

**Algorithm Theoretical Basis Document** 

# **ATBD 2.18**

# **PHOTOSYNTHETICALLY AVAILABLE RADIATION**

## (PAR)

J. Aiken & G. Moore

**PLYMOUTH MARINE LABORATORY** 





#### **TABLE OF CONTENTS**

ESL

| 1. INTRODUCTION                                 | 3 |  |
|-------------------------------------------------|---|--|
| 2. OVERVIEW                                     | 3 |  |
| 3. ALGORITHM DESCRIPTION                        | 3 |  |
| 3.1. THEORETICAL DESCRIPTION                    | 3 |  |
| 3.1.1 Mathematical Description of the Algorithm | 3 |  |
| 3.1.2 Input Parameters                          | 3 |  |
| 3.1.3 Error Budget Estimates.                   | 4 |  |
| 3.1.4 Validation Procedures.                    | 4 |  |
| 3.1.5. Look-up Tables                           | 4 |  |
| 4. REFERENCES                                   | 4 |  |
| SUMMARY SHEET                                   | 5 |  |



| Doc. No: PO-TN-MEL-GS-0005 |                 |             |                      |
|----------------------------|-----------------|-------------|----------------------|
| Name:                      | ATB             | D Photosyn  | thetically Available |
|                            | Radiation (PAR) |             |                      |
| Issue:                     | 4               | Rev.:       | 0                    |
| Date:                      | 05 De           | ecember 199 | 97                   |
| Page:                      | 18-3            |             |                      |

## 1. Introduction

The following describes the algorithm for the derivation of Instantaneous integrated Photosynthetically Available Radiation (PAR), integrated in the band 400-700nm.

**MERIS** 

**ESL** 

## 2. Overview

The fluorescence from chlorophyll at the 682.5 band will require further processing for interpretation in terms of phytoplankton biomass. Although the exact further processing chain has not been specified, it is know that the fluorescence observed is related to incident light, with a variable quantum yield. Normalisation of fluorescence to incident light will be a first step in analysing such data.

### **3. Algorithm Description**

### **3.1.** Theoretical Description

### 3.1.1 Mathematical Description of the Algorithm

Gregg and Carder (1990) provide a good model for downwelling incident PAR. The model has been subject to sensitivity tests, and look up tables can be generated from this model. Generation of the tables for all sun angles would produce large tables. The normalisation of the product to solar zenith angle, where the tables will contain normalised PAR defined as PAR/ $cos(\theta_s)$  for a fixed earth sun distance, considerably reduce the table size, and will only lose accuracy at low sun angles, where the corresponding geochemical products are of reduced accuracy.

Tables of PAR have been generated be generated for  $\tau_a(865)$ , n (Angstrom Exponent), O3 and  $W_{tco}$ . The calculations are based on a sun zenith angle of 45°, and the results stored as normalised output.

### **3.1.2 Input Parameters**

The following table 3.1.2-1 summarises the input and output parameters of the algorithm.

| Symbol                       | Descriptive Name             | I/O | Range/Reference<br>/Remarks                             |
|------------------------------|------------------------------|-----|---------------------------------------------------------|
| $\tau_a(775), \ \tau_a(865)$ | Aerosol Optical<br>Thickness | Ι   | From ATBD 2.7                                           |
| O <sub>3</sub>               | Ozone<br>Concentration       | Ι   | From External Data                                      |
| $\mathbf{W}_{\mathrm{tco}}$  | Column water<br>vapour       | Ι   | From ATBD 2.4                                           |
| $\theta_{\rm s}$             | Solar Zenith Angle           | Ι   | From Navigation                                         |
| ESD                          | Earth Sun Distance           | Ι   | From Navigation<br>(Or calculated locally<br>from date) |
| PAR                          | Integrated PAR               | 0   | Product                                                 |



#### **3.1.3 Error Budget Estimates.**

Specified in Gregg and Carder (1990), will also depend on error budgets for ATBD 2.7 ( $\tau_a$ ).

#### **3.1.4 Validation Procedures.**

The algorithm will be validated using shipboard measurements, and sun-photometer measurements. There is an existing data set from the Atlantic Meridional Transect and this will be used for global validation. In addition the AERONET sun photometer located at Plymouth will be used for time series validation along with SeaWiFS imagery.

#### 3.1.5. Look-up Tables

The following table 3.1.5-1 provides a provisional estimates of the look-up table indexing requirements for the PAR algorithm.

| Variable              | Name                      | N Values | Range   |
|-----------------------|---------------------------|----------|---------|
| τa (865)              | Aerosol Optical Thickness | 20       | 0 3     |
| n                     | Angstrom Exponent         | 20       | -0.8 2  |
| W <sub>tco</sub>      | Column Water Vapour       | 20       | 06.0    |
| <b>O</b> <sub>3</sub> | Ozone Concentration       | 20       | 200-400 |

| Table 3 | 1.5-1: | PAR Algorithm | ı Look-up | table | indexing |
|---------|--------|---------------|-----------|-------|----------|
| 100000  |        |               |           |       |          |

160,000 Entries, PAR stored as 16-bit integer - storage requirement 320Kbytes.

#### 4. References

Gregg, W. W. & Carder, K. L. (1990): A simple spectral solar irradiance model for cloudless marine atmospheres.



## **Summary Sheet**

| Product Name       | Instantaneous PAR |
|--------------------|-------------------|
| Product Code       |                   |
| Product Level      | 2                 |
|                    |                   |
| Product Parameters |                   |

| iuc | a l'arameters                 |                                               |  |
|-----|-------------------------------|-----------------------------------------------|--|
|     | Coverage                      | regional / global                             |  |
|     | Packaging                     | MERIS Scene                                   |  |
|     | Unit                          | [micro Einsteins = micromol photon $s^{-1}$ ] |  |
|     | Range                         | 50-1000                                       |  |
|     | Sampling                      | pixel by pixel                                |  |
|     | Accuracy                      | +/-3%                                         |  |
|     | Geolocation requirements None |                                               |  |
|     | Format                        | 16bits                                        |  |
|     | Frequency                     | as atmospheric correction                     |  |
|     | Size                          | Integer                                       |  |
|     |                               |                                               |  |

**MERIS** 

ESL

#### Additional information

| MERIS data requirements | $\tau_a$ at two bands, column water vapour |
|-------------------------|--------------------------------------------|
|                         | from atmosphere products                   |
| Ancillary Data          | Solar Zenith Angle from Navigation         |
|                         | Ozone Concentration                        |