

#### Compact Active Transponders for SAR Interferometry Experimental validation

#### Pooja Mahapatra<sup>1</sup>,

Ramon Hanssen<sup>1</sup>, Sami Samiei-Esfahany<sup>1</sup>, Hans van der Marel<sup>1</sup>, Rachel Holley<sup>2</sup>, Marko Komac<sup>3</sup>, Alan Fromberg<sup>4</sup>

Delft University of Technology, Delft, The Netherlands
 Fugro NPA Ltd., Edenbridge, United Kingdom
 Geological Survey of Slovenia, Ljubljana, Slovenia
 System Engineering & Assessment Ltd., Bristol, United Kingdom

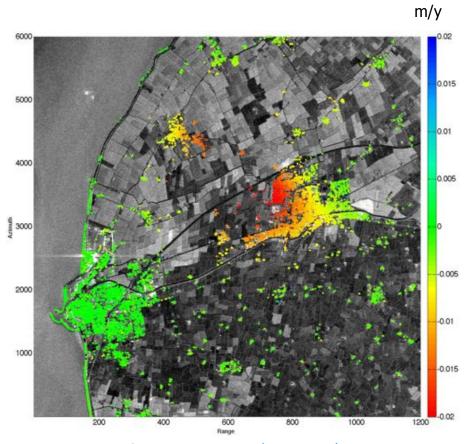






#### Outline

- Persistent Scatterer (PS) Interferometry
- Need for artificial PS
  - Compact active transponders (CATs) vs. corner reflectors (CRs)
- Validation experiment

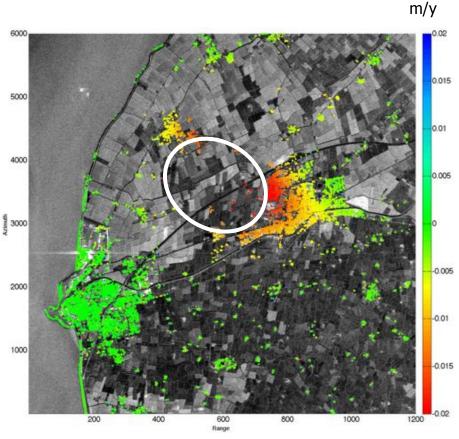

Can a CAT replace a CR for deformation monitoring? In other words, is a CAT phase-stable?

Results and conclusions



## PS density can be suboptimal

- Persistent ScattererInterferometry (PSI):
  - Measurements of ground deformation at radar scatterers (PS) that are phase coherent over a period of time




Ground deformation per year (2003-2009) due to gas extraction and salt mining at Harlingen, The Netherlands, using PSI on Envisat ASAR data.



### PS density can be suboptimal

- Persistent Scatterer Interferometry (PSI):
  - Measurements of ground deformation at radar scatterers (PS) that are phase coherent over a period of time
  - Urban areas: spatial density of PS usually high (100-300 PS/km² with ERS/Envisat)
  - Ground deformation
     phenomena may occur in
     uninhabited or rural areas
     with few man-made structures



Ground deformation per year (2003-2009) due to gas extraction and salt mining at Harlingen, The Netherlands, using PSI on Envisat ASAR data.



#### PSI is opportunistic



- For reliable and effective monitoring in such areas, PS density may be insufficient
- PS form a geodetic network of opportunity, but the exact location of PS 'benchmarks' is not under our control

#### PSI is opportunistic

- For reliable and effective monitoring in such areas, PS density may be insufficient
- PS form a geodetic network of opportunity, but the exact location of PS 'benchmarks' is not under our control





Traditional geodetic network design involved installing benchmarks at optimal spatial locations



#### PSI is opportunistic

- For reliable and effective monitoring in such areas, PS density may be insufficient
- PS form a geodetic network of opportunity, but the exact location of PS 'benchmarks' is not under our control







Traditional geodetic network design involved installing benchmarks at optimal spatial locations

# Artificial PS: corner reflectors (CRs)

AND STREET

- Conceptually simple
- ✓ Amplitude and **phase stable**, validated via several experiments



# Artificial PS: corner reflectors (CRs)

AND THE REAL PROPERTY.

- Conceptually simple
- ✓ Amplitude and phase stable, validated via several experiments
- **X** Big and heavy
- **★** Should be strongly **anchored** to the ground; **autonomous motion**
- **Difficult** to deploy and maintain, especially in remote areas
- \* Can be **disturbed** by weather conditions, fauna, vandalism or theft during long-term measurements
- Snow, rain and debris can accumulate; periodic maintenance
- **X** Oriented according to the satellite pass and imaging modes; only ascending or descending passes can be utilised



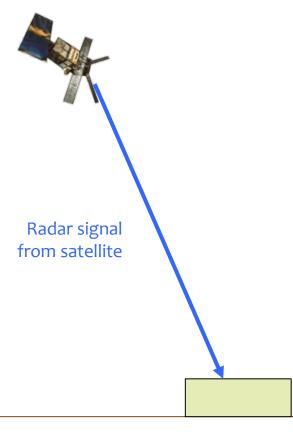


- Passive devices need to be large, to be able to return sufficient power to the satellite
- Active devices can be more compact
- CATs are designed to be used in place of CRs



- Passive devices need to be large, to be able to return sufficient power to the satellite
- Active devices can be more compact
- CATs are designed to be used in place of CRs







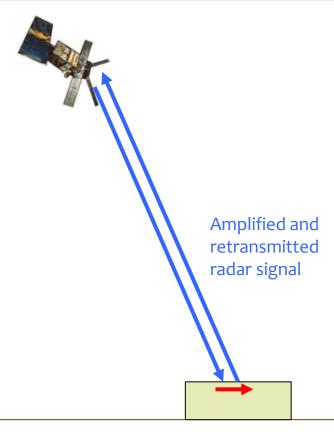













Amplification, circuit delay and phase compensation

























- ✓ Small (a few tens of cm), lightweight (less than 4 kg) and inconspicuous
- ✓ Sealed, function autonomously and over a wide temperature range with internal power for more than a year
- ✓ Not affected by strong winds, precipitation and debris accumulation
- Low maintenance: only to change/charge battery, check for clock drift, or upload new SAR acquisition schedule if needed









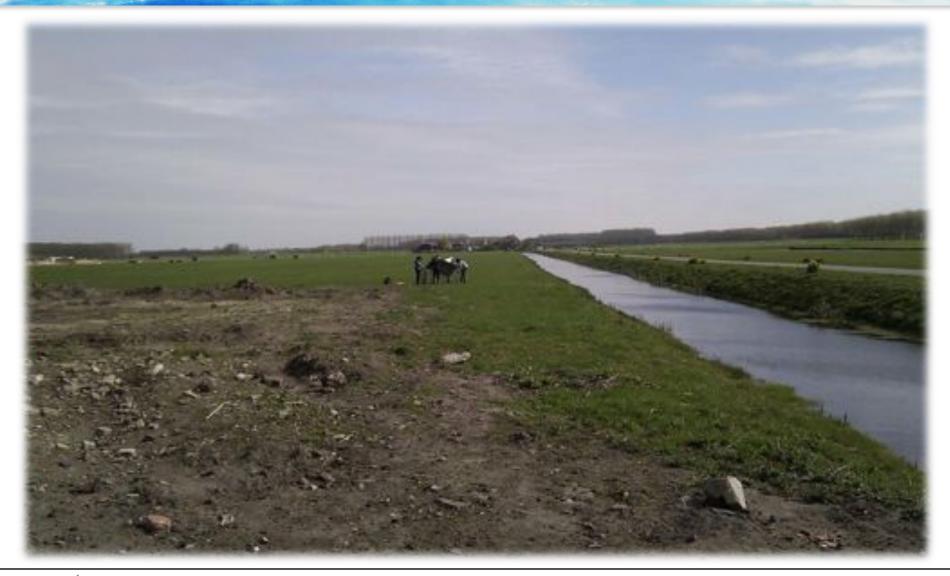
- ✓ Frequency-specific, only turned on during overpass: offers little interference to other radar or radio targets
- ✓ Can be used for both ascending and descending satellite modes in a single setup
- ✓ Wide beamwidth: can be used over a range of incidence angles
- ✓ Signal polarisation can be preprogrammed: can be used with **any existing C-band satellite** without highly accurate orientation and adjustment



- ✓ Frequency-specific, only turned on during overpass: offers little interference to other radar or radio targets
- Can be used for both ascending and descending satellite modes in a single setup
- ✓ Wide beamwidth: can be used over a range of incidence angles
- ✓ Signal polarisation can be preprogrammed: can be used with any existing C-band satellite without highly accurate orientation and adjustment
  - Can a CAT replace a CR for deformation monitoring? In other words, is a CAT phase-stable?



# The Delft field experiment








# Location and setup







# Location and setup





# Location and setup





# InSAR and levelling

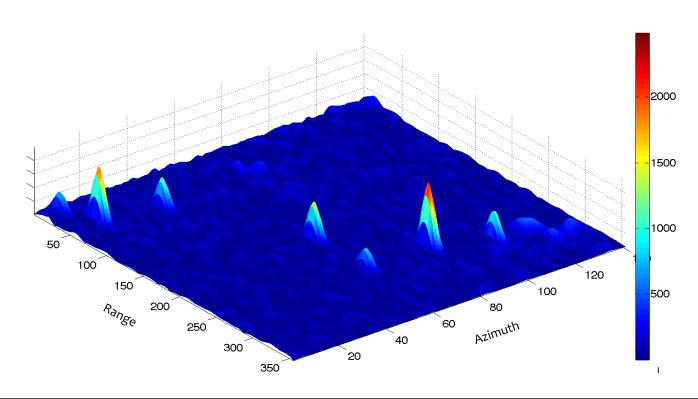






# InSAR and levelling

- SAR data acquired every 3 days (ERS-2 Ice-Phase Mission)
- 26 SAR images after device installation (19 April to 3 July 2011)
- Levelling performed within 24 hours of most overpasses (19 out of 26)
- Levelling between CAT-CR pairs
- Redundancy introduced in levelling measurements, making outlier detection possible

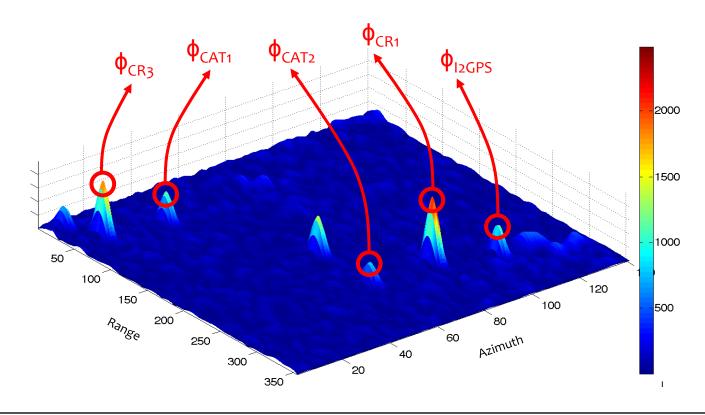





## CAT and CR phase extraction



• Single master interferograms generated





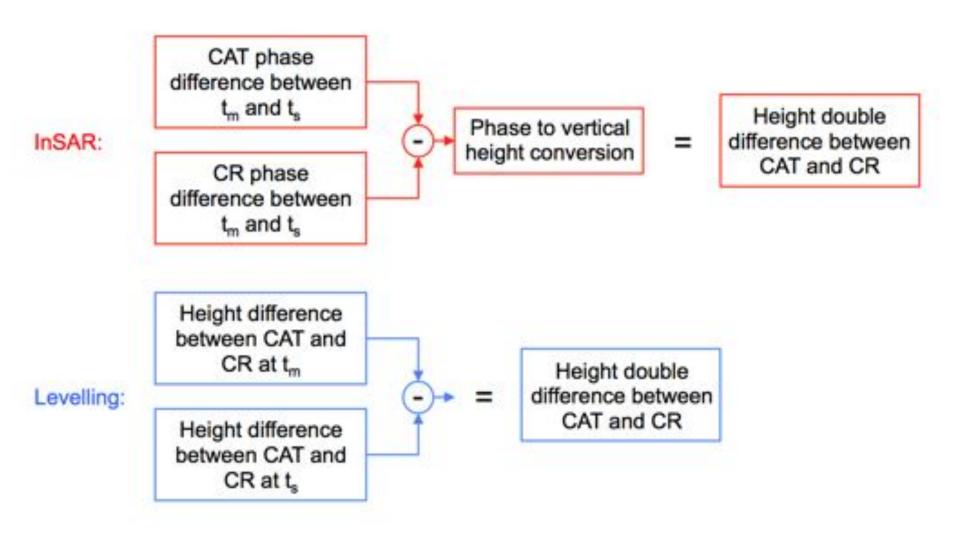

# CAT and CR phase extraction

4000

- Single master interferograms generated
- For each CR and CAT, the phase of the pixel with maximum amplitude extracted

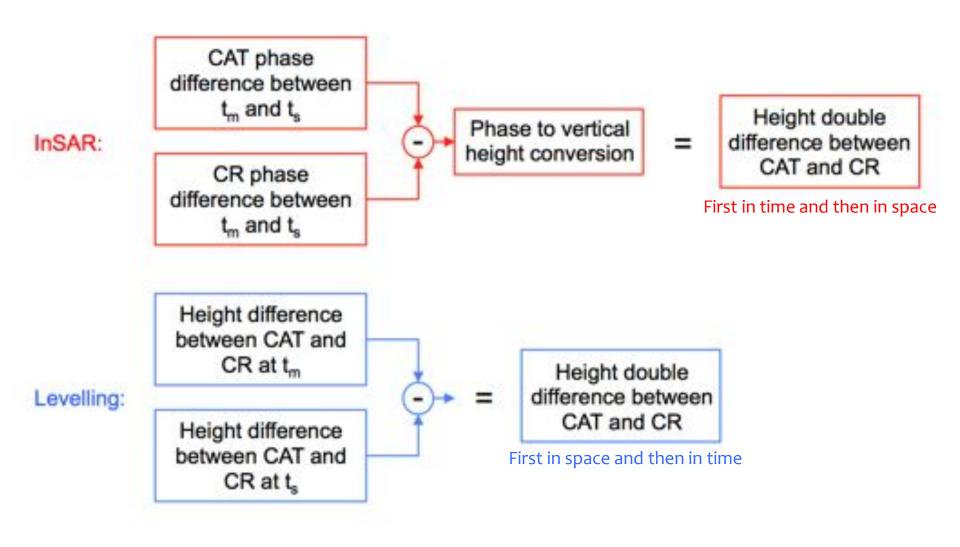





# InSAR processing



- ERS-2 was operating in Zero-Gyro Mode since 2001;
   continuous variations of Doppler centroid, not optimal
- Subpixel phase correction in azimuth and range
  - to correct for **systematic phase offsets** that depend on object position within a resolution cell
  - subpixel position determined by oversampling with a factor of
     32 with respect to SLC image
- InSAR and levelling vertical height double differences calculated using the same reference time (13 May)
- InSAR double differences unwrapped to the nearest levelling double differences




## Double differences: basis of comparison





# Double differences: basis of comparison



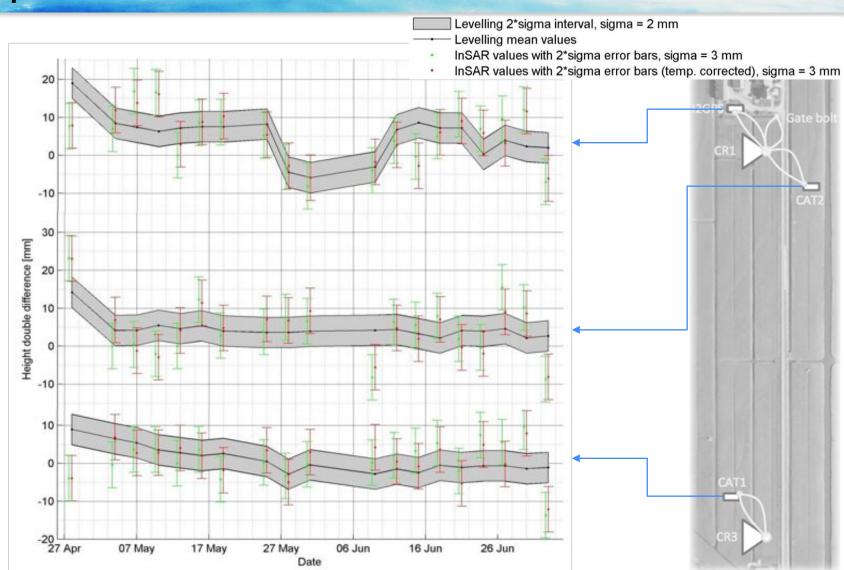


# Previous Delft CR experiment



- Controlled CR experiment in Delft
- Five CRs deployed (2003 2007)
- InSAR a posteriori precision for CR-CR double differences with ERS-2 data after subpixel correction = 2.9 mm
   (1σ standard deviation in the vertical direction)

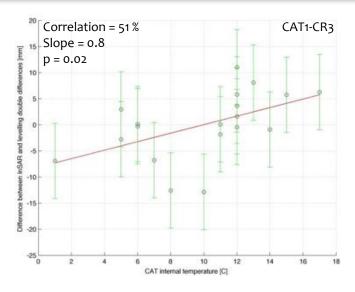
#### Reference

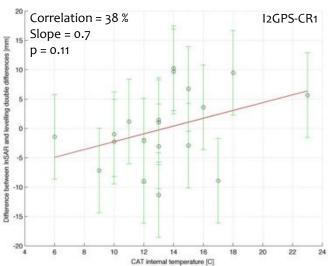

P. Marinkovic, G. Ketelaar, F. van Leijen, and R. Hanssen.

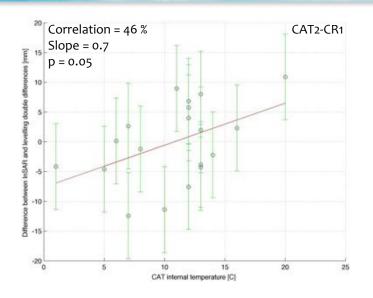
'InSAR quality control: Analysis of five years of corner reflector time series.'

In Fifth International Workshop on ERS/Envisat SAR Interferometry, 'FRINGE07', ESA-SP 649, 2008.




# Comparison results




# Basis of temperature correction









p is the **probability of getting a correlation as large as the observed value by random chance**, when the true correlation is zero.

If p is small, say <0.05, then the **correlation is significant**.



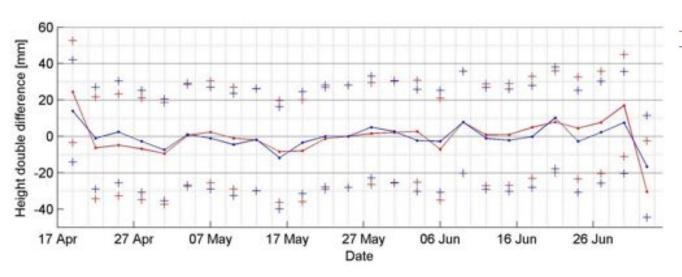


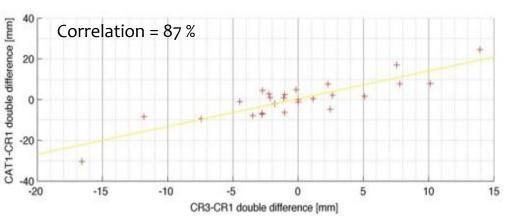
# A posteriori precision

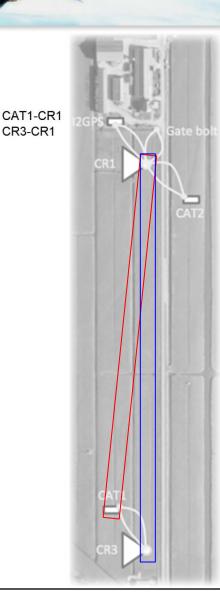


#### Variance component estimation:

| Pair        | Without temperature correction | With temperature correction |
|-------------|--------------------------------|-----------------------------|
| CAT1 – CR3  | 3.6 mm                         | 3.4 mm                      |
| CAT2 – CR1  | 5.3 mm                         | 4.9 mm                      |
| I2GPS – CR1 | 5.0 mm                         | 4.6 mm                      |


- For InSAR CAT-CR double differences with ERS-2 data, the average a posteriori precision
  - Without temperature correction = 4.6 mm
  - With temperature correction = 4.3 mm
- Values are 1σ standard deviations in the vertical direction





# Can a CAT replace a CR?



Comparison of CAT-CR and CR-CR double differences over ~450 m:











- The average a posteriori precision of CAT-CR double differences with ERS-2 data
  - Before temperature correction = 4.6 mm
  - After temperature correction = 4.3 mm





- The average a posteriori precision of CAT-CR double differences with ERS-2 data
  - Before temperature correction = 4.6 mm
  - After temperature correction = 4.3 mm

- This can be compared with the CR-CR double differences from the previous CR experiment in Delft. The InSAR a posteriori precision after subpixel correction for ERS-2 data was
  - With outlier removal = 2.9 mm



- The average a posteriori precision of CAT-CR double differences with ERS-2 data
  - Before temperature correction = 4.6 mm
  - After temperature correction = 4.3 mm

- This can be compared with the CR-CR double differences from the previous CR experiment in Delft. The InSAR a posteriori precision after subpixel correction for ERS-2 data was
  - With outlier removal = 2.9 mm
- Within a 95% confidence interval, the CAT-CR measurements (2011) are as precise as the CR-CR measurements (2007)



- The average a posteriori precision of CAT-CR double differences with ERS-2 data
  - Before temperature correction = 4.6 mm
  - After temperature correction = 4.3 mm

- This can be compared with the **CR-CR double differences** from the **previous CR experiment** in Delft. The *InSAR a posteriori* **precision** after subpixel correction for ERS-2 data was
  - With outlier removal = 2.9 mm
- Within a 95% confidence interval, the CAT-CR measurements (2011) are as precise as the CR-CR measurements (2007)
- Further work: rigorous outlier removal, validation in a landsliderisk area in Slovenia with GPS



# Thank you!

