

IP-STATS: A SYSTEM FOR DERIVING STATISTICAL MODELS OF IONOSPHERIC SIGNALS IN LOW-FREQUENCY SAR DATA

F.J Meyer^{1) 2)}, B. Watkins³⁾

¹⁾Earth & Planetary Remote Sensing, University of Alaska Fairbanks ²⁾Alaska Satellite Facility (ASF)

³⁾Space Physics and Aeronomy, University of Alaska Fairbanks

Ionospheric Artifacts in Radar Data

3

Image Distortions

Ionosphere causes range of effects that can be used for ionospheric mapping

Comparison of Mapping Techniques Example: Frame 1350 – North Slope, AK

In Case Signal Correction Fails:

•Statistical Modeling mitigates effects on final target parameters through realistic modeling of the accuracy and correlation of data

•IP-STATS attempts to provide such model

- Most small scale variations of ionospheric delay can be described as featureless, scale invariant noise like signals
- Convenient Descriptor: Power Law Functions

- Total power of signal
- Distribution of power over spatial scales
- Steep \rightarrow smooth signal
- Shallow \rightarrow noisy signal
- ^{,5} have been observed

6

- On the convenience of power spectra:
 - 1. Power Law models can be converted to covariance functions through cosine Fourier Transformation

$$C_{\varphi}(r) = \int \cos(2\pi f r) P_{\varphi}(f) df$$

2. Spectral slopes can be converted to fractal dimensions *D*

$$v = 7 - 2D$$

 \rightarrow Basis for signal analysis, statistical modeling, signal representation, and simulation

- Representative power spectrum parameters are derived from global ionospheric scintillation model WBMOD (WideBand MODel)
 - WBMOD capable to simulate statistical properties of scintillation effects on user-defined system based on solar activity and system parameters

 Prediction of single-regime power spectrum parameters for wide range of systems and ionospheric conditions

E.J. Fremouw & J.A. Secan (1984): Modeling and Scientific Application of Scintillation Results, *Radio Science*, 19(3), pp 687 – 694.

IP-STATS: A System for Describing and Simulating the lonosphere

Workflow of the Ionospheric Phase Statistics Simulator (IP-STATS)

- Only dependent on quantifiable ionospheric and system parameters and no requirement for real observations
- Covariance Functions and Matrices:
 - Can support realistic statistical models to be used in parameter estimation

• Phase Simulations:

- Sensitivity analysis of spaceborne radar systems
- Useful in System design analysis
- Selection of best suited radar system for an application

Simulating Ionospheric Conditions for a 10-Year Time Series of SAR Acquisitions over the North Slope of Alaska

Validation of IP-STATS in Polar Regions

<u>Real data processing:</u>

• <u>IP-STATS:</u>

 Ionospheric phase statistics parameter from SAR system parameters, observation geometry, and solar parameters at acquisition time

COMPARISON:

Validation for Auroral Zone conditions

Validation of IP-STATS in Polar Regions

At High Latitudes: Predicted and Measured Covariance Functions match reasonably well!

Anisotropy Model in IP-STATS

- Current approach extract information from WBMOD
- Anisotropy approximated by "Correlation Ellipse":
 - Shape: axial ratios a and b (length of axes of correlation ellipse relative to vertical layer thickness thin layer approximation is used)
 - **Orientation:** angle δ relative to local ionospheric L-shell

D.G. Singleton (1970): Dependence of Satellite Scintillations on Zenith Angle and Azimuth, *Journal of Atmospheric and Terrestrial Physics*, 32, pp 789 – 803.

Anisotropy Model in IP-STATS

- April 1, 2007:
 - $a = 3; b = 1; \delta = 0$

Rod-like oriented roughly east-west

Observed SAR Phase distortions on April 1, 2007

WBMOD

Estimate

Conclusions

- We have shown that:
 - Spaceborne imaging radars are affected by the ionosphere, in particular at times when small scale ionospheric irregularities are likely
 - IP-STATS system models statistical properties of small scale ionospheric irregularities based on power spectra, covariance functions, and fractal dimensions
 - First validations for Polar Regions show good performance of predicting variance and co-variance parameters
- Next steps:
 - Further validation and incorporation of anisotropy are required
 - Investigation of multi-scale power spectra
 - Analysis of ionospheric drift velocities relative to SAR integration time

PALSAR Interferogram Amazon area, Ionospheric Disturbances

Open Three Year PhD Position

starting fall 2011 / spring 2012 for a radar remote sensing research project at the Geophysical Institute of the University of Alaska Fairbanks on

Theoretical Investigations into the Impact and Mitigation of Ionospheric Effects on Low-Frequency SAR and InSAR Data

Research Focus:

 Investigation of spatial and temporal properties of ionospheric effects in SAR data

•Development of statistical signal models

 Design of optimized methods for ionospheric correction

More information:

Dr. Franz Meyer (fmeyer@gi.alaska.edu) and at: www.insar.alaska.edu

ANNOUNCEMENT:

Workshop Dates:

November 7 – 9, 2011

Abstract Deadline:

October 1, 2011

More information at: <u>www.asf.alaska.edu/ceos_workshop/</u>

Example of Ionospheric Correction

- Mitigation of ionospheric effects from Faraday Rotation and azimuthshit estimates
- → reduced phase distortion and

Original phase Corrected phase Image: Corrected phase Image: Corrected phase

In Case Signal Correction Fails:

•Statistical Modeling:

- Statistical modeling mitigates effects on final target parameters through realistic modeling of the accuracy and correlation of data
- IP-STATS attempts to provide such model

