classes under research. And
if the spatial resolution in the texture performed
image is defined as being equal to the window
size, then geometric resolution in the texture
transformed image is not exchangeable for textural
resolution since the product window size ~ mean
standard deviation is not a constant but increases
significantlv with decreasing window size. It is
therefore advantageous to start from window sizes
as large as acceptable instead of starting from
small window sizes (for better spatial resolution)
and performing a spatial averaging in the texture
transformed image afterwards.
There are exceptions. For GLD-ENT(4) the oroduct
mentioned above decreases again with very small
window sizes. However since differences in mean
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values almost disappear it is again not advanta
geous to apply small window sizes.

7. RESULTS OF CLASSIFICATION BY TEXTURE

The results are promising. As can be seen e.g. in
the figures 5 and 12, combinations of 2 out of the
initial set of 36 features and a window size of I I
show the potential to resolve textural classes in
the SLAR-image. A few texture transformed images
and texture based classifications were made with a
window size of 11. This choice has been a pragmatic
one. Since textural resolution and spatial resolu
tion in a texture transformed image were shown not
to be exchangeable it is not advantageous to choose
a small window size. However since most stand
sizes or areas of beech eco-units in this forest
are not large, window sizes cannot be choosen
larger than about I I x I I in order to avoid too
many spatial window realizations containing phy
sical borders.

Texture transforms of the SLAR image (fig. 13) are
shown in figures 14-16.
Classifications of the scene based on two texture
transforms resulted in coloured texture maps (not
incorporated in this publication). The results were
good, textural classes found by classification
rules based on two textural features (e.g. GLCO
COR( I) and GLCO-CONT(3)) agreed well with the
ground truth.
Interesting phenomena were observed in the classi
fication results.
(I) An area within an extended oak forest in the
pole phase, class 'P', showed up in the classifi
cation as class 'M'. This could-only be explained
after re-examining this oak forest by stereoscopic
viewing of low altitude aerial photograohs. The
part of the area classified as class 'M' appeared
to contain clusters of emerging birches~
(2) Sometimes small areas in beech 'type 3' forest
showed uo as beech 'type I' forest. This can be
explained by the locally absence of the large gaps
in the smooth canopy and the spatial dimensions of
the window applied.
(3) If a pixel is labeled with the texture charac
teristic 'pole', one can be highly confident about
the fact that the whole local region contained in
the corresponding spatial window, of which the
characteristic is extracted from, is forest in the
pole phase with homogeneous backscattering proper
ties (for this incidence angle and time). Thus it
contains a single species with one stand age, un
less it is a mixture of different species and/or
ages with identical backscatter properties and no
stand height differences. The latter facts can be
verified of course by inspecting the texture cha
racteristics multitemporal or multiangual. The
same properties could be noticed for the Pixels
labeled with the texture characteristic 'type I'.
It can be explained out of the fact that these
texture classes are among the smoothest and mixing
with other texture classes always results in
'rougher' characteristics. This is an important
property of which can be taken advantage of in
classification as will be discussed later on.
(4) The texture class 'pole' contains several phy
sical texture classes of forests in the nole phase
but also seedlings and saplings and even mature
forests with a very smooth canopy. As a consequence
of the spatial resolution resolution of the SLAR
ima8ing system c-10 x 10 m) this differentiation
could not be made when this kind of texture ana
lysis is applied.

(5) In general the other texture classes: 'type 2',
'type 3', 'mixed' and 'edges' were also classified
well. But, as could be expected, in small textural
regions and at boundaries of textural regions the
results were disturbed. This is a consequence of
the low spatial resolution of texture transforms.
(6) While interpreting the results of classifica
tion by texture using large scale aerial photogra
phy as ground truth it is tempting to extrapolate
the newly gained insights to other types of
forests. This was done with the aid of (stereo)
photo interpretation keys of natural forest types
(ref. 17) and other ground truth information (ref.
4). From their spatial structures it could readily
be concluded that the use of texture transforms as
Proposed here together with fine resolution SLAR
imagery as can be obtained from the Dutch SLAR will
result in the potential of discriminating a whole
set of forest texture classes. Therefore this
technique can be useful in classifying forest types
and the diverse stages of growth in eco-unit
development.

8. A CLASSIFICATION STRATEGY

It should be noted that though results are quite
satisfactory, the procedure can be improved. It
was possible to determine optimal spatial window
sizes for the texture transforms and to select
optimal combinations of textural features. But
these were selected from a set of 36 only con
taining features derived from gray level co-occur
rence and gray level difference at displacement
lengths not exceeding 4. Other textural features
might do better. The behaviour of the measures at
boundaries of textural classes has not been taken
into account. Also from the sensors ooint of view
some critical notes should be made. Ootimal sensor
parameter choice and optimal imaging geometry were
not known for this case. To solve this problem
in a general way there is need for accurate phy
sical models describing the radar backscattering
of forests and models that describe the structure
and architecture of forest components. That also
implies of course that optimal and general appli
cable texture measures can be derived theoretically
from these models.

The obtained new insights in classification indi
cate that an integral approach is recommendable,
combining several image processing techniques and
Physical models. In the case of the Roggebotzand
test area the classification procedure is simple
and straightforward. When no a nriori knowledge of
boundaries is at hand or is inputted by a human
observer, automized segmentation Procedures like
Multitemporal Split & Merge (ref. 2) will do re
sonably well. Since the whole forest is in the
pole Phase and stands are homogeneous there is no
textural information concerning subpatterns greater
then or equal to the nixel size. Therefore this
kind of texture analysis will not yield vital in
formation.
In the case of the Veluwe.test area the matter is
more comnlicated. The area consists of stands in
the nole nhase ranging in size from very small to
large and it contains areas with mature beech
forests. Automized segmentation nrocedures not in
cornorating texture will largely fail.
In contrast to the Roggebotzand area were classifi
cation can be based on models using multitemPoral
snectral information averaged over picture segments
the Veluwe test area can only be classified on a
Pixel base. However when use is made of suitable
texture transforms a more sonhisticated approach
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can be followed. It was found that pixels with the
textural characteristics 'oole' or 'tyoe I' are
very likely to be located in the centre of a local
region of the same species. Then the centre oixel
can be classified based on models using snectral
and temporal information of a small local region.
The soeckle oroblem is greatly avoided throup,h
(weighted) averaging over that local region. As a
result a oart of the scene can be classified quite
accurate. The remaining oart of the scene consis
ting of oixels characterized as 'non smooth' can
be classified based on models using these charac
teristics together with local multitemnoral soec
tral information. But since accurate soectral in
formation from a region with rough texture (and
sneckle) can only be obtained through an adequate
averaging over a local region and texture charac
teristics are always based on a local region it
imolies that this oart of the scene is always, in
herently to its nature, classified with low sna
tial resolution.
Aoolication of edge detectors might locally imorove
the results somewhat since averaging and extraction
of textural features across distinct boundaries can
be avoided (e.g. artificial boundaries like stand
borders or natural boundaries like rivers).
In transition zones, characteristic for most natu
ral forests, automized segmentations (like Split &
Merge) cannot be aoplied in contrast with methods
based on local texture characteristics and locally
averaged spectral characteristics.

9. CONCLUSIONS

Texture analysis was found to be a oromising tool
in the classification of forests in SLAR images.
Some statistical texture measures based on GLCO
and GLD in combination with ontimized disolacement
lengths and window sizes can deliver useful tex
ture transforms. Esnecially GLCO-Correlation nroved
to be successful. This could be exolained out of
the dimensions of ohysical structures in the
canony, the spatial resolution of the imaging
system and the disnlacement length. Measures like
GLCO-Contrast or GLD-Entrony at disnlacement length
3 or 4 were found useful. For the texture classes
under research thev were related to the variance
of the gray level distribution. This suggests that
alternative apnroaches are feasible. It was found
e.g. that the combination of GLCO-COR with variance
has good notentials.
Textural resolution was found to be non-exchange
able for spatial resolution in texture transformed
images. As a result it is always advantageous to
start from large spatial window sizes directly
instead of starting from small window sizes (for a
better spatial resolution) and oerforming a snatial
averaging in the texture transformed image after
wards.
By means of suitable texture transformed SLAR
images the major forest texture classes in the
scene, with the exceotion of small and bounded
textural regions, could be classified well.
The method is by no means inferior to human visual
oerception with regard to the quantification of
several relevant textural phenomena. This can be
exnlained by the fact that automized nrocedures
can fully and objectively incornorate the dynamic
range of radar backscatter levels in the digitized
image.
The newest insights clearly suggest that a classi
fication strategy is recommendable in which local
textural characteristics and soectral characteris
tics as well as line detection and segmentation

algorithms are the major components. Physical
models of radar backscattering and models that des
cribe the nhysical structure of forest components
must be developed further in order to arrive at
general aonlicable (optimized) texture measures and
ootimized sensor Parameter choice and imaging geo
metry with resnect to classification accuracy.
In extrapolating the results to natural forests by
means of ground truth information it was obvious
that the SLAR system used, with fine radiometric
and geometric resolution, has great classification
potentials and can be useful in monitoring the di
verse stages of growth in eco-unit development.
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MICROWAVE REMOTE SENSING OF AGRICULTURAL CROPS IN CANADA

J. Cihlar, R.J. Brown, and B. Guindon

Canada Centre for Remote Sensing
Ottawa, Ontario

ABSTRACT

The objective of this paper is to review
current knowledge concerning synthetic aperture
radar applications to agriculture in Canada.
Using results of studies during SURSAT
(1978-1980) and RADARSAT (1981 to present)
projects, the issues considered include crop
classification accuracies achieved with SAR or
SAR and VIR data at various sites; important
crop and soil parameters affecting SAR images;
the procedures for digital SAR image analysis;
and the relationship between airborne SAR data
and future satellite SAR data. Recent
developments in new ground and airborne
microwave instrumentation for agricultural
studies are presented, and planned research and
developmentactivities are outlined.

1. INTRODUCTION

The potential of satellite remote sensing
for the monitoring of agricultural crops and
for estimating crop production was recognized
by Canadian scientists in the early 1970s.
Shortly after the launch of LANDSAT 1, several
investigations were undertaken to evaluate the
feasibility of crop area estimation using
satellite data. Of special interest were
cereal crops which are a major Canadian
commodity on the domestic as well as
international markets (Crosson et al., 1974;
Mack et al., 1975). Other studies focussed on
crop condition monitoring (Mack et al., 1977;
Schubert and Mack, 1978). In-addition to
demonstrating the potential of visible and
infrared (VIR) data for agriculture, these
studies also highlighted the limitations of
LANDSAT data caused by the relatively
infrequent revisits and frequent clouds. This
is particularly relevant in higher middle
latitudes where the growing season is short and
crop developmenttherefore rapid.

As a partial solution to the cloud cover
problem, a thorough evaluation of the
information content of the NOAA AVHRR (Advanced

Proc. EA RSeL ~Vorblwp · .\/ urovcave renwtr srn.1i11g upplird to regetution·. Amsterdam, 10-12 December 1984
(ESA SP-227.Jwwurr 1985).

Very High Resolution Radiometer) data was
undertaken. It was found that the wide scan
angle and low resolution of the AVHRR distort
the crop information present, and procedures
were developed to correct for these effects
(Brown et al., 1982a, 1982b, 1985). Using
these procedures, it is possible to generate
an AVHRR product showing crop condition in
three to five classes. Since AVHRR data are
available daily and given the large area shown
on a single image, this product can be an
effective monitoring tool with respect to
general growing conditions; for example, the
entire Canadian prairie agricultural area is
shown on one image. Nevertheless, AVHRR data
also suffer from serious limitations. They
can be acquired only when the sky is clear (on
roughly 15% of the days during the growing
season in the subhumid to semiarid Canadian
prairie regions according to the experience
from the last four years), and the data are
not suitable for crop area estimation or for
other assessments requiring field-by-field
analysis.

Agricultural applications are not the
only case where the limitations of VIR
satellite data have been encountered. In
Canada, useful VIR data cannot be obtained in
the North because of insufficient solar
illumination resulting from a low sun angle
(including arctic night beyond the Arctic
Circle). In addition, important potential
applications of satellites such as ship
navigation in ice-infested waters require
timely and reliable data which cannot be
provided by VIR sensors alone. For these
reasons, Canada showed an early interest in
satellite microwave remote sensing. In 1975,
a study was undertaken (Canadian Astronautics
Ltd., 1976) to define the potential of a
synthetic aperture radar (SAR). In September,
1975, a government task force was appointed to
assess the feasibility of using satellite
technology to meet Canadian surveillance
requirements with emphasis on ice and oceans.
The task force recommendations led to the
establishment of the Canadian Surveillance
Satellite Program (SURSAT) in 1977 which
included a participation in the NASA SEASAT
program and a complementary research and
development program. As part of SURSAT, an
X/L SAR was acquired from the Environmental
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Research Institute of Michigan and placed
onboard the Canada Centre for Remote Sensing
(CCRS) Convair 580. This sensor was used
during 1978 and 1979 to acquire SAR data for
many Canadian investigators in several
disciplines (Intera Environmental Consultants,
1980). SURSAT also led to the development of
the first digital SAR processor in 1979 and to
the addition of a C-band capability to the X/L
SAR in 1980.

Encouraging results of the SURSAT Program
formed the basis for a recommendation that the
Canadian Government initiate a program which
would lead to the launch of a Canadian
satellite carrying a SAR. This recommendation
was accepted and a new project, RADARSAT,
commenced in 1981. The current Phase B of
RADARSAT is scheduled to end in March, 1987,
with a planned launch in 1990.

In parallel with the growing interest in
SAR and environmental surveillance, the
possibility of using SAR data for agricultural
applications was studied in an experimental
program which started during SURSAT and was
expanded as part of RADARSAT. The purpose of
this paper is to review results of agricultural
studies in Canada employing SAR data, to
discuss some current issues relevant to
satellite SAR data applications in agriculture,
and to outline future Canadian activities in
this area.

2. REVIEW OF PREVIOUS CANADIAN STUDIES

2.1 SURSAT data

The SURSAT Program provided the first
opportunity to acquire coincident (airborne and
in some cases satellite) SAR and ground data
sets. Several sites have been identified
representing both prairie and eastern crop
growing systems (Table 1). Airborne SAR data
were acquried near the peak of the growing
season (Table 1) at six sites: Melfort, Swift
Current, Raymond, Guelph, Simcoe, and Grand
Falls. Except where stated (Table 2), four
channels were optically recorded: XHH, XHV,
LHH, LHV.

An initial analysis of the airborne data
of the prairie sites was undertaken using film
transparencies* or prints from the four
channels (Garron and Schubert, 1979) and at
Simcoe (Remotec Applications Inc,, 1979).
Garron and Schubert (1979) developed manual
interpretation keys based upon an evaluation of
film density ranges for individual land cover
types at each site and then applied these keys
to determine classification accuracies. Image
texture was not used explicitly but may have
played a role in the visual assessment. Table
3 shows the correctly identified crop areas for
three sites (commission and omission errors
were also determined). The accuracies varied
among crops and sites. In some cases,
individual crops could not be separated and
were therefore grouped as grains, broadleaf
crops or all crops. Classification accuracies
in the combined classes were quite high,

in this*All images
positives.

discussed paper were

particularly for
crops (Table 3).
substantially.

fallow, pasture and broadleaf
Accuracies for grains varied

In the Simcoe study, image tone and
texture classes were assigned to each field,
separately for each channel (Remotec
Applications Inc., 1979). Results of this
visual examination showed (Table 4) that most
crops occupied the middle range of tones in
the X-band and extremes (low or high) in the
L-band. In particular, broadleaf crops were
readily distinguished on the LHH image. The
XHV image exhibited a broader range of tones
than XHH, while LHV was similar to LHH.
Quantitative classification accuracies were
not established in this study.

Data from the Guelph site were analyzed
by Briscoe and Protz (1980, 1982). They
achieved an overall classification accuracy of
73% for five classes (grain, corn,
hay-pasture, woods, roughland) using a manual
tone/texture interpretation key. Corn and
woods could be readily discriminated because
of a high L-band return and different textures
on X-band. In particular, corn identification
accuracies exceeding 90% could consistently be
achieved with X and L images. Hay-pasture and
grain fields were most confused (accuracies
40-50%) as a result of similar tone and
texture. The authors suggested that data
acquisition missions should be scheduled for
periods of maximum differences in geometric
and dielectric properties of the crop
canopies, for example after hay has been cut
to minimize the hay-grain confusion.

Goodenough et al. (1980) analyzed a data
set representing~ 9km2 area near Grand Falls
which consisted of LANDSAT Multispectral
Scanner (MSS) and three channel SAR (XHH, XHV,
LHV, Table 2) collected with two azimuth
headings. All images were rectified to the
UTM projection and resampled to 25 m or 50 m
pixel size. A feature selection algorithm
identified LHV as the most useful SAR channel
followed by XHH and XHV. This suggests that
LHH would also have yielded important
information had the data been recorded. The
average classification accuracy using the best
four SAR channels was 67%; when using SAR
data from one pass only (SO m pixels), the
accuracy was about 53%. The combination of
the best LANDSAT MSS (bands 5 and 6) and SAR
(LHV, XHH) bands yielded an overall accuracy
of 78%, a substantial improvement over LANDSAT
MSS (65%) or SAR alone.

During Phase A of the RADARSAT project,
Hirose et al. (1983) assembled a multisensor
data setfor six sites (Table 2) consisting of
XHH and LHH data from the previous studies,
SEASAT L-band images and LANDSAT MSS images.
All data were produced in digital form,
registered to a UTM ,projection using LANDSAT
MSS DIGS products (Butlin et al. 1978) as the
base, and resampled to a Ts -;n X 25 m pixel
size. Individual fields for categories with a
sufficiently large sample were delineated on a
"ground data image" which was also
co-registered. Using a feature selection
algorithm that iteratively identifies (and
then eliminates from the next iteration) the
band containing most information, they found
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that both LANDSATMSS and SAR data can provide
useful input to crop identification (Table 5).
The apparent preference for L-band at the
Melfort site was probably influenced by the
high discrimination of fallow fields and the
lower quality of XHtl data. furthermore, for
rleLfc r t , Navan and Simcoe, the ranking reflects
the improved LHH response to broadleaf
(including corn) compared to graminoid plants
(such as grains). Hirose et al. (1983) also
determined the improvement -in- classification
accuracy using a set of the best four bands
ltrum all available at each site) compared to
LA.lWSAT l!SS only. An overall improvement of
4.1. resulted from adding SAK data but
variations occurred among crops and sites
('iable b). Grains appeared to be more
adversely affected than other crops.

The
extended

analysis ot the above data
by Cihlar and l!irose (1984)

was
the

set
for

prairie sites to include various combinations
of SAR and VIR data and to consider per pixel
as well as per field classification approaches.
The maximum likelihood decision rule was used
in both cases and because of the data set size,
the s arae data were employed as training and
testing sets. When expressed as the overall
average accuracy of correctly identified
pixels, the results show that one or more C>AK
bands can approach the accuracy obtained with
LAi<lJSA'i'USS (Figure 1 ). 'i'his is the case in
uelfort and Swift Current, presumably because
Ute classes differed pr inc i pa l Ly in "eftective"
roughness (e.g., graminoids vs. broadleaf
plants vs. f aLl.ow in rreLfor t }, '1'he low SAie
accuracies for Raymond are priGJarily due to
raisclassitication or winter wheat arid pasture;
values for spring grains and fallow were above
rc«, in outLook , a cont r i cu t i ng factor s e emed
to be the larger number of classes. Figure
also indicates that when mean field intensities
are classified instead of individual pixel
values, the· results generally Lrapr ove , uata
sets including LANUSAT0SS classified in this
"1ay snowed accuracy increases between 5 and
27/,,, the average being 12%. 0AK data alone
snowed a smaller r rapr overae nt; and an actual
decrease in two cases; this could be due to
the quality of the airborne data (Table L).

2.2 KADARSATdata

The proposed KADAKSATsatellite will carry
three sensors; a C-band :>AK, a high resolution
VIK sensor and a scatteroraeter. The VIK sensor
and the SAK could be used to supply tnf orraat ion
relevant to agriculture. Since 1983, efforts
have been directed towards determining the
extent to which C-band SAK and a combination of
SA.K and VIK data can be used to assess cro~
condition and crop type. During the 198:>
growing season, SAK and VIK. data were collected
over four test areas in Western Canad~
(tlelfort, Swi f t Current, Uutlook, Raymond ) , Lr,
Uelfort, SAR data were collected five tiGJes
between "1id-June and GJid-August and airborne
VIK data in the LANDSATThematic Mapper (TM)
bands were collected on three occasions. I~
addition to the airborne data, detailec

of the crop and soil conditions was
for approxiraately 225 fields
the test area (Table 7). Since CVV
specified for the KADARSATSAR the

analysis focussed on a multitemporal

description
obtained
throughout
nas been
initial

CVV data set (Brown et al, 1984);
~·. 1984).

Tei llet et

As early as June 26, 1983 canola was
clearly separable fro"1 the grains on the CVV
imagery even though the crop was only 8 to 10
cm high and covered less than 40/o of the
ground. At this point in the phenological
development canola and peas were also
separable from each other with canola giving a
higher backscatter. The classification
accuracy (for a pixel classifier which
excluded field boundary pixels) was ti9/o for
canola. The early identification of canola is
significant because LAWJSA'l' HSS does not
separate canola from grains and summer f a.l l.ow
until the canola plant is in bloom (Brown ~
al., 1980). This occurs in late July,
app r oxiua teLy tnree to four weeks later. In
the 1980 study, canola classification accuracy
was 63/,, using LAtWSAT 1·1S::idata f r ora July 9,
1979 (full bloom for canola was not for about
anotner ten days in 19/~J. nence it appears
that CVV would be a preferred data source for
canola Giapping Decause the intonaation on
canola area can be acquired substantially
eariier in tne growing season. There was,
ttowever, suostantial contusion between grains
and suoraertallow on CVVicages froo late June.

As in the case of VIR data the
classitication accuracy associated with SAK
ir.tagery depends upon the acquisition date.
'i'he best overall classification accuracy using
CVV data from three dates (June 26, July 31
and August 13) was in July, d7/,, with a
standard error of 7% for 3 classes (canola,
grains and tallow). 'i'his contrasts with other
studies (Van Kasteren, 1981) which have
indicated tnat crop type separation is ces c at
ua tur i ty , and it illustrates the complex
nature ot the interaction ot GJicrowave energy
with vegetation which must be understood
betore detinitive statements can be raade on
optimum t iue interval for maximum
classitication accuracy. 'i'ni s optLrauu date
cay be a function of the phenology of crops
grown in tne area.

J. lHSCUSSI01<

In assessing the expected performance of
a satellite SAK for agriculture, the f oLl ov ing
issues snould oe considered: the inforr:iation
about crops which is present in the SAR image;
;;ays of extracting this infonaation; and tne
validity of extrapolating results obtained
with present airborne images to future
satellite sensors. These items are considered
below w i t h reference to results of studies in
Canada.

3.1 Inportance of crop and soil parameters

An understanding of the causal
relationships between c r op and soil pa rarae t er s
and ir.1age tone is of key importance in
assessing the usefulness of a SAR. It can
provide the confidence required for extending
results from limited test st te s to larger
geographic regions, and it is necessary for
constructing i nv. r s ion models whereby SAR
raight be us ec a crop moni taring tool.
ilackground wor+ in this area has been
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conducted with ground scatterometers in the
U.S., the Netherlands and France. These
studies, typically carried out on controlled
plots, have shown that depending on the sensor
parameters (frequency, incidence angle,
polarization), important variables may include
crop type, growth stage, soil moisture, soil
roughness, row direction, and others. One of
the objectives of the Canadian agricultural
projects involving SAK has been the
identification of target parameters which
strongly influence SAK ihlage tone. Ground
observations are normally obtained near the
time of SAK data acquisition to assist in this
process. The procedure for ground data
acquisition employed so far is similar to the
LACIE approach (King and Mack, 1980). Since
19d3, this procedure has been enhanced by
including ground and low altitude photography.

(i) \/heat vs. barler discrinination.

hand, greener winter wheat at
Raymond (in a more advanced growth
stage) appeared lighter on the XHH
image. On the SEASAT images, the
amount of green biomass had no
effect on the tone. This was
particularly evident in alfalfa
fields at Outlook where LA!WSAT
tiSS and SEASAT were available
within one day (Table 2) but
similar effect was observed in
other sites (e.g., lack of
contrast between adjacent grain
and fallow fields at Raymond or
between adjacent grain and
rangeland at Swift Current). For
C-band, Teillet et al. (1984)
found at HeLfort that -SAR image
tone was in many cases insensitive
to canopy height variations
although several statistically
significant relationships were
observed (r = 0.54 (CVV, barley,
5~ probability level), U.6d (Cthl,
Darley, 0.5%), and 0.69 (CHH,
canola, 0.5%) on 26 June; and r =
0.58 (CVV, wheat, 2%) and -0.55
(Ct!ti,5;;) for wheat on l~ July).

To date, only a liuited success has been
achieved in this area and the findings of
Canadian studies can be suuuar Laed as follows.

Cinlar and Hirose (1984) observed
no clear distinction between these
crops at any site or ::iAR frequency.
ilarley fields tended to be lighter
at two sites and dancer at the
remaining tvo but in each case,
there was a large .overlap between
these crops. This is not too
surprising considering that
confusion also exists between
grains and hay or pasture.

height, plant cover, growth stage,

tlrownet al. (1984) found that the
amountof confusion between fallow
fields and grains strongly depends
upon the condition of the fallow
fields on C-band images. The
backseatter from fallow fields
increases substantially as the
roughness as measured by the
percentage and size of clods of
soil increases. This appeared to
be the dominant pararaeter in
de terninfng the magnitude of the
backscatter from fallow fields at
Cr-band , more important than row
direction. Dry standing stubble
on the field appears to have
little or no effect upon the
magnitude of the backscatter.

(ii) CanoEl and soil parameters (plant

stand
Cihlar

quality). In most cases,
and tlirose (1984) did not

find consistent relationships
between these parameters and image
tone at X or L. There were some
exceptions. For example, a
statistically significant
relationship (U.01 probability
level) was found between rov
spacing (range lti to 23 cm) and
SEASAT ii;iageintensity (r = -0.76
for descending pass, -0.65 for
ascending pass) for 20 barley
fields at Raymond, A significant
relationship (0.05 probability
level) was also found between the
width of ridges on fallow fields at
Raymond (range 20 to 81 ci;i)and
SEASAT image intensity (r = 0.53
for descending pass, 0.59 for
ascending pass) 16 fields. At the
l-ielfortsite, lower L-band return
from barley corresponded to a more
advanced crop and/or lower stand
quality, i.e. less total water in
the plant canopy. Higher green
biomass (approximated by the
LAtWSAT hSS 7I 5 ratio) was in some
cases related to a change in XHH
return but not consistently so.
Greener spring wheat was darker in
some fields at Swift Current
although the pixel-to-pixel
correlation of XHH data with the
t•!SS7/5 ratio varied depending upon
the fields included. On the other

The lack of consistent
canopy
could
These

ground
scale
each

relationships between
parameters and radar return
be due to various factors.
include the type of
parameters
(resolution)

measured,
used to

tne
record

paraaeter, insufficient
information on within-field
variability which is known to be
large in most fields (data were
recorded at one site considered
representative of the field),
narrow range of values for a given
parameter such as plant height,
and SAR iraage quality problems,
particularly for the airborne
data. Experience to date suggests
that in some cases, the
relationships may be very
difficult to establish. For
exaraple, it is sometimes not
possible to identify reasons for
backscatter difference on an image
taken the previous day while
standing at the exact spot in the
field where the difference
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appeared.

Row direction. In analyzing XHH
and Llltl images, Cihlar and Hirose
(1984) found that row direction had
a strong "bowtie" effect on radar
return in some cases. This effect
was most prevalent on airborne
L-band (Table 2) in grain fields at
Swift Current. uowever, the
images from Melfort did not
any bowties, and in xaymond
one of 11 fields displayed

same
show
only
this

effect.
several

the Luage s ,
bright

Un
fields

to
were very

be due(a s suned
direction),
field at
two winter
fields at

to row
including one potato

vutlook and one fallow,
wheat and some barley

Raymond , ·1'wo cases of
bowt te " (i.e., lower
f r om rows parallel to
direction) were also

reverse
backscatter
the flight
ooserved. une case was some wnear
tields on Xri ri at Swift Current, ano
tne other was one Darley field on
SEASA'l at t~ayr:1ond; in bot ti

instances, the reverse ei:tect wa::>
fairly we ak ,

Lrown et al. ( 1904) found no row
CVV i uagcs at
at incidence
300 to 500.

direction eftccts on
the ue l t o r t test site
angles ranging f rum
nowever, at t ne 0\../itt Lurrent test
site wnere the fields tend to be
long anu narrow, row direction
effects were seen in both fallow
and grain t ields at incidence
angles of y;o.

(iv) Crop tyre. :jtudies to date
and Scnu oe r t ,
Applications, Lnc • ,
and iii r os e , 1904; Brown
1':184) estal>lisned tnat in

(Garron
«erno t cc
Cihlar

et aL, ,
general,

177':!;
!979;

crop type is single l'.lOStt lie
important
recorded

µara~eter among those
in t nc field. In some

situation~, crop type results in a
unique radar return (tlrown et al.,
l<Jd4; Cihlar and ni r os e , -loio4J.
noweve r , it is not clear exactly
whi cn target par arnete r Cs ) cause
this effect and their relative
importance. Canopy structure
(preferentially vertical for grains
vs. lack of preferential
orientation for canola) could
explain uack s ca t te r differences
ne tve en Cf11l and CVV Lnage s at
i'ielfort (Teillet et al., 19d4).
tlroadleaf crops generally provide
higher return than other field
cover types in the frequency range
L to X (parallel polarizations)
(Reraot ec Applications. lnc., l':i7':1;
br i s co " ·d Protz, I ~02; Cihlar and
rti r os e , 1984; llrown et a l ; , 1984).
There also seems to- be lack of
consistency among sites, both as to
the range of tones for each crop
and the rank order of crops. This
Lupl i es a lioit to the distance
over which signature extensions may

be possible and is thus of key
importance
viewpoint.

from an operational

(v) Growth stage. Brown ~ al. (1984)
found tnat crop ripening can in
some cases be detected on SAR
imagery. Yithin the Melfort test
area there were two types of
canola, Brassica napus and B.
canpestris. The B. caTJpestriS
variety ripens approximately ten
to fourteen days sooner than B.
napus , On the August 13, 1983 CVV
images of fields planted at the
sar.ie tioe but different varieties
of canola, the early maturing B.
canpes t ris had less backs cat t;-;
and in many instances was
indistinguishable from the grains.
This suggests t nat SAR imagery may
be used for monitoring the
development of some crops but more
work is required in this area to

tne scattering
example, the

( oackscatter
ripening) was

by Ulaby and

Detter unaerstana
ue chant srns , For
opposite trenc
increase with
observed ror grains
ou s n (1976).

(vi) Soil noisture. Fro:n a qualitative
ass es sue nt ot tne SIU< data rlrown
_Q!: tl· (l'ld4) observed a
corresponaence
corltaining no

between wet areas
vegetation, as

troo aerial
nigher C-band

iaentit1ea
p ho tog r apny , and
radar nacx.s ca t te r
angles 300 to 450.

at incidence

(vii) \lithin-fielrl variations. Tonal
variations within individual
fields are frequently observed on
SAJ( Lmages , 'i'hey can sometimes be
readily explained fror.i features
observed on photographs, sucn as
bowties. However, often they are
more ooscure and thus require
detailed canopy and soil data for
specitic portions of the fields.
Previous procedures relied on data
r r ou a "representative" site in
the field because the collection
of extensive within-field data was
impractical, and it still is.

One ot the problems in identifying
significant crop parameters which affect
oicrowave backscatter is the speckle innerent
in SAK Lmagos , Hence pixel-to-pixel
couparison, as uignt be done in VIK data
analysis, is less appropriate. Ground data
acquisition must therefore be geared to larger
areas because it is usually necessary to
spatially average SAK intensities to reduce
the speckle.

To get better ground data and rapid
feedback for ir.tage interpretation the ground
data collection procedures have been modified
in 1984. Quick Look SAR imagery is taken back
into the field t;.c day following SAR data
acquisition to exc: . ne and document any field
anomalies. This 1.;_ found to be a very useful
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roll, pitch and yaw. Over level
terrain, registration accuracies
of less than 10 meters root mean
square (r.m.s.) were achieved
(Goodenough et al., 1980). The
flight modelling approach also
allows for the inclusion of
digital terrain models to account
for geometric distortions due to
relief. In an area with elevation
range of 700 meters, registration
accuracies of 13 meters r.m.s.
were obtained (Guindon et al.,
1982a). - -
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procedure. In addition, a light aircraft is
used to acquire oblique large scale photos as
an aid in describing field variations. There
is also a great need to combine airborne SAR
acquisition with ground measurements using a
microwave scatterometer. This helps to improve
the radiometric characterization of the SAR
images and to explain reasons for differences
in observed radar backscatter.

3.2 Informationextractionfrom digital data

Host of
which have

the studies of digital SAR imagery
been carried out by Canadian

investigators involved performance comparisons
of SAR and VIR data. The principal steps in
such experiments include radiometric and
geometric preprocessing and subsequent
classification.

(i) Kadiometric Correction. The
principal source of SAR imagery has
been the X/L/C SAR system. The
data produced by this instrument
are uncalibrated and therefore the
user must apply corrections for
range effects such as antenna power
pattern. The antenna power
patterns for the X/L/C SAR are not
well defined (Corr and Smith,
1982); hence, an empirical
technique was developed to remove
range-related gain variations
(Guindon !:!, al., 19tl4). This
technique involves acquiring a mean
grey level profile for each scene
and then using the profile to
estimate multiplicative correction
factors for each range interval by
ueans of a low order polynomial.
~hen applied, these correction
factors will generate a corrected
scene with a constant mean
brightness at all ranges. Good
results have been achieved in cases
where the scene content does not
change with range. The technique
has not been successfully applied
to remove azimuth radiometric
variations or to correct for the
complex nature of the antenna
pattern outside of the main lobe
(ilriscoeand Protz, 1982).

(ii) Geonetric Correction. Accurate
geometric registration of scenes is
a prerequisite to sensor
performance comparisons. A
conceptually simple flight
modelling technique has been
developed to rectify high
resolution airborne radar and
optical imagery. Briefly, this
approach involves the use of map
and image coordinates and elevation
information for ground control
points to derive parameters of the
aircraft flight path, namely
aircraft heading, altitude and the
map coordinates of one ground
location over which the aircraft
passed. The modelling procedure
assumes that the aircraft is flying
in a constant heading-constant
altitude orientation with zero

(iii) Classification. Extensive maximum
likelihood classification
experiments have been performed on
both agricultural and forest
targets. In general, SAR is
outperformed by optical sensors
when data are acquired at the same
date(s) and multispectral VIR data
are used. This result is partly
due to the significant overlap of
the grey level distribution of
important target classes on SAR
imagery. Median filtering has
been successfully applied to
reduce SAR speckle and hence, to
improve classification accuracy
(Goodenough et al,, 1980; Hirose
et al., 1983;- Brown et al.,
19~4)~ Even with filtering, some
classes such as grain varieties,
remain confused. Efforts have
therefore been directed recently
toward the development of
techniques to extract and classify
homogeneous segments on SAR images
rather than to classify scenes on
pixel-by-pixel basis (Goodenough
et al., 1984). Segmentation of
SAR imagery is difficult because
of speckle but improved results
have been achieved through a prior
application of an adaptive filter
(Frost !:!, _'.!l., 1982).

Another factor in classification
performance which proves important
when classes overlap are the
accuracies of the parametric class
descroptors. A standard practice
is to approximate class grey level
distributions by gaussian
functions. Guindon et al.,
(l982b) found that becau;;eof the
substantial amount of spatial
averaging during preprocessing,
SAR data distribution is not
significantly different from
LANDSAT MSS distribution. More
recently, Chi-square testing has
shown that gaussian description is
appropriate for SAR images in
which grey level is proportional
to the square root of amplitude
but not for power, amplitude or
log amplitude imagery.

3.3 Satellite image simulation

that
Compared to
has been

amount of SAR data
by aircraft over

the large
obtained
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Canadian agricultural area~, relatively little
data acquired from space platforms is
available. In particular, no X or Cr-b and
spaceborne SAK images have been acquired. To
fully evaluate the information content of
spaceborne SAK imagery two radar image
simulation packages are in use at CCRS. One
package starts f rou known relationships between
radar backscatter, calculates a reflectivity
uap , and introduces a specified amount of
speckle. This package is an Lraproved version
of previously used radar image simulation
sof tware (Komp ..<:!_ ~·, 1983). Its advantage is
the possibility of simulating radar image for
any hypothetical sensor, provided the input
values are properly defined. The second
package starts with an actual speckle-free
ro.i-c.r i1L.age and likewise intruduces a specified
'-'Launtof speckle. The a.i var.tage of starting
;,i tn an actcal SA:'. image is that the exact
reiationships between radar backscatter and
crop and radar parameters are inherent in the
inage and no assump t Loris
necessary. Un the other
by the sensor parameters
acquire the original il.1age.

or extrapolations are
hand, one is li1.1ited

of the sensor used to

~)incc no ba cx s c a t t e r ne asu r crnents are
currently available tor land targets in Canada,
the second approach has orLnari ly been used to
date (Gray et al., l':IJJa,HiJJb). The input
a i r c r a r t daLl ~eu in simulating satellite
ir:iageswere collected with the high resolution
( ± J met res) X/ Cf L band SA[{ of CC"S. '!o
s iuulate the lower resolution (LS rn ) spaceborne
SAK imagery it is necessary to spatially
average the aircraft data and then to introduce
adu i t i onaI speckLe into tne ir.1age. 'i'ne se steps
result in correct spatial resolution and a
correct number ot looks in t ne s LuuLated i uagc.
In the sinuLation package this is aenieved by
(1) spat iaLly ave ragi nj, tile higu spat iaI
resolution aircraft ioage to produce a radar
retlectivity, uap; (ii) tne generating speck I.e
ir:iages with user-defined radioraetric
distrioution and number or looks; and (iii)
the multiplying the smootll radar reflectivity
tuap by t ne s peck Le Lraage,

1<e have found that a c ri t i caI paraoeter in
uctcrr.urung tne resultant ir.•age qua Lrty is t ue
aoount ana type of pixel-to-pixel correlation.
witt1 a ~ayleig11 specKle distrinution and no
correlation between pixels the ina~e is
considerably raore noisy tnan one in which a
correlation coefficient of 0.25 is assuuod
oetween uei gnoouri ng pixels. ln tne aosence ot
detailed information on pixel correlations for
t ne t<J\JJAKSATSAK, an autocorrelation function
calculated from SEASAT ir:iageryhas been used.

4. CUKKC:uT ACTIVITit.S t\1w t'U'iuK.t.i-'LAtiS

Substantial progress nas been
Canada in the development of the
required for conducting r.iicrowave
agriculture. Further experir.ents
underuay or planned or the future.

made in
technology

R&O in
are also

4.1 Ground-~ased scatteroneter r.ieasurenents

oackscatter
or soil

measurements of raicrowave
from well described crop canopies

are essential for developing an

Accurate
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understanding of factors affecting SAR image
brightness. In the case of rapialy growing
crops, such measurements are needed
frequently. ~xperience to date indicates that
findings from one geographic area are not
directly applicable in another, Kansas and
Saskatchewan being a case in point (Dobson,
l984). In conducting such studies, it is
highly desirable to consider a wide range of
radar parameters to ensure that the findings
will be of value for the next lU to 20 years.
The above considerations lead to the use of
ground-based scatterometry as an effective
experimental oethod.

To further tne use of SAK technology in
the management of Canada's resources, CCRS is
establishing a ground-based r:iicorwave
raeasurements prograo. An essential component
of this prograu is a raultifrequency
scatterometer attached to a boom which is in
turn mounted on a truck. The s y stem will be
capable of a sir:iultaneous acquisition of
caliorated backseatter coeft icients at three
rrequencies (1.5, 5.3, 13.4 Gllz) and two
µolarizations (liKe and cross), frora tne
ueiunt of about 17 netres, in standing mode or
wltile tne vehicle mov es, uata will oe
recorded digitally. The data acquisition
p rocedure will ue preprograr.uneafr ou the cabin
of the truck using operator console built
a r ou nu a u i.c r o corapu te r and two TV monitors.
uuring the first three years, the progran vri Ll,
concentrate on tne measurement of agricultural
targets.

4.2 iJigit<1lC-banrlSA:(

A new Siu<.called ihl~ (Integrated Kadar
lnaging System), to ~e delivered to CCK.S in
February l9b5, will replace tne present X/L/C
SAK on the Convair 580. This would be an
all-digital, oicroprocessor-controlled,
dual-channel, ooderate-resolution SAK. The
design philosophy of this instrument nas been
to provide an opt ir.airacoraproruse between swath
v i utn anc resolution, and between sys tera
flexibility and onerational reliability. The
instrur:ientwill initially be C-oand only but
there are plans to add an Xr-ba nd capability by
l~oo. ~or:ierelevant characteristics are given
in Table 8. All of the imagery will be
processed digitally, including the real-time
output which may be displayed on a CRT or
printed on dry silver paper. The radar will
also have an internal calibration capability
vu i cn will perr.u.t,absolute calibration. The
antenna pattern effect will be removed through
data preprocessing.

4.3 Experinental studies

Vur current studies are directed towards:

(a) The development of an understanding
of the interaction between cicrowave
energy ~nd vegetated and fallow
fields. A qualitative analysis is
being carried out on the X, C and
Lr-band SAK data acquired in 1983 and
l':184 over the four prairie test
areas. The objective of this study
is locat . aoparent anomalies in the
iuagery Jnd atter.ipt to identify
their "'''"es f rorn an examination of
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the various sources of ground and airborne VIR
data.

(b) An investigation of the complementary
role of SAR and VIR for both crop
condition assessment and crop area
estimation. In particular, biomass
variations as mesaured on the VIR
data are being related to variations
in radar backscatteringcoefficients.

(c) A study of the variation in
backscattering coefficients as a
function of angle. Since the
RAOARSAT SAR will be capable of
acquiring data at incidence angles
ranging from 200 to 450 it is
important to know how backscatter
will vary over this wide swath. C
and Ku-band airborne scatterometer
data were acquired at all prairie
test areas in 19~4 and are presently
being analyzed.

(d) An evaluation of the importance of
field classifiers (as opposed to
pixel classifiers)for SAR data.

(e) An assessment of the
between airborne
backscatter coefficients
moisture.

relationship
scatterometer

and soil

(f) An evaluation
obtained from
Kadar (SIR-B)
SasKatchewan.

of L-band images
the Shuttle Imaging

in October, 1984 over
The effects of

vegetation, cultivation
soil moisture are of
well as variations
parameters.

practices
interest,

due to

and
as

SAR

In the long term, the thrust of R&D
agricultural SAR investigations at CCRS is
determined to a large extent by the expected
future satellite data sources. These include
t:RS-1in 1980 and RADARSAT in 1990, both C-band
systerns. An additional consideration is the
most effective use of all available satellite
data for agricultural applications. One must
thus include optical data f ron i!SS, Tll, HRV
(H~ute Resolution Visible) or similar sensors.
Finally, it is desirable to learn as much as
possible about the electromagnetic response of
agricultural targets over a wide range of
sensor parameters.

llased on the above, agricultural studies
in the next few years will continue to focus on
the capabilities of a C-band SAR. Crop
classification accuracies achievable with
satellite data in an operational setting will
be a major objective of this work. The
variability of agricultural conditions over
large areas will be an important consideration.
The airborne C-band SAR (IRIS) will be used, in
combination with the ground-based scatterometer
when required. Airborne X-band SAR data will
also be obtained and analyzed when possible.
As in the past, VIR data from satellite and
airborne sensors will continue to be acquired
to develop effective ways of using multisource
data sets. The second objective is the
deterra.i nat Lon of the potential of satellite SAR
data to monitor crop condition, including

growth and potential yield. This will be an
important task for the measurement: program
involving the ground-based scatterometer. It
is expected that airborne sensors will be
employed only after the initial ground studies
are completed.

4.4 Informationextraction

The improvement of information extraction
from SAR imagery will require the refinement
of existing techniques and also the
development of new approaches, particularly in
the area of image classification. Algorithms
are being developed in the following areas at
the Canada Centre for Remote Sensing.

(a) Improved edge detection in SAR
images. The objective is to achieve
accurate delineation of agricultural
fields and thus to be able to use
automated, segment-based
classificationof SAR data.

(b) Automated techniques to aid in the
registration of radar/optical image
pairs. VIR imagery could be used to
define field boundaries as well as
to improve classification results.
Automated methods for the rapid
identification of registration
control points are being
investigated.

(c) SAR segment classification.

(d) Non-gaussian
classification.

maximum
Ilecause

likelihood
of the

extensive overlap among crop
classes, the precise description of
class probability density functions
becomes critical. Work is being
carried out to identify suitable
parametric descriptors for a range
of extended target types and to
incorporate relevant functional
forms within the context of the
maximum likelihooddecision rule.

(e) Image texture
classification.
agricultural

extraction and use in
It is unlikely that

crops will exhibit
significant texture at satellite
resolutions. However, texture could
prove useful in discriminating
between agricultural and
non-agricultural targets which
exhibit a similar mean grey level.

5. SUMMARY

Studies conducted in Canada since 1978
have provided valuable initial insight into
the potential usefulness of SAR images for
agricultural applications. The findings to
date can be summarized in the following broad
statements.

(i) Crop classification. High
accuracies can be achieved with
SAR (particularly multiband) data
under some conditions. Accuracies
for "rougher" targets such as
broadleaf crops and fallow are
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generally superior to those for
other crops, particularly at the
lower frequencies. Grains are
frequently confused with hay fields
and less often with rangeland.
Classification accuracies often
vary among sites and between dates
at one site. The extension of test
site results to larger areas has
not been carried out. SM data
provide informa tion which is
different from and complementary to
that obtained using VIR data.

(ii) Canopy and soil parameters. Crop
type is the most important field
parameter. No definite
relationships between SAK
intensities and individual canopy
parameters have been established to
date although some progress has
been made. Row direction effects
have been observed but their
importance varies with site and SAi(
frequency.

(iii) SAR frequency. While X-band
provides good crop type
discrimination, the value of L-band
for separating broadleat crops and
fallow at some sites should be
noted. Un the otner hand, L-band
is sometimes sensitive to row
direction effects while A-Dand is
not. Kesults to date suggest that
the crop discrin1ination potential
and the row direction sensitivity
or C-band are intermediate between
X- and L-bands.

(iv) uibital classification. Uigital
filtering prior to classification
.iraproves results. Per tield
classifiers are generally
preferable to pixel classifiers.
Image texture offers some potential
out has not been explored
thoroughly. lraage segmentation
tallowed oy classification appear
to offer an effective approach to
digital analysis of SA1(data.

iluch work remains to be done to determine
the practical value of bA1Z data for crop
monitoring. Although C-band will be given most
attention in view of the planned satellite
prograns in the late 1980s and 1990s, other
frequencies and complementary VIK data oust
also be considered. New ground-based and
airborne microwave instruments will be
available starting in 1985 to allow Canadian
scientists to conduct the needed experimental
work.
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..A~--------
/
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I
I___ /

SITE

•0 Melfort (3 classes)
Swift Current (3)
Outlook (6)
Raymond(4)0

field
pix e I

AX AL SL ALL
SAR

LMSS LMSS LMSS
SL AX

LMSS
AL

Average classification accuracies for different data sets
at four sites. Adapted from Cihlar and Hirose (1984).

Table l. Test Sites Description

SITE DESCRIPTION CROPS PRESENT caosra STAGE NUMBER
Of

YIELDS

July 24 Aug 11
Melfa rt Moderately Large-Scale Spring Wheat Headed Ripening

LJryland Farming Barley Headed Ripening 21
Sub hum.id Condi ti ons Cano la Headed Ripening 13
Llark Brown Chernozems Fallow - 9

July 26 Aug 11
Swift Large Scale Farming Spring Wheat Headed Ripening 26
Current Subar id Condi ti ons Barley Headed Ripening

Brown Chernoaeras Native Grasses Grazed Grazed
Fallow 22
Hay Harvested

July 28 Aug 15
Raymond Mixed Irrigated and Spring Wheat tie ad ed Ripening 11

Dr y Lnnd Fn rmf ng Winter Wheat Ripe Harvested 15
Subhumf d Conditions Barley Headed Ripening 25
Dark Brown Che rnoaems Fallow - - 33

Sugar Beets Headed Ripening 2
Pasture - 11
Flax Headed Ripening 4

Late July

Navan Mixed Dairy Pa rmi.ng Corn Heading 20
Humid Conditions Pasture-Grasses Grazed 25
Poorly Drained Mixed Grains Ripening 8

Gleysolic Soils Bushland
Other

August 3

Simcoe Sma l I Scale High Intensity Tomatoes 4
Cash Crop Farming Potatoes 3

Subhumid Condit ions Tobacco Ripening 11
H.ur:iic Gleysolic Soils Soybean 7

Corn Headed 40
Winter Wheat .'ta tu re-Harvested 19
Bushland

Au~ust 24

Out look Irrigated and Dr y l and Farming Spring vhc ac Ripening He r ve s t ab Ie 51
Semiarid Co nd I t io ns ba r Ie y Rf pent ng Ha r ve s ta b l e 7
l>ar;.;. brown Ch~ rno z ems Fa I luw N/,\ lJ

Alf -:11fa tle rv e s t ab le 11,
Ceno La Kip0.ni.ng Ha r ve-s t a hl c
Keans !<ipenin;~ Ho r vc s t a b lc
t'o ta t oe s I<ipen t ng darvc s t ab l e
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Table 7. Ground Data Acquired in 1983 on a Field Basis*

1. Crop type, variety and yield.

2. Crop height and development stage.

3. Anomalies qualityin and of growthcrop presence
detractants.

4. Plant row direction,
spacing.

intra-row spacing and inter-row

5. Surface soil moisture and roughness.

6. Plant moisture (selected fields).

7. Soil moisture (in the top 5 cm of selected fields).

8. Precipitation (multiple locations per site).

9. Vertical, oblique and close-up ground photos of fields.

*From: Brown et al. (1984).

Table 8. Integrated Kadar Imaging System (C-IRIS) Specifications

Frequency: 5.3 GHz

Range Resolution: High Resolution:
Low Resolution:

4.8 metres
18.7 metres

Azimuth Resolution: High Resolution:
Low Resolution:

6.0 metres
10.0 metres

Polarization: Transmit:
Receive:

H or V
H and V

Swath Width: Maximum 18.3 km
incidence angle of
and aircraft height
7 km

Noise Equivalent <J0 for distributed targets: -40dB

from
450
of
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DUTSCAT, A 6- FREQUENCY AIRBORNE SCATTEROMETER.

E.P.W. Attema *) and P. Snoeij

Delft University of Technology, Dept. of Electrical Engineering
Microwave Laboratory

Delft, The Netherlands.

ABSTRACT

Groundbased scatterometry has proven to be essen
tial in studying the scattering of microwaves by
vegetation. Groundbased measurements not only re
sult in the well known "growing curves" but the re
sults can also be used for the development of suit
able models and for the improvement of the classi
fication in images collected by airborne or space
borne sensors.

There are however some limitations set to the
groundbased measurements. In the first place the
possible number of test fields is limited, there
fore the statistical spread of the radarsignature
for different fields with the same crop type (eco
logical noise) cannot be investigated. Secondly
the illuminated area in groundbased measurements
is relatively small and in some cases even too
small, which sometimes leads to differences in
scatter values between groundbased and airborne
measurements. In the third place groundbased
scatterometers can only use X-band and higher fre
quencies. There is however also a need for the use
of lower frequencies e.g for experiments in rela
tion of soil moisture mapping. The mentioned limi
tations can be overcome with an airborne instru
ment. At the same time such an airborne scattero
meter can be used for the performance prediction
of imaging radars.

1. INSTRUMENT DESCRIPTION

DUTSCAT (Delft University of Technology Scattero
meter) is a multiband coherent pulse scattero
meter. The system is installed in the Beechcraft
Queen Air research aircraft of the National Aero
space Laboratory NLR. The radar system uses a 0.9
meter diameter dual polarized parabolic dish an
tenna mounted on a support structure and pro
tected by a radome. In the support structure the
RF parts of the radar are mounted. This whole
system can be tilted between 0° and 80° incidence
angle, looking to the left.
Power and control signals are fed into the RF mod
ule from inside the aircraft cabin by flexible ca
bles, while the IF signals are fed to and from the
RF module by coax.
The incidence angle and polarization are selected
by the operator inside the aircraft.

*) Attema is presently on leave at the European
Spac2 Technology Centre Noordwijk, The Nether
lands.

I I
RF IF

J
Data
ac ,

I ' I
Power

supply

Fig.l:Block diagram of Dutscat

The system consists of four basic section RF, IF,
data asquisition and power supply (fig. 1.).
The RF section, which is mounted behind the antenna
uses stable IF and LO sources to generate the sig
nals needed by the transmitters and receivers, thus
assuring coherency throughout the sensor. The out
put of a LO source is amplitude gated with a pulse
width of 100 ns. The pulsed LO is then mixed with
the output of the IF source to produce the RF sig
nal. The pulsed RF is amplified in the final out
put stage by a solid state medium power amplifer.
The output signal is coupled to the antenna system
through a switch and a circulator.

SL
250ns 250 ns

Fig.2:R,~ subsystem

Proc. EARSeL Workshop' Microwave remote sensing applied to regetillion', Amsterdam: 10-12 December 1984
iESA SP-227,Januarr 1985).
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A sample of the transmitter signal is coupled to
a short-circuited delay line and is used as an
internal calibration signal. The received signal
is fed to the mixer RF port through the circulator,
switch and a low noise amplifier. The output of the
receiver mixer is fed into the IF section by a
coax cable. In fig. 2 a RF subsystem is shown oper
ating at one frequency. The who"ieRF section con
sists of six of these subsystems. The different
frequencies are combined by a special microwave
multiplexer.

The IF section uses six attenuator-amplifier pairs
to bring the received signals in the dynamic range
of the coherent detector (I & Q mixer}. The atten
uators are controlled by the operator using the
video output of the amplifiers as a monitor signal.
The IF signals are time-multiplexed and fed to a
coherent detector. Fig. 3 shows an IF-sub section.

to RF

160 MHz

Fig.3:IF section

~-··

flight data 0-V
Recorder

Fig.4:Dutscat digital processor

The analog I & Q signals are digitized and fed in
to the processor (fig. 4). The range data of each
channel is accumulated coherently to improve the
signal to noise ratio. The power of each range
sample is calculated and a second adder stage is
used to perform speckle reduction. Besides the dig
ital output data of the scatterometer processor,
aircraft data, including antenna position,roll angle
and altitude are recorded by the digital data re
cording system.

The processor also contains circuits for generating
the modulator pulses and the timing signals. The
operator can select one up to six frequencies to
operate virtually at the same time.

The specifications of Dutscat are summerized below.

Radar type
Frequencies

:coherent pulse radar
:1.2, 3.2, 5.3, 9.65, 13.7 and
17.25 GHz

Pulse repetition
frequency :78.125 KHz
Pulse width
Peak power
Operating range
Antenna
Polarization
Incidence angle
Data acquisition
Square law de
tected output

:100 ns
:250 mW
:50 - 1920 meters
:0.9 meter parabolic dish
:VV and HH
:0 - 80 degrees
:I & Q 8 bits 20 Msamples/s

:A-scan 5 scans/s

The scatterometer subsystem operating at 5.3 GHz
(C-band} is available since autumn 1983, recently
a second subsystem has been added operating at
1.2 GHz.

2. C-BAND SCATTEROMETER

During november 1983 and february 1984 the Dutscat
took, as one of four airborne scatterometers, part
in the ESA C-band Scatterometer Campaign. The main
objective of that campaign were measurements over
sea. All scatterometers where internally calibratec.
The Dutscat is equipped with a delay line for in
ternal calibration. The calibration mode is selec
ted by the operator and uses a fixed attenuator
setting. During a measurement over sea the cali
bration signal was recorded at least two times.
The maximum variation of the calibration signal
was 2.5 dB over a period of one month, 0.9 dB over
a period of one day. In most cases the standard
deviation for the calibration recordings was less
then 0.08 dB.

For intercalibration of the airborne scatterometers
the normalized radar cross section of a distributed
target (grassland} was measured after each flight
mission over the sea. In fig. 5 an example of a
grass measurement is given.

Fig.5:Measurement of grassland
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The aircraft height was 330 meters, the incidence
angle 45° degrees and the polarization VV.
The measured avarage NRCS of the grassland is -10.4
dB, which came within 0.5 dB of the measured values
by the other scatterometers.
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HUMANANDAUTOMATICINTERPRETATION01' RADARIMAGESOf' LANDCOVER

P. Churchill

Hunting Technical Services

Borehamwood, England.

ABSTRACT

'fhis paper examines and classifies the methods used
in the human interpretatioo of SAR imagery. Of
the features so defined tone and texture are the
most readily machine implementable. Using SAR580
data in XHH, XHVand CHHbands regioos were
selected which visually appear to contain
different textures and these were examined using
the Spatial- Grey-Level-Dependency-Matrix (SGLDM)
technique. The theory of the SGLDM's for
homogeneous regioos with fully developed speckle
is derived and used in interpreting the computed
results.

Keywords: SAR, Texture, SGLDM,Speckle.

INTRODUCTION

In order to make effective use of the very large
volume of data which would be produced by a
space-borne synthetic aperture radar (SAR),
automatic or semi-automatic techniques for image
interpretatioo need to be developed. This is
particularly true if the SAR is to be a routine
vegetation monitoring tool, with revisit times
measured in da2s and ground coverage measured in
millions of km • At present the feasibility and
characteristics of such a sensor are not well
defined, due partly to the lack of empirical data,
and partly to the difficulty of producing
acceptable and useful models of the microwave
backscatter from land targets. Sufficient data
exists, however, to allow worthwhile investigation
of the means and difficulties of interpreting
radar images both manually and by machine.

The interpretatioo of SAR imagery is a broad
subject with techniques that are very much
dependent on the type of informatioo it is
required to extract from the data; the detectim
and r ecogn itim of ships at sea requires
different processing from that useful in the Land
classificatim which is the concern of this paper
Land classification can itself be further
sub-divided into different areas dependent on the
eventual aim and with different processing and
data requirements. An agricultural/woodland I
urban classification, which might be of immense
value to town planners, will not require the same
type or amount of data in terms of the wavebands
or the higher resolutioo which will probably
be necessitated by an agricultural crop
classificatim.

A. Wright

GEC Research Laboratories

Chelmsford, England.

Our main purpose here is to define the methods
used in the manual interpretatim of SAR imagery
and to investigate how these can be implemented
on a computer. In Sectioo 2 we describe the
data which has been used and in Section 3 we
review the manual approach to image
interpretation. Sectioo 4 describes the Spatial
Grey Level Matrix method for texture measurement
and analyses this method for a particular measure
(INERTIA) when applied to a speckled region as
well as giving results obtained from real imagery.

2. IMAGERYANDTEST AREADESCRIPTION

2.1 Imagery

The imagery selected for this study was one look
amplitude, digitally processed SAR580 data of
'fest Area GB6, Thetford Forest, Ehgland. This
included X and C-Band HHand HVpolarised 3 metre
spatial resolution imagery obtained on the 16th
June, 1981.

2.2 Test Area:

The Test Area selected for this investigatioo is
located to the North West of Brandon in Norfolk
and is centred around the village of Weeting
(figure 1). The Test Area is topcgraphically flat,
incorporating a gentle southerly slope away from
the line of flight to the valley of the River
Little Ouse ,

Figure 2 shows a photograph of sane of the XHH
data from the test area which has been sampled
(every 3rd pxl) purely in order to enable a
larger area to be depicted.

The Test Area is dominated by part of the Forestry
Commission managed Thetford Forest, particularly
the Feltwell, Mundford and Santon beats. Within
the Forestry Commission managed woodland Corsican
Pine (Pin us nigra) and Scots Pine (Pin us
sylvestris) predominate, with other stands of Oak
(Quercus robur) and Beech (Fagus sylvatica). The
forestry Commission woodland is grown in components
of, generally, several hectares separated by
compartment rides of 10 metres width.

Non-Forestry Commissim woodland is also to be
found within the Test Area. The spec Les
composition is very mixed, incorporating the
species stated above and also including Ash
(Fraxinus excelsior).

Proc. EARSeL Workshop' .\!f icrowave remoce sensing applied co vegecacion', Amscerdam, 10-12 December 1984
(ESA SP-227, January 1985).
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Further to the woodland arable farming is predominant
with potatoes, sugarbeet and ceareals being grown.
In addition there are also extensive areas of
grassland and heathland, some of the grassland
being grazed by pigs.

3. MANUALINTERPRETATION:

Initially a manual interpretation of the imagery
was undertaken in order to assess the -estimators
that were utilised by the interpreter and also to
consider how such estimators could be implemented
by machine.

3.1 Definition of Estimators:

In interpreting the image it was apparent that the
interpreter uses a combination of the following
estimators:

a) Tone: as defined by the average backscatter
over a uniform land use parcel of an image
Variation of pixel intensity can exist
within any given parcel, but the human eye
has a capability to average the result.

b) Texture: this incorporates information
about the spatial distribution of tonal
variations within a uniform land use parcel.

c) Contexture: this estimator places
features in the context of others; for
example physiographic regions can relate to
vegetation communities.

d ) Interpreter Experience: Int er pr-et.er
experience provid es the link that relates each
of the pre-stated estimators to each other
and to ground features in order to permit a
successful interpretation. It is particularly
significant in relating contextural data to
unit classification.

It is noted that none of the above mentioned
estimators are exclusive; indeed each can
only be fully utilised in rel.ation to the
others.

3. 2 Image Interpretation :

Analysis of imagery (Figures 2 & 3) showed that five
classes of tone and five classes of texture could
be delineated. They were:

Tone Texture---
(a) Very light (a) Very smooth
(b) Light (b) Snooth
(c) Mediumtone (c) Mid-texture
(d) Dark (d) Rough
(e) Very dark (e) Very rough

Figure 3 shows the original XHHdata, unsampled,
for the area chosen for the computer measured
results described in Section 4. The regions
selected for measurement are outlined and
numbered and their texture classes are included
in the heading for the figure.

By applying these tone and texture classes to the
image on a multi-channel basis it was established
that ten classes of land use could be delineated,

as described in Table 1.

Fromthis it was clear that the X-band images
presented the most detailed imagery. Clear
delineation, in terms of tone and texture, could
be made between stands of woodland and areas of
grassland and some arable land on all channels.
The grassland and winter cereals presented a very
dark and smooth signature, whilst the spring
cereals presented a very light and smooth
signature. In contrast the woodland presented
a rougher textured image. Root crops and felled
coniferous woodland, however, presented an
image similar to that of young coniferous woodland
and could not be successfully delineated on either
the X-HV,C-HHor C-HVchannels. Conversely,
the root crops and felled coniferous woodland
presented a signature similar to that of mature
Scots and Corsican Pine stands on the X-HH
channel. Consequently, by utilising a multi -
channel analysis successful delineation was allowed.

Further classification of tree species could be
made on the X-band imagery. stands of coniferous
woodland could be clearly delineated from stands
of deciduous and mixed woodland by texture. stands
ofconiferous woodland presented a 'mid-textured'
image, whilst stands of single aged deciduous wood
land presented a 'rough' image and stands of mixed
woodland presented a 'very rough' image. Further
tree species classification proved impossible.

Classification in terms of the age of coniferous
woodland could also be undertaken on the X-band
images. Scots and Corsican Pine stands planted
before 1960, 1960-1974 and after 1974 could be
separately classified.

Stands planted after 1974 presented a very dark
toned smooth signature with fine, light parallel
linears crossing the compartments. From the
analysis of ground data it was established that
the linears were caused by the bunds of trash
formed during the pre-planting process. The very
dark and smooth signature of the image was due to
the lack of canopy cover and the resultant
predominance of ground reflection.

Stands planted between 1960 and 1974 could be
delineated from those planted before 1960 by a
generally darker tone and smoother texture. This
was thought to be due to the more even and dense
canopy presented by the younger trees resulting
in a smoother recipient reflecting surface.

In addition shadowing and highlighting caused by
the changes in the heights of trees aided the age
classification in that height differences could
be directly related to tree age. This was found
to be particularly the case on the X-HHimage.
This introduces contexture as an estimator
for image interpretation.

It is also worth noting that the age groups denoted
within the coniferous woodland are to an extent
defined by the data ava tLabLe, A. compLete
set of data for all ages of Scots and Corsican
Pine woodland is not available, but the results
do indicate that broad age classification is
possible.
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The C-band imagery, in comparison, provided a
less texturally detailed image. stands of
decidious and mixed woodland could not be so
clearly differentiated from stands of coniferous
woodland. In addLtLcn, rivers, hedgerows and
clearings could not be so clearly defined. It
is not clear whether this is due to the longer
wavelength of the C-band in comparison to the
X-band or whether it is due to the poor quality
of the C-band data generally.

The loss of textural detail, however, enhanced the
capability to delineate tonal variations within
the image. Boundaries between coniferous age
groups becamemuchmore clearly defined.

A further classification of coniferous tree species
was found to be possible on the C-band imagery.
The delineatioo of Scots Pine planted before 1960
from Corsican Pine planted before 1960 and
Corsican Pine planted between 1960 and 1974 was
made possible by the lighter tone of the Scots
Pine. This tonal difference was not apparent
on the X-band imagery.

Variatims in the image due to polarisatim differ
ences were also noted. It was established that
only upon the HHpolarised channels could urban
areas be separately classified from mixed
woodland. Ch the HHimagery urban areas were
characterised by the numerous fine ligh~ linears
parallel to the line of flight caused by the
reflection of radar waves on the side of buildings.

Diseased and windblownconiferous stands could not
be directly delineated from the imagery as the
image presented was similar to that of mixed
woodland.

Overall, by utilising a multichannel analysis of
the imagery a ten class classification could be
undertaken (Table 1).

Fromthe results the following conclusions can
be drawn:

(a) It is apparent that within grassland /arable
land the prime estimator for making land
use determinations is tone

(b) For delineating woodland from non-woodland
the major estimator is texture

(c) For delineating different classes within
woodland, the major estimator is texture

(d) For delineating urban areas and coniferous
woodland planted after 1974 the prime
estimators are contexture and texture

(e) It is also apparent that each of the four
estimators; tone, texture, contexture and
experience, are not used in isolation,
but indeed are inextricably linked.

4. MACHINEINTERPRETATION

4.1 General

This Section describes some of the machine
(ccmputed) measures that have been used in an
attempt to achieve the same classification as
that defined in the visual interpretation

described in Sectioo 3. Of the attributes used in
humanimage interpretation the first, tone, is
readily implemented on a computer. Tone is a
first order statistic that for a speckled region
is most easily represented by the mean intensity.
other statistics such as standard deviatioo,
skewnessand kurtosis are also readily calculable
and their use in estimating the hanogenity of a
region will be commentedon later.

The second of the humanclassification features
mentioned in Sectim 3, texture, is considerably
harder to measure satisfactorily by computer.
In fact even to define texture causes problems
which are probably still not fully resolved.
Various authors have attempted this definitim and
some typical examples are given here:

Hawkins (Ref. 1)

'Texture has 3 ingredients.

(i) Sane local order is repeated over a r egLcn
large in comparison to the order.

(ii) The order consists of the non-random
arrangements of elementary parts.

(iii) The parts are rough entities having
approximately the same dimensims
everywhere.

Blomand Daily (Ref.2)

'Texture is the spatial variatim of image
tone'.

Haralick (Ref.3)

' .•. textural features contain information about
the spatial distributim of tonal variations'.

also, 'Texture and tone are inextricably linked'.

and, most revealing:

'Texture has been extremely refractory to
precise definition and to analysis by computer'.

The texture present in a non-noisy optical image is
perhaps most easily understood initially; a uniform
scene of the same tone (colour) all over would be
said to have no texture whereas two sets -of' parallel
lines crossing at right angles presents a very rigid
'grid "t ext ur-e ,

Less rigid textures exist in pictures of leaves on
a tree or the grain in a piece of wood. The common
factor of all scenes with texture is the existence
of a variation in tone which consists of the
distribution of s tmi Lar- elements over a background.

The elements do not have to be all exactly the same
either in tone or size. or shape (also more than one
element type can be present) and tnei r- distribution
can range from a precise well-defined structure
(e.g. the grid) to others where the elements are
randomly distributed and only the mean and variation
of their density is known. It follows that texture
is not predictable simply from a knowledge of the
tonal values present in an image but the1r
geometrical relationships must aLso be known.
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SARimages present a more complicated problem
because of the speckle which is invariably present.
Speckle arises from the coherent nature of the
radiation and consists of the variatioo of pixel
tones which occurs even in images of hanogeneous
areas (Le.regions where the ground backscatter
characteristics do not change significantly). The
probability distributicn of the pixel tones in a
homogeneousarea can be predicted theoretically
for a given SARtype (e.g. a Rayleigh ·distribution
for 1-look amplitude) and has often been
experimentally verified. An important
characteristic of pure speckle is its multi
plicative nature which results in the ratio of
standard deviation to mean intensity being
constant.

It follows that texture measures for SARmust
distinguish between pure multiplicative speckle
and tonal variations due to a genuine change
in the backscatter coefficient.

4.2 Spatial Grey Level DependencyMatrix
(SGLDM)Methods

Various algorithms have been suggested for the
computation of texture in digital imagery but
the one which has proved most popular and
that which is used here is based on the Spatial
Grey Level DependencyMatrix (SGLDM)(Refs. 3-6).

The SGLDM, sanetimes called the grey level
co-occurrence matrix (GLCM),is a square matrix
of order ,Ng, the number of grey levels used in
Lc s calculatioos which is usually rather less
than that present in the original image. Element
S (i,j) of the SGLDMis the frequency of
occurrence of pairs of pixels, the first having
grey level i and the second j. The s\'!cond pixel
is geometrically related to the first by a
vector d which is kept constant in the calculation
of a matrix. Because many different d are
possible so many different SGLDM'scan be
calculated for the same image. A SGLDMcontains
information on the tonal variation over a
particular direction and distance from which
various more compact texture measures can be
obtained. It is usual to normalise the SGLDM
elements by dividing by the total number of pixel
pairs used so obtaining a matrix of probabilities
of occurrence.

Examples of texture measures which can be obtained
in this Hay are;

INERTIA= };
i,j

(i-j)2 P ..
1.J (1)

ABSOLUTEDIFFERENCE= };
i,j

i-j P ..
lJ

(2)

CORRELATION=L (i-i-)(j-}) P.. /(a. a.)
. . lJ l Ji,J

(3)

INVERSEDIFFERENCE= z p .. I (1 + ( i-j )2) (4 )
lJi,j

where i,j are the grey levels, I, 3 are mean levels,
P.. are the SGLDMprobabilities and the
s[n;lmations are taken over all the matrix elements.
Manyother expressions are obviously possible and
Haralick (Ref.3) lists 14 useful measures. The

advantage of the above 4 is that, being linear
in the Pij, they do not necessitate_ calculation
of the SGLDMexplicitly as they can be expressed
as the average of functions;

INERTIA=average of (i-j)2

Even for a noiseless image the physical meaning
of the measures defined in Eqs. 1-4 is not as
apparent as one would like but nonetheless their
function can be discerned by examination; the
INERTIAand .ABSOLUTEDIFFERENCEvalues increase
as the SGLDMoff-diagonal frequencies rise and
hence can be taken as a measure of the degree of
non-uniformity in the direction of the pixel
pair separatioo vector. Conversely the INVERSE
DIFFERENCEmeasure is at a maximumwhen all the
off-diagonal components are zero and hence
increases as the degree of linear uniformity in
the direction of the separation vector increases.
The CORRELATIONmeasure is the standard
statistical coefficient used to gauge the degree
of correspondence between the first and second
pixels in the pairs used.

As already mentioned a variation in pixel tones,
commonlycalled speckle, is always associated
with SARimages even where the object region has
a constant radar backscatter. Therefore it is
important to understand the effects of pure
speckle on any texture measures that are used.

4.3 SGLDMmethods and Speckled regions

For SARsystems the probability distribution of
pixel grey levels in a homogenousregion is known
and is a function dependent only on the mean grey
level, the number of looks of the system and
whether it is an amplitude or power measurement.

Let the probability density distribution function
be P(x ); P(x) dx = the probability of any pixel
having a grey level in the range x to x +dx. Now
the SGLDMuses joint probabilities based on a finite
number of grey levels and in order to calculate
these from a knowledge of the continuous probability
density function we first need to discretise it.

If the spacing of the grey levels is I'> then the
probability of a pixel having grey level i (that
is of being within the limits i to i + /'>) is given
by,

P. = P (x eL )/'>
l

(5)

The verbal definition of a hanogeneous region or
a region of pure speckle and no texture can now
be expressed mathematically in terms of the joint
probabilities by;

pij (6)

This simple equation utilises the fact that for
such a region the grey levels of the pixels in each
pair are unrelated and hence the probability of
a particular pair of grey levels occurring is simply
equal to the product of their separate probabilities.

Using Eqs. 5 and 6 we have

p ( i ). p ( j )./;2 (7)
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which enable the calculation of the SGLDMelements
in terms of the speckle probability density
functim.

The imagery used in part of this study is SAR580
data which is a 1-look amplitude system for
which the pixel intensities are known to follow
a Rayleigh probability distribution very well.

2 2
P(x) = 11 x exp [ -11 x I µ ] (8)--, 42µ

where x = pixel intensity

µ = mean value

From Eqs. 7 and 8 we can calculate the joint
probabilities in a homogeneous region;

p ..
lJ

2 2 2 2

ij exp [-11 (i + j )14µ ].LI (9)11(---,
2µ

and using this expression formulae for the texture
measures can be found. In particular the INERTIA
measure becomes:

2 2 2 2 2
INERTIA = L (11 ) ij exp[-11(i +j )14µ] (i-j) LI (10)

.. 2
1,J 2µ

In practice the computatim of the inertia measure
can be easily accomplished without necessit~ting
calculation of the SGLDMby simply finding the
average of the expression (i-j) . This is
equivalent to using the largest possible SGLDM
with ll = 1. The result of this can be theoretically
estimated from Eq. 10 by approximation to a
integral expression.

INERTIA
2 2 2 2

= fdx fdy ( ..;) xyexp[-11 (x +y ) 14µ ]

2µ
2

(x -y ) (ll)

which can be calculated using standard integrals
resulting in

INERTIA 4
2

(2 -11 )µ
11 2

0. 5464 µ

It follows that,

)INERTIA= 0.739µ, (12)

For a homogeneous regim for a 1-look amplitude
SAR image.

A better known result for a SAR image is that the
ratio of the standard deviation, a, to the mean,
u, is a constant. Using the Rayleigh distribution
(Eq. 8) it is easy to calculate the expected
"~1,,.,of this ratio using the definition· of the
standard deviation,

2 2
0 = fP(x) (x-u ) dx,

from which it follows that

0 = µ (::_ -1)
11

olµ = J ( ~ -ll = 0. 523
11

(13)

(14)

The expected value of the skewness and kurtosis of
the same distribution can be derived similarly:

Skewness
3 3

fP(x) (x-µ) lo dx
3

(2-61•) (µla)

0.631 (15)

Kurtosis
4 4

f P(x) (x-µ) lo -3

2 4
(321K -3) (µla) -3 (16)

0.246

4.4 SAR580 Results

As described in Section 2 regions with
visually different tone and texture were selected
from a SAR580 image. The boundary codes of these
regions were stored in a data base specifically
developed for work in image segmentation and
classification (ref 7) and this enabled the
calculation of attributes using the intensities of
pixels situated in these regions only. Tables 2,
3 and 4 list some typical results which were
obtained from the X-band, HHpolarisation data.
As can be seen the skewness and kurtosis results
for the 'rough' regions deviate significantly from
the predicted values for a homogeneous area, Eqs,
15 and 16. The plot of the standard deviation
versus mean in figure 4 indicates a similar result
in which all but the 'rough' regions lie close to
a line following Eq. 14. The indication then
of these first order statistics is that the pixel
intensities in the regioos classified XSMOOTH,
VSMOOTH,SMOOTHand MlD are distributed according
to the Rayleigh distributioo. This impression is
strengthened when the second order measures using
the SGLDMtechnique are examin ed (tables 4 and 5).

Table 4 which lists the results for nearest
neighbour pair of pixels (separation vector d =
( 0, 1)) shows a marked and consistent correlation
of about 0. 33 for the XSMOOTHto MIDclasses
inclusive increasing to about 0.55 for the ROUGH
regions. Thus correlation is to be expected and
is a property of the system point spread function
which is purely a function of the SARdata
processing and not of the ground characteristics.
A comparison with table 5 where the pixel pair
separation vector has been increased in magnitude
(d now = (0,8)) shows insignificant correlation
figures for all but the ROUGHregions.

frg ur e 5 shows a plot of )INERTIA (calculated with
d = (0,8)) versus the mean intensity on which
the predicted slope Eq. 12, has been marked. Again
only the ROUGHregioos deviate appreciably from
the expected result for homogeneous regions.

foe ABSOLUTEDIFFERENCEresults closely parallel
those for the INERTIAmea s ur-e which in view of
their similar definitions is not surprising. The
INVERSEDIFFERENCEresults are very !.ow and show
a tendency to reduce further as the mean intensity
(and hence speckle variation) rises. It seems
likely that the form of this measure is such that
it is too easily swamped by speckle to enable any
real texture to be measured.
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The above results were largely reiterated for all
3 data types which were available (XHH,XHVand
CHH)and for all values of the pixel pair separation
vector which were tried (( O,l), (O,4), (O,8),
(1,0), (4,0), (8,0)). In fact the texture measures
did not vary significantly with either the direction
or magnitude of the separaticn vector once its
magnitude exceeded nearest neighbour separation.

5. Shanmuganet al, 1981, Textural Features
for radar image analysis. IEEETrans.
Geosci, Remote Sensing. VOLGE-19.

6. Holmes et al, 1984, Textural Analysis and
Real-time Classification of Sea-Ice Types
using Digital SARData. IEEE Trans.
Geosci and Remote Sensing. Vol. GE-22.

4.5 Summary
7. Cruse et al, 1984, A Segmented Image Data

Base (SID) for Image Analysis, IEEE 7th
ICPR

In conclusicn the computed results indicate that for
all but the ROUGHregicns, the intensity variation
can be related to the speckle statistics to be
expected for a homogeneous regioo and that no
significant texture is present in these areas.
However it is important to realise that the same
classification as that defined manually can still
be achieved by computP.r as examinaticn of Figures
4 and 5 indicates. By choosing appropriate
thresholds in mean intensity and a measure of
o/µ or JINERTIA/µ it is evident that the different
classes can be separated.

5. SUMMARY

Wehave presented a review of the methods used in
the manual interpretation of SARimagery of
agricultural and woodland areas. In so doing a
10 class categorisation has been produced which
is based on visual tone and texture as seen in
XHV,XHH,CHVand CHHimagery. A representative
selection of these different classes was analysed
using both simple statistics and the SGLDMmethod
for measuring texture. These computed results
indicate that for all classes apart from 'ROUGH'
the regions have a pixel intensity variation
compatible with the speck le to be expected in a
homogeneous area. It is believed (by one of the
authors, AW.,) that the different visual textures
seen in the selected regicns is the effect of the
increased pixel variatioo (speckle) with mean
intensity. However the most important result of
this study is that the same classification can be
achieved using computed measures as is defined
manually.
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Class
No.

X-HH Channel
Description

Single age
broad leaves

Rough texture,
mixed tone

FIGURE 1. TEST AREA USED IN NORFOLK, ENGLAND.

X-HV Channel
Description

Rough texture,
mixed tone

C-HH Channe 1
Description

Rough texture,
mixed tone

C-HV Channe 1
Description

Rough texture,
mixed tone

Class
Description

2 Very rough texture
Very mixed tone

Very rough texture
Very mixed tone

Very rough texture
Very mixed tone

Very rough texture
Very mixed tone

Mixed woodland;
Windblown and
diseased conifer

3 Medium texture,
Light tone

Scots Pine planted
before 1960

Medium texture,
Light tone

Medium texture,
Light tone

Medium texture,
Light tone

4 Medit.m texture,
Light tone

5 Medium-smooth
teitture, medium
tone

Medium texture,
light tone

Medium-smooth
texture, medium
tone

Medium texture,
medium tone

Medium-smooth
texture, medium
tone

Medium texture,
medium tone

Medium-smooth
texture, medium
tone

Corsican Pine planted
before 1960

Scots and Corsican
pine planted between
1960 and 1974

6 Very dark tone,
light fine
parallel linears

Very dark tone,
light fine
parallel linears

Very dark tone,
light fine
parallel linears

Very dark tone,
light fine
parallel linears

Scots and Corsican
Pine planted·after
1974

Smooth-very smooth Smooth-very smooth Smooth-very smooth Smooth-very smooth Grassland and Winter
texture. Dark- texture. Dark - texture. Dark - texture. Dark - Cereals
very dark tone very dark tone very dark tone very dark tone

8 Smooth-very smooth Smooth-very smooth Smooth - very smooth Smooth-very smooth Spring Cereals
texture. light- texture. light- texture. light- texture. light-
very light tone very 1ight tone very light tone very light tone

Medium-smooth
texture. Light
tone

Medium-smooth
texture. Medium
tone

Medium-smooth
texture. Medium
tone

Medium-smootb
texture. Medi um
tone

Root Crops

10 Very mixed tone,

short light
linears paralle 1
to line of flight

Very rough texture

very mixed tone

Very mixed tone, short Very rough texture Urban

light l inears, very mixed tone
paralle 1 to line of
flight

TABLE 1. TEN CLASSES OF LAND USE
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FIGURE2: XHVdata of test site sampled at
every 3rd pixel.

FIGURE3: XHVdata showing regions selected
for analysis; XSMOOTH11, VSMOOTH
2,3,4, SMOOTH8,9,10, MID5,6,7,
ROUGH12, 13, 14.

Regicn
Class /Number Mean std. Deviation Skewness Kurtosis

XSMOOTH
11 693 347 0.655 o.409

VSMOOTH
2 1062 549 0.550 -0.040
3 964 513 0.690 0.236
4 1023 538 0.655 0.191

SMOOTH
8 1331 689 0.612 0.246
9 1276 641 0.687 0.621

10 1457 775 0. 750 0.876

MID
5 1719 902 0. 637 0.229
6 2017 1080 0.612 0.076
7 1815 1000 0.755 0.525

ROUGH
12 1682 1283 1. 818 5.278
13 1520 1011 1.317 2 .172
14 1563 1245 1. 987 5.787

Table 2 statistics obtained from selected regions of a SAR580image



HUMAN AND AUTOMATIC INTERPRETATION 139

Region
Class /Number Correla ti en

XSMOOTH
11 0. 319

VSMOOTH
2

3
4

0.334
0.325
0. 323

SMOOTH
8
9

10

0.351
0.328
0. 330

MID
5
6
7

0.332
0.320
0. 321

ROUGH
12
13
14

0.59D
0.507
0.589

.Jrnertia Abs. Value
4

Inv. Difference(*lO )

23.7

30.4
18.2
23.5

22.5
19.6
14.3

13.9
8.5
8.1

13.0
18.6
12.2

Table 3 Texture Measures obtained from selected regions of a
SAR580 image using the SGLDMtechnique with a
pixel pair separaticn vector = (0, 1 ).

405 326

Regicn
InV.Difference (*104)Class /Number Correlation ../Inertia Abs. Value

XSMOOTH
11 0.005 503 398 16.0

VSMOOTH
2 -0. 065 819 659 19.7
3 -0.028 736 582 13.3
4 0. 037 744 585 8.9

SMOOTH
8 -0. 020 987 782 14.4
9 -0. 068 917 722 4.4

10 0.017 1078 844 9.7

MID
5 0.018 1259 992 14. 8
6 0.030 1512 1197 10. 4
7 0. 032 1392 1116 1. 7

ROUGH
12 0.166 1698 1199 9.7
13 0.032 1417 1050 10. 9
14 0.208 1590 1104 13.8

Table 4 Texture Measures obtained from selected regicns of a
SAR580 image using the SGLDMtechnique with a pixel
pair separation vector = (0,8).

634
595
623

50
467
485

785
745
897

624
591
715

1039
1265
1163

824
997
914

1167
1002
1132

840
752
792
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RE!ll\RKSON THE SYSTEMATICS OF APPLICATION

A.R.P. Janse

Vakgroep Bodemkunde en Plantevoeding, ~a~dbouwhogeschool, Wageningen

Att2ntior. is a£ked for a more fundamental

study of the systematics of applications.

Suggestions are given to start. The relative

importance of microwaves is indicated.

The rapid development of existing and new

measuring techniques has increased the interest

in what is often called interpretation. It seems

therefore useful to reflect on what might be meant

by this concept.

The original meaning of the word is 'translation'.

A relation between types of information seems in

dicated and one might ask for the difference or

relationship between the two languages. Even the

question arises whether this translation may take

immediately place in a single way or whether the

fundamental aspects must be studied first.

From the fact that the application in RS is mostly

related to field conditions and so to disciplines

that consider in more detail field or natural

behaviour, once can conclude, that at least for a

large part visual criteria must be taken into

account too. These criteria will be defined in

practice as phenomena, derived and determined in

a visual control system incorporating the use of

uncorrected images. It may be stressed, that large

series of natural processes are governed by the

spectral bands, where the human eye is sensitive

as well.

All this leads to a preliminary classification of

the parameters to express a factual base for

interpretatio~. Onecan div~de the parameters into

three groups. They differ in reference level and

in the manner in which calibration is or must be

described.

First there is the pure physical content of the

signal. The numerical value and the possession

of a measure originates from the existence of far

more absolute descriptions of the reference. The

classical way in which time and place is accepted

predominates in this series of parameters.

Essentially the basic parameters can be found in

the ISO-normalised criteria. Secondly we have a

series or set of image related parameters. Their

reference level is found in the psycho physics of

the human eye, or in cases indirect by the

specifications of the automatised systems of

image treatments, based upon the same set of

criteria.

Subdivisions can be made, starting from the

memorising and associative relationships, that are

formalised in the perception studies of image

handling.

The third group of parameters deals with the values

connected to an operational use of the data

collected. Here the reference level can only be

found as a result of a series of comparisons.

Proc. EARSeL Workshop· .Wicrmrnre remote sensing applied to regetation', Amsterdam, 10-12 December 1984
(ESA SP-227,Januar_r 1985).
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Their need and existence follows from the complex

ity of the interrelated natural and evaluating

processes. The parameters passess analogous

properties and are per definition not absolute.

They may and will vary with the actual importance

given to them.

It goes without saying, that an adequate descrip

tion of the result obtained in a research program

requires the incorporation of the values and

arguments of each of the three groups mentioned.

In effect this consideration presents part of a

type of system analysis directed towards guiding

further research efforts.

From the foregoing text one may conclude that

the use of microwaves has a very special signi

ficance. As a consequence of the absoluteness of

the signal in an active radar system and the ne

glible atmosf eric interference one may accept the

reflected or scattered signal as a reference base

itself, even for the reflectivities and

emissivities at shorter wavelen~ths. This is even

more true for application of radar data concerning

vegetation. This is due to the nonequilibrium

status of the covered soil surface and the many

interactions and growth development stages. In

effect a resolution element represents the

time - place projection of a large numer of

processes, some being at equilibrium. The in

creased sensivity of radar technique to detect

and follow natural behaviour may even guide

further research in the use and effectiveness of

the parameters, of the sustaining field

disciplines.
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