

FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822

Traceability and Uncertainty

Lessons learned from FIDUCEO and relevance to ESA-SPPA activities

Merchant, Mittaz, Woolliams, Fox and many FIDUCEO colleagues

FIDUCEO

- Ambition: develop a widely applicable metrology of Earth observation (EO)
- Motivation: establish traceable, uncertaintyquantified evidence for climate and environmental change from space assets
- Project runs March 2015 to February 2019

www.fiduceo.eu

Why metrology of EO?

- Adopting language and tools of measurement science brings
 - conceptual clarity
 - rigorous practice
 - well-tested tools
 - better climate data records
- But the process is also *extending* the discipline of metrology in some ways
 - EO raises aspects not present in the laboratory

FIDUCEO core concepts

Dissemination to users of traceable, per-datum uncertainty information in level 1 (FCDR)

Harmonisation of FCDR radiances

Propagation of FCDR uncertainty to uncertainty-quantified higher-level products (CDRs)

FIDUCEO FCDRs (L1)

FCDR: fundamental climate data record (calibrated radiances) from which climate data can be derived

DATASET	NATURE	POSSIBLE USES
AVHRR FCDR	Harmonised infra-red radiances and best available reflectance radiances, 1982 - 2016	SST, LSWT , aerosol , LST, phenology, cloud properties, surface reflectance
HIRS FCDR	Harmonised infra-red radiances, 1982 - 2016	Atmospheric humidity, NWP re-analysis, stratospheric aerosol
MW Sounder FCDR	Harmonised microwave BTs for AMSU-B and equivalent channels, 1992 – 2016	Atmospheric humidity, NWP re-analysis
Meteosat VIS FCDR	Improved visible spectral response functions and radiance 1982 to 2016	Albedo, aerosol, NWP re- analysis, cloud, wind motion vectors,
University of Reading		Flduce

FIDUCEO CDRs (L2/L3)

CDR: climate data record, the evidence base for high-level climate information and services

DATASET	NATURE	USE
Surface Temperature CDRs	Ensemble SST and lake surface water temperature	Most of climate science model evaluation, re- analysis, derived/synthesis products
UTH CDR	From HIRS and MW, 1992 - 2016	Sensitive climate change metric, re-analysis
Albedo and aerosol CDRs	From M5 – 7 (1995 – 2006)	Climate forcing and change, health
Aerosol CDR	2002-2012 aerosol for Europe and Africa from AVHRR	Climate forcing and change, health

FCDR Uncertainty

- Understand the **measurement equation**
- Quantify the **sources of error** (effects)
- Quantify their error structures
- Propagate to get radiance **uncertainty**

• Structured approach centred on measurement equation

Measurement equation

The equation used to calculated "calibrated radiance" in the FCDR

$$R_{E} = a_{0} + \frac{a_{1}R_{T} - a_{2}\dot{C}_{T}^{2}}{\dot{C}_{T}}C_{E} + a_{2}C_{E}^{2} + O$$

Quantify each error source

- Magnitude of uncertainty at parameter level
- Correlation structure of errors
 - between elements
 - between lines (over time)
 - between measurement equation parameters
 - between spectral bands
- Propagate parameter-uncertainty to radiance uncertainty

Capture in an effects table

		Value / Expression	Notes
Name of effect			
Affected term in measure	ement function		
Channels / bands			
	within scanline [pixels]		
	from scanline to		
	scanline		
	[scanlines]		
	between images/orbits		
1. Correlation type	[orbits]		
and form	Across time		
	[appropriate time units		
	e.g. days, months,		
	years]		
	between channels /		
	bands		
	within scanline [pixels]		
	from scanline to		
	scanline		
	[scanlines]		
1. Correlation scale	between images/orbits		
	[orbits]		
	Across time		
	between channels /		
	bands		
Uncertainty PDF shape			
Uncertainty units			
Uncertainty magnitude			
Sensitivity coefficient			

Need evidence of noise components for 'twigs'

• Even the noise at the counts level can be surprisingly complex

Must consider correlated effects

 For HIRS strong correlations in noise between channels

"+O": beyond quadratic

- Detailed model of detector physics (Auger, etc)
- Shows quadratic expression is an approximation (upper plots)
- Lower plots show that the quadratic coefficient isn't constant with instrument temperature either

Note for traceability need some kind of estimate for all possible effects even for things we don't have a good measure of...

Traceable uncertainty

- Traceability diagram, measurement centred
 - to organise
 - to document
- Branching structure reflects the nature of the problem
- Standardised "effects table" per "twig"
 - systematic documentation
 - this is codified into a full FCDR format
- Same for deriving higher-order products (CDRs)
 - uncertainty from L1 is simply one of the effects in L2

Harmonisation

CMA · CNES · EUMETSAT · IMD · ISRO · JAXA · JMA · KMA · NASA · NIST · NOAA · ROSHYDROMET · USGS · WMC

In This Issue

<u>Articles</u>

Harmonisation and Recalibration: A FIDUCEO perspective By Emma Woolliams (NPL), Jon Mittaz (NPL,

UOR), Chris Merchant (UOR) and Arta Dila (NPL)

How good are GSICS References, IASI-A and AIRS? By Manik Bali (NOAA), Jonathan Mittaz (NPL) and

Mitch Goldberg (NOAA)

The Moon as a diagnostic tool for microwave sensors By Martin Burgdorf, T. Lang, S. Michel, S. A. Buehler and I. Hans (Universität Hamburg)

GRUAN in the service of GSICS: Using reference ground-based profile measurements to provide traceable radiance calibration for space-based radiometers

By Jordis Tradowsky (Bodeker Scientific), Greg Bodeker (Bodeker Scientific), Peter Thorne (Maynooth University), Fabien Carminati (UK Met Office) and William Bell (UK Met Office)

A drawback of solar diffusers in RSB Calibration By Junqiang Sun and Mike Chu (NOAA)

News in This Quarter

Highlights of the 2016 GSICS Executive Panel Meeting held in Biot, France By Kenneth Holmlund(EUMETSAT)

Summary Report on the CEOS/WGCV-GSICS microwave subgroups joint meeting held at Beijing, China from July 06-07, 2016 By Xiaolong (CAS) and Cheng-Zhi Zou (NOAA)

Microwave Inter-calibration activities reported at MicroRad 2016 By Vinia Mattioli (EUMETSAT)

Announcements

Toshiyuki Kurino replaces Jérôme Lafeuille as WMO representative on the GSICS Executive Panel By Lawrence E. Flynn (GCC Dir., NOAA)

Meteosat SEVIRI-IASI products declared operational By Manik Bali (GCC Deputy Dir.,NOAA)

OSCAR/Space v2.0 launched By Stephen Bojinski(WMO)

GSICS-Related Publications

AIRS ATMOSPHERIC Figure Sounder Harmonization and Recalibration: A FIDUCEO perspective

By Emma Woolliams (National Physical Laboratory (NPL), UK), Jon Mittaz (NPL and University of Reading (UOR)), Chris Merchant (UOR) and Arta Dilo (NPL)

Obtaining information about long-term environmental and climate trends requires the analysis of decadal-scale time series of observations made by different sensors. To ensure that such comparisons are meaningful, it is essential to quantify the stability of satellite sensors and to determine the radiometric differences between sensors and the uncertainties associated with those differences.

This paper describes the principles adopted within the Fidelity and uncertainty in climate data records from Earth Observations (FIDUCEO) project for harmonising satellite data series to obtain long-term stability. The FIDUCEO project aims to develop metrologically-robust Fundamental Climate Data Records (FCDR), i.e. long-term records of satellite L1 products (top-of-atmosphere radiance, reflectance and brightness temperature). These FCDRs will have not only uncertainty information at the pixel level, but also information about the correlation structure of the

associated errors. In the second half of

the FIDUCEO project we will

demonstrate how to propagate this information to derived geophysical datasets, i.e. Climate Data Records (CDRs) for four ECVs. One important aspect of the work of FIDUCEO is to harmonise the data series. The aim of harmonisation is to establish long-term stability in the data record. Most sensors are calibrated prelaunch, where *calibration* means establishing the basic model (measurement equation) for translating a measured signal (e.g. in counts) into the required measurand (e.g. radiance). However, this model may also make allowance for in-orbit factors; for example, it may account for gain changes of the instrument throughout the orbit due to variations in self emission by using

www.fiduceo.eu/blogs

Match-ups for ATSR/AVHRR harmonisation

- Reference radiance, or sensor-to-sensor
- Many (50 million +) matched pairs
- Correlated errors
- Tools for solving now in advance stage of development

Aim	Method	Bias Correction	Recalibration
Respect sa SRF differe while reco calibration	atellite ences onciling	GSCIS definition for "sensor equivalent calibration"	FIDUCEO definition for "harmonisation"
Adjust for difference calibration difference	SRF s and s	GSICS definition for "reference sensor normalised calibration"	FIDUCEO definition for "homogenisation"

Sharing the FCDR

- Full FCDR:
 - Uncertainty data by correlation structure

$$u^{2}(R_{E,ijk}) = c_{a_{0}}^{2}u^{2}(a_{0}) + c_{C_{E,ijk}}^{2}u^{2}(C_{E,ijk}) + c_{R_{ICT,jk}}^{2}u^{2}(R_{ICT,jk}) + c_{\delta R_{ICT,0}}^{2}u^{2}(\delta R_{ICT,0}) + c_{\delta R_{ICT,0,grad,jk}}^{2}u^{2}(\delta R_{ICT,0,grad,jk}) + c_{C_{ICT,jk}}^{2}u^{2}(C_{ICT,jk})$$

• Ensemble of realisations

"Easy FCDR" with guidance

independent random combined systematic and structured random

Use of FCDR uncertainties

- For model-observation comparisons in "observation space"
- For data assimilation
- For proper estimation of Climate Data Record uncertainties across spatio-temporal scales
 - FIDUCEO exemplars coming next year

- Normal good practice is
 - every FCDR has pixel-level uncertainty (error covariance) information ...
 - ... based on measurement-equation-centred analysis as routine part of mission development
 - CDR producers also undertake measurement-equation-centred analysis ...
 - and propagate uncertainties in CDR products at all spatiotemporal scales
 - climate scientists believe and exploit the uncertainty in climate data and use it when creating climate information
 - decision makers are informed of uncertainty in climate information, and have high levels of trust based on traceability

In other words

- We think the principles and techniques we are learning on the historical sensors have much wider applicability
- Particularly, they can be embedded into space agency practice for adding value by adding per-datum uncertainty to L1
 - reprocessing of archive mission data
 - specification of instruments and products for future missions

An uncertainty/traceability focus in Phase B-D

Aspect	Compliance focus	Metrology focus
Estimating the	Worst-case combination of	Individual
magnitude of pixel-	uncertainty from error sources	models/calculations of
level uncertainty	to compared against a	uncertainty from error
(e.g., in radiance)	(generally) aggregated total	sources, traceably
	uncertainty requirement.	documented per error
	Deliberately pessimistic to	source. Realistic
	ensure compliance and	combination to inform
	acceptance.	expected in-flight
		characteristics.
Characterising the	Only in response to specific	Integral part of
error-correlation	relevant requirements (e.g.	uncertainty
structure across	cross-talk limits). Not	characterisation for all
pixels and channels	considered for many error	error sources
	sources.	

An uncertainty/traceability focus in Phase B-D

Aspect	Compliance focus	Metrology focus
Traceably documenting uncertainty information	Documentation focused on acceptance milestones. Results perhaps mixed with commercially sensitive and confidential material, usually not available in a form	Documentation freely available and organised such as to support systematic traceability
Dissemination of understanding of error sources to users	Not actively or systematically attempted generic information may be published. Not quantitatively integrated into satellite products	Understanding is embedded in product processing chain in order to include quantitative uncertainty information directly in satellite products at L1

Conclusions

- FIDUCEO is ongoing, but some useful ideas, methods and tools are emerging with wider relevance. Aim is to substantially establish "Earth observation metrology"
- Part of this is proper quantification of L1 uncertainty, which logically is a problem owned by space agencies
- FIDUCEO methodologies applicable to both historic and prospective missions, and not just the FIDUCEO case studies
- Application to ESA archived missions could be foreseen
- For future missions, much of the necessary insight into instrument errors can be gained by bringing a metrology focus to phase B-D satellite development, 're-using' the error characterisation for the benefit of users of L1
- FIDUCEO will demonstrate the utility of L1 uncertainty in deriving climate data records (starts 2018)

