

ENVISAT-1

GROUND SEGMENT

MERIS

MEdium Resolution Imaging Spectrometer

Specification of the Scientific Contents of the MERIS

Level-1b & 2 Auxiliary Data Products

Document Number:	PO-RS-PAR-GS-000	2	
Issue:	3	Revision:	С
Issue Date:	27-Feb-11	Filename: PO-RS-PAR-0	GS-0002 3C - PROD SPEC.DOC

	Function (Company)	Name	Signature	Date
Prepared by:	Scientist (PARBLEU)	Francis Zagolski		
Released by:	Project Manager (ESA/ESRIN)	Philippe Goryl		

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 1

TABLE OF CONTENTS

TABLE OF CONTENTS	1
DOCUMENT CHANGE RECORD	
1. INTRODUCTION	
1.1 Purpose of Document	
1.2 Scope	
1.3 DEFINITIONS, ACRONYMS AND ABBREVIATIONS	
1.3.1 Scientific identificators and units	
1.3.2 Documents identificators	
1.4 LIST OF SYMBOLS	
1.5 References	
1.5.1 Applicable documents	
1.5.2 Reference documents	
1.6 DEFINITION	
1.7 CODING / SIZING	
2. OVERVIEW OF SPECIFICATION	
2.1 APPROACH OF AUXILIARY DATA PRODUCT SPECIFICATION	25
2.2 Summary of Tools / Modules Required	
2.3 SUMMARY OF COMPUTER RESOURCE REQUIREMENTS	
3. SPECIFICATION OF MERISAT INTERNAL AUXILIARY DATA PRODUCT	
3.1 C.P. MERIS WAVELENGTH FOR BAND B	29
3.2 C.P. FRESNEL REFLECTION COEFFICIENTS FOR OCEAN CASE-I & II	
4. MERIS PRODUCTS OVERVIEW	
5. SPECIFICATION OF L1B/L2 DATA PRODUCT	
6. SPECIFICATION OF L1B/L2 AUXILIARY DATA PRODUCT	
6 1 MEDIS INCOMPANY	24
6.2 LEVEL 1D CONTROL DADAMETEDS	
6.2 LEVEL-IB CONTROL I ARAMETERS	
6.2.7 C.1	34
6 2 3 SPH	34
6 2 4 GADS General	34
6.2.4.1 Julian day to milliseconds conversion factor	
6.2.4.2 Maximum number of missing packets allowed	
6.2.5 (Deleted)	
6.2.6 GADS Solar Parameters	
6.2.6.1 Solar flux reference values	
6.2.6.2 Square of Sun-Earth distance at reference date	
6.2./ (Deleted)	
0.2.6 GADS Exception Hanaling	
6.2.8.1 Default radiance values for above range samples	
6 2 9 GADS Level-0 Extraction	40
6.2.9.1 Blank sample thresholds	

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:

2

6.2.0.2 Plank sample difference thresholds	41
6.2.5.2 Data Sample unrefere un estima solution and the solution of the soluti	
6.2.7.5 Scaling factor for hoaring point values coung	
6.2.10 J Map Eath radius	,
6.2.10.1 Mean Latin radius.	
6.2.10.2 AC dictores between the points	
6.2.10.3 AC ustaine between up points	
6.2.10.5 PD product AC pixel size	
6.2.10.5 KK plotter AC pixel size	
0.2.11 GADS Fugging	
6.2.11.1 Width of biooming contamination for FR	
0.2.11.2 Widu of biooming contamination for KK	
0.2.11.3 Saturation recovery width for FK	
6.2.11.4 Saturation recovery width for KK	
6.2.11.5 Azimuti angle range for sun ginti risk	
6.2.11.7 Determinality in lowed for ED some lag	
6.2.11.7 Darid saturation levels for FK samples	
6.2.11.0 Maximum value for percentage of out of range image samples	
6.2.11.9 Threshold value for percentage of out of range blank samples.	
6.2.11.10 Threshold value for percentage of out of range blank samples	
6.2.11.11 Lattra processing bands.	
6.2.11.12 Threshold for setting transmission error hag (mean number of errors per packet)	
6.2.11.15 Threshold for setting format error hag (mean number of errors per packet)	
0.2.12 GADS Radiometric	
6.2.12.1 Switch enabling FR non-linearity corrections	
6.2.12.2 Switch enabling KR non-linearity corrections	
6.2.12.5 Switch enabling AC strayingnt correction	
0.2.12.4 (Spare)	
6.2.13 GADS Classification	
6.2.13.1 View zenith angles for GADS radiometric thresholds.	
6.2.13.2 Sun zenith angles for GADS radiometric thresholds	
6.2.15.5 Relative azimuth angles for GADS radiometric thresholds	
6.2.15.4 (Spare)	
6.2.15.5 (Spare)	
6.2.15.0 (Spare)	
6.2.15.7 (Spate)	
6.2.15.5 muck of band for GADS fadiometric includes	
6.2.15.7 (Spac)	
6.2.14 DADS Resumpting	
6.2.14.1 Resampling Switch	
6.2.14.2 Number of AC samples used in product FK integrate	
6.2.14.5 Number of AC samples used in product FK steine	
6.2.14.5 EP across track nivel to the point sub-campling factor (number of samples)	
6.2.14.6 RR across track pixel to the point sub-sampling factor (number of samples)	
6.2.14.7 ER dross date frame sub-sampling factor (number of samples)	
6.2.14.8 RR frame to the frame sub-sampling factor (number of samples)	
6.2.14.9 The frame to summary quality ADS frame sub-sampling factor	73
6.2.14.10 Maximum across track angular distance allowing nivel selection in FR	74
6.2 14 11 Maximum across track angular distance allowing pixel selection in RR	
6.2.15 GADS Scaling Factor	75
6.2.15 Scaling factor - altitude	
6.2.15.1 Scaling factor - roughness	
6.2.15.3 Scaling factor - zonal wind	
6.2.15.4 Scaling factor - meridional wind	
6.2.15.5 Scaling factor - atmospheric pressure	
6.2.15.6 Scaling factor - ozone	رې ۵۸
6.2.15.7 Scaling factor - relative humidity	
6.2.15.8 Scaling factor - radiances	
6.2.16 GADS Stravlight Evaluation Parameters	
6.2.16 Only on aying in Dramanon 1 and and to 5	
0.2.10.1 Humber of spectral regions	

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 3

6.2.16.2 Band index of default radiance for pixels with all bands saturated	
6.2.16.3 Default radiance for pixels with all bands saturated	
6.2.16.4 (Spare)	85
6.2.16.5 (Spare)	85
6.2.16.6 Interpolation coefficients for spectral region flux estimation	85
6.2.16.7 Flag register showing bands which can be used for radiance estimation of saturated samples	86
6.2.16.8 FR threshold on satured samples counts to flag for straylight risk	87
6.2.16.9 RR threshold on satured samples counts to flag for straylight risk	88
6.2.17 (Deleted)	89
6.2.18 (Deleted)	89
6.2.19 (Deleted)	89
6.2.20 GADS Radiometric Thresholds LUT	89
6.2.20.1 Radiometric thresholds, $L_{TOA}(\theta_s, \theta_v, \Delta \phi)$	89
6.2.21 GADS Browse Configuration Parameters	92
6 3 RADIOMETRIC CALIBRATION	93
6.4 DIGITAL FLEVATION & ROUGHNESS MODEL	93
6.5 LAND/SEA MASY	03
0.5 LAND/SEA MASK	
0.0 ECM WF	
6.7 AEROSOL CLIMATOLOGY	
6.8 ENVISAI-I ORBIT STATE VECTORS	
6.9 ENVISA1-1 PLATFORM ATTITUDE	
6.10 Level-2 Control Parameters	93
6.10.1 C.P	93
6.10.2 MPH	94
6.10.3 SPH	94
6.10.4 GADS General	94
6.10.4.1 Number of iterations for Ch11 calculation	
6.10.4.2 Flag indicating the presence of stratospheric aerosols	95
6.10.4.3 Default radiances for saturated pixels	96
6.10.4.4 Maximum optical thickness for land aerosols	97
6.10.4.5 Scaling factor - reflectances	97
6.10.4.6 Scaling factor - algal pigment index	98
6.10.4.7 Scaling factor - yellow substance	99
6.10.4.8 Scaling factor - suspended sediments	99
6.10.4.9 Scaling factor - aerosol Angstroem exponent	99
6.10.4.10 Scaling factor - aerosol optical thickness	99
6.10.4.11 Scaling factor - cloud optical thickness	
6.10.4.12 Scaling factor - surface pressure	
6.10.4.13 Scaling factor - water vapour.	
6.10.4.14 Scaling factor - photosynthetically active radiation	
6.10.4.15 Scaling factor - IOA vegetation index	
6.10.4.16 Scaling factor - BOA vegetation index.	
6.10.4.17 Scaling factor - cloud the coordinate and the second	
6.10.4.10 scaling latter - cloud top pressure	
6.10.4.19 Offset - felectatices.	
6 10 4 21 Offset - yellow substance	90
6 10 4 22 Offset - suspended sediments	
6 10 4 23 Offset - aerosol Angstroem exponent	
6.10.4.24 Offset - aerosol optical thickness	
6.10.4.25 Offset - cloud optical thickness	
6.10.4.26 Offset - surface pressure	
6.10.4.27 Offset - water vapour	99
6.10.4.28 Offset - photosynthetically active radiation	99
6.10.4.29 Offset - TOA vegetation index	99
6.10.4.30 Offset - BOA vegetation index	99
6.10.4.31 Offset - cloud albedo	99
6.10.4.32 Offset - cloud top pressure	99

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:

4

6.10.6.15 Threshold for flagging aerosol optical thickness	99
6 10 6 16 Switch to test for absorbing aerosols	99 00
6.10.6.16 Switch to test for absorbing aerosols	99
6.10.6.16 Switch to test for absorbing aerosols	99 00
6.10.6.17 Ceiling value of solar zenith angle for modifying annotation flag	99
6 10 6 18 (Spare)	99 99
6.10.6.18 (Spare)	99 00
6.10.6.19 Threshold for pressure correction	99
6.10.6.20 Number of wavelengths used in the LUTs	99
6 10 6 21 Number of aerosol models used at each pass	99
6.10.6.21 Number of aerosol models used at each pass	99
6.10.6.21 Number of aerosof models used at each pass	99 00
6.10.6.22 Switch to use an aerosol climatology	99
6.10.6.22 Switch to use an aerosol climatology	99
6 10.0.22 Switch to use an actosol climatology	<i>77</i> 00
6.10.7 GADS Classification Parameters	99
6.10.7 GADS Classification Parameters	99
0.10.7 GADS Classification Parameters	99 00
6 10 7 1 Thrashold on MEDIS difforential analy index (MDSI)	77 00
6 10 7 1 Threshold on MERIS differential snow index (MDSI)	00
6 10 7 1 Threshold on MERIS differential snow index (MDSI)	99
6.10.7.1 Threshold on MERIS differential snow index (MDSI)	99
6.10.7.1 Threshold on MERIS differential snow index (MDSI)	99
6.10.7.1 Threshold on MERIS differential snow index (MDSI)9	99
6.10.7.1 Threshold on MERIS differential snow index (MDSI)	99
6.10.7.1 Threshold on MERIS differential snow index (MDSI)	99
6.10.7.1 Threshold on MERIS differential snow index (MDSI)9	99
6.10.7.1 Threshold on MERIS differential snow index (MDSI)	99
6.10.7.1 Threshold on MERIS differential snow index (MDSI)	99
6.10./.1 Threshold on MERIS differential snow index (MDSI)	99
0.10.7.1 Threshold on MERIS differential show index (MDSI)	77 00
6 10 7 2 Numerator band index for another leads 1)) 00
6 10 7 2 Numerator band index for spectral ratio 1	99
6.10.7.2 Numerator band index for spectral ratio 1	99
6.10.7.2 Numerator band index for spectral ratio 1	99
6.10.7.2 Numerator band index for spectral ratio 1	99
6.10.7.2 Numerator band index for spectral ratio 1	99
6.10.7.2 Numerator band index for spectral ratio 1	99
6.10.7.2 Numerator band index for spectral ratio 1	99
6.10.7.2 Numerator band index for spectral ratio 1	99
6.10.7.2 Numerator band index for spectral ratio 1	99
6.10.7.2 Numerator band index for spectral ratio 1	99
6.10.7.2 Numerator band index for spectral ratio 1	99
o to 7.2 Punietator band index for spectral ratio 1	77 00
6 10 7 3 Denominator band index for spectral ratio 1	00
6.10.7.3 Denominator band index for spectral ratio 1	99
6.10.7 A Lever threaded for an original form	00
6.10.7.4 Lower threshold for spectral ratio 1	99
6.10.7.5 Users threshold for growth into 1	00
6.10.7.5 Upper threshold for spectral ratio 1	99
	77 00
6.10.7.6 Numerator band index for spectral ratio 2	99
Class To Transition Valid Index for spectral rate 2)) 00
6.10.7.7 Denominator band index for spectral ratio 2	99
9.10.77 Denominator band index for spectral failo 2	フプ
6 10 7 8 Lower threshold for spectral ratio 2	99
0.10./.8 Lower threshold for spectral ratio 2	99
6.10.7.0 Upper threshold for executed action 2	00
6.10.7.9 Upper threshold for spectral ratio 2	99
0.10.7.9 Opper unesnota for spectral ratio 2	99
6 10 7 10 Index of bond for test on TOA reflectance (with bond numbering starting st 1)	00
6.10.7.10 Index of band for test on TOA reflectance (with band numbering starting at 1)	99
5.15.7.16 mides of band for itst on FOR fenetiatice (with band numbering statting at 1)	17
6 10 7 11 Thresholds on TOA reflectance at hand h bright?	90
6.10./.11 Thresholds on TOA reflectance at band b_bright2	99
	~ ~
6 10.7 12 Index of hand for GADS threshold on Rayleigh corrected reflectance	90
6.10.7.12 Index of band for GADS threshold on Rayleigh corrected reflectance	99
	~~
6.10.7.13 Zenith angles for GADS threshold on Rayleigh corrected reflectance	99
9.10.7.13 Zentui angles for GAD5 unesnoto on Rayleign confected reflectance	フプ
6 10 7 14 Stored indices for (A, x A) combinations for CADS threshold on Paulaich corrected reflectones	00
6.10./.14 Stored indices for ($\theta_s x \theta_v$) combinations for GADS threshold on Rayleigh corrected reflectance	99
6 10.7 15 Deletive and a for CADS threaded an De-t-t-t-t-man-t-d-t-d-t-t-	00
6.10./.15 Relative azimuth angles for GADS threshold on Rayleigh corrected reflectance	99
6 10 7 16 Apparent program through a day a land (off/along to the apartition)	00
6.10.7.16 Apparent pressure thresholds over land (off/close to the coastline)	99
6 10 7 17 Apparent pressure threshold over water	00
0.10.7.17 Apparent pressure threshold over water	99
6 10 7 18 Minimum reflectance value at 752 75 nm to consider empirical processors aver land	00
0.10./.16 winnmum reflectance value at 755.75 nm to consider apparent pressure over land	99
6 10 7 19 Minimum spectral slope between 753 75 nm and 778 75 nm to consider apparent pressure over water	90
5.10.11.7.17 within and 176.75 min and 776.75 min and 776.75 min to consider apparent pressure over Water))
6.10.7.20 Band indices for MDSI computation	99

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:

5

6.10.8 GADS Reflectance Thresholds	
6.10.8.1 Thresholds on Rayleigh-corrected TOA reflectance above land, $\rho_{R_c} (\theta_s \times \theta_y \Delta \phi)$	
6.10.8.2 Thresholds on Rayleigh-corrected TOA reflectance above ocean, ρ_{R_c} $(\theta_s \times \theta_{y_s} \Delta \phi)$	99
6.11 ATMOSPHERE PARAMETERS	99
6.11.1 C.P.	99
6.11.1.1 C.P. Ravleigh optical thickness $\tau^{R}(\lambda, P_{-})$	99
6 11 2 MPH	99
6 11 3 SPH	99
6 11 4 GADS General	99
6.11.4.1 Bayleigh transmittance coefficients	99
6.11.4.2 Rayleigh ontical thicknesses	
6.11.4.3 Nominal wavelengths of MERIS spectral hands	
6.11.4.4 Solar zenith angles for GADS Rayleigh reflectance over ocean	
6.11.4.5 View zenith angles for GADS Rayleigh reflectance over ocean	
6.11.4.6 Relative azimuth angles for GADS Rayleigh reflectances over ocean (tabulated values)	99
6.11.4.7 Zenith angles for GADS Rayleigh scattering function	99
6.11.4.8 Stored indices for $(\theta_s x \theta_y)$ combinations for GADS Rayleigh scattering function	99
6.11.4.9 Constants used for Rayleigh phase function (A,B)	99
6.11.4.10 Air masses (downward and upward atmospheric paths)	99
6.11.4.11 Reference wavelengths for GADS O2 transmittances around 778.75 nm	99
6.11.4.12 TOA normalized radiances at 778.75 nm for GADS O2 transmittances around 778.75 nm.	99
6.11.4.13 Solar zenith angles for GADS O2 transmittances around 778.75 nm	99
6.11.4.14 View zenith angles for GADS O2 transmittances around 778.75 nm	99
6.11.4.15 Relative azimuth angles for GADS O2 transmittances around 778.75 nm	99
6.11.4.16 Threshold for flagging low pressure water	99
6.11.4.17 Standard water vapour content	99
6.11.4.18 Standard ozone content	99
6.11.4.19 Standard surface pressure	99
6.11.4.20 Wind-speeds for GADS Rayleigh reflectance over ocean	99
6.11.4.21 Maximum valid pressure	
6.11.4.22 Angstroem exponents for ADS photosynthetically active radiation (PAR)	
6.11.4.23 Ozone contents for ADS photosynthetically active radiation (PAR)	
6.11.4.24 Aerosol optical thicknesses at 865 nm for ADS photosynthetically active radiation (PAR)	99
6.11.4.25 Water vapour contents for photosynthetically active radiation (PAR)	
6.11.4.20 Reference wavelengths for GADS apparent pressure parameters	99
6.11.4.27 Reference wavelenguis for GADS polynomial coefficients for f120 transmittance refereval at 706.75 inf	
6.11.4.20 Tersitie scale for GADS apparent for arresture parameters	
6.11.4.30 Reference pressure levels for GADS apparent pressure parameters	
6.11.4.31 Aerosal scattering phase function	
6.11.4.32 Freshel reflection coefficients FR(thetaw)	99
6 11 5 GADS Optical Thicknesses	99
6 11 5 1 (Spare)	
6.11.5.2 (Spare)	99
6.11.5.3 (Spare)	99
6.11.5.4 Rayleigh optical thicknesses for standard pressure, $\tau^{R}(\lambda, P_{s})$	99
6.11.5.5 Ozone optical thicknesses for 1 cm-atm, $\tau^{O_3}(\lambda)$	99
6116GADS H20 Transmission	00
61161 (Share)	99
6.11.6.2 Polynomial coefficients for H2O transmittance retrieval around 708 75 nm (21 shifted filters)	
6.11.6.3 Polynomial coefficients for H2O transmittance retrieval at the 15 MFRIS wavelengths	
6 11 7 GADS Rayleigh Scattering Function	99
6.11.7.1 Fourier series terms of polynomial coefficients for multiplicative Rayleigh scattering function retrieval	99
6 11 8 GADS Rayleigh Spherical Albedo	00
$6.11.8.1$ Rayleigh spherical albedo $S_{m}(\tau^{R})$	00
6 11 9 ADS O2 Transmission around 778 75 nm	
6.11.9.102 transmittances around 778.75 nm (21 shifted filters)	<i>) y</i> 00
6 11 10 ADS Annaront Prossure Paramotors	
0.11.10 11Do 11ppul ciu 1 1 cosul e 1 ul unicero	77

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 6

6 11 10 1 O2 Rayleigh transmittances around 778 75 nm (21 shifted filters)	99
6.11.10.2 O2 aerosol transmittances around 778.75 nm (21 shifted filters: Ha=2 km)	
6 11 10 3 O2 aerosol Fresnel transmittances around 778 75 nm (21 shifted filters: Ha=2 km)	99
6.11.10.4 O2 atmospheric transmittances around 778.75 nm (21 shifted filters; 21 layers; Ha=2 km)	99
6.11.11 (Spare)	
6 11 12 ADS Rayleigh Reflectance Over Ocean	99
6.11.12 Rayleigh reflectance over ocean	99
6.11.13 ADS Photosynthetically Active Radiation	90
6.11.13.1 Photosynthetically active radiation $PAP(\alpha I_{res}, I_{res}, r^3)$	00
6.12 WATED VAROUD DA AMETERS	
0.12 WATER VATOR LARAMETERS	
0.12.1 C.F.	99
0.12.2 MFT	99
0.12.3 SPH	99
6.12.4 GADS General	99
6.12.4.1 Solar zenith angles	
6.12.4.2 View Zentin angles	
6.12.4.5 Ketauve azimum angles.	
6.12.4.4 Intestiolu value of radiance at 865 million into in natking pixet as invalid to water vapour processing	
6.12.4.5 Maximum unestola for out of range output value of water vapour content	
6.12.4.7 Sum irradiances at 778.75 nm 865 nm 885 nm and 900 nm (consistent with cloud LUTz)	
6.12.4.8 Aerosal ontical thicknesses at 885 m	99
6 12 4 9 Surface albedos	99
6 12 4 10 Cloud optical thicknesses at 550nm	99
6.12.4.11 Wind-speeds for GADS polynomial coefficients for water vapour retrieval over ocean	
6.12.4.12 Latitudes for ADS surface albedo slope between 900 nm & 885 nm and ADS surface albedo at 885 nm	99
6.12.4.13 Longitudes for ADS surface albedo slope between 900 nm & 885 nm and ADS surface albedo at 885 nm	99
6.12.4.14 Offset and scaling factor for surface albedo ratio between 900 nm & 885 nm	99
6.12.4.15 Scaling factor for surface albedo at 885 nm	99
6.12.4.16 Bad data value for surface albedo ratio between 900 nm & 885 nm	99
6.12.4.17 Minimum valid values for neural network inputs	99
6.12.4.18 Maximum valid values for neural network inputs	99
6.12.4.19 Minimum valid value for neural network output	99
6.12.4.20 Maximum valid value for neural network output	99
6.12.5 GADS Neural Network for Water-Vapour Retrieval over Land	99
6.12.5.1 Neural network (NN) parameters for water vapour retrieval over land	99
6.12.6 ADS Polynomial Coefficients for Water-Vapour Retrieval over Ocean (without Sun Glint)	99
6.12.6.1 Polynomial coefficients for water vapour retrieval over ocean (no glint)	99
6.12.7 (Deleted)	99
6.12.8 ADS Polynomial Coefficients for Water-Vapour Retrieval over Clouds	99
6.12.8.1 Polynomial coefficients for water vapour retrieval over clouds	99
6.12.9 ADS Surface Albedo Slope between 900 nm and 885 nm	99
6.12.9.1 Surface albedo slope between 900 nm and 885 nm	99
6.12.10 ADS Aerosol Corrections	99
6.12.10.1 Polynomial coefficients for aerosol corrections at 885 nm	99
6.12.11 ADS Surface Albedo at 885 nm	99
6.12.11.1 Surface albedo map at 885 nm	99
6.13 OCEAN-AEROSOL PARAMETERS	99
6.13.1 C.P.	99
6.13.1.1 C.P. AOT at 550 nm (boundary layer) for all ocean-aerosol assemblages, $\tau \Box^{a1}$ (iaer, itau)	99
6.13.1.2 C.P. AOT at 550 nm (dust layer) for all ocean-aerosol assemblages, $\tau \Box^{a2}$ (iaer,itau)	99
6.13.1.3 C.P. AOT at 550 nm (troposphere layer) for all ocean-aerosol assemblages, $\tau \Box^{a3}$ (iaer,itau)	99
6.13.1.4 C.P. FUB-scattering phase matrices and IOPs for all the aerosol models	99
6.13.1.5 C.P. UdL-scattering phase matrices and IOPs for all the aerosol models	99
6.13.1.6 C.P. TOA normalized radiances, $L_{TOA}(\lambda, \theta_s, \theta_v, \Delta \phi)$	99
6.13.1.7 C.P. FUB total and Rayleigh optical thicknesses, τ(iaer,type,itau,iband)	99
6.13.1.8 C.P. Spectral dependence of the AOT (without normalization at reference wavelength), f(iaer,λ,itau)	99
6.13.2 MPH	99

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:

7

6.13.3 SPH	
6.13.4 GADS General	
6.13.4.1 Nominal wavelengths of the 15 MERIS spectral bands	
6.13.4.2 (Spare)	
6.13.4.3 Solar zenith angles	
6.13.4.4 View zenith angles	
6.13.4.5 Relative azimuth angles.	
6.13.4.6 Wind-speeds	
6.15.4.7 Vicanous adjustement gains	
6.15.4.8 (spare)	
6.13.5 GADS Spectral Optical Interness	
6.13.5.1 Spectral dependence factor of the total AO1 (with normalization at reference wavelength)	
6.13.6 GADS Aerosol Optical Thickness at 865 nm.	
6.13.6.1 Aerosol optical thickness at 865 nm, $\tau^a_{865}(iaer, \tau^a)$.	
6.13.7 GADS Aerosol Single Scattering Albedo	
6.13.7.1 Aerosol single scattering albedo, $\omega_0^a(aer,\lambda)$	99
6.13.8 GADS Aerosol Forward Scattering Proportion	99
6.13.8.1 Aerosol forward scattering proportion, $fp^a(iaer,\lambda)$	99
6.13.9 GADS Blue TOA Reflectance Threshold - ROGC	
6.13.9.1 Threshold on the glint corrected blue TOA reflectance $\rho_{GC}(412.5)$	
6.13.10 ADS Coefficients of σ_{τ}/σ_{p} to τ . Relation	99
6.13.10.1 Polynomial coefficients for $(\sigma_{r} / \sigma_{r})$ to total AOT relationship	99
6.13.11 ADS Transmittaneos	00
6 13 11 1 Total downward transmittance (direct+diffuse)	
6.13.11.2 Total upward transmittance (direct+diruse).	
6.151.12. Total upward transmittance (uncer) unruse)	
(14 LAND AEROSOL I ARAMETERS	
6.14.1 C.P. Imposinger parts of refrective indices for land encoded models.	
6.14.1.1 C.P. Imaginary parts of refractive indices for land-aerosol models	
0.14.2 MPH	
6.14.3 SPH	
6.14.4 GADS General	
6.14.4.1 Zenith angles	
6.14.4.2 Stored indices for $(\theta_s \ge \theta_v)$ combinations	
6.14.4.3 Relative azimuth angles	
6.14.4.4 Cosine of scattering angles	
6.14.4.5 Indices of band numbers (starting from 1) for in-land waters and islands screening	
6.14.4.6 Threshold for in-land waters screening spectral slope test	
6.14.4.7 Threshold for Islands screening spectral slope test	
6.14.4.8 Aerosol optical properties (real part of refractive index, Angstroem exponent) for land-aerosol models	
6.14.4.9 Aerosol optical thicknesses at 550 nm.	
6.14.4.10 Gamma coefficient for ARVI computation	
6.14.4.11 Aerosol optical thickness increment for iterative procedure	
6.14.4.12 Dense dark vegetation, DDV(biome,month)	
6.14.4.15 Landers for DDV climatology	
6.14.4.14 Longitudes for DDV climatology	
6.14.4.15 Elective factors values.	
(14.4.10 Kelonic and humbers of GADS multiplicative function to account for volcance across multiple scattering ef	10015 99
6.14.4.17 Volcanic aerosol optical thicknesses, t (1aer)	
6.14.4.18 Kenectance threshold at 805 http://docenter.com/formation/	
6.14.4.20 List of hand indices (starting from 1) to be used for land percent consing	
0.14.4.20 List of band indices (starting from 1) to be used for failed actions remote sensing	
0.14.5 GADS Reflectance Inresnotas for Intana waters and Islands Screening	
6.14.5.1 α - Constant applied to threshold for inland waters screening	
6.14.5.2 TOA reflectance thresholds at 665 nm for inland waters screening, $\rho_{T,665}(\theta_s \times \theta_v, \Delta \phi)$	
6.14.5.3 α - Constant applied to threshold for islands screening	
6.14.5.4 TOA reflectance thresholds at 865 nm for islands screening, $\rho_{T,865}(\theta_s \times \theta_v, \Delta \phi)$	99
6.14.5.5 Altitude threshold above which in-land waters screening is disabled	
6.14.6 ADS ARVI Thresholds for DDV models	

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 8

	6.14.6.1 ARVI thresholds used for DDV models, ARVI_thresh(iddv, $\theta_s \times \theta_{v}, \Delta \phi$)	99
	5.14. / ADS Standard Surface Reflectance Ranges for DDV Models	99
	6.14.7.1 Mean DDV reflectances for 412.5 nm, 442.5 nm, 490 nm and 665 nm, $\rho_{DDV_mean}(iaer,\lambda)$	99
	6.14.8 ADS Aerosol Spherical Albedo	99
	6.14.8.1 Aerosol spherical albedo, $S_a(iaer, \tau^a)$	99
	6.14.9 ADS Aerosol Transmittance	99
	6.14.9.1 Aerosol transmittance T (iaer θ τ^{a})	99
	5.14.10 ADS Multiplicating Function to account for Approal Multiple Scattering Effects	00
	11.10 ADS Multiple to the function to account for Actosol multiple Scattering Effects for this action	>>
	6.14.10.1 Fourier series terms of polynomial coefficients for multiplicative aerosol scattering function retrieval	99
	5.14.11 ADS Aerosol Phase Function times Single Scattering Albedo	99
	6.14.11.1 Aerosol phase function times single scattering albedo, ω_0^{a} (iaer). P_a (iaer, cos Θ)	99
	5.14.12 ADS Volcanic Aerosol Spherical Albedo	99
	$6.14.12.1$ Volcanic aerosol spherical albedo, $S_{va}(iaer,\lambda)$	99
	6.14.13 ADS Volcanic Aerosol Transmittance	99
	6.14.13.1 Volcanic aerosol transmittance, $T_{vs}(iaer,\lambda,\theta_s)$	99
	5.14.14 ADS Volcanic Aerosol Reflectance	
	6.14.14.1 Volcanic aerosol phase function times single scattering albedo $\omega^{va}(iaer \lambda) P_{va}(iaer \lambda) cos\Theta$	99
	6.14.14.2 Spectral dependence of the volcanic aerosol ontical thickness (with normalization at reference wavelength)	90
	0.14.15.2 Spectral dependence of the volcante decision putch interfaces (with normalization at reference wavelengin)	
	(14) 15 Darbs Dense Dark regenition Climatology	99
	6.14.15.1 Biome index, DDV _cim(iai,iong)	99
	5.14.16 ADS DDV Parameters for Blairectionality Correction	99
	6.14.16.1 Rayleigh-ground DDV coupling bidirectionality term, $\overline{\rho}_{RG}$ (iddv, λ, θ_{v})	99
	6.14.16.2 Aerosol-ground DDV coupling bidirectionality term, $\overline{\rho}_{aG}$ (iddv, λ ,iaer, $\theta_s x \theta_{v,s}$)	99
	6.14.16.3 Ground DDV albedo, $\rho_{DDV}(iddv,\lambda)$	99
	6.14.17 ADS Aerosol Parameters for Bi-Directionality Correction	
	6.14.17.1 Polynomial coefficients for aerosol-molecule coupling bidirectionality term retrieval	99
	6 14 17 2 (Spare)	99
	6.14.18 ADS DDV Reflectance Correction Parameters	99
	6.14.18.1 Monthly adjustment for bands at 412.5 nm 442.5 nm 490 nm & 665 nm ((month lat long band)	00
	6.14.18.2 Linear corrections for bands at 412.5 nm, 42.5 nm, 400 nm & 665 nm L (month) lat long, band).	00
	6.14.16.2 Linear confections for banks at 412.3 min, 442.3 min, 450 min & 605 min, E.C.(month, Jak, Jong, Jaild)	99
<i>C</i> 1	0.14.10.5 Minimum and maximum seasonal variation of AKV1, [ΔAKV1 _{min} , ΔAKV1 _{max}](monul, DDV model)	99
6.1	5 OCEAN CASE-1 PARAMETERS	99
	5.15.1 C.P.	99
	6.15.1.1 C.P. Extinction coefficient and single scattering albedo for chlorophyll	99
	6.15.2 MPH	99
	6.15.3 SPH	99
	6.15.4 GADS General	99
	6.15.4.1 Wind-speeds for GADS geometrical factor R _{acth}	99
	$6.15.4.2$ Wavelengths for ADS f_1/O	99
	6.15.4.3 Solar zenith angles for ADS fr/O	99
	6.15.4.4 Solar zenith angles for GADS thresholds and ADS glint reflectance	
	6.154.5 Zenith angles in water for ADS f./O	99
	6.15.4.6 Zenith angles in water for GADS specimetrical factor R	99
	6.15.4.7 View zenith angles for GADS thresholds and ADS glint reflectance	99
	6.15.4 Relative azimuth angles for ADS f./O	99
	6.15.49 Relative azimuth angles for GADS thresholds and ADS dint reflectance	90
	6.15.4.10 Chloronbyll contents for ADS £/0	00
	6.15 + 10 children in the ADS $1/Q$	99
	6.15.4.12 Wind-speeds for ADS f./O	99
	6.15.4.13 Initial algal nigment index value for ADS f./O	99
	6.15.4.14 C. constants for downward atmospheric transmittence	77
	$0.15.11 + 0_1$ constants for containing detection	77
	6.15.4.16 Easter relating b /a to reflectance just below water surface for a surface for a surface it.	99
	0.15.4.10 Factor relating 0b/a to renectance just below water surface for a sun at zenith	99
	0.15.4.17 while-speeds for GADS glint reflectance	99
	0.13.4.16 WHILU AZIMULIN OFICIALISION OF GADS GIINL FELICITANCE.	99
	0.13.4.17 (Spare)	99

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:

9

6.15.4.20 Value of f/Q factor for a nadir viewing angle at 510 nm	
6.15.4.21 Mean value of chlorophyll content	
6.15.4.22 Water refractive index	
6.15.4.23 Value of $\Delta \rho_{510}$ to set the annotation flag	
6.15.4.24 Value of the scattering angle Θ_p for a nadir viewing	
6.15.4.25 Scaling factor for decoding mean value of water-leaving reflectance at 510 nm	
6.15.4.26 Offset for decoding mean value of water-leaving reflectance at 510nm	
6.15.4.27 Scaling factor for decoding variability value of water-leaving reflectance at 510nm	
6.15.4.28 Offset for decoding variability value of water-leaving reflectance at 510nm	
6.15.4.29 Latitudes for mean values of water-leaving reflectance at 510nm.	
6.15.4.30 Longitudes for water-leaving reflectance mean values at 510nm (tabulated values)	
$6.15.4.31$ Chlorophyll contents for ADS f_0 factor	
6.15.5 GADS Geometrical factor R_{goth}	
6.15.5.1 Geometrical factor $R_{goth}(\theta', w_s)$	
6.15.6 GADS Thresholds	
6.15.6.1 Threshold on water reflectance at 560 nm for input validity	
6.15.6.2 Chlorophyll content range (thresholds) for output validity	
6.15.6.4 (Spare)	
6.15.6 L low glint threshold	
6 15 6 6 Medium glint threshold	
6 15 6 7 Wind-speed threshold for whitecans flagging	99
6.15.6.8 Reflectance thresholds at 708.75 nm for turbid water identification	
6.15.6.9 Water vapour high glint threshold	
6.15.6.10 Shallow water depth threshold	
6.15.7 GADS Log10 polynomial coefficients	
6.15.7.1 Log10 polynomial coefficients for 443, 490 and 510 nm	
6.15.7.2 Convergence criterium for iterative chlorophyll retrieval	
6.15.7.3 Irradiance reflectance ratio validity range for algal1 computation using log10 polynomials	
6.15.7.4 Highest order of log10 polynomial coefficients used in the Case-1 waters algorithm	
6.15.7.5 Bands selected for computation of chlorophyll content (Chl1) (band number starting at 1)	
6.15.8 ADS f/Q Factor	
6.15.8.1 I/Q factor	
6.15.9 ADS Glint reflectance	
6.15.9.1 Glini reflectance	
6.15.10 ADS Mean value of water leaving reflectance at 510 nm rhow510, macn(month let long)	
6 15 10 2 Variability of water-leaving reflectance at 510 nm, thow 510 yar(month lat long)	
6.15.11 GADS f factor	
6 15 11 1 Factor f	
6.16 Ocean Case-II Parameters	90
6.16.1 C P	
6.16.2 MPH	
6.16.3 SPH	00
6 16 4 GADS General	
6 16 4 1 Wavelengths (tabulated values)	
6.16.4.2 Number of polynomial coefficients in Fp computation	
6.16.4.3 Wind-speeds for ADS Fp factor	
6.16.4.4 View zenith angles for ADS Fp factor	
6.16.4.5 Solar zenith angles for ADS Fp factor	
6.16.4.6 Relative azimuth angles for ADS Fp factor	
6.16.4.7 View zenith angles for GADS anomalous scattering detection	
6.16.4.8 Solar zenith angles for GADS anomalous scattering detection	
6.16.4.9 Kelative azimuth angles for GADS anomalous scattering detection	
0.10.4.10 Conversion factors for Cn12.	
0.10.4.11 Conversion factors for STVI	
6 16 4 13 Backscattering coefficients of pure water	
6.16.4.14 Specific backscattering coefficients of coccoliths	99

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 10

6.16.4.15 Specific backscattering coefficients of SPM	.99
6.16.4.16 Number of iterations in bright pixel atmospheric correction for band set LOW and band set HIGH.	. 99
6.16.4.17 Threshold value on total suspended particulate matters to raise CASE2 S flag	. 99
6.16.4.18 Convergence criteria on bbp in the BPAC iterations	. 99
6.16.4.19 Convergence criteria on bb in the rhow_to_bb routine	. 99
6.16.4.20 Number of iterations in the rhow_to_bb routine	. 99
6.16.4.21 Specific absorption coefficients of coccoliths	. 99
6.16.4.22 Specific absorption coefficients of SPM	. 99
6.16.4.23 Initial estimate of backscatters at 778.75 nm for the LOW and HIGH band estimates	. 99
6.16.4.24 Initial estimate of the Angstroem exponent	. 99
6.16.4.25 I hreshold on water-leaving reflectance at 7/8.75 m to activate the HIGH band set	. 99
6.16.4.26 Inreshold on water-teaving reflectance at 7/8.75 nm to desactivate the LOw band set	. 99
6.16.4.28 hbn value to initialize the rhow to bh routine	. 99
6.16.4.29 Threshold for flagging vellow substance dominated waters	99
6 16 4 30 Chl values for GADS anomalous scattering detection	99
6 16 4 31 Floor values for NN inputs [reflectance threshold_floor NN input]	99
6 16 4 32 Threshold for white scatteres detection	99
6 16 5 GADS Case II Yelow Substance Detection Coefficients	99
6.16.5.1 B; constants.	. 99
6.16.5.2 A constants for H(443 nm, 560 nm) estimation	. 99
6.16.5.3 A constants for H(490 nm, 560 nm) estimation	. 99
6.16.5.4 A _i constants for H(510 nm, 560 nm) estimation	. 99
6.16.5.5 Ni exponents	. 99
6.16.6 GADS Anomalous Scattering Detection	99
6.16.6.1 Threshold on reflectance at 560nm	. 99
6.16.7 GADS Coefficient of F' Factor to IOPs Relation	99
6.16.7.1 Coefficients of F _p factor to IOPs relation for 4 wind-speeds	. 99
6.16.8 GADS CASE-II Water Neural Network Parameters	99
6.16.8.1 Case-2 waters neural network parameters	. 99
6.16.8.2 Switch for reflectance log-scaling	. 99
6.17 CLOUD PARAMETERS	99
6.17.1 C.P.	99
6.17.1.1 C.P. Normalized TOA radiances, $L_{TOA}(\lambda, \theta_s, \theta_v, \Delta \phi)$. 99
6.17.1.2 C.P. Cloud spherical albedos, $Calb(\theta_s)$. 99
6.17.2 MPH	99
6.17.3 SPH	99
6.17.4 GADS General	99
6.17.4.1 Latitudes for ADS surface albedo at 761.875 nm	. 99
6.17.4.2 Longitudes for ADS surface albedo at 761.875 nm	. 99
6.17.4.3 Solar zenith angles for ADS polynomial coefficients for cloud albedo retrieval & for ADS polynomial coefficients cloud optical thickness retrieval	s for . 99
6.17.4.4 View zenith angles for ADS polynomial coefficients for cloud albedo retrieval & for ADS polynomial coefficients	s for 99
6.17.4.5 Relative azimuth angles for ADS polynomial coefficients for cloud albedo retrieval &	cients
6.17.4.6 Surface albedos for ADS polynomial coefficients for cloud albedo retrieval & for ADS polynomial coefficients fo	or
6 17 4 7 Surface albedo scaling factor	. 99
6.17.4.8 Cloud ton pressure neural network solar flux at 753.75 nm & for the 761.875 nm / 753.75 nm ratio	99
6 17 4 9 Minimum accentable radiance value for TOA reflectance at 753 75 nm	99
6.17.4.10 Maximum acceptable radiance value for TOA reflectance at 753.75 nm	. 99
6.17.4.11 Minimum acceptable radiance value for TOA reflectance at 761.875 nm.	. 99
6.17.4.12 Maximum acceptable radiance value for TOA reflectance at 761.875 nm	. 99
6.17.4.13 Switch to use spectral shift index	. 99
6.17.4.14 FR-band#11 wavelengths for surface pressure neural network	. 99
6.17.4.15 RR-band#11 wavelengths for surface pressure neural network	. 99
6.17.4.16 FR residual stray-light correction factor	. 99
6.17.4.17 RR residual stray-light correction factor	. 99

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer

6.17.4.18 Minimum acceptable value for surface albedo	
6.17.4.19 Maximum acceptable value for surface albedo	
6.17.4.20 Cloud top pressures (CTP) for ADS cloud type index	99
6.17.4.21 Cloud optical thicknesses (CTP) for ADS cloud type index	99
6.17.4.22 Number of cloud top pressures	99
6.17.4.23 Number of cloud optical thicknesses	99
6.17.4.24 Solar flux at 753.75 nm for cloud LUTs	99
6.17.4.25 Minimum valid values for surface pressure neural network inputs	99
6.17.4.26 Maximum valid values for surface pressure neural network inputs	99
6.17.4.27 Minimum valid value for surface pressure neural network output	99
6.17.4.28 Maximum valid value for surface pressure neural network output	99
6.17.4.29 Default AOT value for surface pressure neural network	99
6.17.4.30 Maximum allowed surface pressure difference	
6.17.5 GADS Surface Albedo	99
6.17.5.1 Surface albedo at 761.875 nm, S _{alb} (month,latitude,longitude)	99
6.17.6 ADS Polynomial Coefficients for Cloud Albedo Retrieval	99
6.17.6.1 Polynomial coefficients for cloud albedo retrieval	99
6.17.7 ADS Polynomial Coefficients for Cloud Optical Thickness Retrieval	99
6.17.7.1 Polynomial coefficients for cloud optical thickness retrieval	99
6.17.8 GADS Cloud Top Pressure Neural Network for not null Surface Albedo	99
6.17.8.1 Cloud top pressure neural network for not null surface albedo	
6.17.9 GADS Cloud Top Pressure Neural Network for null Surface Albedo	99
6.17.9.1 Cloud top pressure neural network for null surface albedo	99
6.17.10 GADS Cloud type index	
6.17.10.1 Cloud type index.	
6 17 11 GADS Surface Pressure Neural Network Parameters	99
6 17 11 1 Surface pressure neural network	99
6 18 LAND VEGETATION INDEX PARAMETERS	99
6.19.2 MDH	//
0.10.2 Mi 11 	99
0.10.5 SFF	99
6.18.4 GADS General	99
6.18.4.1 Blue wavelength band number for TOA-VI computation	
6.18.4.2 Red wavelength band number for IOA-VI computation	
6.18.4.3 Near-initrared wavelength band number for 10A-VI computation	
6.18.4.4 K_1 normalization parameters for blue, red & NIR bands and for vegetated & origin soils	
6.18.4.5 Theta_inormanization parameters for blue, red & Nik bands and for vegetated & bright soils	
6.18.4.7 Movimum reflectances for blue, red and NIB bands used in TOA VL computation	
6.18.4.2 Polymomia coefficients for blue, red and NIP bands for TOA VI computation	
6.18.4.9 Information NIB reflectance ratio threshold for TOA-VI computation	
6 18.4.10 Red wavelength hand number for BOA-VI computation	90
6.18.4.11 Near-infrared wavelength band #1 for BOA-VI computation	99
6 18 4 12 Near-infrared wavelength band #2 for BOA-VI computation	
6 18 4 13 Near-infrared wavelength band #3 for BOA-VI computation	
6.18.4.14 BOA-VI acceptable range	
6.18.4.15 Maximum value of top of aerosol reflectance in red band to allow the MTCI computation	
6.18.4.16 Minimum value of top of aerosol reflextance in NIR band#2 for MTCI	
6.18.4.17 Minimum value of top of aerosol reflectance difference between NIR#1 and red bands to allow the MTCI	
computation	99
6.18.4.18 Minimum value of top of aerosol reflectance difference between NIR#3 and red bands to allow the MTCI	
computation	99

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 12

DOCUMENT CHANGE RECORD

Issue	Rev.	Date	Chapter/Paragraph Number, Change Description (and Reasons)
Draft	-	Nov. 14, 1997	- Draft release of the document.
1	-	Feb. 20, 1998	- Release of the first issue of the document.
1	A	Apr. 29, 1998	 Updated revision following the discussions and comments from the FUB and LISE institutes. Most of modifications were made inside the sections keeping the same structure.
1	В	Feb. 10, 2000	- Updated revision for MERISAT v1.0 draft.
2	-	Feb. 02, 2001	 Changes are related to the requests in the documents: TOS-EMS/00-45/jcd (23/05/2000), 1st list of comments in Issue 1b, TOS-EMS/00-49/jcd (25/05/2000), 2nd list of comments in Issue 1b.
2	A	June 08, 2001	 Implemented changes from: Ludovic Bourg's mail (12/03/01) Ludovic Bourg's mail (22/05/01) Fax EMS/01-36/jcd (08/06/01) Sections have been changed to match as much as possible with IODD
2	В	Dec. 15, 2002	 Implemented changes from: Ludovic Bourg's mail (24/08/01) Error in LUT Polynomial coefficients for O2 correction (Section 6.11.6, field#1) Comments from Jean-Claude Debruyn's mail (26/11/02) ⇒ Version in-line with MERISAT v1.2
2	С	July 18, 2003	- Some change implemented with IODD v6.1.
2	D	Oct. 31, 2003	 Complete revision of the document All changes implemented with IODD v6.1 ⇒ Version in-line with MERISAT v1.3
2	E	May 14, 2004	- Changes implemented with IODD v7.2 ⇔ Version in-line with MERISAT v1.4
2	F	Nov 30, 2005	- Version in-line with IODD v7.2 and MERISAT v1.5 - LUT-122 is now provided by ACRI.

MEdium Resolution Imaging Spectrometer

Issue	Rev.	Date	Chapter/Paragraph Number, Change Description (and Reasons)
3	-	July 16, 2009	 Upgrade MERISAT v1.5 into v2.0 by including updated and optimized RTCs. New tool is in line with IODD v7.3a. Main changes in the LUT recipes: LUT303: Use of MAR90 assemblage (<i>iaer#3</i>) and a wind-speed of 5<i>m/s</i> to generate the TOA normalized radiances over a windroughened reflective sea surface. LUTs for Ocean-Aerosol parameters: New definition of aerosol assemblages over ocean and set of aerosol optical thickness at 550 nm in the 3 aerosol layers (<i>i.e.</i>, boundary, tropospheric, stratospheric layers). LUTs for Cloud parameters (LUT220 & 223): Polynomial fits for retrieving the cloud albedo and the cloud optical thickness are estimated on TOA normalized radiances computed for a spectral extraterrestrial solar irradiance (<i>E</i>_o) of 1 <i>W.m⁻².µm⁻¹</i>. LUTs for Water-Vapor parameters (LUT121, 122, 123, 124, 125): All these LUTs, which are for now generated by the FUB (Freie Universität of Berlin, Germany) institute, are provided by ACRI.
3	A	July 21, 2009	 Additional wind-speed in atmospheric LUTs over ocean: Use of a newe set of 3 wind-speeds (1.5, 5.0 & 10<i>m/s</i>): LUT110: <i>Rayleigh</i> reflectance over ocean. LUT143: Polynomial coefficients for (rhoT/rhoR) to AOT relation. New complementary recipes for generating atmospheric LUTs over ocean with RTC/UPRAD (SO), by including polarization processes: LUT110: <i>Rayleigh</i> reflectance over ocean. LUT138: Spectral dependence of the AOT. LUT139: Aerosol optical thickness at 865 <i>nm</i>. LUT140: Aerosol single scattering albedo. LUT141: Aerosol forward scattering proportion. LUT143: Polynomial coefficients for (rhoT/rhoR) to AOT relation.

MEdium Resolution Imaging Spectrometer

Issue	Rev.	Date	Chapter/Paragraph Number, Change Description (and Reasons)
3	В	Jan. 19, 2011	 Main changes in the LUT recipes: LUTs for Atmosphere parameters: remove previous LUT103 & LUT104 (Thresholds on absolute difference in pressure for Cloud/Bright surfaces discrimination over land & over ocean). replace previous LUT099 and (21 sets of polynomial coefficients for O2 transmittance retrieval at 778.75 <i>nm</i>) and previous LUT105 (21 set of polynomial coefficients for surface pressure retrieval) by 5 new LUTs generated at FUB, and provided by ACRI : LUT099: O2 transmittances around 778.75 <i>nm</i> (21 shifted filters) LUT103: O2 Rayleigh transmittances around 778.75 <i>nm</i>, with <i>H_a=2 km</i> LUT105: O2 aeros <i>transmittances</i> around 778.75 <i>nm</i>, with <i>H_a=2 km</i> LUT107: O2 atmospheric transmittances around 778.75 <i>nm</i>, with <i>H_a=2 km</i> LUT for O2 atmospheric transmittances around 778.75 <i>nm</i>, with <i>H_a=2 km</i> LUT for Ocean-Aerosol parameters: Introduction of a surface albedo map at 865 <i>nm</i> (LUT126) in the ADF. LUTs for Ocean-Aerosol parameters: replace previous LUT371 (reflectance versus IOPs) by a new LUT generated at BiO0ptika (Plymouth, UK), and provided by ACRI : LUT371: Coefficients of F' to IOPs relation introduction of cloud top pressure neural network for not null surface albedo and for null surface albedo (LUT384 & LUT385), generated at FUB, and provided by ACRI introduction of surface pressure neural network (LUT503), generated at FUB, and provided by ACRI
3	С	Feb. 27, 2011	MERISAT tool in line with IODD v8.0a (delivered by ACRI on Feb., 15 th - 2011)

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 15

1. INTRODUCTION

1.1 PURPOSE OF DOCUMENT

The ground processing of the MERIS instrument data requires the use of a vast amount of geophysical models. For processing speed, configuration control, evolution capacity, these models are used primarily in the form of tabulated parameters, limiting on-line computations to interpolation and/or model fitting. The management of these parameter tables implies the availability of adequate production, quality control methods, and sufficient storage.

This document defines the scientific content of all MERIS level-1b and 2 auxiliary data products, which allows their generation. For each data product field, the latters comprise:

- a description of the procedure used for generation
- a description of the tool module used for generation
- the accuracy required and the level of scientific content needed for generation
- an evaluation of computer resources required for generation
- a description of the procedure used for the acceptance of data generation

1.2 SCOPE

This work concerns the Level 2 processing at the ENVISAT-1 Ground Segment of the MERIS instrument data.

1.3 DEFINITIONS, ACRONYMS AND ABBREVIATIONS

ADE	Auxiliary Data File (or Product)
ADC	Auxiliary Data The (of Floddet)
ADS	Annotation Data Set
ADSR	ADS Record
AOT	Aerosol Optical Thickness
BDS	Boundary Dust-Soot-like particles
BDW	Boundary Dust-Water soluble particles
BPAC	Bright Pixel Atmospheric Correction
BRDF	Bidirectional Reflectance Distribution Function
CESBIO	Centre d'Etudes Spatiales de la Biosphère, (Toulouse - France)
C.P.	MERISAT internal Configuration Parameters section
DDV	Dark Dense Vegetation
ECMWF	European Centre for Medium-term Weather Forecast
ESFT	Exponential Sum Fitting Technique (for computing gaseous transmittivity)
FR	Full Resolution
FUB	Freie Universität Berlin, Institute for Space Science, (Berlin - Germany)

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 16

GADS	Global/General ADS
GAME	Global Absorbtion ModEl
IOP	Inherent Optical Properties
IPF	Instrument Processor Facilities (MERIS processor)
LBL	Line-By-Line computation
LISE/UdL	Laboratoire Interdisciplinaire en Sciences de l'Environnement, Université du Littoral, (Wimereux - France)
LOV	Laboratoire d'Océanographie de Villefranche/Mer (Villefranche/Mer - France)
LUT	Look-Up Table
MERIS	MEdium Resolution Imaging Spectrometer
MERISAT	MERIS Auxiliary data Tool software
MOMO	Matrix-Operator MethOd (see [RD-1] Fell, F., and J. Fischer, 2001. "Numerical
simulation of	the light field in the atmosphere-ocean system using the matrix-operator method", Journal
of Quantitativ	e Spectroscopy & Radiative Transfer: 69 (3), 351-388.
[RD-2] for mo	ore details)
MPH	Main Product Header
MTCI	MERIS Terrestrial Chlorophyll Index
N/A	Not Applicable
NIR	Near InfraRed (spectral region)
NN	Neural Network (tool)
ODOC	Optical Dissolved Organic Carbon
OTC	Optical Thickness Code
RH	Relative Humidity
RR	Reduced Resolution
RTC	Radiative Transfer Code
SAM	Standard Aerosol Model (standard assemblage)
SO	Successive Orders method for the <i>atmosphere</i> (see [RD-3] & [RD-4] for more details)
SPH	Specific Product Header
SPM	Suspended Particulate Matter
TBD	To Be Defined
TOA	Top of Atmosphere
WV	Water Vapor
WCRP	World Climate Research Program

1.3.1 Scientific identificators and units

cloud optical thickness
cloud top pressure
degree (angle unit)
dimensionless
Dobson Unit $[10^{-3} atm-cm]$
hecto Pascal $[10^2 Pa]$ (pressure unit)
(<u>Nb</u> : $1 atm = 760.31 torr = 1013.25 hPa$; $1 torr = 1 mmHg = 1.333 mbar$)
Kilo-bytes (1024 bytes)

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 17

- MB Mega-bytes (1024 kB)
- μm micrometer (wavelength unit)
- *n.u.* non unit (*unitless*)
- sr steradian (solid angle unit)
- *W* watt (*power unit*)

1.3.2 Documents identificators

ATBD	Algorithm Theoretical Basis Document
DDD	Detailed Design Document
DPM	Detailed Processing Model document
IODD	Input/Output Data Definition
SRD	Software Requirement Document

1.4 LIST OF SYMBOLS

<i>a</i> , <i>b</i>	parameters of the particle size distribution (<i>n.u.</i>)
a_{v}	weights associated with monochromatic absorption coefficients used in ESFT $(n.u.)$
dN(r)	number of particle per volume unit with a radius between r and $r + dr$ (cm ⁻³)
Ε	spectral irradiance ($W m^{-2} \mu m^{-1}$)
E _o	spectral solar irradiance at TOA ($W m^{-2} \mu m^{-1}$)
F _o	spectral solar radiance $(W m^{-2} sr^{-1} \mu m^{-1})$
g	assymmetry factor of phase function $(2^{nd} Hapke's parameter)$ (<i>n.u.</i>)
h	width of the hot-spot (4^{th} Hapke's parameter) (<i>n.u.</i>)
ind	index for selecting the type of particle size distribution $(n.u.)$
I_s	maximum order of the Legendre polynomial decomposition of the phase function and the
	radiance (n.u.)
k	either imaginary part of the refractive index $(n.u.)$
	or wavenumber (cm^{-1})
k _a	absorption efficiency (<i>n.u.</i>)
k _e	extinction efficiency (n.u.)
k _s	scattering efficiency (n.u.)
k_{v}	monochromatic absorption coefficients (cm^2g^{-1})
L	spectral radiance $(W m^{-2} sr^{-1} \mu m^{-1})$
т	real part of the refractive index (<i>n.u.</i>)

М	either the number of <i>Fourier</i> terms (<i>n.u.</i>) or the airmass (defined as $[1/\cos \theta_1 + 1/\cos \theta_2]$ or $[1/\mu_1 + 1/\mu_2]$) (<i>n.u.</i>)
n	index for selecting a MERIS spectral band $(n.u.)$ or complex refractive index $(n.u.)$
n _a	refractive index of air (<i>n.u.</i>)
n _w	refractive index of pure water (<i>n.u.</i>)
n(r)	particle size distribution $(cm^{-3}\mu m^{-1})$
N	either number of size distributions used in the <i>Mie</i> 's computation $(n.u.)$ or number of discrete atmospheric zenithal angles $(n.u.)$
N^{*}	number of discrete oceanic zenithal angles (<i>n.u.</i>)
<i>n</i> ₂	number of scattering angles in the <i>Mie</i> 's computation (<i>n.u.</i>)
<i>n</i> _i / <i>n</i>	component mixing ratio (<i>i.e.</i> , volume percentage of particles characterized by the i^{th} size distribution) (<i>n.u.</i>)
p	normalized scattering phase function (sr^{-1})
P_s	surface pressure (mbar or hPa)
Q_a	absorption cross section (m^{-2})
Q_e	extinction cross section (m^{-2})
Q_s	scattering cross section (m^{-2})
r	geometrical radius of a scatterer (μm)
$r_{\prime\prime\prime}$, r_{\perp}	<i>Fresnel</i> reflection coefficients in the // and \perp direction to the incidence plane (<i>n.u.</i>)
$t_{\prime\prime\prime},t_{\perp}$	<i>Fresnel</i> transmission coefficients in the $//$ and \perp direction to the incidence plane (<i>n.u.</i>)
r_{\min}, r_{\max}, dr	minimum and maximum radius (μm) , and radius increment (μm) of the particles in a given size distribution
S	amplitude of the hot-spot (3^{rd} Hapke's parameter) (<i>n.u.</i>)
T(u)	spectrally integrated transmission function for an absorber amount u (<i>n.u.</i>)
U_{H_2O}	total water vapor content $(g \ cm^{-2})$
U_{O_2}	total oxygen vapor content $(g \ cm^{-2})$
U_{O_3}	total ozone content $(cm - atm)$
W _i	Gaussian weigths (n.u.)
W _s	wind-speed above sea level $(m \ s^{-1})$
$\delta_{_{i,j}}$	Dirac's delta function (n.u.)

$\Delta \phi$	relative azimuthal angle (deg)
Δv	spectral interval $(s^{-1} \text{ or } hertz)$
φ_{o}	illumination azimuthal angle (deg)
φ_s	solar azimuthal angle (deg)
φ_v	viewing azimuthal angle (deg)
λ	wavelength (μm or nm)
μ	cosine of zenithal angle $(n.u.)$
μ_i	Gaussian angles (n.u.)
$\sigma_{\scriptscriptstyle a}$	absorption coefficient (aerosols / molecules) (m^{-1})
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle a}$	absorption coefficient for phytoplankton (m^{-1})
σ^{spm}_{a}	absorption coefficient for SPM (m^{-1})
σ^{ys}_{a}	absorption coefficient for yellow substance (m^{-1})
$\sigma^{\scriptscriptstyle W}_{\scriptscriptstyle a}$	absorption coefficient for pure sea water (m^{-1})
$\sigma_{_e}$	extinction coefficient (aerosols / molecules) (m^{-1})
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e}$	extinction coefficient for phytoplankton (m^{-1})
$\sigma_{e}^{\scriptscriptstyle spm}$	extinction coefficient for SPM (m^{-1})
σ_{e}^{ys}	extinction coefficient for yellow substance $(\sigma_e^{ys} = \sigma_a^{ys}) (m^{-1})$
$\sigma^{\scriptscriptstyle W}_{\scriptscriptstyle e}$	extinction coefficient for pure sea water (m^{-1})
$\sigma_{_s}$	scattering coefficient (aerosols / molecules) (m^{-1})
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle s}$	scattering coefficient for phytoplankton (m^{-1})
σ^{spm}_{s}	scattering coefficient for SPM (m^{-1})
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle s}$	scattering coefficient for pure sea water (m^{-1})
θ	scattering angle (deg)
$ heta_p$	phase function truncation angle (deg)
\varTheta_c	critical zenithal angle for total internal reflection (deg)
$\mathcal{\Theta}_{\mathrm{o}}$	illumination zenithal angle (deg)
$artheta_s$	solar zenithal angle (deg)
\mathcal{G}_{v}	viewing zenithal angle (deg)
$ ho_{s}$	reflectance of ground surface or ocean bottom assumed to be Lambertian $(n.u.)$

$ ho_{G}$	specular reflection of sunlight over ocean waves $(n.u.)$
$ ho_{_F}$	Fresnel reflectance at the <i>air-sea</i> interface (<i>n.u.</i>)
$ ho_{\scriptscriptstyle DDV}$	Ground DDV albedo (<i>n.u.</i>)
$\overline{ ho}_{aG}$	Aerosol-ground DDV coupling bidirectionality term $(n.u.)$
$\overline{ ho}_{aR}$	Aerosol-molecule coupling bidirectionality term $(n.u.)$
$\overline{ ho}_{\scriptscriptstyle RG}$	<i>Rayleigh</i> -ground DDV coupling bidirectionality term (<i>n.u.</i>)
τ	optical thickness (<i>n.u.</i>)
$ au^a$	aerosol optical thickness (<i>n.u.</i>)
$ au^{c}$	cloud optical thickness (<i>n.u.</i>)
$ au^{R}$	<i>Rayleigh</i> (molecular) optical thickness (<i>n.u.</i>)
$ au^{O_3}$	ozone optical thickness $(n.u.)$
ω	single scattering albedo $(1^{st} Hapke's parameter) (n.u.)$
<i>W</i> _o	single scattering albedo (n.u.)
ω_{0}^{p}	single scattering albedo for phytoplankton $(n.u.)$
ω_{\circ}^{spm}	single scattering albedo for SPM $(n.u.)$
ω^{w}	single scattering albedo for pure sea water $(n u)$
Ω	solid angle (<i>sr</i>)

1.5 REFERENCES

This section contains a list of applicable and reference documents for the Product Specifications document. The reader must refer to the STD document [AD-1] *PO-MA-BOM-GS-0003* "Software Transfer Document for MERIS Level-2 Auxiliary Data Tool S/W"

] to obtain the issue number of each document pertaining to the current MERISAT software release [AD-2].

1.5.1 Applicable documents

No	Document	Title
[AD-1]	PO-MA-BOM-GS-0003	"Software Transfer Document for MERIS Level-2 Auxiliary Data Tool S/W"
[AD-2]	PO-MA-BOM-GS-0008	"Software User's Manual for MERIS level-2 Auxiliary data Tool software"
[AD-3]	PO-TN-MEL-GS-0002-i7r2	"MERIS Level-2 Detailed Processing Model & Parameter Data List"
[AD-4]	PO-TN-MEL-GS-0002-i7r0	"MERIS Level-1b Detailed Processing Model & Parameter Data List"

Par Bleu	MERIS / ENVISAT-1 MEdium Resolution Imaging Spectrometer	<u>Ref.</u> : PO-RS-PAR-GS-0002 <u>Issue</u> : 3 <u>Rev.</u> : C <u>Date</u> : 27-Feb-11 <u>Page</u> : 21				
[AD-5] PO-TN-MEL-GS-0005	"MERIS Level-2 ATBD: Algorithm 1	Theoretical Basis Document"				
[AD-6] PO-TN-MEL-GS-0026	"Reference Model for MERIS Level-2 Processing – 3rd MERIS Repro- cessing"					
[AD-7] <i>PO-RS-PAR-GS-0003</i>	"Specification of the Contents of used to Generate the Level-2 Au	the MERIS Radiative Transfer Tools xiliary Data Products"				
[AD-8] PO-TN-MEL-GS-0003	"MERIS Input/Output Data Definition"					
[AD-9] Presentation slides	"MERIS Water Vapor retrieval"					

1.5.2 Reference documents

No	Reference (authors, title, journal)
[RD-1]	<i>Fell, F., and J. Fischer, 2001.</i> "Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method", <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> : 69 (3), 351-388.
[RD-2]	<i>Fell, F., and J. Fischer, 2001.</i> "Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method", <i>Journal of Quantitative Spectroscopy & Radiative Transfer.</i> 69 (3), 351-388.
[RD-3]	<i>Deuzé, J.L., M. Herman, and R. Santer, 1989.</i> "Fourier series expansion of the transfer equation in the atmosphere-ocean system", <i>Journal of Quantitative Spectroscopy & Radiative Transfer</i> . <i>41</i> (6), 483-494.
[RD-4]	Lenoble, J., M. Herman, J.L. Deuzé, B. Lafrance, R. Santer and D. Tanré, 2007. "A successive order of scattering code for solving the vector equation of transfer in the Earth's atmosphere with aerosols", Journal of Quantitative Spectroscopy & Radiative Transfer, 107, pp. 479-507 (<u>doi</u> : 10.1016/j.jqsrt.2007.03.010).
[RD-5]	Vermote, E., D. Tanré, J.L. Deuzé, M. Herman, and J.J. Morcrette, 1997. "Second simulation of the satellite signal in the solar spectrum, 6S: An overview", <i>I.E.E.E. Transactions on Geoscience & Remote Sensing</i> : 35 (3), 675-687.
[RD-6]	Hansen, J.E., and L. Travis, 1974. "Light scattering in planetary atmospheres", Space Science Reviews: 16, 527-610.
[RD-7]	<i>Cox, C., and W. Munk, 1954.</i> "Measurements of roughness of the sea surface from photographs of the sun glitter", <i>Journal of the Optical Society of America</i> : <i>44</i> (11), 838-888.
[RD-8]	Shettle, E.P., and R.W. Fenn, 1979. "Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties", <i>Environmental Research Papers</i> , <i>AFGL-TR-79-0214</i> , Hanscom (Mass.).
[RD-9]	<i>Kaufman, Y.J., and D. Tanré, 1992.</i> "Atmospherically resistant vegetation index (ARVI) for EOS-MODIS", <i>I.E.E.E. Transactions on Geoscience & Remote Sensing: 30</i> , 261-270.
[RD-10]	<i>Morel, A., and B. Gentili, 1996.</i> "Diffuse reflectance of oceanic waters. III- Implications of bidirectionality for the remote-sensing problem", <i>Applied Optics</i> : 35 , 261-270.
[RD-11]	<i>Prieur, L., and S. Sathyendranath, 1981.</i> " An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials", <i>American Society of Limnology & Oceanography:</i> 26, 671-689.
[RD-12]	<i>Morel, A., and M. André, 1991.</i> "Pigment distribution and primary production in the western Mediterranean as derived and modeled from Coastal Zone Color Scanner observations", <i>Journal of Geophysical Research</i> : 96 , 12685-12698.
[RD-13]	Pope, R.M., and E.S. Fry, 1997. "Absorption spectrum (380-700nm) of pure water: II. Integrating cavity measurements", <i>Applied Optics</i> : 36 , 8710-8723.

MEdium Resolution Imaging Spectrometer

<u>Ref.</u> :	PO-RS-PAR-GS-0002						
lssue:	3	<u>Rev.</u> :	С				
Date:	27-	Feb-11		Page:	22		

- [RD-14] *Hale, G.M., and M.R. Querry, 1973.* "Optical constants of water in the 200nm to 200µm wavelength region", *Applied Optics*: *12*, 555-563.
- [RD-15] Santer, R., and F. Zagolski, 2010. "Inherent optical properties of the aerosols IOPA", in reponse to RFQ/3-11641/06/I-OL, Intended Rider 1 to ESRIN Contract 18109/04/I-OL for Atmospheric Correction for MERIS Over Coastal Waters: Towards a New Aerosol Climatology: 40 p.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 23

1.6 DEFINITION

Band #	λ (nm)	Δλ (nm)	Description
1	412.50	10	Aerosol and ocean color retrieval
2	442.50	10	Aerosol and ocean color retrieval
3	490.00	10	Aerosol and ocean color retrieval
4	510.00	10	Aerosol and ocean color retrieval
5	560.00	10	Aerosol and ocean color retrieval
6	620.00	10	Aerosol and ocean color retrieval
7	665.00	10	Aerosol and ocean color retrieval
8	681.25	7.5	Aerosol and ocean color retrieval
9	708.75	10	Aerosol and ocean color retrieval
10	753.75	7.5	Clouds
11	761.875	3.75	Clouds
12	778.75	15	Aerosol and ocean color retrieval
13	865.00	20	Aerosol and ocean color retrieval
14	885.00	10	Water vapor
15	900.00	10	Water vapor

The 15 MERIS bands are described in table below:

1.7 CODING / SIZING

The following data types are used to code the MERIS level-1b & 2 auxiliary data products:

Variable Type	Туре	Size	Description
Character	char	1 byte	sc: signed char uc: unsigned char
2-byte Integer	short	2 bytes	ss: signed short integer us: unsigned short integer
4-byte Integer	long	4 bytes	sl: signed long integer ul: unsigned long integer
8-byte Integer	long long	8 bytes	sd: signed long long integer ud: unsigned long long integer
Single precision floating point	float	4 bytes	fl: single precision floating point
Double precision floating point	double	8 bytes	db: double precision floating point

Conventions used for byte and bit numbering in bit fields are:

- bytes and bits numbering always starts at 0

- byte 0 is always the most significant

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 25

2. OVERVIEW OF SPECIFICATION

2.1 APPROACH OF AUXILIARY DATA PRODUCT SPECIFICATION

For each auxiliary data product field described, the information is presented following a standardized template. The specification is provided for the following categories: reference, dependencies, tool, procedure, scientific content, resources and acceptance. In this section, each category is defined and the descriptors used are presented.

Reference:

References to applicable documents are given. The variable name given corresponds to the output variable used in [AD-3] & [AD-4], and provides the means of tracing where the LUT is being used. When "no variable used" is specified, the field is used only for the generation of the LUT described under "Dependencies".

Dependencies:

In this section, all the LUTs that depend on the given auxiliary data product field are listed.

<u>Tool</u>:

A description of the tool modules which will be used for the generation of the field is given.

Procedure:

A description of the procedure that will be used for the generation of the field is given. It specifies mainly the inputs/outputs and the processing steps in the sequence of modules. In the outputs, the variable name is given, as well the units and the dimensions of the variable. Under unit description, [dl] means that the variable is dimensionless.

Scientific content:

The level of scientific content or a relevant physical description is given to help understanding the purpose of the LUT. For more details on the algorithms used, refer to [AD-5] or [AD-6].

Resources:

An evaluation of the computer resources required to generate the data for the specified accuracy is given. It includes the Output disk space and the CPU time for a typical case.

Acceptance:

A description of the procedure which will be used in the acceptance for the data generated.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 26

2.2 SUMMARY OF TOOLS / MODULES REQUIRED

These tools / modules are summarized in table hereafter, and a full description (*i.e.*, theory and data dictionary) for each of them is given in [AD-7].

Tools/Modules required	Status					
LISE/UdL Modules						
OTC/SCAMAT	Available					
OTC/COMPUTE_FSP	Available					
RTC/UPRAD (GAME, SO)	Available					
RTC/GAUSS	Available					
RTC/MOS (lut_rhob_aR, lut_rhob_agddv, lut_rhob_Rgddv, lut_alb_gddv)	Available					
OTC/OZONE	Available					
OTC/RAYLEIGH	Available					
FUB Modules						
OTC/MIE	Available					
OTC/SCFP_2	Available					
RTC/MOMO	Available					
MERISAT Modules						
Integration	Available					
Interpolation	Available					
Simplex	Available					
Polynomial fit	Available					

2.3 SUMMARY OF COMPUTER RESOURCE REQUIREMENTS

This summary is limited to the LUTs generated on a single computer equipped with a linux operting system. The CPU time was obtained using the MERISAT-S/W v2.0 on a single computer.

Reference to [AD-8]	LUT #	CPU time [s]	Disk space [bytes]
L1b CONTROL P	ARAMETERS		
✓ Section 6.2.20, ADS field 1	017	26	10944
L2 CONTROL P	ARAMETERS		
✓ Section 6.10.8, ADS record 1 field 1	303	3243243243 2432432432 4324	5928
✓ Section 6.10.8, ADS record 2 field 1	303	685	5928

MEdium Resolution Imaging Spectrometer

Reference to [AD-8]	LUT #	CPU time [s]	Disk space [bytes]
ATMOSPHERE F	PARAMETERS		
✓ Section 6.11.4, GADS field 1	074	21	12
✓ Section 6.11.5, GADS field 4	097	1	60
✓ Section 6.11.5, GADS field 5	098	1	60
✓ Section 6.11.6, GADS field 2	106	55674	336
✓ Section 6.11.6, GADS field 3	100	39767	240
✓ Section 6.11.7, GADS field 1, 2 & 3	101	691	3744
✓ Section 6.11.8, GADS field 1	102	17	68
✓ Section 6.11.12, GADS fields 1, 2 & 3	110	[FUB] 1024 [UdL] 259	1345500
OCEAN-AEROSOL	PARAMETERS	:	
✓ Section 6.13.5, GADS field 1	138	[FUB] 3 [UdL] 3	14280
✓ Section 6.13.6, GADS field 1	139	[FUB] 1 [UdL] 1	952
✓ Section 6.13.7, GADS field 1	140	[FUB] 1 [UdL] 1	2040
✓ Section 6.13.8, GADS field 1	141	[FUB] 2 [UdL] 2	2040
✓ Section 6.13.9, ADSR field 1	142	31	29900
✓ Section 6.13.10, ADSR field 1, 2 & 3	143	[FUB] 101663 [UdL] 47841	137241000
✓ Section 6.13.11, ADSR field 1, 2 & 3	485	21600	985320
✓ Section 6.13.12, ADSR field 1	486	7200	185640
LAND-AEROSOL	PARAMETERS		
✓ Section 6.14.5, ADSR field 2	159	7078	5928
✓ Section 6.14.5, ADSR field 4	438	7078	5928
✓ Section 6.14.6, ADSR field 1	160	94428	118560
✓ Section 6.14.8, ADSR field 1	167	2044	4992
✓ Section 6.14.9, ADSR field 1	168	1022	59904
✓ Section 6.14.10, ADSR field 1	169	177329	606528
✓ Section 6.14.11, ADSR field 1	170	2458	25896
✓ Section 6.14.12, ADSR field 1	315	363	1080
✓ Section 6.14.13, ADSR field 1	316	183	12960
✓ Section 6.14.14, ADSR field 1	317	40	14940
✓ Section 6.14.16, ADSR field 1	320	5	3840
✓ Section 6.14.16, ADSR field 2	321	6	9734400
✓ Section 6.14.16, ADSR field 3	322	7	320
✓ Section 6.14.17, ADSR field 1	324	54	14976
✓ Section 6.15.6, GADS field 8	197	24	51300
✓ Section 6.15.8, GADS field 1, 2, 3 & 4	203	4356	786240
✓ Section 6.17.6, GADS field 1, 2 & 3	220	1312200	1312200
✓ Section 6.17.7, GADS field 1, 2, 3 & 4	223	19016	1749600
Total		1904530	154343584

MEdium Resolution Imaging Spectrometer

C.P. Sections	Number of LUTs	Disk space per LUT [bytes]	Total disk space [bytes]					
	L1b CONTROL	PARAMETERS						
√3.1	1	60	60					
√3.2	1	1820	1820					
	ATMOSPHERE	PARAMETERS						
√6.11.1.1	1	60	60					
	OCEAN-AEROSC	L PARAMETERS						
√6.13.1.1	1	952	952					
√6.13.1.2	1	952	952					
√6.13.1.3	1	952	952					
√6.13.1.4	1	4140	4140					
√6.13.1.5	1	3060	3060					
√6.13.1.6	9180	29900	274482000					
	4320	29900	129168000					
√6.13.1.7	1	24480	24480					
√6.13.1.8	1	14280	14280					
	LAND-AEROSO	L PARAMETERS						
√6.14.1.1	1	312	312					
	OCEAN CASE-I	PARAMETERS						
√6.15.1.1	1	216	216					
	CLOUD PA	RAMETERS						
√6.17.1.1	1754	48600	85244400					
√6.17.1.2	1754	108	189432					
	Total 489135116							

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 29

3. SPECIFICATION OF MERISAT INTERNAL AUXILIARY DATA PRODUCT

3.1 C.P. MERIS WAVELENGTH FOR BAND B

Reference: Wvl[b] LUT400 [AD-8] Section 5.3.1.4, SPH field 31 PARBLEU provided Dependencies: None Tool: None Procedure: Input: b MERIS spectral band# (15 values) see Section3.1,(LUT400) Wvl[b] Output: Nominal MERIS wavelengths for the 15 spectral bands units: [nm]Step: User specified. Scientific content: Nominal wavelengths of the 15 MERIS spectral bands Current baseline: {412.5, 442.5, 490.0, 510.0, 560.0, 620.0, 665.0, 681.25, 708.75, 753.75, 761.875, 778.75, 865.0, 885.0, 900.0} nm Resources: Estimated CPU time: Output disk space: 15×4 bytes/fl = 60 bytes Acceptance:

Correspond to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 30

3.2 C.P. FRESNEL REFLECTION COEFFICIENTS FOR OCEAN CASE-I & II

Reference:	$FR[w_s, \theta']$	LUT417
Configur	ation file	
ACRI pro	ovided	
Dependencie	<u>es</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	${w_s \over heta'}$	Wind-speed above sea level (5 values: {0; 0.0001;4;8;16} <i>m/s</i>) Zenith angles in water (91 values: [0;90] <i>deg</i> . with step of 1 <i>deg</i> .)
Output: un	$FR[w_s, \theta']$ its: $[dl]$	<i>Fresnel</i> reflection coefficients $\mathcal{R}(w_s, \theta')$

Step: User specified.

Scientific content:

Fresnel reflection coefficients $\mathcal{R}(w_s, \theta')$ tabulated for 5 wind-speeds (w_s) and for 91 zenith angles in water (θ')

Current baseline: 5×91 values (*see* table below)

Resources:

Estimated CPU time: -Output disk space: $5 \times 91 \times 4$ bytes/fl = 1820 bytes

Acceptance:

Correspond to the latest definition.

MEdium Resolution Imaging Spectrometer

θ	$\boldsymbol{\mathcal{R}}(\boldsymbol{\theta}, \boldsymbol{w}_{s})$	θ	$\boldsymbol{\mathcal{R}}(\boldsymbol{\theta}, \boldsymbol{W}_{s})$	$\mathcal{R}(\theta, W_s)$	$\boldsymbol{\mathcal{R}}(\boldsymbol{\theta}, \boldsymbol{w}_{s})$	$\boldsymbol{\mathcal{R}}(\boldsymbol{\theta}, \boldsymbol{W}_{s})$	$\boldsymbol{\mathcal{R}}(\boldsymbol{\theta}, \boldsymbol{w}_{s})$				
(deg)	$w_s=0$	$w_s = 0.0001$	$w_s=4$	$w_s = 8$	$w_s = 16$	(deg)	$w_s = 0$	$w_s = 0.0001$	$w_s=4$	$w_s = 8$	$w_s = 16$
0	0.02125	0.02094	0.02097	0.02105	0.02150	46	0.20426	0.33440	0.43319	0.44050	0.43934
1	0.02125	0.02091	0.02099	0.02110	0.02147	47	0.30306	0.46703	0.49054	0.48138	0.46729
2	0.02125	0.02092	0.02094	0.02114	0.02144	48	0.57047	0.61171	0.54910	0.52514	0.50016
3	0.02125	0.02095	0.02102	0.02104	0.02144	49	0.99998	0.74817	0.60431	0.56677	0.52962
4	0.02125	0.02097	0.02094	0.02101	0.02148	50	0.99998	0.86008	0.65845	0.60953	0.56041
5	0.02126	0.02096	0.02090	0.02105	0.02147	51	0.99998	0.93299	0.71357	0.64918	0.58925
6	0.02126	0.02095	0.02100	0.02104	0.02154	52	0.99998	0.97398	0.76274	0.68827	0.61775
7	0.02126	0.02099	0.02099	0.02105	0.02183	53	0.99998	0.99172	0.80779	0.72825	0.64609
8	0.02126	0.02100	0.02097	0.02098	0.02191	54	0.99998	0.99793	0.84699	0.76455	0.67473
9	0.02127	0.02099	0.02095	0.02115	0.02206	55	0.99998	0.99958	0.88388	0.79884	0.70134
10	0.02127	0.02099	0.02094	0.02116	0.02241	56	0.99998	0.99994	0.91470	0.83069	0.73117
11	0.02127	0.02091	0.02090	0.02133	0.02306	57	0.99998	0.99998	0.93960	0.86141	0.75837
12	0.02128	0.02093	0.02109	0.02145	0.02327	58	0.99998	0.99998	0.95909	0.88965	0.78525
13	0.02133	0.02094	0.02114	0.02159	0.02370	59	0.99998	0.99998	0.97386	0.91423	0.81158
14	0.02137	0.02100	0.02128	0.02167	0.02463	60	0.99998	0.99998	0.98385	0.93457	0.83643
15	0.02143	0.02107	0.02145	0.02199	0.02545	61	0.99998	0.99997	0.99101	0.95198	0.86142
16	0.02146	0.02122	0.02155	0.02241	0.02638	62	0.99998	0.99997	0.99533	0.96662	0.88457
17	0.02155	0.02123	0.02175	0.02256	0.02804	63	0.99998	0.99997	0.99773	0.97731	0.90681
18	0.02170	0.02138	0.02187	0.02286	0.03022	64	0.99998	0.99996	0.99907	0.98569	0.92587
19	0.02178	0.02144	0.02202	0.02350	0.03208	65	0.99998	0.99996	0.99963	0.99151	0.94327
20	0.02190	0.02156	0.02242	0.02391	0.03372	66	0.99998	0.99996	0.99982	0.99508	0.95829
21	0.02210	0.02171	0.02276	0.02443	0.03703	67	0.99998	0.99997	0.99995	0.99764	0.97085
22	0.02237	0.02190	0.02317	0.02601	0.04076	68	0.99998	0.99997	0.99995	0.99880	0.98037
23	0.02261	0.02213	0.02374	0.02730	0.04486	69	0.99998	0.99997	0.99997	0.99941	0.98752
24	0.02294	0.02255	0.02447	0.02884	0.05001	70	0.99998	0.99997	0.99997	0.99979	0.99265
25	0.02335	0.02285	0.02474	0.03106	0.05483	71	0.99998	0.99997	0.99999	0.99997	0.99625
26	0.02386	0.02329	0.02618	0.03357	0.06144	72	0.99998	0.99997	0.99999	0.99998	0.99814
27	0.02438	0.02376	0.02703	0.03644	0.06865	73	0.99998	0.99997	0.99999	0.99999	0.99921
28	0.02508	0.02446	0.02831	0.04031	0.07668	74	0.99998	0.99997	1.00000	0.99999	0.99970
29	0.02593	0.02540	0.03089	0.04533	0.08664	75	0.99998	0.99997	0.99998	1.00000	0.99995
30	0.02681	0.02624	0.03378	0.05231	0.09773	76	0.99998	0.99996	0.99999	1.00000	0.99999
31	0.02794	0.02756	0.03732	0.05971	0.10897	77	0.99998	0.99997	1.00000	1.00000	0.99998
32	0.02909	0.02897	0.04139	0.06869	0.12166	78	0.99998	0.99995	1.00000	0.99998	1.00000
33	0.03091	0.03072	0.04670	0.07954	0.13646	79	0.99998	0.99995	0.99999	1.00000	0.99999
34	0.03338	0.03311	0.05447	0.09248	0.15212	80	0.99998	0.99994	0.999999	1.00000	0.999999
35	0.03570	0.03572	0.06500	0.10751	0.16927	81	0.99998	0.99995	0.99998	0.99998	0.99997
36	0.03878	0.03907	0.07689	0.12445	0.18823	82	0.99998	0.99993	0.99996	0.99998	0.99997
37	0.04205	0.04314	0.09238	0.14488	0.20682	83	0.99998	0.99995	0.99996	0.99995	0.99996
38	0.04649	0.04886	0.11208	0.16743	0.22797	84	0.99998	0.99996	0.99994	0.99995	0.99995
39	0.05268	0.05539	0.13472	0.19266	0.25123	85	0.99998	0.99996	0.99995	0.99994	0.99994
40	0.05972	0.06439	0.16347	0.21976	0.27463	86	0.99998	0.99996	0.99993	0.99992	0.99994
41	0.06838	0.07594	0.19647	0.24938	0.29938	87	0.99998	0.99991	0.99992	0.99992	0.99993
42	0.07985	0.09529	0.23428	0.28338	0.32753	88	0.99997	0.99992	0.99993	0.99994	0.99994
43	0.09589	0.12213	0.27621	0.31770	0.35511	89	0.99991	0.99990	0.99991	0.99991	0.99991
44	0.11899	0.16774	0.32387	0.35947	0.38285	90	1.00000	1.00000	1.00000	1.00000	1.00000

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 32

4. MERIS PRODUCTS OVERVIEW

Not covered in this document

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 33

5. SPECIFICATION OF L1B/L2 DATA PRODUCT

Not covered in this document

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 34

6. SPECIFICATION OF L1B/L2 AUXILIARY DATA PRODUCT

6.1 MERIS INSTRUMENT

Not covered in this document

6.2 LEVEL-1B CONTROL PARAMETERS

6.2.1 C.P.

None

6.2.2 MPH

Not covered in this document (see [AD-8] for a detailed description)

6.2.3 SPH

Not covered in this document (see [AD-8] for a detailed description)

6.2.4 GADS General

6.2.4.1	Julian	dav to	milliseconds	conversion	factor
•					

Reference: MS to JD, LUT001

[AD-8] Section 6.2.4, GADS field 1

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: MS_to_JD Julian day to milliseconds conversion factor

units: [*ms/day*]

Step: User specified.

Scientific content:

Conversion factor used to convert variables expressed as Julian day into milliseconds

Current baseline: 86400000 ms

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/sl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.4.2 Maximum number of missing packets allowed

Reference:	Max_gap_P,	LUT002				
[AD-8]	Section 6.2.4, GADS field 2					
ACRI provided						
Dependencies:						
None						
<u>Tool</u> :						
None	None					
Procedure:						
Input:	none					
Output	Max_gap_P	Maximum number of missing packets allowed				
ι	inits: [<i>dl</i>]					
Step:	User specified.					
Scientific content:						

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 36

the nominal

Maximum number of packets that can be missed

Current baseline: 16

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.2.5 (Deleted)

Reference:

[AD-8] Section 6.2.5

6.2.6 GADS Solar Parameters

6.2.6.1 Solar flux reference values

Refe	erence:	$F_0[b],$	LUT224
	[AD-8]	Section 6.2.6, GA	DS field 1
	ACRI prov	ided	
Dep	endencies:		
	None		
<u>Too</u>	<u>l</u> :		
	None		
Proc	cedure:		
	Input:	b	MERIS spectral band# (15 values), see Section 3.1 for the wavelengths (LUT400)
	Output:	$F_0[b]$	Solar flux reference values in the 15 MERIS bands (15 values)
	units	: $[W.m^{-2}.\mu n]$	n^{-1}]
	Step:	User specified	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 37

Scientific content:

Extraterrestrial spectral solar irradiance in the 15 MERIS bands

Current baseline: {1714.7673340, 1878.8929443, 1928.3371582, 1928.9362793, 1803.0762939, 1650.7738037, 1531.6264648, 1472.1680908, 1407.9426270, 1266.0428467, 1254.5811768, 1177.2595215, 958.38519287, 929.83801270, 895.45959473} $W.m^{-2}.\mu m^{-1}$

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.2.6.2 Square of Sun-Earth distance at reference date

Reference:	Dsun0 ² ,	LUT225
[AD-8]	Section 6.2.6, GA	ADS field 2
ACRI prov	vided	
Dependencies	:	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output: unit	$Dsun0^{2}$ s: $[m^{2}]$	Square of <i>Sun-Earth</i> distance at reference date
Step:	User specified.	
Scientific con	tent:	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 38

Sun-Earth distance given a reference date used to compute the corrective factor $(1/Dsun0^2)$ to apply tpo the extraterrestrial solar irradiance

Current baseline: 2.2402379 $10^{22} m^2$

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Correspond to the latest definition.

6.2.7 (Deleted)

Reference:

[AD-8] Section 6.2.7

6.2.8 GADS Exception Handling

6.2.8.1 Default radiance values for saturated samples

Reference:	Def_rad[b],	LUT226
[AD-8]	Section 6.2.8, G	ADS field 1
ACRI pro	vided	
Dependencies	<u>.</u>	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	b	MERIS spectral band# (15 values), see Section 3.1 for the nominal wavelengths (LUT400)
Output: unit	<i>Def_rad[b]</i> is: [<i>W.m⁻².µ</i>	Default radiance values for saturated samples in the 15 MERIS bands $n^{-1}.sr^{-1}$]

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 39

Step: User specified.

Scientific content:

Default radiance values in the 15 MERIS spectral bands used for the saturated samples

Current baseline: {619.98608398, 693.83856201, 758.02069092, 700.52618408, 610.46539307, 535.78985596, 448.10375977, 453.98617554, 412.82760620, 566.97033691, 580.60144043, 237.70004272, 232.57832336, 399.39666748, 355.34863281} $W.m^{-2}.\mu m^{-1}.sr^{-1}$

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.2.8.2 Default radiance values for above range samples

Reference:	Def_rad0[b],	LUT227
[AD-8]	Section 6.2.8, GA	DS field 2
ACRI pro	ovided	
Dependencie	<u>es</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	b	MERIS spectral band# (15 values), <i>see</i> Section 3.1 for the nominal wavelengths (LUT400)
Output: un	$Def_rad0[b]$ its: [W.m ⁻² .µm	Default radiance values for above range samples in the 15 MERIS bands $n^{-1}.sr^{-1}$]
Step:	User specified.	
Scientific con	ntent:	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 40

Default radiance values in the 15 MERIS spectral bands used for above range samples

Current baseline: {620.93359375, 694.89892578, 759.17913818, 701.59674072, 611.39831543, 536.60864258, 448.78857422, 454.67996216, 413.45849609, 567.83679199, 581.48876953, 238.06330872, 232.93376160, 400.00704956, 355.89169312} $W.m^{-2}.\mu m^{-1}.sr^{-1}$

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.2.9 GADS Level-0 Extraction

6.2.9.1 Blank sample thresholds

Ref	erence:	Blank_thr[b],	LUT228
	[AD-8]	Section 6.2.9, GAI	DS field 1
	ACRI prov	vided	
<u>Der</u>	endencies	:	
	None		
<u>Toc</u>	<u>ol</u> :		
	None		
Pro	cedure:		
	Input:	b	MERIS spectral band# (15 values), <i>see</i> Section 3.1 for the nominal wavelengths (LUT400)
	Output: unit	Blank_thr[b] s: [dl]	Blank sample thresholds in the 15 MERIS bands (15 values)
	Step:	User specified.	
<u>Scie</u>	entific con	tent:	

Blank sample thresholds used for the 15 MERIS spectral bands

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 41

Resources:

Estimated CPU time: -Output disk space: 16×2 bytes/us = 32 bytes

Acceptance:

Corresponds to the latest definition.

6.2.9.2 Blank sample difference thresholds

Reference: Blank dif thr[b], LUT229 Section 6.2.9, GADS field 2 [AD-8] ACRI provided Dependencies: None Tool: None Procedure: Input: b MERIS spectral band# (15 values), see Section3.1,(LUT400) Blank_dif_thr[b] Output: Blank sample difference thresholds in the 15 MERIS bands (15 values) units: [dl]User specified. Step: Scientific content: Blank sample difference thresholds used for the 15 MERIS spectral bands Current baseline: $\{4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 2, 2, 2\}$ [dl]

Resources:

Estimated CPU time: -Output disk space: 16×2 bytes/us = 32 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 42

Acceptance:

Corresponds to the latest definition.

6.2.9.3 Scaling factor for floating point values coding

Reference [.]	PK scale	LUT230
<u>Reference</u> .	in sourc,	L01250

[AD-8] Section 6.2.9, GADS field 3

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	PK_scale	Scaling factor for floating point values coding
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor used for coding the floating point values

Current baseline: -32768

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.10 GADS Geolocation

6.2.10.1 Mean Earth radius

Reference: Re, LUT231

[AD-8] Section 6.2.10, GADS field 1

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Re	Mean Earth radius
units:	[<i>m</i>]	

Step: User specified.

Scientific content:

Mean value used for the Earth radius

Current baseline: 6363885 m

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/ul = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.10.2 Number of tie points per frame for full swath

<u>Reference</u>: NJ, LUT232

[AD-8] Section 6.2.10, GADS field 2

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 44

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: *NJ* Number of tie points per frame for full swath

units: [dl]

Step: User specified.

Scientific content:

Number of tie points per frame used for the full swath

Current baseline: 71

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.10.3 AC distance between tie points

Reference:	Dx_t,	LUT233
------------	-------	--------

[AD-8] Section 6.2.10, GADS field 3

ACRI provided

Dependencies:

None

Tool:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 45

None

Procedure:

Input: none

Output: Dx_t AC distance between tie points

units: [*m*]

Step: User specified.

Scientific content:

Distance between tie points used in the atmospheric correction procedure

Current baseline: 16640 m

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.10.4 FR product AC pixel size

Reference:	Pix ^{FR} ,	LUT234

[AD-8] Section 6.2.10, GADS field 4

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: Pix^{FR}

FR product AC pixel size

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Issue</u>: 3 <u>Rev.</u>: C <u>Date</u>: 27-Feb-11 <u>Page</u>: 46

units: [*m*]

Step: User specified.

Scientific content:

Pixel size of the atmospherically corrected product in the full resolution mode

Current baseline: 260 m

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.10.5 RR product AC pixel size

Reference:	Pix ^{RR} ,	LUT235
[AD-8]	Section 6.2.10, G	ADS field 5
ACRI prov	vided	
Dependencies	:	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	Pix ^{RR}	RR product AC pixel size
unit	s: [<i>m</i>]	
Step:	User specified	1.
Scientific con	tent:	

Pixel size of the atmospherically corrected product in the reduced resolution mode

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 47

Current baseline: 1040 m

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11 GADS Flagging

6.2.11.1	Width	of bloomir	g contam	ination	for FR
----------	-------	------------	----------	---------	--------

Glint bloom K^{FR}, Reference: LUT236 [AD-8] Section 6.2.11, GADS field 1 ACRI provided Dependencies: None Tool: None Procedure: Input: none $Glint_bloom K^{FR}$ Output: Width of blooming contamination for FR units: [dl]User specified. Step: Scientific content: Width (in pixels) of blooming contamination in the full resolution mode Current baseline: 5

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 48

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11.2 Width of blooming contamination for RR

Reference	<u>e:</u> G	lint_bloo	m_K ^{RR} ,	LUT237
[AD	-8] Se	ection 6.2.	11, GADS field 2	
ACR	I provide	ed		
Depende	ncies:			
Non	e			
<u>Tool</u> :				
Non	e			
Procedu	<u>:e</u> :			
Inpu	t:	none		
Outp	out:	Glint_bl	oom_K ^{RR} Width of bl	ooming contamination for RR
	units:	[dl]		
Step	:	User spec	cified.	
<u>Scientifi</u>	c conten	<u>ıt</u> :		
Wid	th (in pix	els) of blo	oming contaminati	on in the reduced resolution mode
Curr	ent basel	ine: 1		
Resource	<u>es</u> :			
Estir Outŗ	nated CP out disk s	PU time:	$\frac{1}{1 \times 2}$ bytes/us = 2	bytes
Acceptar	<u>nce</u> :			

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 49

Corresponds to the latest definition.

6.2.11.3 Saturation recovery width for FR

<u>Reference</u>: Sat_Rec_K^{FR}, LUT238

[AD-8] Section 6.2.11, GADS field 3

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Sat_Rec_K ^{FR}	Saturation recovery width for FR
units:	[dl]	

Step: User specified.

Scientific content:

Width (in pixels) of saturation recovery in the full resolution mode

Current baseline: 0

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11.4 Saturation recovery width for RR

<u>Reference</u>: Sat_Rec_K^{RR}, LUT239

[AD-8] Section 6.2.11, GADS field 4

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: $Sat_Rec_K^{RR}$ Saturation recovery width for RR

units: [dl]

Step: User specified.

Scientific content:

Width (in pixels) of saturation recovery in the reduced resolution mode

Current baseline: 0

Resources:

Estimated CPU time: -Output disk space: 1 × 2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11.5 Azimuth angle range for sun glint risk

Reference: Glint_thr_azi, LUT240

[AD-8] Section 6.2.11, GADS field 5

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	Glint_thr_azi	Atzimuth angle range for sun glint risk
units:	[10 ⁻⁶ deg.]	

Step: User specified.

Scientific content:

Threshold in azimuth angle to avoid the risk of sun glint contamination

Current baseline: 1.064 deg.

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/ul = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11.6 Zenith angle range for sun glint risk

Reference:	Glint_thr_zen,	LUT241
------------	----------------	--------

[AD-8] Section 6.2.11, GADS field 6

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	Glint_thr_zen	Zenith angle range for sun glint risk
units:	[10 ⁻⁶ deg.]	

Step: User specified.

Scientific content:

Threshold in zenith angle to avoid the risk of sun glint contamination

Current baseline: 1.064 *deg*

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/ul = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11.7 Band saturation levels for FR samples

<u>Reference</u>: Sat sample^{FR}[b], LUT242

[AD-8] Section 6.2.11, GADS field 7

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: b MERIS spectral band# (15 values), see Section 3.1 for the nominal wavelengths (LUT400)

Output: Sat_sampleFR[b]

Band saturation levels for FR samples in band #0 and 15 MERIS bands (16 values)

units: [*nc*]

Step: User specified.

Scientific content:

16 values of band saturation levels for the full resolution mode. 16 bands are considered: band#0 + 15 MERIS spectral bands

Current baseline: {8190, 8190, 8190, 8190, 8190, 8190, 8190, 8190, 8190, 8190, 8190, 8190, 8190, 4095, 4095, 4095} *nc*

Resources:

Estimated CPU time: -Output disk space: 16×2 bytes/us = 32 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11.8 Maximum valid radiances

Reference:	Sat_rad[b],	LUT243	
[AD-8]	Section 6.2.11, GADS field 8		
ACRI pro	vided		
Dependencies:			
None			
<u>Tool</u> :			
None			

Procedure:

Input:	b	MERIS spectral band# (15 values), <i>see</i> Section 3.1 for the nominal wavelengths (LUT400)
Output:	Sat_rad[b]	Maximum valid radiances in the 15 MERIS bands (15 values)
units:	$[W.m^{-2}.\mu m]$	$[r^{-1}.sr^{-1}]$

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 54

Step: User specified.

Scientific content:

Maximum valid radiances in the 15 MERIS spectral bands

Current baseline: {615.86456299, 689.22607422, 752.98150635, 695.86920166, 606.40710449, 532.22802734, 445.12484741, 450.96813965, 410.08322144, 563.20117188, 576.74169922, 236.11985779, 231.03218079, 396.74154663, 352.98632812} $W.m^{-2}.\mu m^{-1}.sr^{-1}$

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11.9 Threshold value for percentage of out of range image samples

Ref	erence:	Pc_thresh_image,	LUT244
	[AD-8]	Section 6.2.11, GADS field 9	
	ACRI pro	vided	
Dep	endencies	<u>i</u>	
	None		
<u>Too</u>	<u>ol</u> :		
	None		
Pro	cedure:		
	Input:	none	
	Output:	<i>Pc_thresh_image</i> Threshold	value for percentage of out of range image samples
	unit	s: [%]	
	Step:	User specified.	
<u>Scie</u>	entific con	tent:	

Threshold value for the percentage of acceptable out of range image samples

Current baseline: 25 %

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11.10 Threshold	value for percent	tage of out of ran	ge blank samples
			90 10101111 0011110100

Reference:	Pc_thresh_blank,	LUT245
[AD-8]	Section 6.2.11, GADS field 10	
ACRI pro	vided	
Dependencies	<u>2:</u>	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	<i>Pc_thresh_image</i> Threshold w	value for percentage of out of range image samples
unit	is: [%]	
Step:	User specified.	
Scientific con	tent:	
Threshold	value for the percentage of acco	ptable out of range blank samples
Current ba	aseline: 25 [%]	
Resources:		

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 56

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11.11 Land processing bands

Refere	ence:	land_proc[b],	LUT246	
[A	D-8]	Section 6.2.11, GADS field 11		
A	CRI prov	ided		
<u>Depen</u>	dencies:			
No	one			
<u>Tool</u> :				
No	one			
Proced	<u>lure</u> :			
In	put:	b	MERIS spectral band# (15 values), see Section 3.1 for the nominal wavelengths (LUT400)	
Οι	utput: units	land_proc[b] : [dl]	Flag to activate the land processing in the 15 MERIS bands (15 values)	
Ste	ep:	User specified.		
a ·	· ~			

Scientific content:

Flag for activating [1] or not [0] the processing over land for each of the 15 MERIS spectral bands

Current baseline: {1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1}

Resources:

Current baseline:

Resources:

Estimated CPU time: -

Output disk space: 15×1 byte/uc = 15 bytes

Acceptance:

Corresponds to the latest definition.

6.2.11.12 Threshold for setting transmission error flag (mean number of errors per packet)

<u>Reference</u>	: Tı	ans_thresh,	LUT247	
[AD-8	B] Se	Section 6.2.11, GADS field 12		
ACRI	provide	ed		
Dependen	cies:			
None				
<u>Tool</u> :				
None				
Procedure	:			
Input:		none		
Output	t:	Trans_thresh	Threshold for setting transmission error flag (mean number of errors per packet)	
	units:	[dl]		
Step:		User specified.		
Scientific	conten	<u>t</u> :		
Thresh	nold to	set the data trans	smission error flag	
Currer	Current baseline: 0			
Resources	Resources:			
Estima Outpu	Estimated CPU time: - Output disk space: 1×4 bytes/fl = 4 bytes			
Acceptanc	Acceptance:			
Corres	Corresponds to the latest definition.			

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 58

6.2.11.13 Threshold for setting format error flag (mean number of errors per packet)

Reference:	Format_thresh,	LUT248	
[AD-8]	Section 6.2.11, G	ADS field 13	
ACRI pro	vided		
Dependencies	<u>3</u> :		
None			
<u>Tool</u> :			
None			
Procedure:			
Input:	none		
Output:	Format_thresh	Threshold for setting format error flag (mean nun packet)	iber of errors per
unit	ts: [<i>dl</i>]		
Step:	User specified.		
Scientific con	tent:		
Threshold	to set the data form	at error flag	
Current ba	aseline: 0		
Resources:			
Estimated Output dis	CPU time: - sk space: 1 × 4	bytes/fl = 4 bytes	
Acceptance:			
Correspor	nds to the latest defin	ition.	
6.2.12 GADS F	Radiometric		

6.2.12.1 Switch enabling FR non-linearity corrections

Reference: FR_NonLin_F, LUT249

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 59

[AD-8] Section 6.2.12, GADS field 1

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none

Output: FR_NonLin_F Switch enabling FR non-linearity corrections

units: [dl]

Step: User specified.

Scientific content:

Switch used to launch the non-linearity corrections in the full resolution mode

Current baseline: 1

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.2.12.2 Switch enabling RR non-linearity corrections

Reference: RR_NonLin_F, LUT250

[AD-8] Section 6.2.12, GADS field 2

ACRI provided

Dependencies:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 60

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	RR_NonLin_F	Switch enabling RR non-linearity corrections
units:	[dl]	

Step: User specified.

Scientific content:

Switch used to launch the non-linearity corrections in the reduced resolution mode

Current baseline: 1

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.2.12.3 Switch enabling AC straylight correction

<u>Reference</u>: Stray_corr_AC_s, LUT251

[AD-8] Section 6.2.12, GADS field 3

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none
Output:	<i>Stray_corr_AC_s</i> Switch enabling AC straylight correction
units:	[dl]

Step: User specified.

Scientific content:

Switch used to launch the non-linearity corrections in the reduced resolution mode

Current baseline: 1

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.2.12.4 (Spare)

Reference:

[AD-8] Section 6.2.12, GADS field 4

6.2.13 GADS Classification

6.2.13.1 View zenith angles for GADS radiometric thresholds

Reference: VZA, LUT253

[AD-8] Section 6.2.13, GADS field 1.

ACRI provided

Dependencies:

None

<u>Tool</u>:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 62

None

Procedure:

Input: none

Output: *VZA* View zenith angles (12 values)

units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

Set of 12 view zenith angles (θ_v) selected from a *Gauss* quadrature generated for 24 discrete directions with the RTC/Gauss tool (UdL)

Current baseline: 12 Gaussian angles

i	$\theta_v [deg.]$	i	θ_v [deg.]
0	2.840906	6	58.455477
1	17.638419	7	65.877652
2	28.768427	8	69.588762
3	36.189726	9	73.299882
4	43.611442	10	77.011011
5	51.033390	11	80.722147

Resources:

Estimated CPU time: -Output disk space: 12×4 bytes/ul = 48 bytes

Acceptance:

Corresponds to the latest definition

6.2.13.2 Sun zenith angles for GADS radiometric thresholds

Reference: SZA, LUT254

[AD-8] Section 6.2.13, GADS field 2.

ACRI provided

Dependencies:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 63

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	SZA	Solar zenith angles (12 values)
units:	$[10^{-6} deg]$	
Step:	User specified.	

Scientific content:

Set of 12 solar zenith angles (θ_s) selected from a *Gauss* quadrature generated for 24 discrete directions with the RTC/Gauss tool (UdL)

Current baseline: 12 Gaussian angles

i	θ_{s} [deg.]	i	θ_{s} [deg.]
0	2.840906	6	58.455477
1	17.638419	7	65.877652
2	28.768427	8	69.588762
3	36.189726	9	73.299882
4	43.611442	10	77.011011
5	51.033390	11	80.722147

Resources:

Estimated CPU time: -Output disk space: 12×4 bytes/ul = 48 bytes

Acceptance:

Corresponds to the latest definition

6.2.13.3 Relative azimuth angles for GADS radiometric thresholds

Reference: RAA, LUT255

[AD-8] Section 6.2.13, GADS field 3.

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 64

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	RAA	Relative azimuth angles (19 values)
units:	[10 ⁻⁶ deg]	

Step: User specified.

Scientific content:

Set of 19 relative azimuth angles $(\Delta \phi)$ regularly spaced

Current baseline: 19 angles in [0;180] deg. by step of 10 deg.

Resources:

Estimated CPU time: -Output disk space: 19×4 bytes/ul = 76 bytes

Acceptance:

Corresponds to the latest definition

6.2.13.4 (Spare)

Reference:

[AD-8] Section 6.2.13, GADS field 4.

6.2.13.5 (Spare)

Reference:

[AD-8] Section 6.2.13, GADS field 5.

6.2.13.6 (Spare)

Reference:

[AD-8] Section 6.2.13, GADS field 6.

6.2.13.7 (Spare)

Reference:

[AD-8] Section 6.2.13, GADS field 7.

6.2.13.8 Index of band for GADS radiometric thresholds

<u>Reference</u> : b _{test} , LUT2

[AD-8] Section 6.2.13, GADS field 8.

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	<i>b</i> _{test}	Index of band for GADS radiometric thresholds
units:	[dl]	

Step: User specified.

Scientific content:

MERIS spectral band selected for computing the radiometric thresholds (LUT017)

Current baseline: 2

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 66

Acceptance:

Corresponds to the latest definition.

6.2.13.9 (Spare)

Reference:

[AD-8] Section 6.2.13, GADS field 9.

6.2.14 GADS Resampling

6.2.14.1 Resampling switch

<u>Reference</u>: Resampling_switch, LUT257

[AD-8] Section 6.2.14, GADS field 1

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Resampling_switch	Resampling switch
units:	[dl]	

Step: User specified.

Scientific content:

Swith used for the resampling

Current baseline: 1

Resources:

Estimated CPU time: -

Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.2.14.2 Number of AC samples used in product FR imagette

Reference:	NC ^{IM} ,	LUT258

[AD-8] Section 6.2.14, GADS field 2

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: NC^{IM} Number of AC samples used in product FR imagette

units: [dl]

Step: User specified.

Scientific content:

Number of AC samples used in the product imagette for the full resolution mode

Current baseline: 1153

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 68

6.2.14.3 Number of AC samples used in product FR scene

NC^{FR}. Reference: LUT259 [AD-8] Section 6.2.14, GADS field 3 ACRI provided Dependencies: None Tool: None Procedure: Input: none NC^{FR} Output: Number of AC samples used in product FR scene [dl]units: Step: User specified. Scientific content:

Number of AC samples used in the product scene for the full resolution mode

Current baseline: 2241

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.14.4 Number of AC samples used in product RR

Reference: NC^{RR}, LUT260

[AD-8] Section 6.2.14, GADS field 4

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 69

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	NC ^{RR}	Number of AC samples used in product RR
units:	[dl]	
Step:	User specified.	

Scientific content:

Number of AC samples used in the product for the reduced resolution mode

Current baseline: 1121

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.14.5 FR across track pixel to tie point sub-sampling factor (number of samples)

Reference:	$\mathrm{DJ}^{\mathrm{FR}}$,	LUT261			
[AD-8]	Section 6.2.14, GADS field 5				
ACRI provided					
Dependencies:					
None					

<u>Tool</u>:

None

Procedure:

Input:	none										
Output:	DJ^{FR}	FR across samples)	track	pixel	to	tie	point	sub-sampling	factor	(number	of
units:	[dl]										

Step: User specified.

Scientific content:

Number of samples (in full resolution mode) used to tie point sub-sampling factor

Current baseline: 64

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.2.14.6 RR across track pixel to tie point sub-sampling factor (number of samples)

Reference:	DJ^{RR} ,	LUT262
------------	-------------	--------

[AD-8] Section 6.2.14, GADS field 6

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: DJ^{RR} RR across track pixel to tie point sub-sampling factor (number of samples)

units: [*dl*]

Step: User specified.

Scientific content:

Number of samples (in reduced resolution mode) used to tie point sub-sampling factor

Current baseline: 16

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.2.14.7 FR frame to tie frame sub-sampling factor (number of samples)

Reference:	DF ^{FR} ,	LUT263		
[AD-8]	Section 6.2.14, GADS field 7			
ACRI pr	ovided			
Dependencie	<u>es</u> :			
None				
<u>Tool</u> :				
None				
Procedure:				
Input:	none			
Output:	DF^{FR}	FR frame to tie frame sub-sampling factor (number of samples)		
un	its: [<i>dl</i>]			
Step:	User specified.			
Scientific content:				

Number of samples (in full resolution mode) used to tie frame sub-sampling factor

Current baseline: 64

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.2.14.8 RR frame to tie frame sub-sampling factor (number of samples)

Reference	: D	F^{RR} ,	LUT264	
[AD-8	8] S	Section 6.2.14, GADS field 8		
ACRI	provid	led		
Depender	cies:			
None				
<u>Tool</u> :				
None				
Procedure				
Input:		none		
Outpu	t:	DF^{RR}	RR frame to tie frame sub-sampling factor (number of samples)	
	units:	[dl]		
Step:		User specified.		
Scientific content:				
Number of samples (in reduced resolution mode) used to tie frame sub-sampling factor				
Curre	Current baseline: 16			
Resources	5			

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 73

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.2.14.9 Tie frame to summary quality ADS frame sub-sampling factor

Reference:	DFSQ,	LUT265		
[AD-8]	Section 6.2.14, 0	Section 6.2.14, GADS field 9		
ACRI pro	ovided			
Dependencie	<u>s</u> :			
None				
<u>Tool</u> :				
None				
Procedure:				
Input:	none			
Output: uni	DFSQ its: [dl]	Tie frame to summary quality ADS frame sub-sampling factor		
Step:	User specifie	d.		
Scientific con	Scientific content:			
Tie frame	Tie frame used for quality of frame sub-sampling factor			
Current b	Current baseline: 8			
Resources:				
Estimated Output di	Estimated CPU time: - Output disk space: 1×1 byte/uc = 1 byte			
Acceptance:				
Correspo	nds to the latest de	efinition.		

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 74

6.2.14.10 Maximum across track angular distance allowing pixel selection in FR

Max_ $d\psi^{FR}$, Reference: LUT266 [AD-8] Section 6.2.14, GADS field 10 ACRI provided Dependencies: None Tool: None Procedure: Input: none Max $d\psi^{FR}$ Maximum across track angular distance allowing pixel selection in FR Output: [10⁻⁶deg.] units: User specified. Step: Scientific content:

Maximum across track angular distance used for the pixel selection in the full resolution mode

Current baseline: 0.038311 deg.

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/ul = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.14.11 Maximum across track angular distance allowing pixel selection in RR

<u>Reference</u>: Max_d ψ^{RR} , LUT267

[AD-8] Section 6.2.14, GADS field 11

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 75

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: $Max_d\psi^{RR}$ Maximum across track angular distance allowing pixel selection in RR units: [10⁻⁶deg.]

Step: User specified.

Scientific content:

Maximum across track angular distance used for the pixel selection in the full resolution mode

Current baseline: 0.153243 deg.

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/ul = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.15 GADS Scaling Factor

6.2.15.1 Scaling factor - altitude

Reference: Alt_scale, LUT268

[AD-8] Section 6.2.15, GADS field 1

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 76

Tool:

None

Procedure:

Input: none

Output: *Alt_scale* Scaling factor for altitude

units: [*dl*]

Step: User specified.

Scientific content:

Scaling factor used for altitude level

Current baseline: 1

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.15.2 Scaling factor - roughness

Reference: Rough scale, LUT269

[AD-8] Section 6.2.15, GADS field 2

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 77

Output: *Rough_scale* Scaling factor for roughness units: [*dl*]

Step: User specified.

Scientific content:

Scaling factor used for roughness level

Current baseline: 1

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.15.3 Scaling factor - zonal wind

Reference:	Zwind scale,	LUT270
1	,	2012/0

[AD-8] Section 6.2.15, GADS field 3

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Zwind_scale	Scaling factor for zonal wind

units: [*dl*]

Step: User specified.

Scientific content:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 78

Scaling factor used for zonal wind

Current baseline: 0.1

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.15.4 Scaling factor - meridional wind

Reference: Mwind_scale, LUT271

[AD-8] Section 6.2.15, GADS field 4

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Mwind_scale	Scaling factor for meridional wind
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor used for meridional wind

Current baseline: 0.1

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 79

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.15.5 Scaling factor - atmospheric pressure

Reference:	Patm_scale,	LUT272
------------	-------------	--------

[AD-8] Section 6.2.15, GADS field 5

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Patm_scale	Scaling factor for atmospheric pressure
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor used for atmospheric pressure

Current baseline: 0.1

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 80

6.2.15.6 Scaling factor - ozone

<u>Reference</u> : O3_scale, LUT	273
----------------------------------	-----

[AD-8] Section 6.2.15, GADS field 6

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	O3_scale	Scaling factor for ozone content
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor used for ozone content

Current baseline: 0.01

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.15.7 Scaling factor - relative humidity

Reference: RH_scale, LUT274

[AD-8] Section 6.2.15, GADS field 7

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 81

Dependencies:

None

Tool:

None

Procedure:

Input:	none

Output:	RH_scale	Scaling factor for relative humidity
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor used for relative humidity

Current baseline: 0.1

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.15.8 Scaling factor - radiances

Reference:	Rad scale[b],	LUT275

[AD-8] Section 6.2.15, GADS field 8

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input	: b	MERIS spectral band# (15 values), <i>see</i> Section 3.1 for the nominal wavelengths (LUT400)
Outpu	nt: <i>Rad_scale</i> units: [<i>d1</i>]	Scaling factor for radiances (15 values)
Step:	User specified	l.
<u>Scientific</u>	content:	
Scalir	ng factors (15 MERIS s	pectral bands) used for radiances
Curre	nt baseline: {0.00947 0.00818 0.00887	48391, 0.0106034772, 0.0115843304, 0.0107056797, 0.0093293404, 381238, 0.0068480745, 0.0069379713, 0.0063089724, 0.0086646341, 729495, 0.0036326132, 0.0035543414, 0.0061037163, 0.0054305592}
Resources	<u>3</u> :	
Estim Outpu	ated CPU time: - at disk space: 15 >	4 bytes/fl = 60 bytes
Acceptan	<u>ce</u> :	
Corre	sponds to the latest def	inition.

6.2.16 GADS Straylight Evaluation Parameters

6.2.16.1 Number of spectral regions

Reference:	SR,	LUT276	
[AD-8]	Section 6.2.16, GADS field 1		
ACRI provided			
Dependencies:			
None			
<u>Tool</u> :			

None

Procedure:

Input:	none
--------	------

Output:SRNumber of spectral regions (5 values)

units: [*dl*]

Step: User specified.

Scientific content:

Number of spectral regions used for strayligh evaluation parameters

Current baseline: 5

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.16.2 Band index of default radiance for pixels with all bands saturated

Reference:	b_satpix,	LUT277	
[AD-8]	Section 6.2.16,	GADS field 2	
ACRI pro	ovided		
Dependencie	<u>s</u> :		
None			
<u>Tool</u> :			
None			
Procedure:			
Input:	none		
Output: uni	<i>b_satpix</i> ts: [<i>dl</i>]	Band index of default radiance for pix	kels with all bands saturated

Step: User specified.

Scientific content:

MERIS band # to be used for setting default radiance for pixels having all the spectral band saturated.

Current baseline: 10

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.16.3 Default radiance for pixels with all bands saturated

Reference:	rad_satpix,	LUT278
------------	-------------	--------

[AD-8] Section 6.2.16, GADS field 3

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	rad_satpix	Default radiance for pixels with all bands saturated
units:	$[W.m^{-2}.\mu m]$	^{-l} .sr ⁻¹]

Step: User specified.

Scientific content:

Default radiance to be used for pixels having all the spectral band saturated.

Current baseline: 844.80181885 W.m⁻².µm⁻¹.sr⁻¹

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 85

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.2.16.4 (Spare)

Reference:

[AD-8] Section 6.2.16, GADS field 4

6.2.16.5 (Spare)

Reference:

[AD-8] Section 6.2.16, GADS field 5

6.2.16.6 Interpolation coefficients for spectral region flux estimation

Reference:	P[b,SR],	LUT281
[AD-8]	Section 6.2.16,	GADS field 6
ACRI pro	vided	
Dependencies	<u>3</u> :	
None		
<u>Tool</u> :		
LUT276		
Procedure:		
Inputs:	b	MERIS spectral band# (15 values), see Section3.1 for the nominal
	SR	Spectral region # (5 values), <i>see</i> Section 6.2.16.1, (LUT276)
Output:	<i>P[b,SR]</i>	Interpolation coefficients for spectral region flux estimation given in each of the 15 MERIS bands
unit	ts: [<i>dl</i>]	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 86

Step: User specified.

Scientific content:

Default radiance to be used for pixels having all the spectral band saturated.

Current baseline: 15 x 5 values (see table below)

$\lambda [nm]$	SR-1	SR-2	SR-3	SR-4	SR-5
412.500	0.20192300	0.00000000	0.00000000	0.00000000	0.00000000
442.500	0.29807699	0.00000000	0.00000000	0.00000000	0.00000000
490.000	0.25961500	0.00000000	0.00000000	0.00000000	0.00000000
510.000	0.14615400	0.12307700	0.00000000	0.00000000	0.00000000
560.000	0.00769231	0.41538501	0.00000000	0.00000000	0.00000000
620.000	0.00000000	0.38461500	0.01923080	0.00000000	0.00000000
665.000	0.00000000	0.07692310	0.15865400	0.00000000	0.00000000
681.250	0.00000000	0.00000000	0.16826899	0.00000000	0.00000000
708.750	0.00000000	0.00000000	0.27884600	0.00000000	0.00000000
753.750	0.00000000	0.00000000	0.19951899	0.00000000	0.00000000
761.875	0.00000000	0.00000000	0.09615380	0.00000000	0.00000000
778.750	0.00000000	0.00000000	0.07925720	0.32218501	0.00000000
865.000	0.00000000	0.00000000	0.00006968	0.40858400	0.00000000
885.000	0.00000000	0.00000000	0.00000000	0.13461500	0.00000000
900.000	0.00000000	0.00000000	0.00000000	0.13186800	0.46428600

Resources:

Estimated CPU time: -Output disk space: $15 \times 5 \times 4$ bytes/fl = 300 bytes

Acceptance:

Corresponds to the latest definition.

6.2.16.7 Flag register showing bands which can be used for radiance estimation of saturated samples

Reference: Bs,

LUT282

[AD-8] Section 6.2.16, GADS field 7

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 87

Tool:

None

Procedure:

Input:	none	
Output:	Bs	Flag register showing bands which can be used for radiance estimation of saturated samples
units:	[dl]	
Step:	User specified.	

Scientific content:

Flag register indicating bands which can be used to estimate the radiance for saturated samples

Current baseline: 15871

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.16.8 FR threshold on satured samples counts to flag for straylight risk

<u>Reference</u>: Sat_Stray_Thr^{FR}, LUT283

[AD-8] Section 6.2.16, GADS field 8

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none
1	

Output: Sat_Stray_Thr^{FR}

FR threshold on satured samples counts to flag for straylight risk

units: [dl]

Step: User specified.

Scientific content:

Threshold on saturated samples counts used in the full resolution mode to flag the risk of straylight

Current baseline: 2775

Resources:

Estimated CPU time: -Output disk space: 1 × 2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.16.9 RR threshold on satured samples counts to flag for straylight risk

<u>Ref</u>	erence:	Sat_Stray_Thr ^{RR} ,	LUT284
	[AD-8]	Section 6.2.16, GADS field	9
	ACRI prov	rided	
Dep	<u>endencies</u>	:	
	None		
<u>Toc</u>	<u>ol</u> :		
	None		
Pro	cedure:		
	Input:	none	
	Output:	Sat_Stray_Thr ^{RR} RR thresho	ld on satured samples counts to flag for straylight risk
	units	s: [<i>d1</i>]	

Step: User specified.

Scientific content:

Threshold on saturated samples counts used in the reduced resolution mode to flag the risk of straylight

Current baseline: 693

Resources:

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.2.17 (Deleted)

Reference:

[AD-8] Section 6.2.17

6.2.18 (Deleted)

Reference:

[AD-8] Section 6.2.18

6.2.19 (Deleted)

Reference:

[AD-8] Section 6.2.19

6.2.20 GADS Radiometric Thresholds LUT

6.2.20.1 Radiometric thresholds, $L_{TOA_2}(\theta_s, \theta_v, \Delta \varphi)$

<u>Reference</u>: Class_thr_t[$\theta_s, \theta_v, \Delta \phi$], LUT017

[AD-8] Section 6.2.20, ADS field 1.

Dependencies:

LUT253, LUT254, LUT255, LUT256

<u>Ref.</u>: PO-RS-PAR-GS-0002 Rev.: C Issue: 3 Date: 27-Feb-11 Page: 90

Tools:

OTC/RAYLEIGH RTC/UPRAD (SO)

Procedure:

Inputs:	$egin{array}{l} heta_{ m v} \ heta_{ m s} \ \Delta \phi \ n(\lambda) \end{array}$	View zenith angle [<i>deg</i> .], <i>see</i> Section 6.2.13.1, (LUT253) Sun zenith angle [<i>deg</i> .], <i>see</i> Section 6.2.13.2, (LUT254) Relative azimuth angle [<i>deg</i> .], <i>see</i> Section 6.2.13.3, (LUT255) MERIS band index [<i>dl</i>], <i>see</i> Section 6.2.13.8, (LUT256)
Output:	class_thr_	$t[\theta_{s},\theta_{v}\Delta\phi]$

Output:

Radiometric thresholds on TOA reflectance at λ nm as a function of the sun zenith angle, view zenith angle and relative azimuth angle between the illumination and viewing directions.

units: [dl]

Generate TOA normalized radiance L_{TOA_2} [$\theta_s, \theta_{v,} \Delta \phi$] with the RTC/UPRAD (SO) over a Step-1: slightly reflective surface under a continental atmosphere. The selected aerosol model is the Junge model#27 ($m=1.44, \alpha=0$).

RTC/UPRAD (SO) Inputs (LAND)

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	2	442.5 nm (see Section 6.2.13.8)
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^{R}(\lambda)$	tauR	Computed with OTC/RAYLEIGH
aerosoll	"./INPUT/sc_land27_b05"	Junge model #27 (<i>m</i> =1.44, <i>α</i> =0)
$\tau^{al}(550)$	1.2	
aerosol2	-	
$\tau^{a2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 91

Variable	Value	Comments
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle p}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_a=2 \ km;H_R=8 \ km$)
Is	79	
ρ_s	0.08	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega_{\mathrm{o},\lambda}^{w}$	-	N/A
w _s	0	
$n_s, n_v, n_{\Delta\phi}$	12, 12, 18	
θ_s	values stored in $\theta_s[$]	see Section 6.2.13.2
θ_v	values stored in $\theta_{\nu}[$]	see Section 6.2.13.1
$\Delta \phi$	values stored in $\Delta \phi$ []	see Section 6.2.13.3
pol	1	

Step-2: Build *class_thr_t*[θ_s , θ_v , $\Delta \phi$] as follows,

class thr
$$t[\theta_s, \theta_v, \Delta \phi] = \frac{\pi \cdot L_{TOA_2}[\theta_s, \theta_v, \Delta \phi]}{\cos \theta_s}$$

If class _thr _t[
$$\theta_s, \theta_v, \Delta \phi$$
] > 1 then class _thr _t[$\theta_s, \theta_v, \Delta \phi$] = 1

Scientific content:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 92

In the pixels classification algorithm, the MERIS reflectances at 442.5 *nm* are respectively compared with these radiometric thresholds $class_thr_t[\theta_s, \theta_v, \Delta\phi]$. If the reflectance is lower than the corresponding threshold value then the pixel is not considered as a bright pixel. The thresholds are computed with inputs which generate the high boundary of a mean range of reflectance.

Resources:

Estimated CPU time: 26 sec Output disk space: $12 \times 12 \times 19 \times 4$ bytes/fl = 10944 bytes

Acceptance:

Comparison with another RTC.

6.2.21 GADS Browse Configuration Parameters

Reference:	CP,		LUT285		
[AD-8]	Section 6.2.2	21			
ACRI pro	vided				
Dependencies	<u>.</u> :				
None					
<u>Tool</u> :					
None					
Procedure:					
None					
Scientific con	tent:				
Configura	Configuration parameters				
Current b	Current baseline: 816 values [dl]				
Resources:					
Estimated Output dis	CPU time: sk space:	- 816 x 1 bytes/uc =	= 816 bytes		
Acceptance:					

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 93

6.3 RADIOMETRIC CALIBRATION

Not covered in this document

6.4 DIGITAL ELEVATION & ROUGHNESS MODEL

Not covered in this document

6.5 LAND/SEA MASK

Not covered in this document

6.6 ECMWF

Not covered in this document

6.7 AEROSOL CLIMATOLOGY

Not covered in this document

6.8 ENVISAT-1 ORBIT STATE VECTORS

Not covered in this document

6.9 ENVISAT-1 PLATFORM ATTITUDE

Not covered in this document

6.10 LEVEL-2 CONTROL PARAMETERS

6.10.1 C.P.

Not covered in this document (see [AD-8] for a detailed description)

6.10.2 MPH

Not covered in this document (see [AD-8] for a detailed description)

6.10.3 SPH

Not covered in this document (see [AD-8] for a detailed description)

6.10.4 GADS General

6.10.4.1 Number of iterations for Chl1 calculation

<u>Refe</u>	erence:	Niter,	LUT018
	[AD-8]	Section 6.10.	4, GADS field 1
	ACRI prov	vided	
Dep	endencies	:	
	None		
Tool	<u>l</u> :		
	None		
Proc	edure:		
	Input:	none	
	Output:	Niter	Number of iterations for Chl1 calculation
	unit	s: [<i>dl</i>]	
	Step:	User specif	fied.
<u>Scie</u>	ntific con	tent:	
	Number of	f iterations used	l for chlorophyll calculation (see Morel's algorithm)
	Current ba	seline: 3	
Reso	ources:		
	Estimated Output dis	CPU time: - sk space: 1	\times 2 bytes/us = 2 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 95

Acceptance:

If convergence is not achieved within the specified number of iterations (3), some other problems could be present.

6.10.4.2 Flag indicating the presence of stratospheric aerosols

Reference:	Strat Corr.	LUT019
1.01010100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20101)

[AD-8] Section 6.10.4, GADS field 2

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	Strat_Corr	Flag indicating the presence of stratospheric aerosols
units:	[dl]	

Step: User specified.

Scientific content:

Flag used to indicate the presence of stratospheric aerosols

Current baseline: 0

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 96

6.10.4.3 Default radiances for saturated pixels

Reference:	rad_satpix2[b],	LUT020		
[AD-8]	Section 6.10.4, GADS field 3			
ACRI pro	vided			
Dependencies	<u>.</u> :			
None				
<u>Tool</u> :				
None				
Procedure:				
Input:	b	MERIS spectral band# (15 values), <i>see</i> Section 3.1 for the nominal wavelengths (LUT400)		
Output:	rad_satpix2[b]	Default radiances for saturated pixels in the 15 MERIS bands (15 values)		
uni	ts: $[W.m^{-2}.\mu m]$	$[r^{-1}.sr^{-1}]$		
Step:	User specified			
Scientific con	<u>tent</u> :			
Default ra	diances in the 15 M	IERIS spectral bands used for the saturated pixels		
Current ba	aseline: {619.9860 535.789 580.601 <i>W.m⁻².µ</i>	08398, 693.83856201, 758.02069092, 700.52618408, 610.46539307, 85596, 448.10375977, 453.98617554, 412.82760620, 566.97033691, 44043, 237.70004272, 232.57832336, 399.39666748, 355.34863281} m ⁻¹ .sr ⁻¹		
Resources:				
Estimated Output dis	CPU time: - sk space: 15 ×	4 bytes/fl = 60 bytes		
Acceptance:				
Correspor	nds to the latest defi	nition.		

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 97

6.10.4.4 Maximum optical thickness for land aerosols

Reference: AOT max, LUT021 [AD-8] Section 6.10.4, GADS field 4 ACRI provided Dependencies: None Tool: None Procedure: Input: none Output: Maximum optical thickness for land aerosols AOT max [dl]units: Step: User specified. Scientific content: Maximum aerosol optical thickness used in the land aerosol algorithm Current baseline: 2.0 Resources: Estimated CPU time: 1×4 bytes/fl = 4 bytes Output disk space: Acceptance: Corresponds to the latest definition.

6.10.4.5 Scaling factor - reflectances

Reference: Refl_scale[b], LUT022

[AD-8] Section 6.10.4, GADS field 5

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	b	MERIS spectral band# (15 values), <i>see</i> Section 3.1 for the nominal wavelengths (LUT400)
Output:	Refl_scale[b]	Scaling factor for reflectance in each of the 15 MERIS bands(15 values)
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factors to be applied to reflectances in the 15 MERIS spectral bands

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.6 Scaling factor - algal pigment index

<u>Reference</u>: Chl_scale, LUT023

[AD-8] Section 6.10.4, GADS field 6

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 99

Tool:

None

Procedure:

Input:	none	
Output:	Chl_scale	Scaling factor for algal pigment index
•,	F 771	

units: [*dl*]

Step: User specified.

Scientific content:

Scaling factor to be applied to algal pigment index

Current baseline: 0.0157480314

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.7 Scaling factor - yellow substance

Reference: ODOC_scale, LUT024

[AD-8] Section 6.10.4, GADS field 7

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: *ODOC_scale* Scaling factor for yellow substance units: [*dl*]

Step: User specified.

Scientific content:

Scaling factor to be applied to yellow substance

Current baseline: 0.0137898242

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.8 Scaling factor - suspended sediments

Reference:	SPM_scale,	LUT025
[AD-8]	Section 6.10.4, GA	ADS field 8
ACRI pro	vided	
Dependencies	<u>3</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output: unit	SPM_scale ts: [dl]	Scaling factor for suspended sediments
Step:	User specified.	
Scientific con	<u>itent</u> :	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 101

Scaling factor to be applied to suspended sediments

Current baseline: 0.0157480314

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.9 Scaling factor - aerosol Angstroem exponent

Reference: alpha_scale, LUT412

[AD-8] Section 6.10.4, GADS field 9

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none							
Output:	alpha_scale	Scaling factor dependence)	for the	Angstroem	exponent	of the	aerosols	(spectral
units:	[dl]							

Step: User specified.

Scientific content:

Scaling factor to be applied to the aerosol spectral dependence (Angstroem exponent - α) computed between 778.75 and 865 nm as follows:

$$\alpha = -\frac{Log[\tau_{865}^a / \tau_{778.75}^a]}{Log[865/778.75]}$$

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 102

Current baseline: 0.0110236220

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.10 Scaling factor - aerosol optical thickness

Reference: AOT scale, LUT026

[AD-8] Section 6.10.4, GADS field 10

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	AOT_scale	Scaling factor for aerosol optical thickness
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor to be applied to the aerosol optical thickness

Current baseline: 0.0062992126

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 103

Acceptance:

Corresponds to the latest definition.

6.10.4.11 Scaling factor - cloud optical thickness

Reference: COT_scale, LUT027

[AD-8] Section 6.10.4, GADS field 11

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

none	
COT_scale	Scaling factor for cloud optical thickness
[dl]	
	none COT_scale [dl]

Step: User specified.

Scientific content:

Scaling factor to be applied to the cloud optical thickness

Current baseline: 1.0

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.12 Scaling factor - surface pressure

Reference:	Press scale,	LUT028
------------	--------------	--------

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 104

[AD-8] Section 6.10.4, GADS field 12

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Press_scale	Scaling factor for surface pressure
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor to be applied to the surface pressure

Current baseline: 2.5590550900

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.13 Scaling factor - water vapour

Reference: WV_scale, LUT029

[AD-8] Section 6.10.4, GADS field 13

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 105

Tool:

None

Procedure:

Input:	none	
Output:	WV_scale	Scaling factor for water vapour content
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor to be applied to the water-vapour content

Current baseline: 0.0299999993

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.14 Scaling factor - photosynthetically active radiation

Reference: PAR scale, LUT030

[AD-8] Section 6.10.4, GADS field 14

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 106

Input: none

 Output:
 PAR_scale
 Scaling factor for photosynthetically active radiation

 units:
 [dl]

Step: User specified.

Scientific content:

Scaling factor to be applied to the photosynthetically active radiation (PAR)

Current baseline: 6.6399998665

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.15 Scaling factor - TOA vegetation index

Reference: TOAVI_scale, LUT031

[AD-8] Section 6.10.4, GADS field 15

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	TOAVI_scale	Scaling factor for TOA vegetation index
units:	[dl]	
Step:	User specified.	

Ĩ

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 107

Scientific content:

Scaling factor to be applied to the vegetation index computed at TOA

Current baseline: 0.0039370079

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.16 Scaling factor - BOA vegetation index

Reference: BOAVI_scale, LUT032

[AD-8] Section 6.10.4, GADS field 16

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Input:

Procedure:

1		
Output:	BOAVI_scale	Scaling factor for BOA vegetation index
units:	[dl]	

Step: User specified.

none

Scientific content:

Scaling factor to be applied to the vegetation index computed at BOA

Current baseline: 0.0216535442

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 108

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.17 Scaling factor - cloud albedo

Reference: CA_scale, LUT033

[AD-8] Section 6.10.4, GADS field 17

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	CA_scale	Scaling factor for cloud albedo
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor to be applied to the cloud albedo

Current baseline: 0.0039370079

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 109

6.10.4.18 Scaling factor - cloud top pressure

Reference: CTP_scale, LUT034

[AD-8] Section 6.10.4, GADS field 18

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	CTP_scale	Scaling factor for cloud top pressure
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor to be applied to the cloud albedo

Current baseline: 4.0275592804

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.19 Offset - reflectances

Reference:	Refl_offset[b],	LUT035
------------	-----------------	--------

[AD-8] Section 6.10.4, GADS field 19

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 110

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: b MERIS spectral band# (15 values), see Section 3.1 for the nominal wavelengths (LUT400)

 Output:
 Refl_offset[b]
 Offset factor for reflectance in each of the 15 MERIS bands(15 values)

 units:
 [dl]

Step: User specified.

Scientific content:

Offset factors to be applied to the reflectances in the 15 MERIS spectral bands

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.20 Offset - algal pigment index

Reference: Chl_offset, LUT036

[AD-8] Section 6.10.4, GADS field 20

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 111

Tool:

None

Procedure:

Input:	none	
Output:	Chl_offset	Offset factor for algal pigment index
units:	$[Log_{10}(mg$	(m^{-3})]

Step: User specified.

Scientific content:

Offset factor to be applied to algal pigment index

Current baseline: $-2.0157480240 Log_{10}(mg.m^{-3})$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.21 Offset - yellow substance

Reference: ODOC_offset, LUT037

[AD-8] Section 6.10.4, GADS field 21

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 112

Input: none

Output: $ODOC_offset$ Offset factor for yellow substance units: $[Log_{10}(m^{-1})]$

Step: User specified.

Scientific content:

Offset factor to be applied to yellow substance

Current baseline: $-2.5513918400 Log_{10}(m^{-1})$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.22 Offset - suspended sediments

Refere	ence:	SPM_offset,	LUT038
[]	D-8]	Section 6.10.4, GA	ADS field 22
A	CRI prov	ided	
Depen	dencies:		
N	one		
<u>Tool</u> :			
N	one		
Procee	<u>lure</u> :		
In	put:	none	
O	utput:	SPM_offset	Offset factor for suspended sediments
	units	$: \qquad [Log_{10}(g.n$	<i>i</i> ⁻⁵)]
St	ep:	User specified.	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 113

Scientific content:

Offset factor to be applied to suspended sediments

Current baseline: $-2.0157480240 Log_{10}(g.m^{-3})$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.23 Offset - aerosol Angstroem exponent

Reference: alpha_offset, LUT413

[AD-8] Section 6.10.4, GADS field 23

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none									
Output:	alpha_offset	Offset factor dependence)	for t	the	Angstroem	exponent	of	the	aerosols	(spectral
units:	[dl]									

Step: User specified.

Scientific content:

Offset factor to be applied to the aerosol spectral dependence (Angstroem exponent - α) computed between 778.75 and 865 nm.

Current baseline: -0.3110236230

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 114

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.24 Offset - aerosol optical thickness

Reference:	AOT_offset,	LUT039
[AD-8]	Section 6.10.4, GADS field 24	
ACRI pro	vided	
Dependencies:		

None

Tool:

None

Procedure:

Input:	none	
Output:	AOT_offset	Offset factor for aerosol optical thickness
units:	[dl]	

Step: User specified.

Scientific content:

Offset factor to be applied to the aerosol optical thickness

Current baseline: -0.0062992130

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 115

Corresponds to the latest definition.

6.10.4.25 Offset - cloud optical thickness

Reference: COT_offset, LUT040

[AD-8] Section 6.10.4, GADS field 25

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	COT_offset	Offset factor for cloud optical thickness
units:	[dl]	

Step: User specified.

Scientific content:

Offset factor to be applied to the cloud optical thickness

Current baseline: -1.0

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.26 Offset - surface pressure

Reference: Pre	ss_offset,	LUT041
----------------	------------	--------

[AD-8] Section 6.10.4, GADS field 26

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 116

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none
1	

Output: Press_offset Offset factor for surface pressure

units: [*hPa*]

Step: User specified.

Scientific content:

Offset factor to be applied to the surface pressure

Current baseline: 447.4409484900 hPa

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.27 Offset - water vapour

Reference: WV_offset, LUT042

[AD-8] Section 6.10.4, GADS field 27

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 117

Tool:

None

Procedure:

Input:	none	
Output:	WV_offset	Offset factor for water vapour content
units:	$[g.cm^{-2}]$	

Step: User specified.

Scientific content:

Offset factor to be applied to the water-vapour content

Current baseline: -0.029999993 g.cm⁻²

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.28 Offset - photosynthetically active radiation

Reference: PAR offset, LUT043

[AD-8] Section 6.10.4, GADS field 28

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: PAR_offset Offset factor for photosynthetically active radiation units: $[\mu Einstein.m^{-2}]$

Step: User specified.

Scientific content:

Offset factor to be applied to the photosynthetically active radiation (PAR)

Current baseline: 513.0302124 µEinstein.m⁻²

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.29 Offset - TOA vegetation index

Reference:	TOAVI_offset,	LUT044
------------	---------------	--------

[AD-8] Section 6.10.4, GADS field 29

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	TOAVI_offset	Offset factor for TOA vegetation index
units:	[dl]	
Step:	User specified.	

Scientific content:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 119

Offset factor to be applied to the vegetation index computed at TOA

Current baseline: -0.0039370079

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.30 Offset - BOA vegetation index

Reference: BOAVI_offset, LUT045

[AD-8] Section 6.10.4, GADS field 30

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	BOAVI_offset	Offset factor for BOA vegetation index
units:	[dl]	

Step: User specified.

Scientific content:

Offset factor to be applied to the vegetation index computed at BOA

Current baseline: -0.0216535442

Resources:

Estimated CPU time: -

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 120

Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.31 Offset - cloud albedo

	Reference:	CA offset,	LUT046
--	------------	------------	--------

[AD-8] Section 6.10.4, GADS field 31

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

T	
input:	none

Output:CA_offsetOffset factor for cloud albedo

units: [*dl*]

Step: User specified.

Scientific content:

Offset factor to be applied to the cloud albedo

Current baseline: -0.0039370079

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 121

6.10.4.32 Offset - cloud top pressure

<u>Reference</u>: CTP_offset, LUT047

[AD-8] Section 6.10.4, GADS field 32

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	CTP_offset	Offset factor for cloud top pressure
units:	[hPa]	

Step: User specified.

Scientific content:

Offset factor to be applied to the cloud albedo

Current baseline: -4.0275592804 hPa

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.33 Scaling factor - rectified near-infrared reflectance

Reference: NIR_refl_scale, LUT048

[AD-8] Section 6.10.4, GADS field 33

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 122

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	NIR_refl_scale	Scaling factor for rectified near-infrared reflectance
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor to be applied to the rectified near-infrared reflectance

Current baseline: 0.0039370079

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.34 Offset - rectified near-infrared reflectance

Reference:	NIR_refl_offset,	LUT049
------------	------------------	--------

[AD-8] Section 6.10.4, GADS field 34

ACRI provided

Dependencies:

None

<u>Tool</u>:

Input: none

Output:

NIR_refl_offset Offset factor for rectified near-infrared reflectance

units: [dl]

Step: User specified.

Procedure:

None

Scientific content:

Offset factor to be applied to the rectified near-infrared reflectance

Current baseline: -0.0039370079

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.35 Scaling factor - rectified red reflectance

Reference: Red_refl_scale, LUT050

[AD-8] Section 6.10.4, GADS field 35

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: *Red_refl_scale*

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 124

Scaling factor for rectified red reflectance

units: [*dl*]

Step: User specified.

Scientific content:

Scaling factor to be applied to the rectified red reflectance

Current baseline: 0.0039370079

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.4.36 Offset - rectified red reflectance

Reference:	Red_refl_offset	, LUT051
[AD-8]	Section 6.10.4, GA	ADS field 36
ACRI pro	ovided	
Dependencie	<u>s</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	Red_refl_offset	Offset factor for rectified red reflectance
uni	its: [<i>dl</i>]	
Step:	User specified.	
Scientific con	<u>ntent</u> :	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 125

Offset factor to be applied to the rectified red reflectance

Current baseline: -0.0039370079

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.5 GADS Smile Effect Correction

6.10.5.1 S	Square of	Sun-Earth	distance	at reference	date

<u>Ref</u>	erence:	Dsun0 ² ,	LUT420
	[AD-8]	Section 6.10.5.1	
	ACRI prov	vided	
<u>Der</u>	bendencies		
	None		
<u>Toc</u>	<u>ol</u> :		
	None		
Pro	cedure:		
	Input:	none	
	Output:	Dsun0 ²	Square of Sun-Earth distance at reference date
	units	5: $[m^2]$	
	Step:	User specified.	

Scientific content:

Square of *Sun-Earth* distance at a reference date used for the corrective factor $(1/Dsun0^2)$ to be applied to the extraterrestrial solar irradiance.

Current baseline: 2.2402379 $10^{22} m^2$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.5.2 Array of per band switches enabling smile effect correction for land pixels reflectance

Reference:	(No variable use	ed), LUT421			
[AD-8]	Section 6.10.5.2				
ACRI pro	ovided				
Dependencie	<u>s</u> :				
None					
<u>Tool</u> :					
None					
Procedure:					
Input:	none				
Output:	(no variable)	Array of per band switches enabling smile effect correction for pixels reflectance (15 values)	land		
uni	ts: [<i>dl</i>]				
Step:	User specified.	I.			
Scientific con	<u>ntent</u> :				
Array of	Array of per band switches allowing to correct for the smile effect the land pixels reflectance				
Current b	Current baseline: {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0}				
Resources:					
Estimated	1 CPU time: -				

Output disk space: 15×1 byte/uc = 15 bytes

Acceptance:

Corresponds to the latest definition.

6.10.5.3 Array of per band switches enabling smile effect correction for water pixels reflectance

Reference [.]	(No variable used)	I I IT422
Reference.	(INO VALIAULE USEU),	LU1422

[AD-8] Section 6.10.5.3

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Array of per band switches enabling smile effect correction for water pixels reflectance (15 values)
units:	[dl]	
Step:	User specified.	

Scientific content:

Array of per band switches allowing to correct for the smile effect the water pixels reflectance

Current baseline: {1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0}

Resources:

Estimated CPU time: -Output disk space: 15×1 byte/uc = 15 bytes

Acceptance:

Corresponds to the latest definition.

6.10.5.4 Array of pairs of band indices for estimating reflectance spectral derivative (land pixels)

Reference:	(No vari	able used),	LUT423				
[AD-8]	Section 6	.10.5.4					
ACRI p	provided						
Dependenc	ies:						
None							
<u>Tool</u> :							
None							
Procedure:							
Input:	none						
Output	: (no va	<i>riable)</i> Arr der	ray of pairs of band indice ivative (land pixels) (15 values	s for)	estimating	reflectance	spectral
U	inits: [d	dl]					
Step:	User s	specified.					
a ·							

Scientific content:

Array of per band indices to estimate the reflectance spectral derivative over land pixels

Resources:

Estimated CPU time: -Output disk space: $15 \times 2 \times 1$ byte/uc = 30 bytes

Acceptance:

Corresponds to the latest definition.

6.10.5.5 Array of pairs of band indices for estimating reflectance spectral derivative (water pixels)

<u>Reference</u>: (No variable used), LUT424

[AD-8] Section 6.10.5.5

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 129

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Array of pairs of band indices for estimating reflectance spectral derivative (water pixels) (15 values)
units:	[dl]	

Step: User specified.

Scientific content:

Array of per band indices to estimate the reflectance spectral derivative over water pixels

Resources:

Estimated CPU time: -Output disk space: $15 \times 2 \times 1$ byte/uc = 30 bytes

Acceptance:

Corresponds to the latest definition.

6.10.5.6 Theoretical central wavelengths of MERIS spectral bands

Reference: Wvl[b], LUT425

[AD-8] Section 6.10.5.6

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

nominal			
lues)			
1.875,			
Acceptance:			
5			

6.10.5.7 Reference solar fluxes at theoretical central wavelengths and bandwidths

Reference:	F ₀ [b],	LUT426

[AD-8] Section 6.10.5.7

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Par B	Bleu Bleu Bleu Bleu	MERIS / ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0002 Issue: 3 Rev.: C Date: 27-Feb-11 Page: 131		
Input:	b	MERIS spectral band# (15 values) wavelengths (LUT400)), see Section 3.1 for the nominal		
Output:	$F_0[b]$	Reference solar fluxes at theoretical (15 values)	central wavelengths and bandwidths		
unit	s: $[W.m^{-2}.\mu m]$	n ⁻¹]			
Step:	User specified				
Scientific con	tent:				
Reference	extraterrestrial sol	ar fluxes in the 15 MERIS spectral filte	ers		
Current ba	Current baseline: {1713.6920166, 1877.5660400, 1929.2629395, 1926.8909912, 1800.4580078, 1649.7049561, 1530.9270020, 1470.2290039, 1405.4739990, 1266.1999512, 1253.0040283, 1175.7370605, 958.76300049, 929.78601074, 895.46002197} <i>W.m⁻².µm⁻¹</i>				
Resources:					
Estimated Output dis	Estimated CPU time: - Output disk space: 15×4 bytes/fl = 60 bytes				
Acceptance:					
Correspon	Corresponds to the latest definition.				
6.10.5.8 MERIS	RR pixels charac	sterized wavelengths			
Reference:	Wvl_RR[b,p],	LUT427			
[AD-8]	Section 6.10.5.8				
ACRI prov	vided				
Dependencies	:				
None					
<u>Tool</u> :					
None					
Procedure:					
Inputs:	b	MERIS spectral band# (15 values wavelengths (LUT400)), see Section3.1 for the nominal		

x 3700 values)

None

Scientific content:

15 reference values of extraterrestrial solar flux given for each of the 925 MERIS-RR pixels

Current baseline: 15×925 values $[W.m^{-2}.\mu m^{-1}]$

Resources:

Estimated CPU time: $15 \times 925 \times 4$ bytes/fl = 55500 bytes Output disk space:

Acceptance:

Corresponds to the latest definition.

6.10.5.10 MERIS FR pixels characterized wavelengths

Reference:	Wvl_FR[b,p],	LUT429		
[AD-8]	Section 6.10.5.10			
ACRI pro	ovided			
Dependencies	<u>s</u> :			
None				
<u>Tool</u> :				
None				
Procedure:				
Inputs:	b p	MERIS spectral band# (15 values), see Section3.1,(LUT400) MERIS FR pixel# (3700 values)		
Output: uni	<i>Wvl_FR[b,p]</i> ts: [<i>nm</i>]	MERIS FR pixels characterized wavelengths (15 x 3700 valu		
Step:	User specified			
Scientific content:				
15 wavelengths given for each of the 3700 MERIS-FR pixels				
Current b	Current baseline: 15 x 3700 values [<i>nm</i>]			

Resources:

Estimated CPU time:	-
Output disk space:	$15 \times 3700 \times 4$ bytes/fl = 222000 bytes

Acceptance:

Corresponds to the latest definition.

6.10.5.11 Reference solar fluxes for MERIS FR pixels

Ref	ference:	$F_0_FR[b,p],$	LUT430		
	[AD-8]	Section 6.10.5.11			
	ACRI prov	vided			
Dep	pendencies				
	None				
Too	<u>ol</u> :				
	None				
Pro	cedure:				
	Inputs:	$b \\ p$	MERIS spectral band# (15 values), <i>see</i> Section3.1,(LUT400) MERIS FR pixel# (3700 values)		
	Output: unit	<i>F₀_FR[b,p]</i> s: [<i>nm</i>]	Reference solar fluxes for MERIS FR pixels (15 x 3700 values)		
	Step:	User specified.			
<u>Sci</u>	Scientific content:				
	15 reference values of extraterrestrial solar flux given for each of the 3700 MERIS-FR pixels				
	Current baseline: 15×3700 values $[W.m^{-2}.\mu m^{-1}]$				
ъ					

Resources:

Estimated CPU time: -Output disk space: $15 \times 3700 \times 4$ bytes/fl = 222000 bytes

Acceptance:

Corresponds to the latest definition.

6.10.6 GADS Atmospheric Corrections for Case-I Waters

6.10.6.1 Reflectance thresholds to set the negative reflectance flag

Reference:	DRO_thresh[b],	LUT054	
[AD-8]	Section 6.10.6, GADS field 1		
ACRI prov	vided		
Dependencies			
None			
<u>Tool</u> :			
None			
Procedure:			
Input:	b	MERIS spectral band# (15 values), <i>see</i> Section 3.1 for the nominal wavelengths (LUT400)	
Output:	DRO_thresh[b]	Reflectance thresholds to set the negative reflectance flag (15 values)	
unit	s: [<i>dl</i>]		
Step:	User specified.		
Scientific con	tent:		
Threshold	s on reflectance for	the 15 MERIS spectral bands to set negative reflectance flag	
Current ba	seline: {-0.00579 -0.00120	9998, -0.004600000, -0.002900000, -0.002400000, -0.001700000, 0000, -8.300004 10 ⁻⁴ , -7.100002 10 ⁻⁴ , -6.500001 10 ⁻⁴ , 0., 0., 0., 0., 0., 0., 0.}	
Resources:			
Estimated Output dis	CPU time: - k space: 15 ×	4 bytes/fl = 60 bytes	
Acceptance:			

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 136

Corresponds to the latest definition.

6.10.6.2 Threshold for absorbing aerosol test at 510 nm

Reference: DRO510_thresh1, LUT055 [AD-8] Section 6.10.6, GADS field 2 ACRI provided Dependencies: None Tool: None Procedure: Input: none DRO510 thresh1 Output: Threshold for absorbing aerosol test at 510nm units: [dl]Step: User specified.

Scientific content:

DRO510_thresh1 is a threshold defined in the atmospheric correction algorithm above case-1 waters useful to break the loop of convergence. A change could be expected if MERIS sensitivity is better than the expected value and the algorithm can handle this enhancement. This parameter is also related to the selected absorbing aerosol model.

Current baseline: 0.003

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

According to the instrument specification.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 137

6.10.6.3 Threshold for blue aerosol test at 510 nm

Reference: DRO510_thresh2, LUT056

[AD-8] Section 6.10.6, GADS field 3

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	DRO510_thresh	2 Threshold for blue aerosol test at 510 <i>nm</i>
units:	[dl]	

Step: User specified.

Scientific content:

DRO510_thresh2 is a threshold defined in the atmospheric correction algorithm above case-1 waters useful to break the loop of convergence. A change could be expected if MERIS sensitivity is better than the expected value and the algorithm can handle this enhancement. This parameter is also related to the selected blue aerosol model.

Current baseline: 1000

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

According to the instrument specification.

6.10.6.4 List of indices of aerosol assemblages

<u>Reference</u>: list_of_iaer, LUT057

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 138

[AD-8] Section 6.10.6, GADS field 4

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

input.	none	
Output:	list_of_iaer	List of indices of aerosol assemblages
units:	[dl]	

Step: User specified.

Scientific content:

The list of indices of aerosol assemblages is tabulated as an array of 10 by 20 values. Indices of aerosol assemblages, between 1 and 34, refer to these assemblages described in the '*Ocean aerosols*' file (*see* [AD-8] Section 6.13 and [AD-6]). Each 5-element sub-array correspond to one pass of the atmospheric correction algorithm. The total number of passes is specified in Section 6.10.6.6, which does not mean that the remaining sub-arrays of the list are void. Within each sub-array, the algorithm employs a fixed number of models, specified in Section 6.10.6.21.

Current baseline: 10 x 20 values (reference numbers defined according to [AD-8])

Resources:

Estimated CPU time: -Output disk space: $10 \times 20 \times 1$ byte/uc = 200 bytes

Acceptance:

According to the current accepted definition for the list of aerosol models.

6.10.6.5 Total number of ocean-aerosol assemblages

Reference: N_aer, LUT058

[AD-8] Section 6.10.6, GADS field 5

ACRI provided

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Issue</u>: 3 <u>Rev.</u>: C <u>Date</u>: 27-Feb-11 <u>Page</u>: 139

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	N_aer	Total number of ocean-aerosol assemblages
units:	[dl]	
Step:	User specified.	

Scientific content:

 N_{aer} specifies the total number of aerosol assemblages used in the atmospheric corrections algorithm over case-1 waters. This parameter depends on the selected aerosol models. For more details, refer to [AD-6].

Current baseline: 34

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.10.6.6 Number of passes within the algorithm

Reference: N_pass, LUT059

[AD-8] Section 6.10.6, GADS field 6

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 140

Tool:

None

Procedure:

Input:	none	
Output:	N_pass	Number of passes within the algorithm
units:	[dl]	
Step:	User specified.	

Scientific content:

 N_{pass} specifies the maximum number of aerosol assemblages, which are passed through the aerosol database used in the atmospheric corrections algorithm.

Current baseline: 4

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.10.6.7 Number of polynomial coefficients relating (ρ_{path}/ρ_R) to the aerosol optical thickness (τ^a)

Reference: N coef, LUT060

[AD-8] Section 6.10.6, GADS field 7

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	N_coef	Number of polynomial coefficients relating (ρ_{path}/ρ_R) to the aerosol optical thickness (τ^a)
units:	[dl]	

Step: User specified.

Scientific content:

N_co defines the number of polynomial coefficients fit used for determining the aerosol optical thickness from the path to *Rayleigh* reflectances ratio (ρ^*/ρ_R). This relation is defined as follows ([AD-9], slide 7/41):

$$\frac{\rho^*(\lambda, w_s, \tau^a, \theta_s, \theta_v, \Delta\phi)}{\rho_R(\lambda, w_s, \tau^a, \theta_s, \theta_v, \Delta\phi)} = \sum_{i=0}^2 k_i(\lambda, w_s, \theta_s, \theta_v, \Delta\phi) \cdot (\tau^a)^i$$

Current baseline: 3

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

An error analysis should be performed within the process to extract the k_i coefficients. The acceptable error has to be specified by the user.

6.10.6.8 Indices of models that shall trigger the AERO_BLUE flag

Reference:
iaer_blue,
LUT0465

[AD-8]
Section 6.10.6, GADS field 8

ACRI provided

Dependencies:

None

Tool:

None

Procedure:
Input: none

 Output:
 iaer_blue
 Indices of models that trigger the AERO_BLUE flag (50 values)

 units:
 [dl]

Step: User specified.

Scientific content:

iaer_blue is an index used to trigger the blue aerosol models

Resources:

Estimated CPU time: -Output disk space: 50×1 byte/uc = 50 bytes

Acceptance:

Corresponds to the latest definition.

6.10.6.9 (Spare)

Reference:

[AD-8] Section 6.10.6, GADS field 9

6.10.6.10 (Spare)

Reference:

[AD-8] Section 6.10.6, GADS field 10

6.10.6.11 Maximum allowed value for aerosol optical thickness at 865 nm

Reference: AOT_max, LUT064

[AD-8] Section 6.10.6, GADS field 11

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

 Output:
 AOT_max
 Maximum allowed value for aerosol optical thickness at 865 nm

 units:
 [dl]

Step: User specified.

Scientific content:

Maximum allowed value for aerosol optical thickness at 865 nm

Current baseline: 0.8

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.6.12 Threshold on depth for flagging shallow water

Reference:	Depth_limit,	LUT065
------------	--------------	--------

[AD-8] Section 6.10.6, GADS field 12

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

 Output:
 Depth_limit
 Threshold on depth for flagging shallow water

 units:
 [m]

Step: User specified.

Scientific content:

Threshold on the depth used to flag shallow water

Current baseline: 40

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.6.13 (Spare)

Reference:

[AD-8] Section 6.10.6, GADS field 13

6.10.6.14 (Spare)

Reference:

[AD-8] Section 6.10.6, GADS field 14

6.10.6.15 Threshold for flagging aerosol optical thickness

Reference:	AOT865_thresh,	LUT068	
[AD-8]	Section 6.10.6, GADS field 15		
ACRI pro	vided		
Dependencies	<u>s</u> :		
None			

<u>Tool</u>:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 145

Procedure:

Input:	none
Output:	AOT865_thresh Threshold for flagging aerosol optical thickness
units:	[dl]
Step:	User specified.

Scientific content:

If the derived aerosol optical thickness is larger than the threshold value, *AOT865_thresh*, an annotation flag will be raised. This threshold value cannot be freely changed due to the fact that the tables for the atmospheric corrections would need to be then modified accordingly.

Current baseline: 0.6

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.6.16 Switch to test for absorbing aerosols

Reference: Test_abs_aer, LUT069

[AD-8] Section 6.10.6, GADS field 16

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: Test_abs_aer

Switch to test for absorbing aerosols

units: [*dl*]

Step: User specified.

Scientific content:

Switch used for testing the absorbing aerosols: ([0]/[1]: off / on)

Current baseline: 1

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.10.6.17 Ceiling value of solar zenith angle for modifying annotation flag

Refere	ence:	SZA_limit,	LUT070
[4	AD-8]	Section 6.10.6, GA	ADS field 17
A	CRI prov	rided	
Depen	ndencies	;	
N	one		
<u>Tool</u> :			
N	one		
Procee	<u>dure</u> :		
In	iput:	none	
0	utput:	SZA_limit	Ceiling value of solar zenith angle for modifying annotation flag
	units	S: $[10^{-6} deg.]$	
St	tep:	User specified.	
<u>Scient</u>	tific cont	ent:	

<u>Ref.</u>: PO-RS-PAR-GS-0002 Rev.: C Issue: 3 Date: 27-Feb-11 Page: 147

This SZA limit threshold defines an angular limit beyond which an annotation flag will be raised, indicating that the solar zenith angle θ_s is out of range. This value can be changed in the case where the data far from the zenith appear not to be reliable.

Current baseline: 70 deg.

Resources:

Estimated CPU time: Output disk space: 1×4 bytes/ul = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.6.18 (Spare)

Reference:

[AD-8] Section 6.10.6, GADS field 18

6.10.6.19 Threshold for pressure correction

Reference:	Press_tolerance,	LUT072
[AD-8]	Section 6.10.6, C	ADS field 19
ACRI prov	vided	
Dependencies	:	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	Press_toleran	<i>ce</i> Threshold for pressure correction
unit	s: [<i>hPa</i>]	
Step:	User specified.	
		ParRieu Technologies Inc

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 148

Scientific content:

This threshold is used to activate a pressure correction.

Current baseline: 5 hPa

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.6.20 Number of wavelengths used in the LUTs

Reference:	N wvl,	LUT073
------------	--------	--------

[AD-8] Section 6.10.6, GADS field 20

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	N_wvl	Number of wavelengths used in the LUTs

units: [*dl*]

Step: User specified.

Scientific content:

 N_wvl corresponds to the number of selected wavelengths according to their relevance to the physical problem study.

Current baseline: 15

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 149

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.10.6.21 Number of aerosol models used at each pass

Kelerence: IN basic aer, LU128	LUT286
--------------------------------	--------

[AD-8] Section 6.10.6, GADS field 21

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	N_basic_aer	Number of aerosol models used at each pass
units:	[dl]	
Step:	User specified.	

Scientific content:

 $N_{basic_{aer}}$ corresponds to the number of standard aerosol models (SAMs) in list (Section 6.10.6.4) selected according to the relevance of their inherent optical properties.

Current baseline: 16

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 150

Corresponds to the latest definition.

6.10.6.22 Switch to use an aerosol climatology

Reference: Climato_aux, LUT287

[AD-8] Section 6.10.6, GADS field 22

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Climato_aux	Switch to use an aerosol climatology
units:	[dl]	

Step: User specified.

Scientific content:

Switch to activate the use of an aerosol climatology: ([0]/[1]: off / on).

Current baseline: 1

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 151

6.10.7 GADS Classification Parameters

6.10.7.1 Threshold on MERIS differential snow index (MDSI)

<u>Reference</u>: MDSI_thresh, LUT288

[AD-8] Section 6.10.7, GADS field 1

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output:	$MDSI_thresh$	Threshold on MERIS	differential snow index
units:	[dl]		

Step: User specified.

Scientific content:

Threshold on MERIS differential snow index.

Current baseline: 0.014

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.2 Numerator band index for spectral ratio 1

Reference: b_slope1_n, LUT289

[AD-8] Section 6.10.7, GADS field 2

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 152

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none
--------	------

Output: b_slopel_n Numerator band index for spectral ratio 1

units: [*dl*]

Step: User specified.

Scientific content:

Numerator band index used in the spectral ratio 1

Current baseline: 2

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.10.7.3 Denominator band index for spectral ratio 1

Reference: b_slope1_d, LUT290

[AD-8] Section 6.10.7, GADS field 3

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	b_slope1_d	Denominator band index for spectral ratio 1
units:	[dl]	

Step: User specified.

Scientific content:

Denominator band index used in the spectral ratio 1

Current baseline: 10

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.10.7.4 Lower threshold for spectral ratio 1

Reference: Slope 1 low, LUT291

[AD-8] Section 6.10.7, GADS field 4

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: Slope_1_low Lower threshold for spectral ratio 1 units: [dl]

Step: User specified.

Scientific content:

Lower threshold for the spectral ratio 1

Current baseline: 0.

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.5 Upper threshold for spectral ratio 1

Reference:	Slope_1_high,	LUT292
[AD-8]	Section 6.10.7, GA	DS field 5
ACRI pro	vided	
Dependencies	<u>5</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output: unit	Slope_1_high ts: [dl]	Upper threshold for spectral ratio 1
Step:	User specified.	
Scientific con	<u>itent</u> :	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 155

Upper threshold for the spectral ratio 1

Current baseline: 10⁶

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.6 Numerator band index for spectral ratio 2

Reference: b_slope2_n, LUT293

[AD-8] Section 6.10.7, GADS field 6

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	b_slope2_n	Numerator band index for spectral ratio 2
units:	[dl]	

Step: User specified.

Scientific content:

Numerator band index used in the spectral ratio 2

Current baseline: 9

Resources:

Estimated CPU time: -

Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.10.7.7 Denominator band index for spectral ratio 2

Reference: b slope2 d, LUT294

[AD-8] Section 6.10.7, GADS field 7

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none
--------	------

Output:	b_slope2_d	Denominator band index for spectral ratio 2
units:	[dl]	

Step: User specified.

Scientific content:

Denominator band index used in the spectral ratio 2

Current baseline: 14

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 157

6.10.7.8 Lower threshold for spectral ratio 2

<u>Reference</u>: Slope_2_low, LUT295

[AD-8] Section 6.10.7, GADS field 8

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Slope_2_low	Lower threshold for spectral ratio 2
units:	[dl]	

Step: User specified.

Scientific content:

Lower threshold for the spectral ratio 2

Current baseline: 0

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.9 Upper threshold for spectral ratio 2

<u>Reference</u>: Slope_2_high, LUT296

[AD-8] Section 6.10.7, GADS field 9

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 158

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Slope_2_high Upper three	eshold for spectral ratio 2
units:	[dl]	

Step: User specified.

Scientific content:

Upper threshold for the spectral ratio 2

Current baseline: 10⁶

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.10 Index of band for test on TOA reflectance (with band numbering starting at 1)

Reference:	b_bright2,	LUT297	
[AD-8]	Section 6.10.7, GADS field 10		
ACRI provided			
Dependencies:			
None			
Tool			

None

Procedure:

Input:	none	
Output:	b_bright2	Index of band for test on TOA reflectance (with band numbering starting at 1)
units:	[dl]	
Step:	User specified.	

Scientific content:

Band index (*b_bright2*) used to test the TOA reflectance

Current baseline: 2

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.11 Thresholds on TOA reflectance at band b_bright2

<u>Reference</u>: rho_thresh1, rho_thresh2, LUT298

[AD-8] Section 6.10.7, GADS field 11

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none
Output:	<i>rho_thresh1, rho_thresh2</i> Thresholds (min, max) on TOA reflectance at band <i>b bright2</i> (2 values)

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 160

units: [*dl*]

Step: User specified.

Scientific content:

Range of thresholds on TOA reflectance at band *b_bright2*

Current baseline: {0.185, 0.03}

Resources:

Estimated CPU time: -Output disk space: 2×4 bytes/fl = 8 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.12 Index of band for GADS threshold on Rayleigh corrected reflectance

Ref	erence:	b_bright,	LUT299	
	[AD-8]	Section 6.10.7, GA	ADS field 12	
	ACRI prov	vided		
Dep	pendencies			
	None			
Toc	<u>ol</u> :			
	None			
<u>Pro</u>	Procedure:			
	Input:	none		
	Output: unit	b_bright s: [dl]	Index of band for GADS threshold on <i>Rayleigh</i> corrected reflectance	
	Step:	User specified.		
<u>Sci</u>	entific con	tent:		

Band index (b_bright) used for testing threshold on the Rayleigh corrected reflectance

Current baseline: 2

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.10.7.13 Zenith angles for GADS threshold on Rayleigh corrected reflectance

Reference:	ZA,	LUT300
[AD-8]	Section 6.10.7, 0	GADS field 13
ACRI prov	vided	
Dependencies	<u>:</u>	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	ZA	Zenith angles (12 values)
unit	s: $[10^{-6} deg$	g]
Step:	User specifie	d.

Scientific content:

Set of 12 zenith angles (θ) selected from the *Gauss* quadrature generated for 24 discrete directions with the RTC/Gauss tool (UdL)

Current baseline: 12 Gaussian angles (see Section 6.2.13.1)

Resources:

Estimated CPU time: -Output disk space: 12×4 bytes/ul = 48 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.14 Stored indices for $(\theta_s \times \theta_v)$ combinations for GADS threshold on Rayleigh corrected reflectance

Reference: SVZA index, LUT301

[AD-8] Section 6.10.7, GADS field 14

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output: units:	SVZA_index [dl]	Stored indices for $(\theta_s \mathbf{x} \theta_v)$ combinations (78 values)
Step:	User specified.	

Scientific content:

Current baseline: 78 angular combinations (SZA x VZA)

<u>Note</u>: Due to the fact that the matrix is symmetrical in the $(\theta_s \times \theta_v)$ directions, we can then store only a half triangular matrix, *i.e.*, N(N+1)/2 instead of N² elements (78 instead of 144).

$i \setminus j$	<i>θ</i> [0]	<i>θ</i> [1]	<i>θ</i> [2]	<i>θ</i> [3]	<i>θ</i> [4]	<i>θ</i> [5]	<i>θ</i> [6]	<i>θ</i> [7]	<i>θ</i> [8]	<i>θ</i> [9]	<i>θ</i> [10]	<i>θ</i> [11]
<i>θ</i> [0]	1											
<i>θ</i> [1]	2	13										
<i>θ[2]</i>	3	14	24									
<i>θ[3]</i>	4	15	25	34								
<i>θ</i> [4]	5	16	26	35	43							

Table of indices associated with each of the 78 ($\theta_{s} \ge \theta_{y}$) combinations

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Issue</u>: 3 <u>Rev.</u>: C <u>Date</u>: 27-Feb-11 <u>Page</u>: 163

<i>θ</i> [5]	6	17	27	36	44	51						
<i>θ</i> [6]	7	18	28	37	45	52	58					
<i>θ</i> [7]	8	19	29	38	46	53	59	64				
<i>θ</i> [8]	9	20	30	39	47	54	60	65	69			
<i>θ</i> [9]	10	21	31	40	48	55	61	66	70	73		
<i>θ</i> [10]	11	22	32	41	49	56	62	67	71	74	76	
<i>θ</i> [11]	12	23	33	42	50	57	63	68	72	75	77	78

$\theta[i]$ see Section 6.10.7.13

Resources:

Estimated CPU time: -Output disk space: $78 \times 2 \times 1$ byte/uc = 156 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.15 Relative azimuth angles for GADS threshold on Rayleigh corrected reflectance

Reference:	RAA,	LUT302				
[AD-8]	Section 6.10.7, C	GADS field 15				
ACRI pro	ACRI provided					
Dependencies	<u>3</u> :					
None						
<u>Tool</u> :						
None						
Procedure:						
Input:	none					
Output:	RAA	Relative azimuth angles (19 values)				
unit	ts: $[10^{-6} deg]$					
Step:	User specified.					
Scientific con	itent:					

Set of 19 relative azimuth angles ($\Delta \phi$) regularly spaced

Current baseline: 19 values in [0;180] deg. by step of 10 deg.

Resources:

Estimated CPU time: -Output disk space: 19×4 bytes/ul = 76 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.16 Apparent pressure thresholds over land (off/close to the coastline)

Reference:	Ps_thresh_L1,	LUT466
	Ps_thresh_L2,	

[AD-8] Section 6.10.7, GADS field 16

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Ι	nput:	none					
(Dutput:	Ps_thresh_L1, I	Ps_thresh_L2 Apparent surface pressure thresholds ov close to the coastline respectively.	ver land,	off the	coastline	and
	units:	[hPa]					
S	Step:	User specified.					
Scien	tific content	<u>t</u> :					

Threshold on the apparent surface pressure over land

Current baseline: 200 hPa

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 165

Resources:

Estimated CPU time: -Output disk space: 2×4 bytes/fl = 8 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.17 Apparent pressure threshold over water

Reference:	Ps_thresh_W,		LUT467
[AD-8]	Section 6.10.7,	GADS field 17	
ACRI pro	ovided		
Dependencie	<u>s</u> :		
None			
<u>Tool</u> :			
None			
Procedure:			
Input:	none		
Output: uni	Ps_thresh_its: [hPa]	W Apparent su	rface pressure threshold over water
Step:	User specifi	ed.	
Scientific con	ntent:		
Threshold	d on the apparent	surface pressure	e over water
Current b	aseline: 500 hP	Pa	
Resources:			
Estimated Output di	d CPU time: - isk space: 1	\times 4 bytes/fl = 4	bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.18 Minimum reflectance value at 753.75 nm to consider apparent pressure over land

Reference: rho754_min, LUT468

[AD-8] Section 6.10.7, GADS field 18

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	rho754_min	Minimum reflectance value at 753.75 nm to consider apparent pressure over land
units:	[dl]	

Step: User specified.

Scientific content:

Minimum reflectance at 753.75 nm to consider apparent surface pressure over land

Current baseline: 500

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.19 Minimum spectral slope between 753.75 nm and 778.75 nm to consider apparent pressure over water

Reference: slope754_779_min, LUT469

[AD-8] Section 6.10.7, GADS field 19

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output:

slope754_779_min Minimum spectral slope between 753.75*nm* and 778.75*nm* to consider apparent pressure over water

units: [*dl*]

Step: User specified.

Scientific content:

Minimum spectral slope between 753.75*nm* and 778.75*nm* to consider apparent surface pressure over water

Current baseline: 0.0799999982

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.10.7.20 Band indices for MDSI computation

Reference: MDSI_b1, MDSI_b2 LUT470

[AD-8] Section 6.10.7, GADS field 20

ACRI provided

Dependencies:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 168

None

Tool:

None

Procedure:

Input:	none	
Output:	MDSI_b1, M	<i>DSI_b2</i> Band indices (<i>b1,b2</i>) for MDSI computation (2 values)
units:	[dl]	

Step: User specified.

Scientific content:

Band indices selected to compute the MERIS differential snow index

Current baseline: {62, 25}

Resources:

Estimated CPU time: -Output disk space: 2 × 1 byte/uc = 2 bytes

Acceptance:

Corresponds to the latest definition.

6.10.8 GADS Reflectance Thresholds

6.10.8.1 Thresholds on Rayleigh-corrected TOA reflectance above land, $\rho_{Rc} _{2}(\theta_{s} \times \theta_{v}, \Delta \varphi)$

Reference: Rho_rc_LUT, LUT303

[AD-8] Section 6.10.8, ADS record 1 field 1

Dependencies:

LUT299, LUT300, LUT301, LUT302

Tools:

OTC/RAYLEIGH

RTC/UPRAD (SO)

Procedure:

Inputs:	$n(\lambda) \\ \theta_s \times \theta_v$	MERIS band index $[dl]$, see Section 6.10.7.12, (LUT299). Stored indices for angular combinations $[dl]$ (78 values), see Section 6.10.7.14 (LUT301)
	A	Zenith angle $[deg]$ see Section 6 10.7.13 (LUT300)
	U	Zentu angle [aeg], see been on 0.10.7.15, (E01500).
	$\Delta \phi$	Relative azimuth angle [<i>deg</i>], see Section 6.10.7.15, (LUT302).
Output:	Rho_rc_LUT[e	$(\theta_s imes heta_{ u,\Delta} \phi]$
		Radiometric thresholds on <i>Rayleigh</i> corrected TOA reflectance at λ <i>nm</i> as a function of the solar zenith angle, view zenith angle and relative azimuth angle between sun and viewing directions.
units	[dl]	

Step-1: Generate TOA normalized radiance $L_{TOA_2}[\theta_s, \theta_v, \Delta \phi]$ with the RTC/UPRAD (SO) over a reflective land surface under a continental atmosphere. The selected aerosol model is the *Junge* model #37 (*m*=1.44, α =-1).

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	2	442.5 nm (see Section 6.10.7.12)
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^R(\lambda)$	tauR	Computed with OTC/RAYLEIGH
aerosol1	"./INPUT/sc_land37_b02"	Junge model #37 (<i>m</i> =1.44, <i>α</i> =−1)
$\tau^{al}(550)$	2.0	
aerosol2	-	
$\tau^{a^2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{{}_{p}}_{{}_{e,\lambda}}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A

RTC/UPRAD (SO) Inputs (LAND)

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 170

Variable	Value	Comments
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_a=2 \ km;H_R=8 \ km$)
I_s	79	
$ ho_{s}$	0.1	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{w}_{\mathrm{o},\lambda}$	-	N/A
w _s	0	
$n_s, n_v, n_{\Delta\phi}$	12, 12, 19	
θ_s	values stored in $\theta_s[$]	For all angular combinations, <i>see</i> Section 6.10.7.14 and Section 6.10.7.13
$ heta_v$	values stored in $\theta_{v}[$]	For all angular combinations, <i>see</i> Section 6.10.7.14 and Section 6.10.7.13
$\Delta \phi$	values stored in $\Delta \phi$ []	see Section 6.10.7.15
pol	1	

Step-2: Generate TOA *Rayleigh* normalized radiance $L_{R_2}[\theta_s, \theta_v, \Delta \phi]$ with the RTC/UPRAD (SO) over a black land surface (*i.e.*, without specular reflection).

RTC/UPRAD (SO) Inputs (LAND)

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	2	442.5 nm (see Section 6.10.7.12)
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^R(\lambda)$	tauR	Computed with OTC/RAYLEIGH
aerosoll	-	
$\tau^{al}(550)$	0	
aerosol2	-	
$\tau^{a^2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 171

Variable	Value	Comments
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{{}_{p}}_{_{e,\lambda}}$	-	N/A
$\omega^{p}_{{ m o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{{ m o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO (H_R =8 km)
I_s	79	
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\mathscr{O}^{^{\scriptscriptstyle{W}}}_{\mathrm{o},\lambda}$	-	N/A
Ws	0	
n_s , n_v , $n_{\Delta\phi}$	12, 12, 19	
$ heta_s$	values stored in θ_s []	For all angular combinations, <i>see</i> Section 6.10.7.14 and Section 6.10.7.13
θ_{v}	values stored in $\theta_{\nu}[$]	For all angular combinations, <i>see</i> Section 6.10.7.14 and Section 6.10.7.13
$\Delta \phi$	values stored in $\Delta \phi$ []	see Section 6.10.7.15
pol	1	

Step-3: Build *Rho_rc_LUT*[$\theta_s \times \theta_{\nu}, \Delta \phi$] such as,

$$Rho_rc_LUT[\theta_{s} \times \theta_{v}, \Delta\phi] = \pi \frac{L_{TOA_2}[\theta_{s}, \theta_{v}, \Delta\phi] - L_{R_2}[\theta_{s}, \theta_{v}, \Delta\phi]}{\cos\theta_{s}}$$

 $Rho_rc_LUT[\theta_s \times \theta_v, \Delta \phi]$

Scientific content:

In the pixels classification algorithm over land, the *Rayleigh*-corrected MERIS reflectances at 442.5*nm* are respectively compared with these radiometric thresholds $Rho_rc_LUT[\theta_s \times \theta_v, \Delta \phi]$. If the *Rayleigh*-corrected reflectance is lower than the threshold then the pixel is not considered as a bright pixel. The thresholds are computed with inputs which generate the high boundary of a mean range of *Rayleigh*-corrected reflectance.

Resources:

Estimated CPU time: $324 \ sec$ Output disk space: $78 \times 19 \times 4$ bytes/fl = 5928 bytes

Acceptance:

Comparison with another RTC.

6.10.8.2 Thresholds on Rayleigh-corrected TOA reflectance above ocean, $\rho_{Rc} _{2}(\theta_{s} \times \theta_{v} \Delta \phi)$

Reference: Rho_rc_LUT, LUT303

[AD-8] Section 6.10.8, ADS record 2 field 1

Dependencies:

LUT299, LUT300, LUT301, LUT302

Tools:

OTC/RAYLEIGH RTC/UPRAD (SO)

Procedure:

Inputs:	$n(\lambda)$	MERIS band index [dl], see Section 6.10.7.12, (LUT299).
	$\theta_s \times \theta_v$	Stored indices for angular combinations [dl] (78 values), see Section 6.10.7.14,
		(LUT301).
	θ	Zenith angle [deg], see Section 6.10.7.13, (LUT300).
	$\Delta \phi$	Relative azimuth angle [deg], see Section 6.10.7.15, (LUT302).
Output:	Rho_rc_	$LUT[\theta_s \times \theta_{\nu}, \Delta \phi]$ Radiometric thresholds on <i>Rayleigh</i> corrected TOA reflectance at λ <i>nm</i> as a function of the solar zenith angle, view zenith angle and relative azimuth angle
		between sun and viewing directions.
unit	s: [<i>dl</i>]	
~		

Step-1: Generate TOA normalized radiance $L_{TOA_2}[\theta_s, \theta_v, \Delta \phi]$ with the RTC/UPRAD (SO) over a windroughened reflective sea surface (*i.e.*, including the glitter contribution or the multiple specular reflections) under a maritime atmosphere. The ocean aerosol assemblage #3 is selected (*see* Table in Section 6.13.5.1).

RTC/UPRAD (SO) Inputs (OCEAN)

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	2	
$n(\lambda)$	2 (442.5 <i>nm</i>)	442.5 nm (see Section 6.10.7.12)
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^{R}(\lambda)$	tauR	Computed with OTC/RAYLEIGHh
aerosol1	"./INPUT/sc_mar90_b02"	Ocean aerosol assemblage#3 (MAR90)
$\tau^{al}(550)$	2.0	
aerosol2	"./INPUT/sc_conti_b02"	Ocean aerosol assemblage#3 (CONTI)
$\tau^{a^2}(550)$	0.025	
aerosol3	"./INPUT/sc_H2SO4_b02"	Ocean aerosol assemblage#3 (H2SO4)
$\tau^{a3}(550)$	0.005	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{p}_{\scriptscriptstyle e,\lambda}$	-	N/A
ω_{a}^{p}	-	N/A

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 174

Variable	Value	Comments
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\mathscr{O}^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO (optically homogeneous layers)
I_s	79	
$ ho_s$	0.036	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\mathscr{O}^{\scriptscriptstyle{W}}_{\mathrm{o},\lambda}$	-	N/A
Ws	5.0	
n_s , n_v , $n_{\Delta\phi}$	12, 12, 19	
θ_s	values stored in θ_s []	For all angular combinations, <i>see</i> Section 6.10.7.14 and Section 6.10.7.13
θ_{v}	values stored in θ_{v} []	For all angular combinations, <i>see</i> Section 6.10.7.14 and Section 6.10.7.13
$\Delta \phi$	values stored in $\Delta \phi$ []	see Section 6.10.7.15
pol	1	

Step-2: Generate TOA *Rayleigh* normalized radiance $L_{R_2}[\theta_s, \theta_v, \Delta \phi]$ with the RTC/UPRAD (SO) over a wind-roughened black sea surface (*i.e.*, including the glitter contribution or the multiple specular reflections).

RTC/UPRAD (SO) Inputs (LAND)

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	2	
$n(\lambda)$	2 (442.5 <i>nm</i>)	442.5 nm (Section 6.10.7.12)
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^R(\lambda)$	tauR	Computed with OTC/RAYLEIGH
aerosol1	-	
$\tau^{al}(550)$	0	
aerosol2	-	
$\tau^{a2}(550)$	0	

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer

PO-RS-PAR-GS-0002 Ref.: 3 <u>Rev.</u>: C Issue: Date: 27-Feb-11

Page: 175

Variable	Value	Comments
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{{}_{p}}_{{}_{e,\lambda}}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{\scriptscriptstyle{spm}}_{\scriptscriptstyle{e,\lambda}}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_R=8 \ km$)
I_s	79	
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{\scriptscriptstyle W}_{\scriptscriptstyle \mathrm{o},\lambda}$	-	N/A
w _s	5.0	
n_s , n_v , $n_{\Delta\phi}$	12, 12, 19	
θ_s	values stored in $\theta_s[]$	For all angular combinations, <i>see</i> Section 6.10.7.14 and Section 6.10.7.13
$ heta_{ m v}$	values stored in $\theta_{v}[$]	For all angular combinations, <i>see</i> Section 6.10.7.14 and Section 6.10.7.13
$\Delta \phi$	values stored in $\Delta \phi$ []	see Section 6.10.7.15
pol	1	

Step-3: Build *Rho_rc_LUT*[$\theta_s \times \theta_{\nu,\Delta} \phi$] such as,

$$Rho_rc_LUT[\theta_{s} \times \theta_{v}, \Delta\phi] = \pi \frac{L_{TOA_2}[\theta_{s}, \theta_{v}, \Delta\phi] - L_{R_2}[\theta_{s}, \theta_{v}, \Delta\phi]}{\cos\theta_{s}}$$

Scientific content:

In the pixels classification algorithm over ocean, the *Rayleigh*-corrected MERIS reflectances at 442.5 nm are respectively compared with these radiometric thresholds $Rho_rc_LUT[\theta_s \times \theta_{v,\Delta}\phi]$. If the *Rayleigh*-corrected reflectance is lower than the corresponding threshold value then the pixel is not considered as a bright pixel. The thresholds are computed with inputs which generate the high boundary of a mean range of *Rayleigh*-corrected reflectance.

Resources:

Estimated CPU time: $685 \ sec$ Output disk space: $78 \times 19 \times 4$ bytes/fl = 5928 bytes

Acceptance:

Comparison with another RTC.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 177

6.11 ATMOSPHERE PARAMETERS

6.11.1 C.P.

6.11.1.1 C.P. Rayleigh optical thickness, $\tau^{R}(\lambda, P_{s})$

Reference: tauR LUT410			
Configuration file			
PARBLEU provided			
Dependencies:			
LUT076, LUT092			
<u>Tool</u> :			
OTC/RAYLEIGH			
Procedure:			
Inputs: λ MERIS wavelength $[nm]$, see Section 6.11.4.3, (LUT076) P_s Standard surface pressure $[hPa]$, see Section 6.11.4.19, (LUT092)			
Output: τ^{R} Rayleigh optical thickness (tauR)			
units: [<i>dl</i>]			
Step: User specified.			
Scientific content:			
Rayleigh optical thicknesses in the 15 MERIS spectral bands coputed with Travis/Hansen formulation.			
Current baseline: {0.3152799904, 0.2359099984, 0.1551550031, 0.1317140013, 0.0899119973, 0.0594329983, 0.0447300002, 0.0405620001, 0.0345579982, 0.0269440003, 0.0258019995, 0.0236169994, 0.0154590001, 0.0140990000, 0.0131759997}			
Resources:			
Estimated CPU time: - Output disk space: 15×4 bytes/fl = 60 bytes			
Acceptance:			
Corresponds to the latest definition.			

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 178

6.11.2 MPH

Not covered in this document (see [AD-8] for a detailed description)

6.11.3 SPH

Not covered in this document (see [AD-8] for a detailed description)

6.11.4 GADS General

6.11.4.1 Rayleigh transmittance coefficients

<u>Reference</u>: t_0, t_1, t_2 , LUT074

[AD-8] Section 6.11.4, GADS field 1.

Dependencies:

LUT075, LUT080

Tools:

RTC/UPRAD (SO) Polynomial fit

Procedure:

Inputs:	$rac{ heta_{ m s}}{ au^R}$	Solar zenith angle [<i>deg</i>], <i>see</i> Section 6.11.4.4, (LUT080) <i>Rayleigh</i> optical thickness [<i>dl</i>], <i>see</i> Section 6.11.4.2, (LUT075)
Output:	t_0, t_1, t_2	<i>Rayleigh</i> transmittance coefficients (second order polynomial)
units:	[dl]	

Step-1: Calculate the *Rayleigh* transmittance $T_{R_RTC}[\tau^R, \theta_s]$ corresponding to the first order of *Legendre* decomposition ($I_s=0$) of phase function with the RTC/UPRAD (SO). For extracting the total atmospheric transmittance, we need to set $I_s=0$ and $\theta_y=-1$.

RTC/UPRAD (SO) Inputs (LAND)

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	1	Not used. Rayleigh transmittance is compu-ted

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 179

Variable	Value	Comments
	~	as function of τ^{R} (tabulated values).
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$\tau^R(\lambda)$	see inputs	see Section 6.11.4.2
aerosol1	-	
$\tau^{al}(550)$	0	
aerosol2	-	
$\tau^{a2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle p}$	-	N/A
$\mathscr{O}^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO (H_R =8 km)
I_s	0	
ρ_s	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\mathscr{O}^{\scriptscriptstyle W}_{\mathrm{o},\lambda}$	-	N/A
W_s	0	
n_s , n_v , $n_{\Delta\phi}$	12, 1, 1	Use a loop for 12 θ_s
θ_{s}	see inputs	see Section 6.11.4.4
θ_{v}	-1	To get the total atmospheric transmittance
$\Delta \phi$	0	
pol	1	

Step-2: Calculate the corresponding value of $T_{R_ANA}[\tau^{R}, \theta_{s}]$ with the analytical expression used in the 6S code [RD-5].

 $T_{R_ANA}(\tau^{R},\theta_{s}) = \left[(2/3 + \cos\theta_{s}) + (2/3 - \cos\theta_{s}) \exp(-\tau^{R}/\cos\theta_{s}) \right] / \left[4/3 + \tau^{R} \right]$

Step-3: Calculate t_0 , t_1 and t_2 coefficients with the polynomial fit as follows,

 $T_{R_RTC}(\tau^{R}, \theta_{s}) = t_{0} + t_{1} \cdot T_{R_ANA}(\tau^{R}, \theta_{s}) + t_{2} \cdot [T_{R_ANA}(\tau^{R}, \theta_{s})]^{2}$

Scientific content:

Compute the *Rayleigh* transmittance for removing the *Rayleigh* scattering effects in MERIS data. The *Rayleigh* optical thicknesses (τ^{R}) and the solar zenith angles (θ_{s}) have to cover the MERIS range.

Resources:

Estimated CPU time: 21 secOutput disk space: 3×4 bytes/fl = 12 bytes

Acceptance:

Comparison with another RTC.

6.11.4.2 Rayleigh optical thicknesses

<u>Reference</u>: tauR, LUT075

[AD-8] Section 6.11.4, GADS field 2.

ACRI provided

Dependencies:

None

Tool:

Input: none

Output: tauR *Rayleigh* optical thickness (17 values)

units: [*dl*]

Step: User specified.

Procedure:

None

Scientific content:

Set of 17 values of *Rayleigh* optical thicknesses.

Current baseline: tauR values in [0.02;0.34] by step of 0.02

Resources:

Estimated CPU time: -Output disk space: 17×4 bytes/fl = 68 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.3 Nominal wavelengths of MERIS spectral bands

Reference: Wvl, LUT076

[AD-8] Section 6.11.4, GADS field 3.

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	Wvl	Nominal wavelengths of MERIS spectral bands (15 values)
units:	[<i>nm</i>]	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 182

Step: User specified.

Scientific content:

Nominal wavelengths for the 15 MERIS spectral bands

Current baseline: {412.5, 442.5, 490.0, 510.0, 560.0, 620.0, 665.0, 681.25, 708.75, 753.75, 761.875, 778.75, 865.0, 885.0, 900.0} *nm*

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.4 Solar zenith angles for GADS Rayleigh reflectance over ocean

Reference:	SZA,	LUT077
[AD-8]	Section 6.11.4, GA	ADS field 4.
ACRI pro	vided	
Dependencies	<u>.</u>	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	SZA	Solar zenith angle (23 values)
ur	nits: $[10^{-6} deg]$	
Step:	User specified.	
Scientific con	tent:	

Set of 23 solar zenith angles (θ_s) selected from the *Gauss* quadrature generated for 25 discrete directions (including zenith) with the RTC/Gauss tool (UdL).

Current baseline: 23 values corresponding to the first 23 angles from the Gauss quadrature

$\theta_s[deg.]$	$\theta_s[deg.]$	$\theta_s[deg.]$	$\theta_s[deg.]$
0.000000	21.347983	43.611442	65.877652
2.840906	25.058051	47.322394	69.588762
6.521063	28.768427	51.033390	73.299882
10.222955	32.479006	54.744420	77.011011
13.929756	36.189726	58.455477	80.722147
17.638419	39.900547	62.166556	

Resources:

Estimated CPU time: -Output disk space: 23 × 4 bytes/ul = 92 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.5 View zenith angles for GADS Rayleigh reflectance over ocean

Reference: VZA, LUT078

[AD-8] Section 6.11.4, GADS field 5.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	VZA	View zenith angle (13 values)
units	$[10^{-6} deg]$	

Step: User specified.

Scientific content:

Set of 13 view zenith angles (θ_v) selected from the *Gauss* quadrature generated for 25 discrete directions (including nadir) with the RTC/Gauss tool (UdL).

Current baseline: 13 values corresponding to the first 13 angles from the Gauss quadrature

$\theta_v[deg.]$	$\theta_{v}[deg.]$
0.000000	25.058051
2.840906	28.768427
6.521063	32.479006
10.222955	36.189726
13.929756	39.900547
17.638419	43.611442
21.347983	

Resources:

Estimated CPU time:	-
Output disk space:	13×4 bytes/ul = 52 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.6 Relative azimuth angles for GADS Rayleigh reflectances over ocean (tabulated values)

Reference: RAA, LUT079

[AD-8] Section 6.11.4, GADS field 6.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 185

Output:RAARelative azimuth angle (25 values)units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

Set of 25 relative azimuth angles $(\Delta \phi)$ between illumination and viewing directions regularly spaced

Current baseline: 25 values within [0;180] deg., with a step of 7.5 deg.

| $\Delta \phi[deg.]$ |
|---------------------|---------------------|---------------------|---------------------|---------------------|
| 0.00 | 37.50 | 75.00 | 112.50 | 150.00 |
| 7.50 | 45.00 | 82.50 | 120.00 | 157.50 |
| 15.00 | 52.50 | 90.00 | 127.50 | 165.00 |
| 22.50 | 60.00 | 97.50 | 135.00 | 172.50 |
| 30.00 | 67.50 | 105.00 | 142.50 | 180.00 |

Resources:

Estimated CPU time: -Output disk space: 25×4 bytes/ul = 100 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.7 Zenith angles for GADS Rayleigh scattering function

Reference: ZA, LUT080

[AD-8] Section 6.11.4, GADS field 7.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 186

Output: ZA Zenith angle (12 values)

units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

Set of 12 angles (θ) selected from the *Gauss* quadrature generated for 24 discrete directions with the RTC/Gauss tool (UdL)

Current baseline: 12 Gaussian angles (see Section 6.10.7.13)

Resources:

Estimated CPU time: -Output disk space: 12×4 bytes/ul = 48 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.8 Stored indices for $(\theta_s x \theta_v)$ combinations for GADS Rayleigh scattering function

Refer	rence:	SVZA_index,	LUT081
[AD-8]	Section 6.11.4, G	ADS field 8.
A	ACRI prov	vided	
Depe	ndencies	:	
١	None		
<u>Tool</u> :			
I	nput:	none	
(Dutput: un	SVZA_index iits: [dl]	Stored indices for $(\theta_s \mathbf{x} \theta_v)$ combinations (78 values)
S	Step:	User specified.	
Proce	edure:		
١	None		

Scientific content:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 187

Current baseline: 78 angular combinations (SZA x VZA) (see Section 6.10.7.14)

<u>Note</u>: Due to the fact that the matrix is symmetrical in the $(\theta_s \times \theta_v)$ directions, we can then store only a half triangular matrix, *i.e.*, N(N+1)/2 instead of N² elements (78 instead of 144).

Resources:

Estimated CPU time: -Output disk space: $78 \times 2 \times 1$ byte/uc = 156 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.9 Constants used for Rayleigh phase function (A,B)

Reference: $\{A,B\},\$	LUT082
------------------------	--------

[AD-8] Section 6.11.4, GADS field 9.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	А, В	Constants used for the anisotropy of <i>Rayleigh</i> phase function (2 values)
units:	[dl]	

Step: User specified.

Scientific content:

These 2 contants (A,B) are used to correct the *Rayleigh* phase function for the molecular anisotropy. The latters which derive from the 6S code [RD-5] are determined empirically.

Current baseline: A = 0.9587256; B = 0.0412744

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 188

Estimated CPU time: -Output disk space: 2×4 bytes/fl = 8 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.10 Air masses (downward and upward atmospheric paths)

Ref	erence:	AM,	LUT083
	[AD-8]	Section 6.11.4, GA	ADS field 10.
	ACRI pro	vided	
Dep	pendencies	<u>3</u> :	
	None		
<u>Toc</u>	<u>ol</u> :		
	None		
<u>Pro</u>	cedure:		
	Input:	none	
	Output:	AM	Air mass for the 2 atmospheric paths (up/down) (6 values)
	ur	nits: [<i>dl</i>]	
	Step:	User specified.	
<u>Sci</u>	entific con	tent:	
	The air ma	ass (M) is defined a	s,
			$M = \frac{1}{\cos \mathcal{G}_s} + \frac{1}{\cos \mathcal{G}_v}$

This requires a set of θ_s and θ_v values which falls in a given range of MERIS air mass values.

Current baseline: $M = \{2.0; 2.3; 2.6; 2.9; 3.2; 3.5\}$

Resources:

Estimated CPU time: -Output disk space: 6×4 bytes/fl = 24 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.11 Reference wavelengths for GADS O2 transmittances around 778.75 nm

Reference:	Wvl_FiltO2,	LUT095
------------	-------------	--------

[AD-8] Section 6.11.4, GADS field 11.

FUB/ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	Wvl_FiltO2	Nominal wavelengths for the 21 MERIS O2 filters around 778.75 nm (21 values)
units:	[<i>nm</i>]	

Step: User specified.

Scientific content:

Set of 21 MERIS O2 filters (around 778.5*nm*) used for computation of residual O2 absorption around 778.75*nm*.

Current baseline: {777.5, 777.6, 777.7, 777.8, 777.9, 778.0, 778.1, 778.2, 778.3, 778.4, 778.5, 778.6, 778.7, 778.8, 778.9, 779.0, 779.1, 779.2, 779.3, 779.4, 779.5} *nm*

Resources:

Estimated CPU time: -Output disk space: 21×4 bytes/fl = 84 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.12 TOA normalized radiances at 778.75 nm for GADS O2 transmittances around 778.75 nm

Reference: LN 779, LUT085 Section 6.11.4, GADS field 12. [AD-8] FUB/ACRI provided Dependencies: None Tool: None Procedure: Input: none Output: LN 779 TOA normalized radiance at 778.75 nm (25 values) $[sr^{-1}]$ units: User specified. Step: Scientific content:

 $L_{TOA_{779}}$ [] is a vector which contains 25 typical values of TOA normalized radiances at 778.75 nm.

Current baseline: $L_{TOA_{-779}} = \{0.002, 0.012, 0.022, 0.032, 0.042, 0.052, 0.062, 0.072, 0.082, 0.092, 0.102, 0.112, 0.122, 0.132, 0.142, 0.152, 0.162, 0.172, 0.182, 0.192, 0.202, 0.212, 0.222, 0.232, 0.242\} sr^{-1}$

Resources:

Estimated CPU time: -Output disk space: 25×4 bytes/fl = 100 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.13 Solar zenith angles for GADS O2 transmittances around 778.75 nm

Reference: SZA_TO2, LUT086

[AD-8] Section 6.11.4, GADS field 13.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 191

FUB/ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none
P ····	

Output: SZA_TO2 Solar zenith angle $(\theta_{s,TO2})$ (15 values)

units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

Set of 15 solar zenith angles ($\theta_{s, TO2}$) regularly spaced.

Current baseline: 15 values within [10;80] deg., with a step of 5 deg.

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/ul = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.14 View zenith angles for GADS O2 transmittances around 778.75 nm

Reference: VZA_TO2, LUT087

[AD-8] Section 6.11.4, GADS field 14.

FUB/ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

_		
Input:	none	

Output: VZA_TO2 View zenith angle $(\theta_{v, TO2})$ (10 values)

units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

Set of 10 view zenith angles $(\theta_{v, TO2})$ regularly spaced.

Current baseline: 10 values within [0;45] deg., with a step of 5 deg

Resources:

Estimated CPU time: -Output disk space: 10×4 bytes/ul = 40 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.15 Relative azimuth angles for GADS O2 transmittances around 778.75 nm

Reference: RAA_TO2, LUT088

[AD-8] Section 6.11.4, GADS field 15.

FUB/ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: RAA_TO2 Relative azimuth angle $(\Delta \phi_{TO2})$ (19 values) units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

Set of 19 relative azimuth angles ($\Delta \phi_{TO2}$) between illumination and viewing directions regularly spaced

Current baseline: 19 values within [0;180] deg., with a step of 10 deg.

Resources:

Estimated CPU time: -Output disk space: 19×4 bytes/ul = 76 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.16 Threshold for flagging low pressure water

Reference:	P _{thresh} ,	LUT089
[AD-8]	Section 6.11.4, GA	ADS field 16.
ACRI pro	vided	
Dependencies	<u>3</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	P _{thresh}	Threshold for flagging low pressure water
ur	nits: [<i>hPa</i>]	
Step:	User specified.	
Scientific con	itent:	

This threshold is applied on pressure to discriminate high elevation inland waters. The value is determined empirically.

Current baseline: $P_{thresh} = 900 \ hPa$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.17 Standard water vapour content

Reference:	uH2O std,	LUT090

```
[AD-8] Section 6.11.4, GADS field 17
```

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	uH2O_std	Standard water vapour content
units:	$[g.cm^{-2}]$	

Step: User specified.

Scientific content:

 u_{H20std} defines the standard total water vapor content in the atmosphere (Mid-Latitude Summer) to be considered in the computations. It represents a weight of the total atmospheric column. The LUT will be produced based on this value; the atmospheric transmission will be influenced by how much water vapor is considered by the radiative transfer model.

Current baseline: 1.42 g.cm⁻²

This value defines also the standard water vapor content for field 1 from Section 6.11.4 [AD-8].

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.18 Standard ozone content

Reference: uO3_std, LUT091

[AD-8] Section 6.11.4, GADS field 18.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: *uO3_std* Standard ozone content

units: [*cm-atm*]

Step: User specified.

Scientific content:

The clear-sky atmospheric correction algorithm requires a standard value of the total ozone amount. This value is used to generated the LUT of the ozone optical thickness (*see* Section 6.11.5.5) and is set up to the value corresponding to the Mid-Latitude Summer profile (WRCP) which is 350 DU (or 0.35 cm-atm).

Current baseline: 0.35 cm-atm

Resources:

Estimated CPU time: -

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 196

Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.19 Standard surface pressure

Reference: Ps std, LUT092

[AD-8] Section 6.11.4, GADS field 19.

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: *Ps_std* Standard surface pressure

units: [*hPa*]

Step: User specified.

Scientific content:

The clear sky atmospheric correction algorithm requires a standard value of the surface pressure. This value is used to generate the LUT of the *Rayleigh* optical thickness (*see* Section 6.11.5.5) and is set up to the surface pressure from the Mid-Latitude Summer profile (WRCP) which is 1013.25 *hPa*.

Current baseline: 1013.25 hPa

This value defines also the standard surface pressure for field 2 from Section 6.11.4 [AD-8].

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 197

Corresponds to the latest definition.

6.11.4.20 Wind-speeds for GADS Rayleigh reflectance over ocean

 Reference:
 Ws,
 LUT093

 [AD-8]
 Section 6.11.4, GADS field 20.

 ACRI provided
 ACRI provided

 Dependencies:
 None

 Tool:
 None

Procedure:

Input:	none	
Output:	Ws	Wind-speed just above sea level (3 values)
units	$[m.s^{-1}]$	

Step: User specified.

Scientific content:

For the atmospheric corrections over ocean, the wind-speed values will be set to 1.5, 5.0 and $10m.s^{-1}$.

Current baseline: $\{1.5, 5.0, 10.0\} m.s^{-1}$

Resources:

Estimated CPU time: -Output disk space: 3×4 bytes/fl = 12 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.21 Maximum valid pressure

Reference:	Max_Press,	LUT304
------------	------------	--------

[AD-8] Section 6.11.4, GADS field 21.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 198

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none
--------	------

Output: Max_Press Maximum valid surface pressure

units: [*hPa*]

Step: User specified.

Scientific content:

Maximum valid value of surface pressure

Current baseline: 1050 hPa

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.22 Angstroem exponents for ADS photosynthetically active radiation (PAR)

<u>Reference</u>: alpha_PAR, LUT305

[AD-8] Section 6.11.4, GADS field 22.

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 199

Tool:

None

Procedure:

Input: none

Output: *alpha_PAR Angstroem* exponent used for PAR (20 values)

units: [*dl*]

Step: User specified.

Scientific content:

Current baseline: {-0.8, -0.653, -0.505, -0.358, -0.210, -0.063, 0.084, 0.232, 0.379, 0.526, 0.674, 0.821, 0.969, 1.116, 1.263, 1.411, 1.558, 1.706, 1.853, 2.000}

Resources:

Estimated CPU time: -Output disk space: 20×4 bytes/fl = 80 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.23 Ozone contents for ADS photosynthetically active radiation (PAR)

Reference:	uO3 PAR,	LUT306

[AD-8] Section 6.11.4, GADS field 23.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 200

Output: $uO3_PAR$ Ozone content used for PAR (20 values) units: $[10^{-3} cm - atm]$ or [DU]

Step: User specified.

Scientific content:

Set of 20 ozone contents used for the PAR computation

Current baseline: {200.000, 210.526, 221.052, 231.578, 242.104, 252.630, 263.156, 273.682, 284.208, 294.734, 305.260, 315.786, 326.312, 336.838, 347.364, 357.890, 368.416, 378.942, 389.468, 399.994} 10⁻³ cm-atm

Resources:

Estimated CPU time: -Output disk space: 20×4 bytes/fl = 80 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.24 Aerosol optical thicknesses at 865 nm for ADS photosynthetically active radiation (PAR)

Refe	erence:	AOT865_PAR,		LUT307
	[AD-8]	Section 6.11.4, GA	DS field 24.	
	ACRI prov	ided		
<u>Dep</u>	endencies:			
	None			
<u>Too</u>	<u>l</u> :			
	None			
Proc	cedure:			
	Input:	none		
	Output: uni	<i>AOT865_PAR</i> ts: [<i>dl</i>]	Aerosol opt	ical thickness at 865 nm used for PAR (20 values)
	Step:	User specified.		

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 201

Scientific content:

Set of 20 AOT-865 values used for the PAR computation

Current baseline: {0.15, 0.30, 0.45, 0.60, 0.75, 0.90, 1.05, 1.20, 1.35, 1.50, 1.65, 1.80, 1.95, 2.10, 2.25, 2.40, 2.55, 2.70, 2.85, 3.00}

Resources:

Estimated CPU time: -Output disk space: 20×4 bytes/fl = 80 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.25 Water vapour contents for photosynthetically active radiation (PAR)

Reference:	uH2O PAR,	LUT094
	······,	

[AD-8] Section 6.11.4, GADS field 25.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: $uH2O_PAR$ Water vapour content for PAR (20 values) units: $[g.cm^{-2}]$

Step: User specified.

Scientific content:

Set of 20 water vapour contents used for the PAR computation

Current baseline: {0.0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7} $g.cm^{-2}$

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 202

Resources:

Estimated CPU time: -Output disk space: 20×4 bytes/fl = 80 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.26 Reference wavelengths for GADS apparent pressure parameters

Reference:	Wvl_FiltPs,	LUT471						
[AD-8]	Section 6.11.4,	GADS field 26.						
FUB/AC	RI provided							
Dependencie	<u>s</u> :							
None								
<u>Tool</u> :								
None								
Procedure:								
Input:	none							
Output:	Wvl_FiltPs	Nominal wavelengths for the 21 MERIS O2 filters around 761.7nm (21 values)						
u	nits: [<i>nm</i>]							
Step:	User specific	ed.						
Scientific con	<u>ntent</u> :							
Set of 21	MERIS O2 filter	s (around 761.7 <i>nm</i>) used for computation of apparent pressure parameters						
Current b	Current baseline: {760.7, 760.8, 760.9, 761.0, 761.1, 761.2, 761.3, 761.4, 761.5, 761.6, 761.7, 761.8, 761.9, 762.0, 762.1, 762.2, 762.3, 762.4, 762.5, 762.6, 762.7} <i>nm</i>							
Resources:								
Estimated Output di	Estimated CPU time: - Output disk space: 21×4 bytes/fl = 84 bytes							

Acceptance:

Corresponds to the latest definition.

6.11.4.27 Reference wavelengths for GADS polynomial coefficients for H2O transmittance retrieval at 708.75 nm

Reference:	Wvl FiltH2O.	LUT096
<u>iterenee</u> .		L010/0

[AD-8] Section 6.11.4, GADS field 27.

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	Wvl_FiltH2O	Nominal wavelengths for the 21 MERIS O2 filters around 708.75 nm (21 values)
units	[<i>nm</i>]	

Step: User specified.

Scientific content:

Set of 21 MERIS H2O filters (around 708.75*nm*) used for computation of polynomials of H2O retrieval at 708.75*nm*.

Current baseline: {707.75, 707.85, 707.95, 708.05, 708.15, 708.25, 708.35, 708.45, 708.55, 708.65, 708.75, 708.85, 708.95, 709.05, 709.15, 709.25, 709.35, 709.45, 709.55, 709.65, 709.75} nm

Dependencies:

None

Resources:

Estimated CPU time: -

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 204

Output disk space: 21×4 bytes/fl = 84 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.28 Pressure scale height to account for altitude

Reference: Hp, LUT414

[AD-8] Section 6.11.4, GADS field 28.

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: *Hp* Pressure scale height

units: [*m*]

Step: User specified.

Scientific content:

 H_p corresponds to the standard *Rayleigh* scale height useful to define the vertical distribution of the molecules in the atmosphere. A typical value is around 8 km.

Current baseline: 8430 m

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 205

6.11.4.29 Zenith angles for GADS apparent pressure parameters

<u>Reference</u>: ZA_Ps, LUT472

[AD-8] Section 6.11.4, GADS field 29.

FUB/ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	ZA_Ps	Zenith angle (24 values)
units	$[10^{-6} deg]$	
Step:	User specified.	

Scientific content:

Set of 24 zenith angles (θ_{Ps}) selected from the *Gauss* quadrature generated for 24 discrete directions with the RTC/Gauss tool (UdL)

Current baseline: 24 Gaussian angles

{2.840906, 6.521063, 10.222955, 13.929756, 17.638419, 21.347983, 25.058051, 28.768427, 32.479006, 36.189726, 39.900547, 43.611442, 47.322394, 51.033390, 54.744420, 58.455477, 62.166556, 65.877652, 69.588762, 73.299882, 77.011011, 80.722147, 84.433286, 88.144429} *deg*.

Current baseline: 24 Gaussian angles

i	θ_{Ps} [deg.]	i	$ heta_{Ps}$ [deg.]	i	$ heta_{Ps}$ [deg.]	i	θ_{Ps} [deg.]
1	2.840906	7	58.455477	13	58.455477	18	58.455477
2	17.638419	8	65.877652	14	65.877652	19	65.877652
3	28.768427	9	69.588762	15	69.588762	20	69.588762
4	36.189726	10	73.299882	16	73.299882	21	73.299882
5	43.611442	11	77.011011	17	77.011011	22	77.011011
6	51.033390	12	80.722147	18	80.722147	124	80.722147

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 206

Resources:

Estimated CPU time: -Output disk space: 24×4 bytes/ul = 96 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.30 Reference pressure levels for GADS apparent pressure parameters

Reference:	Ps_level,	LUT473

[AD-8] Section 6.11.4, GADS field 30.

FUB/ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Ps_level	Pressure level (21 values)
units:	[hPa]	

Step: User specified.

Scientific content:

Ps_level corresponds to a reference level of pressure within the atmosphere. A set of 21 reference pressure levels has been defined to compute the O2 transmittance in the atmospheric layers.

Current baseline: {3.963, 64.35, 124.10, 177.00, 228.30, 279.10, 329.70, 380.50, 430.50, 480.00, 529.60, 579.70, 629.80, 679.70, 729.40, 778.30, 827.60, 877.00, 926.40, 975.50, 1007.00} *hPa*

Resources:

Estimated CPU time: -Output disk space: 21×4 bytes/fl = 84 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 207

Acceptance:

Corresponds to the latest definition.

6.11.4.31 Aerosol scattering phase function

Reference: P[Theta], LUT474

[AD-8] Section 6.11.4, GADS field 31.

FUB/ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output: uni	<i>P[Theta]</i> ts: [<i>dl</i>]	Aerosol scattering phase function (181 values)

Step: User specified.

Scientific content:

P[Theta] corresponds to a reference aerosol scattering phase function used to estimate the aerosol reflectance in the algorithm of the apparent surface pressure retrieval over ocean.

Θ	$P(\Theta)$	Θ	$P(\Theta)$	Θ	$P(\Theta)$	Θ	$P(\Theta)$	Θ	$P(\Theta)$
0.00	162.99707031	36.00	2.18402076	72.00	0.35232785	108.00	0.11797373	144.00	0.15353890
1.00	146.77873230	37.00	2.07215595	73.00	0.34090927	109.00	0.11851433	145.00	0.16376551
2.00	107.48479462	38.00	1.98779583	74.00	0.33279648	110.00	0.11922964	146.00	0.17394768
3.00	65.62915039	39.00	1.88332319	75.00	0.31797865	111.00	0.11565626	147.00	0.18173359
4.00	37.43303299	40.00	1.75853372	76.00	0.29913065	112.00	0.11080770	148.00	0.19141671
5.00	25.55327416	41.00	1.65484393	77.00	0.28656775	113.00	0.11004089	149.00	0.20750234
6.00	22.46920776	42.00	1.58498788	78.00	0.28102630	114.00	0.11214274	150.00	0.22815083
7.00	20.33006477	43.00	1.51557219	79.00	0.27285829	115.00	0.11143742	151.00	0.24914345
8.00	16.86425018	44.00	1.42409563	80.00	0.25816941	116.00	0.10724268	152.00	0.27072391

Current baseline: 181 values (see table below)

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 208

Θ	$P(\Theta)$	Θ	$P(\Theta)$	Θ	$P(\Theta)$	Θ	$P(\Theta)$	Θ	$P(\Theta)$
9.00	13.76597023	45.00	1.33284354	81.00	0.24484374	117.00	0.10491300	153.00	0.29469413
10.00	12.28894234	46.00	1.26866007	82.00	0.23910907	118.00	0.10687347	154.00	0.31666332
11.00	11.66075325	47.00	1.21956766	83.00	0.23540635	119.00	0.10863673	155.00	0.32848474
12.00	10.71770287	48.00	1.15709174	84.00	0.22592986	120.00	0.10633057	156.00	0.32964382
13.00	9.43953133	49.00	1.08264983	85.00	0.21342674	121.00	0.10311270	157.00	0.32967153
14.00	8.49027920	50.00	1.02221227	86.00	0.20622739	122.00	0.10385237	158.00	0.33588240
15.00	8.04110909	51.00	0.98243231	87.00	0.20435572	123.00	0.10703281	159.00	0.34421989
16.00	7.65051746	52.00	0.94140410	88.00	0.19978008	124.00	0.10733543	160.00	0.34724367
17.00	7.03037500	53.00	0.88575059	89.00	0.18984088	125.00	0.10450944	161.00	0.34656248
18.00	6.38895464	54.00	0.83101839	90.00	0.18137538	126.00	0.10374737	162.00	0.34989890
19.00	5.98838997	55.00	0.79422116	91.00	0.17912635	127.00	0.10701992	163.00	0.35779950
20.00	5.74152136	56.00	0.76624566	92.00	0.17798997	128.00	0.10983634	164.00	0.36203635
21.00	5.41101217	57.00	0.72823948	93.00	0.17169216	129.00	0.10876875	165.00	0.35879293
22.00	4.98262072	58.00	0.68236607	94.00	0.16311909	130.00	0.10715967	166.00	0.35511181
23.00	4.63211727	59.00	0.64657664	95.00	0.15929438	131.00	0.10953519	167.00	0.35756677
24.00	4.42061949	60.00	0.62444222	96.00	0.15970851	132.00	0.11408349	168.00	0.36152691
25.00	4.22177887	61.00	0.60025442	97.00	0.15733890	133.00	0.11572338	169.00	0.35930768
26.00	3.94303012	62.00	0.56547582	98.00	0.15029354	134.00	0.11460783	170.00	0.35453612
27.00	3.65591860	63.00	0.53184748	99.00	0.14465398	135.00	0.11588175	171.00	0.35852292
28.00	3.45675206	64.00	0.51096666	100.00	0.14413634	136.00	0.12112684	172.00	0.37301677
29.00	3.31405163	65.00	0.49544522	101.00	0.14396863	137.00	0.12577237	173.00	0.38728613
30.00	3.13546038	66.00	0.47191370	102.00	0.13895395	138.00	0.12677671	174.00	0.39612490
31.00	2.91700602	67.00	0.44287798	103.00	0.13207152	139.00	0.12775595	175.00	0.41098920
32.00	2.73442030	68.00	0.42159078	104.00	0.12942442	140.00	0.13301189	176.00	0.44470310
33.00	2.61357641	69.00	0.40985852	105.00	0.13017468	141.00	0.14043850	177.00	0.49079248
34.00	2.49636769	70.00	0.39567378	106.00	0.12814954	142.00	0.14515032	178.00	0.52844256
35.00	2.34108186	71.00	0.37335825	107.00	0.12218850	143.00	0.14777000	179.00	0.54623860
								180.00	0.55010635

Resources:

Estimated CPU time: -Output disk space: 181 × 4 bytes/fl = 724 bytes

Acceptance:

Corresponds to the latest definition.

6.11.4.32 Fresnel reflection coefficients, FR(thetaw)

Reference: FR[thetaw], LUT475

[AD-8] Section 6.11.4, GADS field 32.

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 209

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	FR[thetaw]	Fresnel reflection coefficients (91 values)
unit	s: [<i>dl</i>]	

Step: User specified.

Scientific content:

Fresnel reflection coefficients $\mathcal{R}(\theta)$ are tabulated for 91 zenith angles in water (θ)

Current baseline: 91 values (see table below)

θ .	$\mathcal{R}(heta_{a})$	heta.'	${\cal R}(heta_{z})$	heta	${\cal R}(heta_{z})$	θ .	$\mathcal{R}(heta_{ heta})$	heta.'	$\boldsymbol{\mathscr{R}}(heta_{\!\scriptscriptstyle arepsilon'})$
0.00	0.02111184	18.00	0.02123160	36.00	0.02363891	54.00	0.04210184	72.00	0.16209671
1.00	0.02111184	19.00	0.02126205	37.00	0.02399266	55.00	0.04449888	73.00	0.17775223
2.00	0.02111186	20.00	0.02129826	38.00	0.02438855	56.00	0.04715630	74.00	0.19517079
3.00	0.02111193	21.00	0.02134103	39.00	0.02483108	57.00	0.05010236	75.00	0.21455821
4.00	0.02111211	22.00	0.02139124	40.00	0.02532520	58.00	0.05336849	76.00	0.23614559
5.00	0.02111250	23.00	0.02144984	41.00	0.02587637	59.00	0.05698968	77.00	0.26019257
6.00	0.02111321	24.00	0.02151788	42.00	0.02649064	60.00	0.06100485	78.00	0.28699115
7.00	0.02111438	25.00	0.02159653	43.00	0.02717467	61.00	0.06545739	79.00	0.31687006
8.00	0.02111619	26.00	0.02168708	44.00	0.02793583	62.00	0.07039560	80.00	0.35019988
9.00	0.02111884	27.00	0.02179092	45.00	0.02878228	63.00	0.07587335	81.00	0.38739878
10.00	0.02112257	28.00	0.02190961	46.00	0.02972304	64.00	0.08195070	82.00	0.42893934
11.00	0.02112764	29.00	0.02204485	47.00	0.03076811	65.00	0.08869468	83.00	0.47535643
12.00	0.02113435	30.00	0.02219852	48.00	0.03192854	66.00	0.09618008	84.00	0.52725661
13.00	0.02114306	31.00	0.02237268	49.00	0.03321659	67.00	0.10449042	85.00	0.58532888
14.00	0.02115415	32.00	0.02256960	50.00	0.03464583	68.00	0.11371904	86.00	0.65035748
15.00	0.02116804	33.00	0.02279179	51.00	0.03623134	69.00	0.12397022	87.00	0.72323740
16.00	0.02118522	34.00	0.02304200	52.00	0.03798980	70.00	0.13536061	88.00	0.80499220
17.00	0.02120621	35.00	0.02332325	53.00	0.03993977	71.00	0.14802073	89.00	0.89679611
								90.00	1.00000000

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 210

Estimated CPU time: -Output disk space: 91×4 bytes/fl = 364 bytes

Acceptance:

Corresponds to the latest definition.

6.11.5 GADS Optical Thicknesses

6.11.5.1 (Spare)

Reference:

[AD-8] Section 6.11.5, GADS field 1.

6.11.5.2 (Spare)

Reference:

[AD-8] Section 6.11.5, GADS field 2.

6.11.5.3 (Spare)

Reference:

[AD-8] Section 6.11.5, GADS field 3.

6.11.5.4 Rayleigh optical thicknesses for standard pressure, $\tau^{R}(\lambda, P_{s})$

Reference: tauR, LUT097

[AD-8] Section 6.11.5, GADS field 4.

Dependencies:

LUT076, LUT092

Tool:

OTC/RAYLEIGH

Procedure:

Inputs:	λ	Wavelength [nm], see Section 6.11.4.3, (LUT076)
	P_{std}	Surface pressure [<i>hPa</i>], see Section 6.11.4.19, (LUT092)

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 211

Output: $\tau^{R}[\lambda]$ Rayleigh optical thickness for each band λ units: [dl]

Step: Compute the *Rayleigh* optical thickness $\tau^{R}[\lambda]$ using the OTC/RAYLEIGH.

Scientific content:

The *Rayleigh* optical thicknesses $\tau^{R}[\lambda]$ are computed with formula from *Hansen and Travis* [RD-6] using a standard surface pressure (1013.25*hPa*). The latters are essential in the atmospheric correction algorithm for removing the *Rayleigh* scattering effects from TOA reflectances.

Resources:

Estimated CPU time: 1 secOutput disk space: $15 \times 4 \text{ bytes/fl} = 60 \text{ bytes}$

Acceptance:

Comparison with other OTC.

6.11.5.5 Ozone optical thicknesses for 1 cm-atm, $\tau^{O_3}(\lambda)$

Reference: tauO3_norm, LUT098

[AD-8] Section 6.11.5, GADS field 5.

Dependencies:

LUT076

<u>Tool</u>:

OTC/OZONE

Procedure:

Par B	eu gies	MERIS / ENVISAT-1 MEdium Resolution Imaging SpectrometerRef.: Imaging 			S-0002 <u>Page</u> : 212
Inputs:	λU_{O_3}	Wavelength [<i>nm</i>], <i>see</i> Section 6.11.4 Total ozone amount [<i>cm-atm</i>], value	.3, (LUI fixed to	°076) 1 <i>cm-atm</i>	
Output:	$ au^{O_3}[\lambda]$	Ozone optical thickness for each ban	dλ		

units: [*dl*]

Step: Compute the ozone optical thickness $\tau^{O_3}[\lambda]$ using OTC/OZONE.

Scientific content:

The ozone optical thicknesses $\tau^{O_3}[\lambda]$ are computed with a LBL code using a total ozone amount of 1 *cm-atm*. The latters are essential in the atmospheric correction algorithm for computing the total O₃ transmittivity.

Resources:

Estimated CPU time: 1 secOutput disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Comparison with $\tau^{O_3}[\lambda]$ derived from a LBL code.

6.11.6 GADS H2O Transmission

6.11.6.1 (Spare)

Reference:

[AD-8] Section 6.11.6, GADS field 1.

6.11.6.2 Polynomial coefficients for H2O transmittance retrieval around 708.75 nm (21 shifted filters)

<u>NOTE</u>: The recipe of this LUT is presently not included in the MERISAT tool. This LUT is currently generated with an input user specified file.

<u>Reference</u>: H2OCorr_Poly_LUT[λ' , k], LUT106

[AD-8] Section 6.11.6, GADS field 2

Dependencies:

LUT096

Tools:

RTC/UPRAD (GAME) RTC/GAUSS Polynomial fit

Procedure:

Inputs:	λ'	21 reference wavelengths [nm] corresponding to the 21 spectral shifts
		$(\Delta \lambda)$ of $\pm 0.1 nm$ applied on the MERIS H ₂ O filter centred at 708.75 nm,
		see Section 6.11.4.26, (LUT096)
	k	Polynomial coefficient orders [dl], $k = [0;3]$

Output: $H2OCorr_Poly_LUT[\lambda', k]$

H₂O transmittance polynomial coefficients

units: [*dl*]

- **Warning**: The process for generating this table is time-consuming. To avoid loosing data in case of a power failure, several temporary binary files are created after few hours of processing: X_xx.LUT100 and TH2O_xx.LUT100 (xx stands for the 21 reference wavelengths). This allows one to resume the processing after a power failure. If we want fully restart the generation procedure, then the temporary binary files should be first deleted before relaunching the process.
 - Step-1: Compute *Gaussian* angles (n=6) for a total of 21 [n.(n+1)/2] indices of ($\theta_s \times \theta_v$) combinations with the RTC/GAUSS. Due to the large time of processing, use only a subset of 21 indices of ($\theta_s \times \theta_v$) combinations to generate this table.

Step-2: Generate TOA normalized radiances $L_{TOA_{14}}[\theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{a_1}]$ and $L_{TOA_{15}}[\theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{a_1}]$ for a non-absorbing/absorbing H₂O atmosphere over a black/reflective surface with the RTC/UPRAD (GAME).

RTC/UPRAD (GAME) Inputs (LAND)									
	Variable	Value	Comments						

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 214

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	14 and 15	885 nm & 900 nm
U_{H2O}	1	For GAME computations without H ₂ O
	1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 12.0	For GAME computations with H ₂ O
U_{O2}	0	
ESFT	"./INPUT/RKLM_NO",	For case u_{H2O} =1 (without H ₂ O absorption)
	"./INPUT/RKLM_AL"	For case $u_{H2O} \neq 1$ (with H ₂ O absorption)
P_s	1013.25	
$\tau^{\Lambda}(\lambda)$	0	
aerosol1	"./INPUT/sc_conti_b14", "./INPUT/sc_conti_b15"	Continental aerosols
$\tau^{al}(550)$	0.1, 0.3 and 0.6	
aerosol2	-	
$\tau^{a^2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Vertical distribution of the aerosols as a decreasing exponential ($H_a=2 \ km$)
I_s	60	
$ ho_s$	0, 0.2, 0.4 and 0.6	Only the first value is considered for reducing the computation time
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{w}_{\mathrm{o},\lambda}$	-	N/A
W_s	0	
n_s , n_v , $n_{\Delta\phi}$	6, 6, 1	Loop for 21 $\theta_s \mathbf{x} \theta_v$ combinations
θ_s	Gaussian angles	Computed with RTC/GAUSS
θ_v	Gaussian angles	Computed with RTC/GAUSS

ŀ	0	а	ľ	-	E	3		e		ľ		
t	е	с	h	n	0	1	0	g	i	е	S	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 215

Variable	Value	Comments
$\Delta \phi$	0	
pol	0	

<u>Note</u>: In order to reduce the computation times, the upwelling TOA radiances will be simulated over a black surface only (which allows to include the oceanic surface cases) and with a subset of 21 indices of ($\theta_s \propto \theta_y$) combinations.

Step-3: Compute the ratio $x[\theta_s x \theta_v, U_{H_2O}, \rho_s, \tau^{al}]$ as follows,

 $x[\theta_{s} \mathsf{X} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{a^{l}}] = L_{TOA_15}[\theta_{s} \mathsf{X} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{a^{l}}] / L_{TOA_14}[\theta_{s} \mathsf{X} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{a^{l}}]$

Step-4: Select a shifted MERIS H₂O filter (λ') and generate TOA normalized radiances $L_{TOA_9_H2O}[\lambda', \theta_s \mathbf{x} \theta_{\nu}, U_{H_2O}, \rho_s, \tau^{al}]$ for an absorbing H₂O atmosphere and $L_{TOA_9_n0H2O}[\lambda', \theta_s \mathbf{x} \theta_{\nu}, \rho_s, \tau^{al}]$ for a non-absorbing H₂O atmosphere, over a black/reflective surface with the RTC/UPRAD (GAME).

RTC/UPRAD (GAME) Inputs (LAND)

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	9	708.75 nm
U _{H2O}	1	For GAME computations without H ₂ O
	1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 12.0	For GAME computations with H ₂ O
U_{O2}	0	
ESFT	"./INPUT/RKLM_NO",	For case u_{H2O} =1 (without H ₂ O absorption)
	"./INPUT/RKLM_H2O_xx"	For case $u_{H2O} \neq 1$ (with H ₂ O absorption), <i>xx</i> varies from 0 to (NbFiltH2O-1), <i>see</i>
		Section 6.11.4.26
P_s	1013.25	
$ au^R(\lambda)$	0	
aerosol1	"./INPUT/sc_conti_b09"	
$\tau^{al}(550)$	0.1, 0.3 and 0.6	
aerosol2	-	

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page

<u>Page</u>: 216

Variable	Value	Comments
$\tau^{a2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{p}_{{ m o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{_{ys}}_{_{e,\lambda}}$	-	N/A
vertical	"./INPUT/vertical_out"	Vertical distribution of the aerosols as a decreasing exponential ($H_a=2 \ km$)
I_s	60	
$ ho_s$	0, 0.2, 0.4 and 0.6	Only the first value is considered for reducing the computation time
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{w}_{0,\lambda}$	-	N/A
Ws	0	
n_s , n_v , $n_{\Delta\phi}$	6, 6, 1	Loop for 21 $\theta_s \mathbf{x} \theta_v$ combinations
θ_s	Gaussian angles	Computed with RTC/GAUSS
θ_{v}	Gaussian angles	Computed with RTC/GAUSS
$\Delta \phi$	0	
pol	0	

<u>Note</u>: In order to reduce the computation times, the upwelling TOA radiances will be simulated over a black surface only (which allows to include the oceanic surface cases) and with a subset of 21 indices of ($\theta_s \ x \ \theta_v$) combinations. Moreover, each of the 'RKLM_H2O_xx' files (xx=[0..20]) contains the ESFT coefficients for computing H2O and O2 transmittances, both for all the 15 MERIS bands. Only the H20 ESFT coefficients for the MERIS band#9 differ between these 21 files.

 $L_{TOA \ 9 \ H2O}[\lambda', \theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{a_I}] = L_{TOA \ 9 \ noH2O}[\lambda', \theta_s \times \theta_v, \rho_s, \tau^{a_I}]$

Step-5: Compute the H₂O transmittance in the selected shifted MERIS H2O filter λ' as follows,

 $T_{\text{H2O}_{9}}[\lambda', \theta_{s} \times \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{a^{1}}] = L_{TOA_{9}-\text{H2O}}[\lambda', \theta_{s} \times \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{a^{1}}] / L_{TOA_{9}-\text{noH2O}}[\lambda', \theta_{s} \times \theta_{v}, \rho_{s}, \tau^{a^{1}}]$

Step-6: Repeat steps 4 and 5 for each shifted MERIS H₂O filter λ' .

Step-7: For each shifted MERIS H₂O filter λ' , apply a polynomial fit on the ratio $x[\theta_s \times \theta_v, U_{H_2O}, \rho_s, t^{a^1}]$ as function of the H₂O transmittance in the selected shifted MERIS H2O filter λ' , $T_{H2O} \ g[\lambda', \theta_s \times \theta_v, U_{H,O}, \rho_s, t^{a^1}]$, for retrieving polynomial coefficients $a_h[\lambda]$, $b_h[\lambda]$, $c_h[\lambda]$ and $d_h[\lambda]$,

 $T_{\text{H2O}_9}[\lambda', \theta_{s} \mathbf{X} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{a^{1}}] = a_{h}[\lambda']$ $+ b_{h}[\lambda'] \cdot x[\theta_{s} \mathbf{X} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{a^{1}}]$ $+ c_{h}[\lambda'] \cdot x[\theta_{s} \mathbf{X} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{a^{1}}]^{2}$ $+ d_{h}[\lambda'] \cdot x[\theta_{s} \mathbf{X} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{a^{1}}]^{3}$

Scientific content:

These sets of polynomial coefficients are useful to compute the residual H₂O absorption within the 21 shifted MERIS band #9 (708.75*nm*) (*i.e.*, by taking the smile effect into account) whatever the illumination (θ_s) and viewing (θ_v) configuration, whatever the absorber amount, whatever the surface reflectance (ρ_s), and whatever the aerosol optical thickness (τ^{a1}), by using the H₂O transmittance in the MERIS band #15 (900*nm*).

Note that up today the receipe for generating this LUT is not yet included in the MERISAT tool v1.4. This LUT should have to be completed for a MLS profile with several water vapor amounts (U_{H2O}), using a continental aerosol model with several aerosol optical thicknesses (τ^{al}), and over a black surface ($\rho_s=0$) for reducing the computation times.

Resources:

Estimated CPU time: 55674 sec Output disk space: $21 \times 4 \times 4$ bytes/fl = 336 bytes

Acceptance:

These polynomial coefficients can be tested by applying them to the ratio $x[\theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{a_1}]$ computed with another RTC, and by comparing the H₂O transmittances (within the 21 shifted MERIS band #9) derived from these polynomial fits with those generated using the same other RTC.

6.11.6.3 Polynomial coefficients for H2O transmittance retrieval at the 15 MERIS wavelengths

<u>Reference:</u> $a_h(b), b_h(b), c_h(b), d_h(b),$ LUT100

[AD-8] Section 6.11.6, GADS field 3.

Dependencies:

LUT076

Tools:

RTC/UPRAD (GAME) RTC/GAUSS

Procedure:

Inputs:	λ k		15 MERIS wavelengths [<i>nm</i>], see Section 6.11.4.3, (LUT076) Polynomial coefficient orders [<i>dl</i>], $k = [0;3]$
Output:	а	$_{h}[\lambda], b_{h}[\lambda], c_{h}[\lambda]$	[λ], $d_h[\lambda]$ H ₂ O transmittance polynomial coefficients for 10 MERIS wavelengths λ [<i>nm</i>], {510, 560, 620, 665, 681.25, 708.75, 753.75, 778.75, 865, 885}.
u	nits:	[dl]	

- **Warning**: The process for generating this table is time-consuming. To avoid loosing data in case of a power failure, several temporary binary files are created after few hours of processing: *X.LUT100* and *TH2O.LUT100*. This allows one to resume the processing after a power failure. If we want fully restart the generation procedure, then the temporary binary files should be first deleted before relaunching the process.
 - Step-1: Compute *Gaussian* angles (n=12) for a total of 78 [n.(n+1)/2] indices of $(\theta_s \times \theta_v)$ combinations with the RTC/GAUSS. Due to the large time of processing, use only a subset of 21 indices of $(\theta_s \times \theta_v)$ combinations to generate this table.
 - Step-2: Generate TOA normalized radiances $L_{TOA_14}[\theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{a_1}]$ and $L_{TOA_15}[\theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{a_1}]$ for a non-absorbing/absorbing H₂O atmosphere over a black/reflective surface with the RTC/UPRAD (GAME).

RTC/UPRAD (GAME) Inputs (LAND)				
Variable	Value	Comments		

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 219

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	14 and 15	885 nm & 900 nm
U_{H2O}	1	For GAME computations without H ₂ O
	1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 12.0	For GAME computations with H ₂ O
U_{O2}	0	
ESFT	"./INPUT/RKLM_NO",	For case u_{H2O} =1 (without H ₂ O absorption)
D	"./INPU1/RKLM_AL"	For case $u_{H2O} \neq 1$ (with H ₂ O absorption)
P_s	1013.25	
$\tau^{*}(\lambda)$		Cartinental associa
aerosol1	"./INPU1/sc_conti_b14", "/INPUT/sc_conti_b15"	Continental aerosois
$\tau^{al}(550)$	0.1, 0.3 and 0.6	
aerosol2	-	
$\tau^{a^2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{_{p}}_{_{e,\lambda}}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Vertical distribution of the aerosols as a decreasing exponential ($H_a=2 \ km$)
I_s	60	
$ ho_s$	0, 0.2, 0.4 and 0.6	Only the first value is considered for reducing the computation time
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega_{\mathrm{o},\lambda}^{w}$	-	N/A
Ws	0	
$n_s, n_v, n_{\Delta\phi}$	12, 12, 1	Use a loop for 78 $\theta_s \times \theta_v$ combinations only for minimizing the computation time.
$ heta_s$	Gaussian angles	Computed with RTC/GAUSS

MERIS / ENVISAT-1 MEdium Resolution Imaging

Spectrometer

Ref.:	PO	-RS-PAI	R-GS	6-0002
<u>lssue</u> :	3	<u>Rev.</u> :	С	
Date:	27-	Feb-11		<u>Page</u> : 220

Variable	Value	Comments
θ_v	Gaussian angles	Computed with RTC/GAUSS
$\Delta \phi$	0	
pol	0	

<u>Note</u>: In order to reduce the computation times, the upwelling TOA radiances will be simulated over a black surface only (which allows to include the oceanic surface cases) and with a subset of 21 indices of ($\theta_s \ge \theta_y$) combinations.

Step-3: Compute the ratio $x[\theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{a_1}]$ as follows,

 $x[\theta_{s} \mathbf{x} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{al}] = L_{TOA_l5}[\theta_{s} \mathbf{x} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{al}] / L_{TOA_l4}[\theta_{s} \mathbf{x} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{al}]$

Step-4: Generate TOA normalized radiances with H₂O absorption $L_{TOA_H2O}[\lambda, \theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{al}]$ and without H₂O absorption $L_{TOA_noH2O}[\lambda, \theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{al}]$, over a black surface with the RTC/UPRAD (GAME) for each of the 10 specified MERIS spectral bands $n(\lambda)$.

RTC/UPRAD (GAME) Inputs (LAND)

Variable	Value	Comments
out_file	"./INPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	4, 5, 6, 7, 8, 9, 10, 12, 13 and 14	510, 560, 620, 665, 681.25, 708.75, 753.75, 778.75, 865 & 885 nm
U_{H2O}	1	For GAME computations without H ₂ O
	1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 12.0	For GAME computations with H ₂ O
U_{O2}	0	
ESFT	"./INPUT/RKLM_NO",	For case $u_{H2O}=1$ (without H ₂ O absorption)
	"./INPUT/RKLM_AL"	For case $u_{H2O} \neq 1$ (with H ₂ O absorption)
P_s	1013.25	
$ au^{R}(\lambda)$	0	
aerosoll	"./INPUT/sc_conti_bxx"	Continental aerosols, <i>xx</i> depends on $n(\lambda)$
$\tau^{al}(550)$	0.1, 0.3 and 0.6	
aerosol2	-	
$\tau^{a2}(550)$	0	

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page

<u>Page</u>: 221

Variable	Value	Comments
aerosol3	<u> </u>	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2		N/A
cloud3		N/A
phyto	-	N/A
$\sigma^{p}_{_{e,\lambda}}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle spm}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{ys}_{e,\lambda}$	-	N/A
vertical	"./INPUT/vertical_out"	Vertical distribution of the aerosols as a decreasing exponential ($H_a=2 \ km$)
Is	60	
ρ_s	0, 0.2, 0.4 and 0.6	Only the first value is considered for reducing the computation time
Eo	1	
$\sigma^{\scriptscriptstyle W}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{w}_{\mathrm{o},\lambda}$	-	N/A
Ws	0	
n_s , n_v , $n_{\Delta\phi}$	12, 12, 1	Use a loop for 78 $\theta_s \times \theta_v$ combinations only for minimizing the computation time.
θ_{s}	Gaussian angles	Computed with RTC/GAUSS
θ_{v}	Gaussian angles	Computed with RTC/GAUSS
$\Delta \phi$	0	
pol	0	

<u>Note</u>: In order to reduce the computation times, the upwelling TOA radiances will be simulated over a black surface only (which allows to include the oceanic surface cases) and with a subset of 21 indices of ($\theta_s \ge \theta_y$) combinations.

Step-5: Compute the H₂O transmittance in the 10 MERIS bands as follows,

 $T_{\text{H2O}}[\lambda, \theta_{s} \mathbf{X} \theta_{v}, U_{H_{2O}}, \rho_{s}, \tau^{a_{1}}] = L_{TOA_{\text{H2O}}}[\lambda, \theta_{s} \mathbf{X} \theta_{v}, U_{H_{2O}}, \rho_{s}, \tau^{a_{1}}] / L_{TOA_{\text{noH2O}}}[\lambda, \theta_{s} \mathbf{X} \theta_{v}, \rho_{s}, \tau^{a_{1}}]$

Step-6: Apply a polynomial fit on the ratio $x[\theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{a_l}]$ as function of the H₂O transmittance in each λ of 10 selected MERIS bands $T_{\text{H2O}}[\lambda, \theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{a_l}]$, for retrieving polynomial coefficients $a_h[\lambda]$, $b_h[\lambda]$, $c_h[\lambda]$ and $d_h[\lambda]$,

 $T_{\rm H2O}[\lambda, \theta_{\rm s} \mathbf{X} \,\theta_{\nu}, U_{H,O}, \rho_{\rm s}, \tau^{al}] =$

+ $\mathbf{b}_{h}[\lambda] \cdot x[\theta_{s} \mathbf{X} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{al}]$ + $\mathbf{c}_{h}[\lambda] \cdot x[\theta_{s} \mathbf{X} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{al}]^{2}$ + $\mathbf{d}_{h}[\lambda] \cdot x[\theta_{s} \mathbf{X} \theta_{v}, U_{H_{2}O}, \rho_{s}, \tau^{al}]^{3}$

 $a_h[\lambda]$

Scientific content:

These sets of polynomial coefficients are useful to compute the residual H₂O absorptions within the 10 selected MERIS band (510, 560, 620, 665, 681.25, 708.75, 753.75, 778.75, 865, and 885 *nm*) whatever the illumination (θ_s) and viewing (θ_v) configuration, whatever the absorber amount, whatever the surface reflectance (ρ_s), and whatever the aerosol optical thickness (τ^{al}), by using the corresponding H₂O transmittance in the MERIS band #15 (900 *nm*). For the other MERIS bands (412.5, 442.5, 490, 761.875, 900 *nm*) $a_h[\lambda]$ are set to 1 and $b_h[\lambda]$, $c_h[\lambda]$, $d_h[\lambda]$ are set to 0.

Note that here, all the computations are completed for a MLS profile with several water vapor amounts (u_{H2O}) , using a continental aerosol model with several aerosol optical thicknesses (τ^{al}) , and over a black surface $(\rho_s=0)$ for reducing the computation times.

Resources:

Estimated CPU time: $39767 \ sec$ Output disk space: $15 \times 4 \times 4$ bytes/fl = 240 bytes

Acceptance:

These polynomial coefficients can be tested by applying them to the ratio $x[\theta_s \times \theta_v, U_{H_2O}, \rho_s, \tau^{a_1}]$ computed with another RTC, and by comparing the H₂O transmittances (within each of these 10 selected MERIS bands) derived from these polynomial fits with those generated using the same other RTC.

6.11.7 GADS Rayleigh Scattering Function

6.11.7.1 Fourier series terms of polynomial coefficients for multiplicative Rayleigh scattering function retrieval

<u>Reference:</u> Rayscatt_coef_LUT, LUT101

[AD-8] Section 6.11.7, GADS field 1, 2 & 3.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 223

Dependencies:

LUT075, LUT080, LUT081

Tools:

RTC/UPRAD (SO) Polynomial fit

Procedure:

Inputs:	$ au^R$	<i>Rayleigh</i> optical thickness [<i>dl</i>], see Section 6.11.4.2, (LUT075)	
	θ	Gaussian angle [deg], see Section 6.11.4.7, (LUT080)	
	$\theta_{s} \times \theta_{v}$	Stored indices for angular combinations [dl] (78 values), see Section	
		6.11.4.8, (LUT081)	
	S	Fourier series term $[dl]$, $s = [0;2]$	
	k	Polynomial coefficient order [<i>dl</i>], $k = [0;3]$	
Output:	Rayscatt_coef_	$LUT[s, \theta_s \times \theta_v, k]$	
		<i>Fourier</i> series terms of multiplicative <i>Rayleigh</i> scattering function polynomial coefficients as function of the acceptable combinations (sun/view zenith angles)	
units:	[dl]		

- **Warning**: One temporary file is created during the procedure: *RayFactor.LUT101*. If we want fully restart the generation procedure, then the temporary binary file should be first deleted before relaunching the process.
 - Step-1: Compute the normalized TOA radiances $L_{TOA}[s, \theta_s \times \theta_v, \tau^R]$ and the primary scattering radiance $L_{P_TOA}[s, \theta_s \times \theta_v, \tau^R]$ for the first 3 *Fourier* series terms (*s* varying between 0 and $I_s=2$) and the last *Fourier* series term ($I_s=79$), computed with the RTC/UPRAD (SO) for a pure *Rayleigh* atmosphere over a black surface.

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1 and 11	1 for L_{TOA} , and 11 for $L_{P_{-}TOA}$
$n(\lambda)$	1	412.5 nm
U_{H2O}	0	
U_{O2}	0	
ESFT		N/A
P_s	1013.25	
$ au^R(\lambda)$	tauR	see Section 6.11.4.2
aerosol1	-	
$\tau^{al}(550)$	0	

RTC/UPRAD (SO) Inputs (LAND)

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page

<u>Page</u>: 224

Variable	Value	Comments
aerosol2	-	
$\tau^{a^2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{{}_{p}}_{{}_{e,\lambda}}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle spm}$	-	N/A
$\mathscr{O}^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO (H_R =8 km)
I_s	0, 1, 2	For $i_branch = 11$
	79	For $i_branch = 1$
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{w}_{\mathrm{o},\lambda}$	-	N/A
w _s	0	
n_s , n_v , $n_{\Delta\phi}$	12, 12, 1	Use a loop for 78 $\theta_s \times \theta_v$ combinations only for minimizing the computation time
θ_{s}	see inputs	see Section 6.11.4.7 and Section 6.11.4.8
θ_{v}	see inputs	see Section 6.11.4.7 and Section 6.11.4.8
$\Delta \phi$	0	
pol	1	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 225

Step-2: Compute the multiplicative *Rayleigh* scattering function $f_R[s, \theta_s \times \theta_v, \tau^R]$, as follows, $f_R[s, \theta_s \times \theta_v, \tau^R] = L_{TOA}[s, \theta_s \times \theta_v, \tau^R] / L_{P_TOA}[s, \theta_s \times \theta_v, \tau^R]$

Step-3: Apply a polynomial fit on the multiplicative *Rayleigh* scattering function $f_R[s, \theta_s \times \theta_v, \tau^R]$ as function of the *Rayleigh* optical thickness (τ^R) for retrieving polynomial coefficients *Rayscatt_coef_LUT*[$s, \theta_s \times \theta_v, k$],

 $f_{R}[s,\theta_{s}\times\theta_{v},\tau^{R}] = Rayscatt_coef_LUT[s,\theta_{s}\times\theta_{v},0]$ $+ Rayscatt_coef_LUT[s,\theta_{s}\times\theta_{v},1] . (\tau^{R})$ $+ Rayscatt_coef_LUT[s,\theta_{s}\times\theta_{v},2] . (\tau^{R})^{2}$ $+ Rayscatt_coef_LUT[s,\theta_{s}\times\theta_{v},3] . (\tau^{R})^{3}$

Scientific content:

These sets of polynomial coefficients are useful to compute the multiplicative *Rayleigh* scattering function whatever the illumination (θ_s) and viewing (θ_v) configuration, whatever the *Rayleigh* optical thickness (τ^R), and for each *Fourier* series (*s*) term used in the *Fourier* series expansion of the TOA normalized radiance. This multiplicative *Rayleigh* scattering function is then used to correct the *Rayleigh* primary TOA radiance for the multiple scattering.

Note:

To reduce the size of the LUT related to the *Rayleigh* reflectance (ρ_R) computations, the latter is expanded into a *Fourier* series to cancel the azimuthal dependence,

$$\rho_{R}(\vartheta_{s},\vartheta_{v},\Delta\phi) = \sum_{s=0}^{2} (2-\delta_{0,s}) \cdot \rho_{R}^{(s)}(\vartheta_{s},\vartheta_{v}) \cdot \cos(s\Delta\phi)$$

with $\delta_{0,s}$ the *Dirac*'s function, and the scattering phenomenon for each *Fourier* series term *s* is treated as a primary scattering term $\rho_{R,P}^{(s)}$ corrected by a multiplicative function $f_R^{(s)}$ which accounts for the multiple scattering. Thus the *Rayleigh* reflectance $\rho_R^{(s)}$ for each *Fourier* series term *s* is written as:

$$\rho_{R}^{(s)}(\vartheta_{s},\vartheta_{v},\tau^{R}) = \rho_{R,P}^{(s)}(\vartheta_{s},\vartheta_{v},\tau^{R}) \cdot f_{R}^{(s)}(\vartheta_{s},\vartheta_{v},\tau^{R})$$

where $\rho_{R,P}^{(s)}$, the primary scattering reflectance for *Rayleigh*, is determined in the atmospheric correction algorithm over land. Note that the *Rayleigh* scattering functions $(f_R^{(s)})$ are pre-computed as function of *Rayleigh* optical thickness (τ^R) instead of the MERIS wavelength (λ) because of the barometric pressure variation with the terrain elevation.

The multiplicative *Rayleigh* scattering function $(f_R^{(s)})$ for each of the first 3 *Fourier* series terms (s) is then deduced by simulating $\rho_R^{(s)}$ with the RTC/UPRAD(SO) and computing $\rho_{R,P}^{(s)}$ as:

$$\rho_{R,P}^{(s)}(\vartheta_s,\vartheta_v,\tau^R) = P_R^{(s)}(\vartheta_s,\vartheta_v) \cdot \frac{(1-e^{-M.\tau_R})}{4\cdot(\cos\vartheta_s+\cos\vartheta_v)}$$

with M the airmass and $P_R^{(s)}$ the Rayleigh phase function for each Fourier series term s expressed as:

$$\begin{cases} P_R^{(0)}(\vartheta_s, \vartheta_v) = \frac{3A}{4} \cdot \left(1 + \cos^2 \vartheta_s \cdot \cos^2 \vartheta_v + \frac{\sin^2 \vartheta_s \cdot \sin^2 \vartheta_v}{2}\right) + B \\ P_R^{(1)}(\vartheta_s, \vartheta_v) = -\frac{3A}{8} \cdot \cos \vartheta_s \cdot \cos \vartheta_v \cdot \sin \vartheta_s \cdot \sin \vartheta_v \\ P_R^{(2)}(\vartheta_s, \vartheta_v) = \frac{3A}{16} \cdot \sin^2 \vartheta_s \cdot \sin^2 \vartheta_v \end{cases}$$

A and B are the 2 coefficients which account for the molecular asymmetry, A = 0.9587256, B = 1 - A (see Section 6.11.4.9 and [RD-5]).

A third order polynomial fit (k = [0;3]) as function of τ^{R} has then been applied on the set of multiplicative *Rayleigh* scattering functions ($f_{R}^{(s)}$) determined for each of the first 3 *Fourier* series terms (s = [0;2]):

$$f_{R}^{(s)}(\boldsymbol{\vartheta}_{s},\boldsymbol{\vartheta}_{v},\boldsymbol{\tau}^{R}) = \sum_{k=0}^{3} C_{i}^{(s)}(\boldsymbol{\vartheta}_{s},\boldsymbol{\vartheta}_{v}) \cdot (\boldsymbol{\tau}^{R})^{i}$$

with $C_k^{(s)}$ the polynomial coefficients for the *Fourier* series term s.

Moreover, the multiplicative *Rayleigh* scattering function (f_R) will be computed by recombining the first 3 *Fourier* series terms as follows:

$$f_{R}(\mathcal{G}_{s},\mathcal{G}_{v},\Delta\phi,\tau^{R}) = \sum_{s=0}^{2} (2-\delta_{0,s}) \cdot f_{R}^{(s)}(\mathcal{G}_{s},\mathcal{G}_{v},\tau^{R}) \cdot \cos(s\Delta\phi)$$

Resources:

Estimated CPU time: $691 \ sec$ Output disk space: $3 \times 78 \times 4 \times 4$ bytes/fl = 3744 bytes

Acceptance:

These polynomial coefficients can be tested by comparing the derived multiplicative *Rayleigh* scattering functions to those generated with another RTC based on the *Fourier* series expansion of the radiative transfer equation.

6.11.8 GADS Rayleigh Spherical Albedo

6.11.8.1 Rayleigh spherical albedo, $S_R(\tau^R)$

<u>Reference</u>: Rayalb_LUT, LUT102

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 227

[AD-8] Section 6.11.8, GADS field 1.

Dependencies:

LUT075

Tools:

RTC/UPRAD (SO) RTC/GAUSS Polynomial fit

Procedure:

Input: τ^{R} Rayleigh optical thickness, see Section 6.11.4.2 (LUT075)

Output: $Rayalb_LUT[\tau^{R}]$ Rayleigh spherical albedo (17 values)

units: [dl]

Step-1: Compute *Gaussian* angles (n=24) and associated weights $w[\mu]$ with the RTC/GAUSS.

Step-2: Calculate the *Rayleigh* transmittance $T_R[\tau^R, \mu_s]$ corresponding to the first order of *Legendre* decomposition ($I_s=0$) of phase function with the RTC/UPRAD (SO). For extracting the total atmospheric transmittance, we need to set $I_s=0$ and $\theta_v=-1$. μ_s is defined as $\cos(\theta_s)$.

RTC/UPRAD (SO) Inputs (LAND)

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	1	412.5 nm
U_{H2O}	0	
U_{O2}	0	
ESFT		N/A
P_s	1013.25	
$ au^R(\lambda)$	tauR	see Section 6.11.4.2
aerosol1	-	
$\tau^{al}(550)$	0	
aerosol2	-	
$\tau^{a2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 228

Variable	Value	Comments
cloud3	-	N/A
phyto	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle p}$	-	N/A
$\mathscr{O}^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\mathscr{O}^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO (H_R =8 km)
I_s	0	
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\mathscr{O}^{\scriptscriptstyle{W}}_{\mathrm{o},\lambda}$	-	N/A
Ws	0	
n_s , n_v , $n_{\Delta\phi}$	24, 1, 1	Use a loop for 24 θ_s .
θ_{s}	Gaussian angles	Computed with RTC/GAUSS
θ_v	-1	To get the total atmospheric transmittance
$\Delta \phi$	0	
pol	1	

Step-3: Compute the *Rayleigh* spherical albedo *Rayalb* $LUT[\tau^{R}]$ as follows, knowing that $\mu = \cos(\theta_{s})$,

Rayalb_LUT[
$$\tau^{R}$$
] = 1 - 2. $\int_{0}^{1} T_{R}[\tau^{R}, \mu] . w[\mu] . \mu . d\mu$

Scientific content:

The *Rayleigh* spherical albedo *Rayalb_LUT* is used in the atmospheric correction algorithm over land, and is precomputed with a RTC for a set of *Rayleigh* optical thicknesses.

Resources:

Estimated CPU time: 17 secOutput disk space: 17×4 bytes/fl = 68 bytes

Acceptance:

Comparison of these Rayleigh spherical albedos with those computed with another RTC.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 229

6.11.9 ADS O2 Transmission around 778.75 nm

6.11.9.1 O2 transmittances around 778.75 nm (21 shifted filters)

<u>Reference</u>: TO2[λ' , L_{779} , θ_s , θ_v , $\Delta \phi$], LUT099

[AD-8] Section 6.11.6, GADS field 1.

FUB/ACRI provided

Dependencies:

LUT085, LUT086, LUT087, LUT088, LUT095

Tool:

Neural Network

Procedure:

Inputs:	λ'	21 reference wavelengths $[nm]$ corresponding to the 21 spectral shifts $(\Delta \lambda)$ of $\pm 0.1 nm$ applied on the MERIS O ₂ filter centred at 778.5 nm, see Section 6.11.4.11 (LUT095)
	L_{779}	25 normalized radiances at 778.75 nm $[sr^{-1}]$, see Section 6.11.4.12, (LUT085)
	$ heta_{s}$	Solar zenith angle [deg], see Section 6.11.4.13, (LUT086)
	θ_{v}	Viewing zenith angle [deg], see Section 6.11.4.14, (LUT087)
	$\Delta \phi$	Relative azimuth angle [deg], see Section 6.11.4.15, (LUT088)
Output:	TO2[$\lambda', L_{779}, \theta_s$	O_2 , $\theta_v, \Delta \phi$] O_2 transmittances around 778.75 <i>nm</i>
units:	[dl]	
Step:	User specified.	

LUT processed at the FUB institute with a NN tool and delivered to ACRI.

Scientific content:

 $TO2[\lambda', L_{779}, \theta_s, \theta_v, \Delta\phi]$ correspond to the residual O₂ absorption within the MERIS band #12 (778.75 *nm*), accounting for the smile effect (21 shifted filters (λ')), the normalized radiance at 778.75 *nm* (25 values of L_{779}) and whatever the illumination and viewing geometry ($\theta_s, \theta_v, \Delta\phi$). Note that the set of 25 values of L_{779} have been pre-computed with RTC/MOMO for a set of surface reflectances (ρ_s), a set of surface pressures (P_s), and a set of aerosol optical thicknesses (τ^{al}).

Resources:

Estimated CPU time: -

Output disk space: $21 \times 25 \times 15 \times 10 \times 19 \times 4$ bytes/fl = 5985000 bytes

Acceptance:

Corresponds to the latest definition.

6.11.10 ADS Apparent Pressure Parameters

6.11.10.1 O2 Rayleigh transmittances around 778.75 nm (21 shifted filters)

Reference:	TO2_ray[$\lambda', \theta_s, \theta_s$	θ_{ν}], LUT103		
[AD-8]	Section 6.11.10, GADS field 1.			
FUB/ACF	RI provided			
Dependencies	<u>5</u> :			
LUT471,	LUT472			
<u>Tool</u> :				
Neural Ne	etwork			
Procedure:				
Inputs:	λ'	21 reference wavelengths [<i>nm</i>] corresponding to the 21 spectral shifts $(\Delta \lambda)$ of $\pm 0.1 nm$ applied on the MERIS O ₂ filter centred around 761.7 <i>nm</i> , see Section 6.11.4.26 (LUT471)		
	$ heta_s$	Solar zenith angle [<i>deg</i>], <i>see</i> Section 6.11.4.29, (LUT472)		
	$ heta_{v}$	Viewing zenith angle [<i>deg</i>], <i>see</i> Section 6.11.4.29, (LUT472)		
Output:	TO2_ray[λ', θ_s	$[\theta_{v}]$ O ₂ Rayleigh transmittances around 778.75 <i>nm</i>		
ur	nits: [<i>dl</i>]			
Step:	User specified. LUT processed	at the FUB institute with a NN tool and delivered to ACRI.		
~ · · · · · ·				

Scientific content:

 $TO2_ray[\lambda', \theta_s, \theta_v]$ corresponds to the residual O₂ absorption within the MERIS band #12 (778.75 nm) over a flat black surface, including the molecular scattering effects and accounting for the smile effect (21 shifted filters (λ')) whatever the illumination and viewing geometry (θ_s, θ_v).

Resources:

Ref.: PO-RS-PAR-GS-0002 Rev.: C Issue: 3 Date: 27-Feb-11 Page: 231

Estimated CPU time: Output disk space: $21 \times 24 \times 24 \times 4$ bytes/fl = 48384 bytes

Acceptance:

Corresponds to the latest definition.

6.11.10.2 O2 aerosol transmittances around 778.75 nm (21 shifted filters; Ha=2 km)

Reference:	TO2_aer[$\lambda', \theta_s, \theta_s$]	,], LUT104
[AD-8]	Section 6.11.10, 0	ADS field 2.
FUB/AC	RI provided	
Dependencie	<u>es</u> :	
LUT471,	, LUT472	
<u>Tool</u> :		
Neural N	letwork	
Procedure:		
Inputs:	λ'	21 reference wavelengths [<i>nm</i>] corresponding to the 21 spectral shifts $(\Delta \lambda)$ of $\pm 0.1 nm$ applied on the MERIS O ₂ filter centred around 761.7 <i>nm</i> , see Section 6.11.4.26, (LUT471)
	θ_s	Solar zenith angle [<i>deg</i>], <i>see</i> Section 6.11.4.29, (LUT472)
	$ heta_{v}$	Viewing zenith angle [deg], see Section 6.11.4.29, (LU14/2)
Output:	TO2 aer[λ', θ_s	θ_{v}]

TO2 aer[$\lambda', \theta_s, \theta_v$] O₂ aerosol transmittances around 778.75 nm

units: [dl]

Step:

User specified.

LUT processed at the FUB institute with a NN tool and delivered to ACRI.

Scientific content:

TO2 aer[$\lambda', \theta_s, \theta_y$] correspond to the residual O₂ absorption within the MERIS band #12 (778.75*nm*) over a flat black surface, including the aerosol scattering effects and accounting for the smile effect (21 shifted filters (λ') whatever the illumination and viewing geometry (θ_s, θ_v) . An aerosol scale height (H_a) of 2 km has been selected to generate these transmittances.

Resources:

Estimated CPU time: -Output disk space: $21 \times 24 \times 24 \times 4$ bytes/fl = 48384 bytes

Acceptance:

Corresponds to the latest definition.

6.11.10.3 O2 aerosol Fresnel transmittances around 778.75 nm (21 shifted filters; Ha=2 km)

Reference:	TO2 aer	Fresnel[λ' ,	$\theta_{s}, \theta_{v}],$	LUT105
		/	57 11	

[AD-8] Section 6.11.10, GADS field 3.

FUB/ACRI provided

Dependencies:

LUT471, LUT472

<u>Tool</u>:

Neural Network

Procedure:

Inputs:	λ'	21 reference wavelengths $[nm]$ corresponding to the 21 spectral shifts $(\Delta \lambda)$ of $\pm 0.1 nm$ applied on the MERIS O ₂ filter centred around 761.7 nm, see Section 6.11.4.26, (LUT471)
	$ heta_s$	Solar zenith angle [deg], see Section 6.11.4.29, (LUT472)
	$ heta_{v}$	Viewing zenith angle [deg], see Section 6.11.4.29, (LUT472)
Output:	TO2_aer_Fresh	$ \begin{array}{l} \text{el}[\lambda', \theta_{s}, \theta_{v}] \\ \text{O}_{2} \text{ aerosol } Fresnel \text{ transmittances around } 778.75 nm \end{array} $
units:	[dl]	
Step:	User specified.	
	LUT processed	at the FUB institute with a NN tool and delivered to ACRI.

Scientific content:

 $TO2_aer_Fresnel[\lambda', \theta_s, \theta_v]$ correspond to the residual O₂ absorption within the MERIS band #12 (778.75 nm) of the *Fresnel* reflection contribution over a flat black surface, including the aerosol scattering effects and accounting for the smile effect (21 shifted filters (λ')) whatever the illumination

and viewing geometry (θ_s , θ_v). An aerosol scale height (H_a) of 2km has been selected to generate these transmittances.

Resources:

Estimated CPU time: -Output disk space: $21 \times 24 \times 24 \times 4$ bytes/fl = 48384 bytes

Acceptance:

Corresponds to the latest definition.

6.11.10.4 O2 atmospheric transmittances around 778.75 nm (21 shifted filters; 21 layers; Ha=2 km)

<u>Reference</u>: TO2_atm[$\lambda', P_k, \theta_s, \theta_v$], LUT107

[AD-8] Section 6.11.10, GADS field 4.

FUB/ACRI provided

Dependencies:

LUT471, LUT472, LUT473

Tool:

Neural Network

Procedure:

Inputs:	λ'	21 reference wavelengths $[nm]$ corresponding to the 21 spectral shifts $(\Delta \lambda)$ of $\pm 0.1 nm$ applied on the MERIS O ₂ filter centred around 761.7 nm, see Section 6.11.4.26, (LUT471)
	P_k	21 reference pressure levels [<i>hPa</i>], see Section 6.11.4.30, (LUT473)
	θ_s	Solar zenith angle [deg], see Section 6.11.4.29, (LUT472)
	θ_v	Viewing zenith angle [deg], see Section 6.11.4.29, (LUT472)
Output:	TO2_atm[λ', P_k	$[0, \theta_s, \theta_v]$ O ₂ atmospheric transmittances around 778.75 <i>nm</i>
units:	[dl]	
Step:	User specified. LUT processed	at the FUB institute with a NN tool and delivered to ACRI.

Scientific content:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 234

 $TO2_atm[\lambda', P_k, \theta_s, \theta_v]$ correspond to the residual O₂ absorption within the MERIS band #12 (778.75 nm) over a flat black surface, including the aerosol and *Rayleigh* scattering effects and accounting for the smile effect (21 shifted filters (λ')) whatever the illumination and viewing geometry (θ_s , θ_v) and the pressure level (21 values of P_k). An aerosol scale height (H_a) of 2 km has been selected to generate these transmittances.

Resources:

Estimated CPU time: -Output disk space: $21 \times 24 \times 24 \times 4$ bytes/fl = 1016064 bytes

Acceptance:

Corresponds to the latest definition.

6.11.11 (Spare)

Reference:

[AD-8] Section 6.11.11

6.11.12 ADS Rayleigh Reflectance Over Ocean

This LUT can be generated with both the 2 RTCs (FUB & UdL). Consequently, two recipes are proposed hereafter to generate this LUT either with the RTC/FUB (without polarization) or with the RTC/UdL(SO) including the polarization processes (used for the current MERIS reprocessing).

6.11.12.1 Rayleigh reflectance over ocean

6.11.12.1.1 <u>FUB Recipe</u>

<u>Reference</u>: $\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta\phi]$, LUT110

[AD-8] Section 6.11.12, GADS fields 1, 2 & 3

Dependencies:

LUT076, LUT077, LUT078, LUT079, LUT92, LUT93, LUT410

Tools:

RTC/MOMO (FUB) Multi-linear interpolation

λ

Procedure:

Inputs:

MERIS wavelength [*nm*], see Section 6.11.4.3, (LUT076)

Output:

MERIS / ENVISAT-1 MEdium Resolution Imaging

Spectrometer

<u>Ref.</u> :	PO	-RS-PAF	R-GS	6-0002
<u>lssue</u> :	3	<u>Rev.</u> :	С	
Date:	27-	Feb-11		<u>Page</u> : 235

θ_s	Solar zenith angle [deg], see Section 6.11.4.4, (LUT077).
θ_{v}	Viewing zenith angle [deg], see Section 6.11.4.5, (LUT078).
$\Delta \phi$	Relative azimuth angle [deg], see Section 6.11.4.6, (LUT079).
P_s	Surface pressure [<i>hPa</i>], see Section 6.11.4.19, (LUT092).
τ^R	Ravleigh optical thickness [dl], see Section 6.11.1.1, (LUT410)

Rayleigh reflectance over ocean as function of the MERIS wavelength (λ) , the wind-speed above sea level (w_s) , and the illumination and viewing configuration $(\theta_s, \theta_v, \Delta \phi)$

units: [*dl*]

Step-1: Generate TOA normalized *Rayleigh* radiance $L_R[\lambda, w_s, \theta_s^{'}, \theta_v^{'}, \Delta \phi]$ for a pure *Rayleigh* atmosphere over 3 wind-roughened black sea surfaces ($w_s=1.5, 5.0$ and 10 $m.s^{-1}$) with the RTC/MOMO.

<u>Note</u>: The sun glint (*i.e.*, direct to direct contribution) is accounted for in $L_R[\lambda, w_s, \theta_s, \theta_v, \Delta\phi]$.

Variable	Value	Comments
out_file	"./up_out/uprad_out"	
i_branch	2	
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15	All MERIS bands, see Section 6.11.4.3
U_{H2O}	0	
$ESFT_{H2O}$	-	N/A
U_{O2}	0	
$ESFT_{O2}$	-	N/A
U_{O3}	0	
$ESFT_{O3}$	-	N/A
P_s	1013.25	see Section 6.11.4.19
$ au^R(\lambda)$	tauR	see Section 6.11.1.1
aerosoll	-	
$\tau^{al}(550)$	0	
aerosol2	-	
$\tau^{a2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
$\tau^{cl}(550)$	0	
cloud2	-	N/A
$\tau^{c^2}(550)$	0	
cloud3	-	N/A

RTC/MOMO Inputs (OCEAN)

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Rev.</u>: C 3 Issue: Date: 27-Feb-11

Page: 236

Variable	Value	Comments
$\tau^{c3}(550)$	0	
phyto	-	N/A
$\sigma^{{}_{e,\lambda}}_{{}_{e,\lambda}}$	-	N/A
$\omega_{\mathrm{o},\lambda}^{p}$	-	N/A
spm	-	N/A
$\sigma^{\scriptscriptstyle{spm}}_{\scriptscriptstyle{e,\lambda}}$	-	N/A
$\mathscr{O}^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{_{ys}}_{_{a,\lambda}}$	-	N/A
vertical	"./sca_vert/vtp1_lut110"	Vertical profile with 12 atmospheric layers
I_s	70	
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle a,\lambda}$	99	
Ws	1.5, 5.0 and 10	see Section 6.11.4.20
n_s , n_v , $n_{\Delta\phi}$	16, 10, 25	
θ_{s}	Gaussian angles	From Gauss-Lobatto quadrature (in RTC/FUB)
θ_{v}	Gaussian angles	From Gauss-Lobatto quadrature (in RTC/FUB)
$\Delta \phi$	see inputs	see Section 6.11.4.6

Step-2: Compute the *Rayleigh* reflectance $\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi]$ as follows,

$$\rho_{R}[\lambda, w_{s}, \theta'_{s}, \theta'_{v}, \Delta \phi] = \pi \cdot \frac{L_{R}[\lambda, w_{s}, \theta'_{s}, \theta'_{v}, \Delta \phi]}{\cos(\theta'_{s})}$$

Step-3: Remove the sun glint reflectance at TOA ($\rho_{G_{TOA}}$) from the *Rayleigh* reflectance (only for the case where $w_s \neq 0$). This is achieved by following this procedure:

In the *Cox and Munk* surface representation (*see* [RD-7] for more details), the probability density function of facet slopes $p(\theta_s, \theta_v, \Delta \phi)$ for the illumination and viewing configurations $(\theta_s, \theta_v, \Delta \phi)$ is expressed as:

$$p(\theta_{s}^{'}, \theta_{v}^{'}, \Delta \phi) = \frac{1}{\pi \sigma^{2}} \cdot \exp\left(\frac{-\tan^{2} \beta}{\sigma^{2}}\right)$$

where β , the angle between the local normal and the normal to the facet, is defined as,

$$\cos\beta = \frac{\cos\theta'_s + \cos\theta'_v}{2\cos\omega}$$

with

$$\cos 2\omega = \cos \theta'_s \cdot \cos \theta'_v - \sin \theta'_s \cdot \sin \theta'_v \cdot \cos \Delta \phi$$

and σ the root mean square of facet slopes (which are generated by the wind-speed w_s just above sea surface) is written as,

$$\sigma^2 = 0.003 + 5.12 \ 10^{-3} w_s$$

The sunglint ρ_G (*i.e.*, the specular reflection of the sunlight over the ocean waves) just above sea level is then computed as:

$$\rho_{G}(w_{s},\theta_{s}^{'},\theta_{v}^{'},\Delta\phi) = \rho_{F}(\omega) \cdot \frac{\pi \cdot p(\theta_{s}^{'},\theta_{v}^{'},\Delta\phi)}{4 \cdot \cos\theta_{s}^{'}\cos\theta_{v}^{'}\cos^{4}\beta}$$

where $\rho_F(\omega)$ is the *Fresnel* reflectance at the *air-sea* interface for an angle ω given by

$$\left[\begin{array}{c} \rho_F(\omega) = \frac{1}{2} \cdot \left[\left(\frac{\sin(\omega - \vartheta_t)}{\sin(\omega + \vartheta_t)} \right)^2 + \left(\frac{\tan(\omega - \vartheta_t)}{\tan(\omega + \vartheta_t)} \right)^2 \right] & \text{for } \omega \neq \vartheta_t \\ \rho_F(\omega) = \left(\frac{n_w - 1}{n_w + 1} \right)^2 & \text{for } \omega = \vartheta_t \end{array} \right]$$

with $\theta_t = \arcsin(\sin \omega / n_w)$, and n_w the water refractive index ($n_w = 1.34$).

Finally, the sun glint reflectance at TOA ($\rho_{G TOA}$) is expressed as:

$$\rho_{G_{-TOA}}(w_s, \theta'_s, \theta'_v, \Delta \phi) = \rho_G(w_s, \theta'_s, \theta'_v, \Delta \phi) \cdot T(\theta'_s) \cdot T(\theta'_v)$$

where $T(\theta)$ is the direct atmospheric transmittance for the zenith angle θ defined as,

$$T(\theta) = e^{-\tau/\cos(\theta)}$$

with τ the total optical thickness (*Rayleigh* + aerosols + O₃ + *etc.*).

Step-4: Apply a multi-linear interpolation to output the *Rayleigh* reflectance $\rho_R [\lambda, w_s, \theta_s^{'}, \theta_v^{'}, \Delta \phi]$ into the input angular grid in (θ_s, θ_v) :

 $\rho_{R}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi] = interpolation(\rho_{R}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi])$

and build the *Rayleigh* reflectance $\rho_R[\lambda, ws, \theta_s, \theta_v, \Delta \phi]$ for all parameters.

Scientific content:

 $\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta\phi]$ describes the *Rayleigh* reflectances simulated at each of the 15 MERIS wavelengths over 3 wind-roughened black sea surfaces ($w_s = 1.5$, 5.0 and 10 m.s⁻¹), for various illumination and viewing conditions, and a standard atmospheric pressure (1013.25 hPa). The boundary condition is a black (*Fresnel* reflecting) ocean. Note that the sun glint component at TOA has been removed from these *Rayleigh* reflectances.

Resources:

Estimated CPU time: $1024 \ sec$ Output disk space: $23 \times 3 \times 15 \times 13 \times 25 \times 4$ bytes/fl = 1345500 bytes

Note that the storage of this table is completed using different records for each θ_s tabulated value (*see* [AD-8] for exact structure).

Acceptance:

Comparison with another RTC that does not account for the polarization processes.

6.11.12.1.2 <u>UdL Recipe</u>

<u>Reference</u>: $\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta\phi]$, LUT110

[AD-8] Section 6.11.12, GADS fields 1, 2 & 3

Dependencies:

LUT076, LUT077, LUT078, LUT079, LUT92, LUT93, LUT410

Tool:

RTC/UPRAD (SO)

Procedure:

Inputs:	λ	MERIS wavelength [nm], see Section 6.11.4.3, (LUT076)
	W_s	Wind-speed $[m.s^{-1}]$ above sea level, see Section 6.11.4.20, (LUT093)
	θ_s	Solar zenith angle [deg], see Section 6.11.4.4, (LUT077).

θ_{v}	Viewing zenith angle [deg], see Section 6.11.4.5, (LUT078).
$\Delta \phi$	Relative azimuth angle [deg], see Section 6.11.4.6, (LUT079).
P_s	Surface pressure [<i>hPa</i>], see Section 6.11.4.19, (LUT092).
$ au^R$	<i>Rayleigh</i> optical thickness [<i>dl</i>], see Section 6.11.1.1, (LUT410)

Output:

 $\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi]$

Rayleigh reflectance over ocean as function of the MERIS wavelength (λ) , the wind-speed above sea level (w_s) , and the illumination and viewing configuration $(\theta_s, \theta_v, \Delta \phi)$

units: [*dl*]

- Step-1: Generate TOA normalized *Rayleigh* radiance $L_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi]$ for a pure *Rayleigh* atmosphere over 3 wind-roughened black sea surfaces ($w_s=1.5$, 5.0 and 10 m.s^{-1}) with the RTC/UPRAD (SO). The sun glint (*i.e.*, the direct to direct contribution) is not accounted for in $L_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi]$.
- <u>Note</u>: An internal sun glint flag has been desactivated in the RTC/SO for excluding the direct to direct contribution in the computation of TOA normalized radiance.

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	2	
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15	All MERIS bands, see Section 6.11.4.3
U_{H2O}	0	
U_{O2}	0	
ESFT	-	
P_s	1013.25	see Section 6.11.4.19
$ au^R(\lambda)$	tauR	see Section 6.11.1.1
aerosol1	-	
$\tau^{al}(550)$	0	
aerosol2	-	
$\tau^{a2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{_{p}}_{_{e,\lambda}}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A

RTC/UPRAD (SO) Inputs (OCEAN)

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 240

Variable	Value	Comments
spm	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle spm}$	-	N/A
$\varpi^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{e,\lambda}^{_{_{y_s}}}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO (H_R =8 km)
I_s	79	
$ ho_{s}$	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{w}_{\mathrm{o},\lambda}$	-	N/A
w _s	1.5, 5.0 and 10	see Section 6.11.4.20
n_s , n_v , $n_{\Delta\phi}$	16, 10, 25	
$ heta_s$	Gaussian angles	Selected from a <i>Gauss</i> quadrature; <i>see</i> Section 6.11.4.4
θ_v	Gaussian angles	Selected from a <i>Gauss</i> quadrature; see Section 6.11.4.5
$\Delta \phi$	see inputs	see Section 6.11.4.6
pol	1	

Step-2: Compute the *Rayleigh* reflectance $\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi]$ as follows,

$$\rho_{R}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta \phi] = \pi \cdot \frac{L_{R}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta \phi]}{\cos(\theta_{s})}$$

Scientific content:

 $\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi]$ describes the *Rayleigh* reflectances simulated at each of the 15 MERIS wavelengths over 3 wind-roughened black sea surfaces ($w_s = 1.5$, 5.0 and $10 m.s^{-1}$), for various illumination and viewing conditions, and a standard atmospheric pressure (1013.25 hPa). The boundary condition is a black (*Fresnel* reflecting) ocean. Note that the sun glint component at TOA has been removed from these *Rayleigh* reflectances.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 241

Resources:

Estimated CPU time: 259 sec Output disk space: $23 \times 3 \times 15 \times 13 \times 25 \times 4$ bytes/fl = 1345500 bytes Note that the storage of this table is completed using different records for each θ_s tabulated value (see [AD-8] for exact structure).

Acceptance:

Comparison with another RTC that does account for the polarization processes.

6.11.13 ADS Photosynthetically Active Radiation

6.11.13.1 Photosynthetically active radiation, $PAR(\alpha, U_{H2O}, U_{O3}, \tau^a)$

<u>Reference:</u> PAR[α , u_{O3} , τ^{a} , u_{H2O}], LUT111

[AD-8] Section 6.11.13, GADS field 1.

ACRI provided

Dependencies:

LUT94, LUT305, LUT306, LUT307

Tool:

None

Procedure:

Input:	α	Angstroem exponent, see Section 6.11.4.22 (LUT305)
	<i>u</i> _{<i>H2O</i>}	water vapor amount $[g.cm^{-2}]$, see Section 6.11.4.25, (LUT094)
	u_{O3}	ozone amount [DU], see Section 6.11.4.23, (LUT306)
	$ au^{a}$	aerosol optical thickness at 865 nm [dl], see Section 6.11.4.24, (LUT307)
Output:	$PAR[\alpha, u_{O3},$	τ^{a} , u_{H2O}] Photosynthetically available radiation as function of the <i>Angström</i> exponent, the ozone amount, the aerosol optical thickness, and the water vapor content.
un	115.	

Step: User specified.

Resources:

Estimated CPU time: -Output disk space: $20 \times 20 \times 20 \times 20 \times 4$ bytes/fl = 640000 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 242

6.12 WATER-VAPOUR PARAMETERS

6.12.1 C.P.

None

6.12.2 MPH

Not covered in this document (see [AD-8] for a detailed description)

6.12.3 SPH

Not covered in this document (see [AD-8] for a detailed description)

6.12.4 GADS General

6.12.4.1 Solar zenith angles

<u>Referen</u>	<u>ce</u> : S	ZA,	LUT112
[AE	0-8] S	ection 6.12.4, GA	ADS field 1
AC	RI provid	led	
Depend	encies:		
Nor	ne		
<u>Tool</u> :			
Noi	ne		
Procedu	ire:		
Inp	ut:	none	
Out	put:	SZA	Solar zenith angle (27 values of θ_s)
	units	$[10^{-6} deg]$	
Stej) :	User specified.	
<u>Scientif</u>	ic conter	<u>nt</u> :	
Set	of 27 sol	ar zenith angles (θ_s) regularly spaced

Current baseline: 27 θ_s values within [15;80] *deg.*, with a step of 2.5 *deg*.

Resources:

Estimated CPU time: -Output disk space: 27×4 bytes/ul = 108 bytes

Acceptance:

Corresponds to the latest definitions

6.12.4.2 View zenith angles

Reference: VZA,	LUT113
-----------------	--------

[AD-8] Section 6.12.4, GADS field 2

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	VZA	View zenith angle (18 values of θ_{v})
units:	$[10^{-6} deg]$	

Step: User specified.

Scientific content:

Set of 18 view zenith angles (θ_v) regularly spaced

Current baseline: 18 θ_v values within [0;42.5] deg., with a step of 2.5 deg.

Resources:

Estimated CPU time: -Output disk space: 18×4 bytes/ul = 72 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 244

Acceptance:

Corresponds to the latest definitions

6.12.4.3 Relative azimuth angles

Reference:	RAA,	LUT114
[AD-8]	Section 6.12.4, GADS field 3	
ACRI pro	vided	

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	RAA	Relative azimuth angle (25 values of $\Delta \phi$)
u	nits: $[10^{-6} de]$	<i>eg</i>]

Step: User specified.

Scientific content:

Set of 25 relative azimuth angle $(\Delta \phi)$ regularly spaced

Current baseline: $25 \Delta \phi$ values within [0;180] deg., with a step of 7.5 deg.

Resources:

Estimated CPU time: -Output disk space: 25×4 bytes/ul = 100 bytes

Acceptance:

Corresponds to the latest definitions

6.12.4.4 Threshold value on radiance at 885 nm for marking pixel as invalid for water vapour processing

Reference: inv WV, LUT115

[AD-8] Section 6.12.4, GADS field 4

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: inv_WV Threshold value on the radiance at 885nm (L_{Thresh}^{885}) from which the water vapor content cannot be retrieved.

units: $[W.m^{-2}.\mu m^{-1}.sr^{-1}]$

Step: User specified.

Scientific content:

inv_WV represents the threshold value on the radiance at 885nm (L_{Thresh}^{885}) from which the water vapor content cannot be retrieved. In the water vapor retrieval algorithm, all the pixels, for which the radiance at 885nm is lower than this threshold value, will be systematically discarded from the water vapor retrieval processing.

Current baseline: $310 [W.m^{-2}.\mu m^{-1}.sr^{-1}]$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

According to the MERIS sensor specifications.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 246

6.12.4.5 Minimum threshold for out of range output value of water vapour content

Reference: out Min, LUT116 Section 6.12.4, GADS field 5 [AD-8] ACRI provided Dependencies: None Tool: None Procedure: Input: none Acceptable minimum value of water vapor content $(u_{\rm H2O}^{\rm min})$ retrieved from Output: out Min the algorithm $[g.cm^{-2}]$ units: Step: User specified.

Scientific content:

out_Min corresponds to the lowest acceptable value of water vapor content (u_{H2O}^{min}) retrieved from the algorithm. Pixels for which the retrieved water vapor content is lower than this threshold, are set to *out_Min*.

Current baseline: 0.1 g.cm^{-2}

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.6 Maximum threshold for out of range output value of water vapour content

Reference: out_Max, LUT117

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 247

[AD-8]	Section 6.12.4,	GADS field 6
--------	-----------------	--------------

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

-	
Input:	none

Output: out_max Acceptable maximum value of water vapor content (u_{H2O}^{max}) retrieved from
the algorithm

units: $[g.cm^{-2}]$

Step: User specified.

Scientific content:

out_Max corresponds to the highest acceptable value of water vapor content (u_{H2O}^{max}) retrieved from the algorithm. Pixels for which the retrieved water vapor content is larger than this threshold, are set to *out_Min*.

Current baseline: $7 g.cm^{-2}$

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.7 Sun irradiances at 778.75 nm, 865 nm, 885nm and 900 nm (consistent with cloud LUTs)

Reference:	Eo_779, Eo_865,	LUT118
	Eo_885, Eo_900	

[AD-8] Section 6.12.4, GADS field 7

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 248

Dependencies:

None

Tool:

None

Procedure:

Input: none

Outputs:

 $E_{\rm o}^{779}$, $E_{\rm o}^{865}$, $E_{\rm o}^{885}$, $E_{\rm o}^{900}$

Extraterrestrial solar irradiances respectively at 778.75 nm (band#12), 865.00 nm (band#13), 885.00 nm (band#14) and 900.00 nm (band#15), not corrected for *Sun-Earth* distance (*d*).

units: $[W.m^{-2}.\mu m^{-1}]$

Step: User specified.

Scientific content:

Set of 4 extraterrestrial solar irradiances $(E_{o}^{779}, E_{o}^{865}, E_{o}^{885}, E_{o}^{900})$ in MERIS band#12 (778.755*nm*), #13 (865.00*nm*), #14 (885.00*nm*) and 15 (900.00*nm*) resepctively, are used in the water vapour retrieval algorithm to convert radiances into reflectances. Note that these solar irradiances are not corrected for the *Sun-Earth* distance (*d*).

Current baseline: {1193.696, 967.772, 926.348, 894.569} W.m⁻².µm⁻¹

Resources:

Estimated CPU time: -Output disk space: 4×4 bytes/fl = 16 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.8 Aerosol optical thicknesses at 885 nm

Reference: AOT885, LUT119

[AD-8] Section 6.12.4, GADS field 8

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 249

Dependencies:

None

Tool:

None

Procedure:

Input:	none
mput.	none

Output:

Aerosol optical thickness at 885nm (20 values)

units: [*dl*]

 $au_{
m o}^{a}$

Step: User specified.

Scientific content:

Set of 20 pre-selected aerosol optical thicknesses at 885nm (τ_o^a) used in the water vapour retrieval algorithm

Current baseline: [0.03;0.60] by step of 0.03

Resources:

Estimated CPU time: -Output disk space: 20×4 bytes/fl = 80 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.9 Surface albedos

Reference: Salb, LUT120

[AD-8] Section 6.12.4, GADS field 9

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: S_{alb}^{o} Surface albedo (10 values)

units: [*dl*]

Step: User specified.

Scientific content:

Set of 10 pre-selected surface albedo (S_{alb}^{o}) used in the water vapour retrieval algorithm

Current baseline: [0;0.9] by step of 0.1

Resources:

Estimated CPU time: -Output disk space: 10×4 bytes/fl = 40 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.10 Cloud optical thicknesses at 550nm

Reference: COT550, LUT308

[AD-8] Section 6.12.4, GADS field 10

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: τ_0^c Cloud optical thickness at 550*nm* (20 values)

units: [*dl*]

Step: User specified.

Scientific content:

Set of 20 pre-selected cloud optical thicknesses at 550nm (τ_o^c) used in the water vapour retrieval algorithm

Current baseline: [5;100] by step of 5

Resources:

Estimated CPU time: -Output disk space: 20×4 bytes/fl = 80 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.11 Wind-speeds for GADS polynomial coefficients for water vapour retrieval over ocean

Reference:	WS,	LUT433	
[AD-8]	Section 6.12.4, GA	Section 6.12.4, GADS field 11	
ACRI p	rovided		
Dependenc	ies:		
None			
<u>Tool</u> :			
None			
Procedure:			
Input:	none		
Output	WS	Wind-speed just above sea level (5 values of w_s)	
	units: $[m.s^{-1}]$		
Step:	User specified.		

Scientific content:

Set of 5 pre-selected wind-speeds (w_s) used to account for the sea surface roughness in the water vapour retrieval algorithm

Current baseline: $\{2; 4; 6; 8; 10\} m.s^{-1}$

Resources:

Estimated CPU time: -Output disk space: 5×4 bytes/fl = 20 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.12 Latitudes for ADS surface albedo slope between 900 nm & 885 nm and ADS surface albedo at 885 nm

Reference:	lat,	LUT476
------------	------	--------

[AD-8] Section 6.12.4, GADS field 12

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: *lat* Latitudes (3600 values)

units: $[10^{-6} deg.]$

Step: User specified.

Scientific content:

Set of 3600 latitudes (lat) used as the geographic grid for the albedo map used in the water vapour retrieval algorithm

Current baseline: [-89.975;89.975] deg. by step of 0.05 deg.

Resources:

Estimated CPU time: -Output disk space: 3600 × 4 bytes/sl = 14400 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.13 Longitudes for ADS surface albedo slope between 900 nm & 885 nm and ADS surface albedo at 885 nm

Reference [.]	long	LUT477
Reference.	10115,	LOI + / /

[AD-8] Section 6.12.4, GADS field 13

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	long	Longitudes (7200 values)
units:	[10 ⁻⁶ deg.]	

Step: User specified.

Scientific content:

The albedo map used in the water vapour retrieval algorithm is defined on a grid of 7200 longitudes.

Current baseline: [-179.975; 179.975] deg. by step of 0.05 deg.

Resources:

Estimated CPU time: -Output disk space: 7200×4 bytes/sl = 28800 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.14 Offset and scaling factor for surface albedo ratio between 900 nm & 885 nm

Reference: SalbRat_offset, SalbRat_scale, LUT478

[AD-8] Section 6.12.4, GADS field 14

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none		
Output:	SalbRat_offset, SalbRat_scale Offset and scaling factor for surface albedo ratio between 900 & 885 <i>nm</i> (2 values)		
units	[dl]		
Step:	User specified.		
Scientific conten	<u>t</u> :		
Current basel	Current baseline: $\{0.9, 7.8740175 \ 10^{-4}\}$		
Resources:			
Estimated CF Output disk s	PU time: - pace: 2×4 bytes/sl = 8 bytes		
Acceptance:			
Corresponds	to the latest definition.		
6.12.4.15 Scaling fa	actor for surface albedo at 885 nm		

Reference: Salb885_scale, LUT479

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 255

[AD-8] Section 6.12.4, GADS field 15

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: Salb885_scale

Scaling factor for surface albedo at 885 nm

units: [*dl*]

Step: User specified.

Scientific content:

Current baseline: 0.0039215689

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/sl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.16 Bad data value for surface albedo ratio between 900 nm & 885 nm

Reference: SalbRat_flag, LUT480

[AD-8] Section 6.12.4, GADS field 16

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 256

Tool:

None

Procedure:

Input: none

Output: SalbRat_flag

Flag to detect bad value of surface albedo ratio between 900 & 885 nm

units: [*dl*]

Step: User specified.

Scientific content:

Current baseline: 255

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.12.4.17 Minimum valid values for neural network inputs

Reference:	MinDataIn_NN,	LUT481
------------	---------------	--------

[AD-8] Section 6.12.4, GADS field 17

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: MinDataIn_NN

Minimum valid values for NN inputs

units: [*dl*]

Step: User specified.

Scientific content:

Current baseline: {0.342, 0.680, -0.733, 0.0041, 0.899, -0.863, 0.0054, -1.670, 759.0, 648.0}

Resources:

Estimated CPU time: -Output disk space: 10×4 bytes/fl = 40 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.18 Maximum valid values for neural network inputs

Reference:	MaxDataIn_NN,	LUT482
[AD-8]	Section 6.12.4, GADS field 18	3
ACRI pro	vided	
Dependencies	<u>s</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	MaxDataIn_NN Maximum	valid values for NN inputs
ur	nits: [dl]	
Step:	User specified.	
Scientific con	itent:	
Current ba	aseline: {0.948, 1.000, 0.733	, 0.198, 1.070, 0.0356, 0.197, 9.070, 765.00, 1020.00}

Resources:

Estimated CPU time:	-
Output disk space:	10×4 bytes/fl = 40 bytes

Acceptance:

Corresponds to the latest definition.

6.12.4.19 Minimum valid value for neural network output

Reference:	MinDataOut_NN,	LUT483
[AD-8]	Section 6.12.4, GADS f	ield 19
ACRI pro	ovided	
Dependencie	<u>s</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	MinDataOut_NN Mini	mum valid value for NN output
u	nits: $[g.cm^{-2}]$	
Step:	User specified.	
Scientific con	ntent:	
Current b	paseline: 0.13 g.cm^{-2}	
Resources:		
Estimated Output di	d CPU time: - isk space: 1 × 4 bytes	s/fl = 4 bytes
Acceptance:		

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 259

Corresponds to the latest definition.

6.12.4.20 Maximum valid value for neural network output

Reference: MaxDataOut NN, LUT484 Section 6.12.4, GADS field 20 [AD-8] ACRI provided Dependencies: None Tool: None Procedure: Input: none Output: MaxDataOut NN Maximum valid value for NN output $[g.cm^{-2}]$ units: Step: User specified. Scientific content: Current baseline: 5.63 g.cm^{-2} Resources: Estimated CPU time: Output disk space: 1×4 bytes/fl = 4 bytes Acceptance: Corresponds to the latest definition.

6.12.5 GADS Neural Network for Water-Vapour Retrieval over Land

6.12.5.1 Neural network (NN) parameters for water vapour retrieval over land

Reference: WV_Land, LUT121

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 260

[AD-8] Section 6.12.5, GADS field 1

FUB/ACRI provided

Dependencies:

None

Tool:

Neural Network

Procedure:

none
110110

Output:	WV_Land	NN parameters for water vapour retrieved over land
unit	s: [<i>dl</i>]	

Step: User specified.

LUT processed at the FUB institute with a NN tool and delivered to ACRI.

Scientific content:

WV_Land provides the water vapor content (*WV*) retrieved over land with a NN tool and an huge amount of RTC/MOMO simulations in MERIS band#14 (885 *nm*) and #15 (900 *nm*). RTC computations were completed over various reflective land surfaces (S_{alb}), for various atmospheric profiles (VTP files) with different surface pressures (P_s), and for various illumination and viewing geometries ($\theta_s, \theta_v, \Delta \phi$). Simulations were corrected for the slope effect of the surface albedo between 900 and 885 *nm*.

Current baseline: 262144 values

Resources:

Estimated CPU time: -Output disk space: 262144×1 byte/uc = 262144 bytes

The storage of this table is completed with only one record (*see* [AD-8], Annex-6) for the full description of the output structure).

Acceptance:

Corresponds to the latest definition (or last delivery by the FUB institute).

6.12.6 ADS Polynomial Coefficients for Water-Vapour Retrieval over Ocean (without Sun Glint)

6.12.6.1 Polynomial coefficients for water vapour retrieval over ocean (no glint)

<u>Reference</u>: WV_Ocean_NoGlint, LUT122

[AD-8] Section 6.12.6, GADS fields 1, 2 & 3

FUB/ACRI provided

Dependencies:

LUT112, LUT113, LUT114, LUT119, LUT433

Tool:

Neural Network

Procedure:

Inputs:		$egin{array}{c} heta_{s} \ heta_{v} \ \Delta \phi \ au^{a} \end{array}$		Solar zenith angle [<i>deg</i>], <i>see</i> Section 6.12.4.1, (LUT112) View zenith angle [<i>deg</i>], <i>see</i> Section 6.12.4.2, (LUT113) Relative azimuth angle [<i>deg</i>], <i>see</i> Section 6.12.4.3, (LUT114) AOT885 [<i>dl</i>] (20 values), <i>see</i> Section 6.12.4.8 (LUT119)
		w_s k		Wind-speeds ASL $[m.s^{-1}]$ (5 values), see Section 6.12.4.11 (LUT433) Polynomial coefficient orders $[dl], k = [0;2]$
Output:		WV_	_Ocean_No	$Glint[\theta_s, k, \theta_v, \Delta\phi, \tau_o^a, w_s]$
1	units:		[g.cm ⁻²]	Polynomial coefficients for water vapour retrieval over ocean (no glint)
Step:		Use	r specified.	

LUT processed at the FUB institute with a NN tool and delivered to ACRI.

Scientific content:

 $WV_Ocean_NoGlint[\theta_s,k,\theta_v,\Delta\phi,\tau_o^a,w_s]$ describes the coefficients of the polynomial fit expressing the water vapor content (*WV*) over ocean (without sun glint) as function of the ratio of TOA normalized radiances at 900 and 885 *nm* ($R_{TOA_15/14}[\tau_o^a,w_s,\theta_s,\theta_v,\Delta\phi]$) computed with RTC/MOMO, for each of 5 wind-speeds (w_s ; LUT433), for each of 20 AOT885 (τ_o^a ; LUT119), for each illumination and viewing geometry ($\theta_s, \theta_v, \Delta\phi$) and for many different vertical atmos-pheric profiles (VTP files). As previously (*see* Section 6.12.5.1), a NN tool is then used to determine these polynomial fits for retrieving the WV over ocean:

 $WV = WV_Ocean_NoGlint[\theta_{s}, 0, \theta_{v}, \Delta\phi, \tau_{o}^{a}, w_{s}]$ + $WV_Ocean_NoGlint[\theta_{s}, 1, \theta_{v}, \Delta\phi, \tau_{o}^{a}, w_{s}] \cdot \log (R_{TOA_15/14}[\tau_{o}^{a}, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi])$ + WV Ocean $NoGlint[\theta_{s}, 2, \theta_{v}, \Delta\phi, \tau_{o}^{a}, w_{s}] \cdot \log^{2}(R_{TOA_15/14}[\tau_{o}^{a}, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi])$

Resources:

Estimated CPU time: -Output disk space: $27 \times 3 \times 18 \times 25 \times 20 \times 5 \times 4$ bytes/float = 14580000 bytes

The storage of this table is completed with different records for each θ_s tabulated value (see [AD-8] for the full description of the output structure).

Acceptance:

Corresponds to the latest definition (or last delivery by the FUB institute).

6.12.7 (Deleted)

Reference:

[AD-8] Section 6.12.7

6.12.8 ADS Polynomial Coefficients for Water-Vapour Retrieval over Clouds

6.12.8.1 Polynomial coefficients for water vapour retrieval over clouds

Reference:	WV Cloud.	LUT123
<u>Iterenee</u> .	ii i cicaa,	LO1120

[AD-8] Section 6.12.8, GADS fields 1, 2 & 3

FUB/ACRI provided

Dependencies:

LUT112, LUT113, LUT114, LUT120, LUT308

Tool:

Neural Network

Procedure:

Inputs:	θ_s	Solar zenith angle [deg], see Section 6.12.4.1, (LUT112)
	$ heta_{\!\scriptscriptstyle \mathcal{V}}$	View zenith angle [deg], see Section 6.12.4.2, (LUT113)
	$\Delta \phi$	Relative azimuth angle [deg], see Section 6.12.4.3, (LUT114)

Par Bleu technologies	MERIS / ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0002 Issue: 3 Rev.: C Date: 27-Feb-11 Page: 263
$S^{ m o}_{\ alb}$	Surface albedo [<i>dl</i>] (10 values), see S	Section 6.12.4.9 (LUT120)
$ au_{o}^{c}$	Cloud optical thickness at 550 <i>nm</i> [<i>d</i> .	<i>I</i>] (20 values), see Section 6.12.4.10,
k	(LU1308) Polynomial coefficient orders $[dl], k$:	= [0;2]
Output: $WV_Cloud[\theta_s]$	$(k, \theta_{v}, \Delta \phi, S_{alb}^{\circ}, \tau_{o}^{c}]$	
	Polynomial coefficients for water vap	pour retrieval over clouds
units: $[g.cm^{-2}]$		
Step: User specified	l.	
LUT processe	d at the FUB institute with a NN tool at	nd delivered to ACRI.

Scientific content:

 $WV_Cloud[\theta_s,k,\theta_v,\Delta\phi,S_{alb}^{\circ},\tau_o^{\circ}]$ describes the coefficients of the polynomial fit expressing the water vapor content (WV) over clouds as function of the ratio of TOA normalized radiances at 900 and 885 *nm* ($R_{TOA_15/14}[\tau_o^{\circ}, S_{alb}^{\circ}, \theta_s, \theta_v, \Delta\phi]$) computed with RTC/MOMO, for each of 20 COT550 (τ_o° ; LUT308), for each of 10 surface albedo (S_{alb}° ; LUT120), for each illumination and viewing geometry ($\theta_s, \theta_v, \Delta\phi$) and for many different vertical atmospheric profiles (VTP files). As previously (*see* Section 6.12.5.1), a NN tool is then used to determine the polynomial fit to retrieve the WV over clouds:

$$WV = WV_Cloud[\theta_{s}, 0, \theta_{v}, \Delta\phi, S_{alb}^{\circ}, \tau_{o}^{c}] + WV_Cloud[\theta_{s}, 1, \theta_{v}, \Delta\phi, S_{alb}^{\circ}, \tau_{o}^{c}] \cdot \log (R_{TOA_15/14}[\tau^{c}, S_{alb}^{\circ}, \theta_{s}, \theta_{v}, \Delta\phi]) + WV Cloud[\theta_{s}, 2, \theta_{v}, \Delta\phi, S_{alb}^{\circ}, \tau_{o}^{c}] \cdot \log^{2}(R_{TOA_15/14}[\tau^{c}, S_{alb}^{\circ}, \theta_{s}, \theta_{v}, \Delta\phi])$$

Resources:

Estimated CPU time: -Output disk space: $27 \times 3 \times 18 \times 25 \times 10 \times 20 \times 4$ bytes/float = 29160000 bytes

The storage of this table is completed with different records for each θ_s tabulated value (*see* [AD-8] for the full description of the output structure). Moreover, within each θ_s block the records corresponding to the second S_{alb}° are duplicated in each of the last 8 S_{alb}° values.

Acceptance:

Corresponds to the latest definition (or last delivery by the FUB institute).

6.12.9 ADS Surface Albedo Slope between 900 nm and 885 nm

6.12.9.1 Surface albedo slope between 900 nm and 885 nm

<u>Reference</u>: Salb_slope, LUT124

[AD-8] Section 6.12.9, GADS field 1

FUB/ACRI provided

Dependencies:

LUT476, LUT477

Tool:

None

Procedure:

Inputs:	n l l	nonth at ong	Month (12 values) [<i>dl</i>] Latitude (180 values) [<i>deg</i> .], <i>see</i> Section 6.12.4.12, (LUT476) Longitude (360 values) [<i>deg</i> .], <i>see</i> Section 6.12.4.13, (LUT477)
Output:	S	Salb_slope [mo	<i>nth</i> , <i>lat</i> , <i>long</i>] Monthly map of surface albedo slope between 900 and 885 nm
u	inits:	[dl]	
Step:	τ	Jser specified.	

Scientific content:

Salb_slope[month, lat, long] describes the monthly surface albedo slope between 900*nm* (band#15) and 885*nm* (band#14), for an angular grid of 0.05 *deg.* in latitude (*lat*) and in longitude (*long*).

These monthly maps are employed in the water vapour content retrieval algorithm in order to correct the ratio of TOA normalized between MERIS band#15 and #14 for the surface albedo slope effect.

Resources:

Estimated CPU time: -Output disk space: $12 \times 3600 \times 7200 \times 1$ byte/uc = 311040000 bytes

Acceptance:

Corresponds to the latest definition (or last delivery by the FUB institute).

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 265

6.12.10 ADS Aerosol Corrections

6.12.10.1 Polynomial coefficients for aerosol corrections at 885 nm

<u>Reference</u>: Aerosol_wv_corr, LUT125

[AD-8] Section 6.12.10, GADS fields 1, 2 & 3

FUB/ACRI provided

Dependencies:

LUT112, LUT113, LUT114

Tool:

Neural Network

Procedure:

Inputs:	$egin{array}{lll} eta_s & & \ eta_v & \ \Delta \phi & & \ k & \end{array}$	Solar zenith angle [deg], see Section 6.12.4.1, (LUT112) View zenith angle [deg], see Section 6.12.4.2, (LUT113) Relative azimuth angle [deg], see Section 6.12.4.3, (LUT114) Polynomial coefficient orders [dl], $k = [0;2]$
Output:	Aerosol_wv_	$corr[\theta_s, \theta_v, \Delta \phi, k]$ Polynomial coefficients for aerosol corrections at 885 <i>nm</i>
units:	[dl]	
Step:	User specific LUT process	ed. sed at the FUB institute with a NN tool and delivered to ACRI.

Scientific content:

Aerosol_wv_corr[$\theta_s, \theta_v, \Delta \phi$, k] describes the coefficients of the polynomial fit expressing the corrected aerosol optical thicknesses (τ_c^a) at 885 nm (MERIS band #14) as function of the TOA normalized radiances $L_{TOA_{-12}}[\theta_s, \theta_v, \Delta \phi]$ and $L_{TOA_{-13}}[\theta_s, \theta_v, \Delta \phi]$ computed with the MERIS bands #12 and 13, respectively. These regression coefficients (k = [0;2]) depends on the illumination and viewing geometries ($\theta_s, \theta_v, \Delta \phi$). The latters are useful for the aerosol corrections of the retrieved aerosol optical thicknesses (τ_c^a) at 885 nm.

<u>Note</u>: Due to the fact that the MERIS bands #12 and 13 are the nearest ones of the water vapor absorption bands, the total aerosol optical thicknesses (τ^a) at 885 *nm* will can be retrieved from the polynomial fit with an absolute accuracy of 0.03.

As previously (see Section 6.12.5.1), a NN tool is then used to determine the polynomial fit to to retrieve the corrected aerosol optical thicknesses (τ_a^a) at 885 nm:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 266

 $\begin{aligned} \tau^{a} &= Aerosol_wv_LUT[\theta_{s},\theta_{v},\Delta\phi,0] \\ &+ Aerosol_wv_LUT[\theta_{s},\theta_{v},\Delta\phi,1] . L^{*}_{TOA_12}[\theta_{s},\theta_{v},\Delta\phi] \\ &+ Aerosol_wv_LUT[\theta_{s},\theta_{v},\Delta\phi,2] . L^{*}_{TOA_13}[\theta_{s},\theta_{v},\Delta\phi] \end{aligned}$

where $L_{TOA_{12}}[P_s, \theta_s, \theta_v, \Delta \phi]$, $L_{TOA_{13}}[P_s, \theta_s, \theta_v, \Delta \phi]$ and $L_{TOA_{14}}[P_s, \theta_s, \theta_v, \Delta \phi]$ are respectively the TOA normalized radiances within the MERIS bands #12, 13 and 14.

Resources:

Estimated CPU time: -Output disk space: $27 \times 3 \times 18 \times 25 \times 4$ bytes/fl = 145800 bytes

The storage of this table is completed with different records for each θ_s tabulated value (see [AD-8] for the full description of the output structure).

Acceptance:

Corresponds to the latest definition (or last delivery by the FUB institute).

6.12.11 ADS Surface Albedo at 885 nm

6.12.11.1 Surface albedo map at 885 nm

Reference:	Salb885,	LUT126
[AD-8]	Section 6.12.11	, GADS field 1
FUB/AC	CRI provided	
Dependenci	<u>es</u> :	
LUT476	, LUT477	
<u>Tool</u> :		
None		
Procedure:		
Inputs:	month lat long	Month (12 values) [<i>dl</i>] Latitude (180 values) [<i>deg.</i>], <i>see</i> Section 6.12.4.12, (LUT476) Longitude (360 values) [<i>deg.</i>], <i>see</i> Section 6.12.4.13, (LUT477)
Output:	Salb885[mor	<i>nth, lat, long</i>] Monthly map of surface albedo at 885 <i>nm</i>
ı	units: [<i>dl</i>]	

Scientific content:

Salb885[month, lat, long] describes the monthly surface albedo at 885nm (band#14), for an angular grid of 0.05 deg. in latitude (lat) and in longitude (long).

These monthly maps are employed in the water vapour content retrieval algorithm.

Resources:

Estimated CPU time: -Output disk space: $12 \times 3600 \times 7200 \times 1$ byte/uc = 311040000 bytes

Acceptance:

Corresponds to the latest definition (or last delivery by the FUB institute).

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 268

6.13 OCEAN-AEROSOL PARAMETERS

All the LUTs from this MERIS ADF can be generated with both the tools from FUB & UdL. Consequently, two different recipes are systematically proposed to generate all these LUTs either with the tools from FUB or with the tools from UdL.

6.13.1 C.P.

6.13.1.1 C.P. AOT at 550 nm (boundary layer) for all ocean-aerosol assemblages, $\tau_z^{al}(iaer,itau)$

Reference:	tauA1	LUT136
PARBLE	U provided	
Dependencie	<u>s</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	tauA1	Aerosol optical thickness at 550nm for boundary aerosol layer (7 values)
u	nits: [<i>dl</i>]	
Step:	User specified	
Scientific con	ntent:	

Set of 7 AOT550 (tauA1) used in the boundary layer of the 34 aerosol assemblages. Note that the first null tauA1 value is not employed in the LUTs computations but defined to make easy the use of output LUTs in the MERIS processor (IPF).

Current baseline: 34 x 7 values (see table in Section 6.13.5.1)

Resources:

Estimated CPU time: -Output disk space: $34 \times 7 \times 4$ bytes/fl = 952 bytes

Acceptance:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 269

Corresponds to the latest definition.

6.13.1.2 C.P. AOT at 550 nm (dust layer) for all ocean-aerosol assemblages, $\tau_{a2}^{a2}(iaer,itau)$

Refere	ence: ta	uA2	LUT137
PA	ARBLEU p	provided	
<u>Depen</u>	dencies:		
N	one		
<u>Tool</u> :			
N	one		
Procee	<u>dure</u> :		
In	put:	none	
O	utput:	tauA2	Aerosol optical thickness at 550nm for dust aerosol layer (7 values)
	units	: [<i>dl</i>]	
St	ep:	User specified.	

Scientific content:

Set of 7 AOT550 (tauA2), the first null value being 0, used in the dust layer of the 34 aerosol assemblages. Note that the first null tauA2 value is not employed in the LUTs computations but defined to make easy the use of output LUTs in the MERIS processor (IPF).

Current baseline: 34 x 7 values (see table in Section 6.13.5.1)

Resources:

Estimated CPU time: -Output disk space: $34 \times 7 \times 4$ bytes/fl = 952 bytes

Acceptance:

Corresponds to the latest definition.

6.13.1.3 C.P. AOT at 550 nm (troposphere layer) for all ocean-aerosol assemblages, $\tau_{a3}^{a3}(iaer,itau)$

Reference: tauA3 LUT409

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 270

PARBLEU provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output:tauA3Aerosol optical thickness at 550nm for tropospheric layer (7 values)

units: [dl]

Step: User specified.

Scientific content:

Set of 7 AOT550 (tauA3), the first null value being 0, used in the tropospheric layer of the 34 aerosol assemblages. Note that the first null tauA3 value is not employed in the LUTs computations but defined to make easy the use of output LUTs in the MERIS processor (IPF).

Current baseline: 34 x 7 values (see table in Section 6.13.5.1)

Resources:

Estimated CPU time: -Output disk space: $34 \times 7 \times 4$ bytes/fl = 952 bytes

Acceptance:

Corresponds to the latest definition.

6.13.1.4 C.P. FUB-scattering phase matrices and IOPs for all the aerosol models

<u>Reference</u>: $Q_{sca}, Q_{ext} \& SSA[model, \lambda]$ LUT399

Dependencies:

LUT130

Tool:

OTC/MIE (FUB)

Procedure:

Inputs:	model λ	Aerosol model# [<i>dl</i>] (selected amoung a set of 23 models) MERIS wavelength [<i>nm</i>], <i>see</i> Section 6.13.4.1 (LUT130)
Output:	$Q_{sca}[model, \lambda],$	$Q_{ext}[model, \lambda]$ & SSA[model, λ] Scattering (Q_{sca}) and extinction (Q_{ext}) coefficients, and single scattering albedo (SSA) (referred also as to σ_s , σ_e , ω_0) for each of the 23 aerosol models (model) used in the 34 assemblages and each of the 15 MERIS spectral bands (λ).
units	[µm ⁻¹ , µm ⁻	¹ , dI]
Step-1: Fo	or each of the 23 <i>ie</i> 's computation	aerosol model (<i>model</i>) used in the ocean-aerosol assemblages, launch the ns at each of the 15 MERIS wavelengths (λ) with the OTC/MIE (FUB)

and the associated input Mie card:

/FUB/sca_in/ sc marxx byy, sc coaxx byy, sc rurxx byy, sc dbdsz byy, sc dbdwz byy, sc IOPww byy, sc conti byy, sc H2SO4 byy

with $xx = \{50, 70, 90, 99\}$ (i.e., relative humidity), $yy = \{01, .., 15\}$ (i.e., MERIS bands #), $z = \{1, 2, 3\}$ (i.e., 3 scale heights), $ww = \{01, 02, 03\}$ (i.e., 3 Log-normal distributions)

Note: These output *Mie* files will be used as inputs for generating the LUT138 & LUT139, and the LUT142 & LUT143 with the RTC/FUB (MOMO).

Step-2: For each of the 23 aerosol model (model) and for each wavelength (λ), extract from the output Mie's file the IOPs, *i.e.*, the normalized extinction coefficient, $Q_{ext,norm}(model,\lambda)$ (labelled as "ex norm"), the single scattering albedo, SSA or $\omega_0(model, \lambda)$ (labelled as "w o") and the extinction coefficient $Q_{ext,550}(model)$ at the 550nm reference wavelength (labelled as "ex_ref"), and compute the extinction coefficient $Q_{ext}(model, \lambda)$ and the scattering coefficient $Q_{sca}(model, \lambda)$ as follows:

> $Q_{ext}[model, \lambda] = Q_{ext, 550}[model] \cdot Q_{ext, norm}[model, \lambda]$ $Q_{sca}[\text{model}, \lambda] = \omega_0[\text{model}, \lambda] \cdot Q_{ext}[\text{model}, \lambda]$

Build the output LUT399 with $Q_{sca}(model, \lambda)$, $Q_{ext}(model, \lambda)$ and $\omega_0(model, \lambda)$ respectively for Step-3: each of the 23 aerosol models (*model*) and each of the 15 MERIS bands (λ).

Scientific content:

Scattering phase function and IOPs (scattering coefficient, extinction coefficient and single scattering albedo) of the 23 models used in the 34 ocean-aerosol assemblages.

Current baseline: 23 x 15 x 3 values

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 272

Estimated CPU time: $23 \times 15 \times (\sim 52 \text{ sec}) = 18197 \text{ sec}$ Output disk space: $23 \times 15 \times 3 \times 4 \text{ bytes/fl} = 4140 \text{ bytes}$

Acceptance:

Corresponds to the latest definition.

6.13.1.5 C.P. UdL-scattering phase matrices and IOPs for all the aerosol models

<u>Reference</u>: Q_{sca} , Q_{ext} & SSA[*model*, λ] LUT419

Dependencies:

LUT130

Tool:

OTC/SCAMAT (UdL)

Procedure:

Inputs:		model λ	Aerosol model# [dl] (selected amoung a set of 23 models) MERIS wavelength [nm], see Section 6.13.4.1 (LUT130)
Output:		$Q_{sca}[model, \lambda],$	$Q_{ext}[model, \lambda] \& SSA[model, \lambda]$ Scattering (Q_{sca}) and extinction (Q_{ext}) coefficients, and single scattering albedo (SSA) for each of the 17 aerosol models (model) used in the 16 SAMs and each of the 15 MERIS spectral bands (λ) .
	units:	[μm ⁻¹ , μm ⁻¹	', <i>dI</i>]

Step-1: For each of the 17 aerosol model (*model*) used in the 16 SAMs, launch the *Mie*'s computations at each of the 15 MERIS wavelengths (λ) with the OTC/SCAMAT (UdL) and the associated input *Scamat* card:

/UdL/INPUT/sca_in/ sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy

with $xx = \{50, 70, 90, 99\}$ (i.e., relative humidity), $yy = \{01, .., 15\}$ (i.e., MERIS bands #), $ww = \{01, 02, 03\}$ (i.e., 3 Log-normal distributions)

- <u>Note</u>: These output *Scamat* files will be used as inputs for generating the LUT138 & LUT139, and the LUT143 with the RTC/UdL (SO).
- Step-2: For each of the 17 aerosol model (*model*) and for each wavelength (λ), extract from the output *Mie*'s file the IOPs, *i.e.*, the normalized extinction coefficient, $Q_{ext,norm}(model, \lambda)$ (labelled as " $Qext(\lambda)/Qext(\lambda_ref)$ "), the single scattering albedo, SSA or $\omega_0(model, \lambda)$ (labelled as " $wo(\lambda)$ ") and the extinction coefficient $Q_{ext,550}(model)$ at the reference

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 273

wavelength (550*nm*) (labelled as $Qext(\lambda_ref)$), and compute the extinction coefficient $Q_{ext}(model, \lambda)$ and the scattering coefficient $Q_{sca}(model, \lambda)$ as follows:

 $Q_{ext}[model, \lambda] = Q_{ext, 550}[model] \cdot Q_{ext, norm}[model, \lambda]$

 $Q_{sca}[\text{model}, \lambda] = \omega_0[\text{model}, \lambda] \cdot Q_{ext}[\text{model}, \lambda]$

Step-3: Build the output LUT419 with $Q_{sca}(model, \lambda)$, $Q_{ext}(model, \lambda)$ and $\omega_0(model, \lambda)$ respectively for each of the 17 aerosol models (model) and each of the 15 MERIS bands (λ).

Scientific content:

Scattering phase function and IOPs (scattering coefficient, extinction coefficient and single scattering albedo) of the 17 models used in the 16 SAMs (MAR, COA, RUR, BLU-IOP).

Current baseline: 17 x 15 x 3 values

Resources:

Estimated CPU time:	$17 \times 15 \times (\sim 52 \text{ sec}) = 13260 \text{ sec}$
Output disk space:	$17 \times 15 \times 3 \times 4$ bytes/fl = 3060 bytes

6.13.1.6 C.P. TOA normalized radiances, $L_{TOA}(\lambda, \theta_s, \theta_v, \Delta \phi)$

<u>Reference</u>: (no variable used) LUT401

Intermediate results stored in LUTs.

LUT dimension: $N_{SZA} \times N_{VZA} \times N_{RAA} = 23 \times 13 \times 25$.

Number of intermediate LUTs:

•with RTC/FUB: $N_{wvl} \times N_{model} \times N_{aot550} \times N_{ws} = 15 \times 34 \times 6 \times 3$

•with RTC/UdL: $N_{wvl} \times N_{model} \times N_{aot550} \times N_{ws} = 15 \times 16 \times 6 \times 3$

Resources:

Estimated CPU time:

Output disk space:

with RTC/FUB: 15 × 23 × 13 × 25 × 34 × 6 × 3 × 4 bytes/fl = 274482000 bytes
with RTC/UdL: 15 × 23 × 13 × 25 × 16 × 6 × 3 × 4 bytes/fl = 129168000 bytes

6.13.1.7 C.P. FUB total and Rayleigh optical thicknesses, *t*(*iaer*,*type*,*itau*,*iband*)

<u>Reference</u>: (no variable used) LUT405

Intermediate results stored in a LUT

LUT dimension: $N_{model} \times N_{type} \times N_{aot550} \times N_{wvl} = 34 \times 2 \times 6 \times 15$.

with type being the index used to refer to the total and the Rayleigh optical thickness.

Resources:

Estimated CPU time: -Output disk space: $34 \times 2 \times 6 \times 15 \times 4$ bytes/fl = 24480 bytes

6.13.1.8 C.P. Spectral dependence of the AOT (without normalization at reference wavelength), $f(iaer, \lambda, itau)$

<u>Reference</u>: (no variable used) LUT408

Intermediate results stored in a LUT: τ_a _bl865 (LUT139) × specdep (LUT138)

LUT dimension: $N_{model} \times N_{wvl} \times N_{aot550} = 34 \times 15 \times 7$.

Resources:

Estimated CPU time: -Output disk space: $34 \times 15 \times 7 \times 4$ bytes/fl = 14280 bytes

6.13.2 MPH

Not covered in this document (see [AD-8] for a detailed description)

6.13.3 SPH

Not covered in this document (see [AD-8] for a detailed description)

6.13.4 GADS General

6.13.4.1 Nominal wavelengths of the 15 MERIS spectral bands

Reference: Wvl, LUT130

[AD-8] Section 6.13.4, GADS field 1

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: *Wvl* Nominal wavelengths of MERIS spectral bands (15 values)

units: [*nm*]

Step: User specified.

Scientific content:

Nominal wavelenghts of the 15 MERIS spectral bands

Current baseline: {412.5, 442.5, 490.0, 510.0, 560.0, 620.0, 665.0, 681.25, 708.75, 753.75, 761.875, 778.75, 865.0, 885.0, 900.0} *nm*

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.13.4.2 (Spare)

Reference:

[AD-8] Section 6.13.4, GADS field 2

6.13.4.3 Solar zenith angles

Reference: SZA, LUT132

[AD-8] Section 6.13.4, GADS field 3

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 276

Tool:

None

Procedure:

Input: none

Output: SZA Solar zenith angle (23 values)

units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

The set of solar zenith angles (SZA) derives from the *Gauss* quadrature used in the RTC/SO (UdL) [RD-1] *Fell, F., and J. Fischer, 2001.* "Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method", *Journal of Quantitative Spectroscopy & Radiative Transfer: 69* (3), 351-388. [RD-2]. The values are listed hereafter:

Current baseline: 23 SZA values (θ_s) selected as the first 23 angles from the *Gauss* quadrature (24 discrete directions including the zenith direction).

$\theta_s[deg.]$	$\theta_s[deg.]$	$\theta_s[deg.]$	$\theta_s[deg.]$
0.000000	21.347983	43.611442	65.877652
2.840906	25.058051	47.322394	69.588762
6.521063	28.768427	51.033390	73.299882
10.222955	32.479006	54.744420	77.011011
13.929756	36.189726	58.455477	80.722147
17.638419	39.900547	62.166556	

Resources:

Estimated CPU time: -Output disk space: 23×4 bytes/ul = 92 bytes

Acceptance:

Corresponds to the latest definition.

6.13.4.4 View zenith angles

Reference: VZA,

LUT133

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 277

[AD-8] Section 6.13.4, GADS field 4

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output:VZAView zenith angle (13 values)

units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

The set of view zenith angles (VZA) derives from the *Gauss* quadrature used in the RTC/SO (UdL) [RD-1] *Fell*, *F.*, *and J. Fischer*, *2001*. "Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method", *Journal of Quantitative Spectroscopy & Radiative Transfer: 69* (3), 351-388. [RD-2]. The values are listed hereafter:

Current baseline: 13 VZA values (θ_v) selected as the first 13 angles from the *Gauss* quadrature (24 discrete directions including the zenith direction).

$\theta_v[deg.]$	θ_{v} [deg.]
0.000000	25.058051
2.840906	28.768427
6.521063	32.479006
10.222955	36.189726
13.929756	39.900547
17.638419	43.611442
21.347983	

Resources:

Estimated CPU time: -Output disk space: 13×4 bytes/ul = 52 bytes

Acceptance:

Corresponds to the latest definition.

6.13.4.5 Relative azimuth angles

Reference: RAA, LUT134

[AD-8] Section 6.13.4, GADS field 5

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	RAA	Relative azimuth angle (25 values)
u	nits: $[10^{-6} deg]$	
Step:	User specified.	

Scientific content:

The set of the relative azimuth angles $(\Delta \phi)$ between illumination and viewing directions is regularly spaced and listed hereafter:

Current baseline: 25 RAA values $(\Delta \phi)$ within [0;180] deg., with a step of 7.5 deg.

| $\Delta \phi[deg.]$ |
|---------------------|---------------------|---------------------|---------------------|---------------------|
| 0.00 | 37.50 | 75.00 | 112.50 | 150.00 |
| 7.50 | 45.00 | 82.50 | 120.00 | 157.50 |
| 15.00 | 52.50 | 90.00 | 127.50 | 165.00 |
| 22.50 | 60.00 | 97.50 | 135.00 | 172.50 |
| 30.00 | 67.50 | 105.00 | 142.50 | 180.00 |

Resources:

Estimated CPU time: -Output disk space: 25×4 bytes/ul = 100 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 279

Acceptance:

Corresponds to the latest definition.

6.13.4.6 Wind-speeds

Ref	erence:	WS,	LUT135
	[AD-8]	Section 6.13.4, GA	DS field 6
	ACRI prov	vided	
Dep	endencies	:	
	None		
<u>Too</u>	<u>ol</u> :		
	None.		
Pro	cedure:		
	Input:	none	
	Output:	WS	Wind-speed just above sea level (3 values)
	un	its: $[m.s^{-1}]$	
	Step:	User specified.	

Scientific content:

Above water surfaces, the wind-speed (w_s) is responsible for the surface roughness. The effect of the *air-sea* interface shape on the *Fresnel* reflection and refraction is then modelled according to the statistical description of the wave facet distribution derived by *Cox and Munk* [RD-7]. This surface model assumes an isotropic distribution of the facet slopes independently of the wind orientation, and the surface reflectance only depends on the wind-speed (shadowing effects are not accounted for in the total upwelling radiances). Thus, within the sun glint area this reflectance will be much higher than the one originated from the water body itself.

Since the sun glint area depends on the wave slope distribution, 3 wind-speeds (w_s) have been then selected in the algorithm for generating LUT143

Current baseline: $\{1.5, 5.0, 10\} m.s^{-1}$

Resources:

Estimated CPU time: -

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 280

Output disk space: 3×4 bytes/fl = 12 bytes

Acceptance:

Corresponds to the latest definition.

6.13.4.7 Vicarious adjustement gains

Reference: Vic Gain[b], LUT131

[AD-8] Section 6.13.4, GADS field 7

ACRI provided

Dependencies:

None

Tool:

None.

Procedure:

Input:	b		MERIS spectral band# (15 values) see Section 6.13.4.1,(LUT130)
Output:	Vic	e_Gain[b]	Vicarious adjustement gain (15 values)
u	nits:	[dl]	

Step: User specified.

Scientific content:

15 vicarious gain values given for the 15 MERIS spectral bands

Current baseline: {0.9868575931, 0.9924236536, 0.9990998507, 1.0003386736, 1.0045168400, 1.0082343817, 1.0074515343, 1.0063384771, 1.0000000000, 1.0033472776, 1.0000000000, 1.000000000, 0.9864488244, 0.9829149246, 1.00000000000}

Resources:

Estimated CPU time: -Output disk space: 15 x 4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.13.4.8 (spare)

Reference:

[AD-8] Section 6.13.4, GADS field 8

6.13.5 GADS Spectral Optical Thickness

6.13.5.1 Spectral dependence factor of the total AOT (with normalization at reference wavelength)

6.13.5.1.1 <u>FUB Recipe</u>

Reference: specdep, LUT138

[AD-8] Section 6.13.5, GADS field 1

Dependencies:

LUT130, LUT136, LUT137, LUT409

Tool:

OTC/MIE

<u>Note</u>: The optical properties (*i.e.*, phase function, extinction and scattering coefficients, and single scattering albedo) for the aerosol models have to be computed with the *Mie's* theory (*see* [AD-7] for more details).

Procedure:

Inputs:	$iaer \lambda \ au^a$	Aerosol model # [dl] (among the 34 aerosol assemblages) MERIS wavelength [nm] (15 values), see Section 6.13.4.1, (LUT130) Total aerosol optical thickness at 550 nm [dl] (7 values, but only the last 6 ones have to be considered), see table below, Section 6.13.1.1 (LUT136), Section 6.13.1.2 (LUT137) and Section 6.13.1.3 (LUT409)
Output:	Spec	$lep[iaer, \lambda, \tau^a]$, referred also as $f[iaer, \lambda, \tau^a]$ Spectral dependence of the aerosol optical thickness for each of the 34 aerosol assemblages (<i>iaer</i>), for each of the 15 MERIS wavelengths, and for each of the 7 total aerosol optical thicknesses (τ^a) at 550 nm.
un	its:	dI]

<u>Note</u>: The *Mie*'s computations for the different aerosol models have to be performed with the input cards placed in */FUB/sca_in*. All the input parameters for these calculations are described and defined in [AD-6] and [AD-7], respectively.

Here is an example of an input card for the Mie's computations with OTC/MIE (FUB)

Par **Bleu** technol • gies

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer

<u>Ref.</u>: PO-RS-PAR-GS-0002 Rev.: C 3 Issue: Date: 27-Feb-11

Page: 282

'sca_out:	ľ	sc_conti_b01.s
'wavelength:	'	412.50
'ref. wavelength:	'	550.00
'number of angles (n2):	'	171
'number of size distributions (N):	'	3
'real, imag. refrac. index (m_i,k_i)	#1:'	1.530 0.5000000E-02
'ref. refrative index (m <u>r i,k r i</u>)	#1:'	1.530 0.6000000E-02
'min,max,step of particles (r0,rf,dr)	#1:'	4.7173841954562E-06 0.48141415860349 0.0001
'size distrib. parameters (ind,a,b)	#1:'	2 0.0050 2.99
'volume percentage (n_i/n)	#1:'	0.93876773E+00
'real, imag. refrac. index (m_i,k_i)	#2:'	1.530 0.8000000E-02
'ref. refrative index (m_r_i,k_r_i)	#2:'	1.530 0.8000000E-02
'min,max,step of particles (r0,rf,dr)	#2:'	4.7173841954562E-04 48.14141586034900 0.0100
'size distrib. parameters (ind,a,b)	#2:'	2 0.5000 2.99
'volume percentage (n_i/n)	#2:'	0.00000227E+00
'real, imag. refrac. index (m_i,k_i)	#3:'	1.750 0.4586364E+00
'ref. refrative index (m_r_i,k_r_i)	#3:'	1.750 0.4387952E+00
'min,max,step of particles (r0,rf,dr)	#3:'	1.8955848629255E-04 0.28027805069842 0.0001
'size distrib. parameters (ind,a,b)	#3:'	2 0.0118 2.00
'volume percentage (n_i/n)	#3:'	0.06123000E+00
'volume (1) and particle (2) ratio :	'	2

31 aerosol assemblages have been defined and given in the table hereafter. The latters result from different mixtures in aerosol components (*i.e.*, desert dust particles, dust-like particles, oceanic particles, rural aerosol mixtures, soot-like particles, water soluble particles, and H₂SO₄) for each of the 3 aerosol layers (boundary, troposphere and stratosphere), which yield to 6 different kinds of aerosol assemblages (*i.e.*, maritime, coastal, rural, dust-BDS, dust-BDW).

3 blue aerosols have been determined with an approach combining the micro-physical properties of these small particles with their inherent optical properties (IOP's) derived from CIMEL measurements acquired over ocean sites [RD-15].

Aerosols Assemblage		Boundary Layer	1	Stratosph. Layer			
iaer	Assemblage	RH(%)	[0-2km]	[2-5km]	[5-7km]	[7-12km]	[12-50km]
0	MAR-99	99	Maritime	-	-	-	-
1	MAR-50	50	Maritime	Continental	Continental	Continental	H2SO4
2	MAR-70	70	Maritime	Continental	Continental	Continental	H2SO4
3	MAR-90	90	Maritime	Continental	Continental	Continental	H2SO4
4	MAR-99	99	Maritime	Continental	Continental	Continental	H2SO4
5	COA-50	50	Coastal	Continental	Continental	Continental	H2SO4
6	COA-70	70	Coastal	Continental	Continental	Continental	H2SO4
7	COA-90	90	Coastal	Continental	Continental	Continental	H2SO4
8	COA-99	99	Coastal	Continental	Continental	Continental	H2SO4
9	RUR-50	50	Rural	Continental	Continental	Continental	H2SO4
10	RUR-70	70	Rural	Continental	Continental	Continental	H2SO4
11	RUR-90	90	Rural	Continental	Continental	Continental	H2SO4
12	RUR-99	99	Rural	Continental	Continental	Continental	H2SO4

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 283

Aerosols Assemblage		Boundary Layer	2	Stratosph. Layer			
iaer	Assemblage	RH(%)	[0-2km]	[2-5km]	[5-7km]	[7-12km]	[12-50km]
13	MAR-BDS1-1	90	Maritime Dust - BDS1	Continental -	Continental -	Continental -	H2SO4
14	MAR-BDS1-2	90	Maritime Dust - BDS1	Continental Dust - BDS1	Continental -	Continental -	H2SO4
15	MAR-BDS1-3	90	Maritime Dust - BDS1	Continental Dust - BDS1	Continental Dust - BDS1	Continental -	H2SO4
16	MAR-BDS2-1	90	Maritime Dust - BDS2	Continental -	Continental -	Continental -	H2SO4
17	MAR-BDS2-2	90	Maritime Dust - BDS2	Continental Dust - BDS2	Continental -	Continental -	H2SO4
18	MAR-BDS2-3	90	Maritime Dust - BDS2	Continental Dust - BDS2	Continental Dust - BDS2	Continental -	H2SO4
19	MAR-BDS3-1	90	Maritime Dust - BDS3	Continental -	Continental -	Continental -	H2SO4
20	MAR-BDS3-2	90	Maritime Dust - BDS3	Continental Dust - BDS3	Continental -	Continental -	H2SO4
21	MAR-BDS3-3	90	Maritime Dust - BDS3	Continental Dust - BDS3	Continental Dust - BDS3	Continental -	H2SO4
22	MAR-BDW1-1	90	Maritime Dust - BDW1	Continental -	Continental -	Continental -	H2SO4
23	MAR-BDW1-2	90	Maritime Dust - BDW1	Continental Dust - BDW1	Continental -	Continental -	H2SO4
24	MAR-BDW1-3	90	Maritime Dust - BDW1	Continental Dust - BDW1	Continental Dust - BDW1	Continental -	H2SO4
25	MAR-BDW2-1	90	Maritime Dust - BDW2	Continental -	Continental -	Continental -	H2SO4
26	MAR-BDW2-2	90	Maritime Dust - BDW2	Continental Dust - BDW2	Continental -	Continental -	H2SO4
27	MAR-BDW2-3	90	Maritime Dust - BDW2	Continental Dust - BDW2	Continental Dust - BDW2	Continental -	H2SO4
28	MAR-BDW3-1	90	Maritime Dust - BDW3	Continental -	Continental -	Continental -	H2SO4
29	MAR-BDW3-2	90	Maritime Dust - BDW3	Continental Dust - BDW3	Continental -	Continental -	H2SO4
30	MAR-BDW3-3	90	Maritime Dust - BDW3	Continental Dust - BDW3	Continental Dust - BDW3	Continental -	H2SO4
31	BLU-IOP01	-	Blue IOP01	Blue IOP01	Blue IOP01	Blue IOP01	Blue IOP01
32	BLU-IOP02	-	Blue IOP02	Blue IOP02	Blue IOP02	Blue IOP02	Blue IOP02
33	BLU-IOP03	-	Blue IOP03	Blue IOP03	Blue IOP03	Blue IOP03	Blue IOP03

Description of the 34 aerosol assemblages (iaer): 4 maritime aerosol assemblages, 4 coastal aerosol assemblages, and 4 rural aerosol assemblages with 4 relative humidity (RH) values, and 18 dust aerosol assemblages with 3 scale heights, and 3 blue IOP aerosol assemblages.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 284

All *Mie*'s input parameters (spectral refractive indices, particle size distribution, minimum/maximum radii and size increment, mixing ratio) for each aerosol component used in the aerosol models for the 34 assemblages, are fully described in the reference model document [AD-6].

Optical properties (aerosol optical thickness at 550 nm) of each aerosol layers (boundary, dust, troposphere, and stratosphere) are summarized in the table below:

A	erosols Assemble	age	Boundary Layer	Dust Layer	Tropospheric Layer	Stratospheric Layer
iaer	Assemblage	RH(%)	$ au^{a}_{550,bound}$	$ au_{550,dust}^{a}$	$ au^a_{550, tropo}$	$ au^a_{550,strato}$
0	MAR-99	99	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0	0
1	MAR-50	50	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
2	MAR-70	70	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
3	MAR-90	90	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
4	MAR-99	99	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
5	COA-50	50	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
6	COA-70	70	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
7	COA-90	90	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
8	COA-99	99	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
9	RUR-50	50	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
10	RUR-70	70	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
11	RUR-90	90	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
12	RUR-99	99	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
13	MAR-BDS1-1	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
14	MAR-BDS1-2	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
15	MAR-BDS1-3	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
16	MAR-BDS2-1	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
17	MAR-BDS2-2	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
18	MAR-BDS2-3	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
19	MAR-BDS3-1	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
20	MAR-BDS3-2	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
21	MAR-BDS3-3	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
22	MAR-BDW1-1	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
23	MAR-BDW1-2	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
24	MAR-BDW1-3	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
25	MAR-BDW2-1	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
26	MAR-BDW2-2	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
27	MAR-BDW2-3	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
28	MAR-BDW3-1	90	0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
29	MAR-BDW3-2	90	0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
30	MAR-BDW3-3	90	0.05;0.05;0.05;0.05;0.05;0.05;0.05	0.01; 0.05; 0.2; 0.5; 0.8; 2	0.025	0.005
31	BLU-IOP01	-	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
32	BLU-IOP02	-	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005
33	BLU-IOP03	-	0.01, 0.03, 0.1, 0.3, 0.5, 0.8	0	0.025	0.005

MERIS / ENVISAT-1 MEdium Resolution Imaging

um Resolution Imaging Spectrometer

Aerosol optical thickness at 550 nm for each of the 4 aerosol layers (i.e., boundary, dust, troposphere, and stratosphere) and for each of the 34 aerosol assemblages (iaer). Note that the first null value of AOT-550 for boundary layer is not reported in this table.

Using the spectral dependence in the *Mie*'s inputs (*i.e.*, spectral characteristics of the aerosols) and the aerosol optical thicknesses at 550 nm, $f[iaer, \lambda, \tau^a]$ is then estimated with the following steps:

Step-1: Select each aerosol model among the 23 models used in the 34 ocean-aerosol assemblages, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/MIE (FUB) and the associated input *Mie* card:

- Step-2: Determine the extinction coefficient at 865nm ($\sigma_{e,865}^{layer}$) from OTC/MIE for each of the 4 aerosol layers (*layer*= boundary, dust, troposphere, or stratosphere).
- Step-3: Extract the extinction coefficients $\sigma_{e,\lambda}^{layer}$ for each of the 4 aerosol layers (*layer*) and for each of the 15 MERIS wavelengths (λ).
- Step-4: Compute the spectral dependence factor of the total aerosol optical thickness τ^a , $f[iaer, \lambda, \tau^a]$, as follows,

$$f[iaer, \lambda, \tau^{a}] = \frac{\sum_{layer=1}^{4} \tau_{550, layer}^{a}[iaer, \tau^{a}] \cdot \frac{\sigma_{e,\lambda}^{layer}}{\sigma_{e,550}^{layer}}}{\sum_{layer=1}^{4} \tau_{550, layer}^{a}[iaer, \tau^{a}] \cdot \frac{\sigma_{e,850}^{layer}}{\sigma_{e,550}^{layer}}}, \quad with \quad \tau^{a} = \sum_{layer=1}^{4} \tau_{550, layer}^{a}$$

 $\tau_{550,layer}^{a}$ is the aerosol optical thickness at 550 nm for the aerosol layer *layer*, and σ_{e}^{layer} its associated extinction coefficient at the wavelength λ or 550 nm or 865 nm. Note that the *layer* values of 1, 2, 3 and 4 correspond respectively to the boundary layer (*layer #1* referred also as 'bound'), the dust aerosol layer (*layer #2* referred also as 'dust'), the tropospheric aerosol layer (*layer #3* referred also as 'tropo') and the stratospheric aerosol layer (*layer #4* referred also as 'strato').

<u>Warning</u>: Only the last 6 $\tau_{550,layer}^{a}$ values from LUT136 (Section 6.13.1.1), from LUT137 (Section 6.13.1.2) and from LUT409 (Section 6.13.1.3) are considered for the *f* table computation. The fields corresponding to the first AOT value (*i.e.*, $\tau_{550,layer}^{a}$ =0) in the *f* table are filled with 0 values.

The extinction coefficients for the 4 aerosol layers (*'bound'*, *'dust'*, *'tropo'* and *'strato'*) are computed with the OTC/MIE and are already normalized at a reference wavelength (here, 550 nm), thus $\sigma_{e,550}^{layer}=1$.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 286

Scientific content:

 $f[iaer, \lambda, \tau^a]$ describes the spectral dependence of the total aerosol optical thickness, for each of the 34 aerosol assemblages (*iaer*), for each of the 15 MERIS wavelengths (λ), and for each of the 6 (non-null) pre-selected total aerosol optical thicknesses (τ^a) at 550 nm. Values of $f[iaer, \lambda, \tau^a]$ are normalized to the reference wavelength at 865 nm.

The aerosol assemblages are defined as homogeneous mixtures of basic constituents which are assumed to be spherical particles characterized by their complex refractive index at all the wavelengths and their particle size distribution with the microphysical characteristics (*see* [AD-6] for more details). The extinction (absorption + scattering) coefficients are then computed via the *Mie*'s theory, as a function of the aerosol size distribution and the complex refractive index.

The choice of a set of 6 (non-null) pre-selected nominal τ^a values at 550 nm relies on a better comparison between the aerosol models which also differ with respect to their spectral characteristics. The spectral change in optical thickness of a given assemblage is therefore dependent on the optical thickness specified at 550 nm.

Resources:

Estimated CPU time:	3 sec (if LUT399 already generated, otherwise 18200 sec)
Output disk space:	$34 \times 15 \times 7 \times 4$ bytes/fl = 14280 bytes

Acceptance:

Comparison with another OTC from the LOV institute.

6.13.5.1.2 <u>UdL Recipe</u>

Reference: specdep, LUT138

[AD-8] Section 6.13.5, GADS field 1

Dependencies:

LUT130, LUT136, LUT409

Tool:

OTC/SCAMAT

<u>Note</u>: The optical properties (*i.e.*, phase function, extinction and scattering coefficients, and single scattering albedo) for the aerosol models have to be computed with the *Mie's* theory (*see* [AD-7] for more details).

Procedure:

Inputs:	iaer	Aerosol model # [<i>dl</i>] (16 SAMs [iaer#0 + MAR+ COA + RUR + BLU-IOP])
	λ	MERIS wavelength [<i>nm</i>] (15 values), see Section 6.13.4.1, (LUT130)
	$ au^a$	Total aerosol optical thickness at $550nm [dl]$ (7 values, but only the last 6 ones has to be considered), <i>see</i> table below, Section 6.13.1.1 (LUT136) and Section 6.13.1.3 (LUT409)
Output:	Specdep[iaer,λ	$[\tau^{a}]$, referred also as $f[iaer, \lambda, \tau^{a}]$ Spectral dependence of the aerosol optical thickness for each of the 16 SAMs (<i>iaer</i>), for each of the 15 MERIS wavelengths, and for each of the 7 total aerosol optical thicknesses (τ^{a}) at 550 <i>nm</i> .
units	: [<i>dl</i>]	

<u>Note</u>: The *Mie*'s computations for the different aerosol models have to be performed with the input cards placed in */UdL/INPUT/sca_in*. All the input parameters for these calculations are described and defined in [AD-6] and [AD-7], respectively.

Here is an example of an input card for the Mie's computations with OTC/SCAMAT (UdL)

sc_conti_b01.s	Output filename
412.50	Nominal wavelength (nm)
550.00	Reference wavelength (nm)
83	Number of scattering angles (fixed to 83)
3	Number of size distribution (3 max.)
1.530 0.500000E-02	Refractive index (Re,Im) at nominal wavelength for
	particle size distribution #1
1.530 0.6000000E-02	<i>Refractive index (Re,Im) at reference wavelength for</i>
4.7173841954562E-06 0.48141415860349 0.0001	particle size distribution #1
2 0.0050 2.99	Index of selected particle size distribution and its 2
	parameters, for particle size distribution #1
0.93876773E+00	<i>Component mixing ratio for particle size distribution #1</i>
1.530 0.8000000E-02	Refractive index (Re,Im) at nominal wavelength for
	particle size distribution #2
1.530 0.8000000E-02	Refractive index (Re,Im) at reference wavelength for
	particle size distribution #2
4.7173841954562E-04 48.14141586034900 0.0100	Minimum, maximum radii and size increment (µm) for particle size distribution #2
2 0.5000 2.99	Index of selected particle size distribution and its 2
	parameters, for particle size distribution #2
0.00000227E+00	Component mixing ratio for particle size distribution #2
1.750 0.4586364E+00	Refractive index (Re,Im) at nominal wavelength for
	particle size distribution #3
1.750 0.4387952E+00	Refractive index (Re,Im) at reference wavelength for
	particle size distribution #3
1.8955848629255E-04 0.28027805069842 0.0001	Minimum, maximum radii and size increment (μ m) for
	particle size distribution #3
2 0.0118 2.00	Index of selected particle size distribution and its 2
0.0(1000005.00	parameters, jor particle size distribution #5
0.06123000E+00	<i>Component mixing ratio for particle size distribution #3</i>

The 16 SAMs consist in the maritime (MAR), coastal (COA), rural (RUR) and blue-IOP (BLU) assemblages given in Section 6.13.5.1.1. The latters are referred by *iaer* from #0 to #12 and #31, #32 and #33.

Using the spectral dependence in the *Mie*'s inputs (*i.e.*, spectral characteristics of the aerosols) and the aerosol optical thicknesses at 550*nm* tabulated in the previous section, $f[iaer, \lambda, \tau^a]$ is then estimated with the following steps:

Step-1: Select each aerosol model among the 17 models used in the 16 SAMs, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/SCAMAT (UdL) and the associated input *Scamat* card:

/UdL/INPUT/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy with xx = {50, 70, 90, 99} (i.e., relative humidity), yy = {01,...,15} (i.e., MERIS bands #), ww = {01, 02, 03} (i.e., 3 Log-normal distributions)

- Step-2: Determine the extinction coefficient at 865 nm ($\sigma_{e,865}^{layer}$) from OTC/SCAMAT for each of the 3 aerosol layers (*layer*= boundary, troposphere, or stratosphere).
- Step-3: Extract the extinction coefficients $\sigma_{e,\lambda}^{layer}$ for each of the 3 aerosol layers (*layer*) and for each of the 15 MERIS wavelengths (λ).
- Step-4: Compute the spectral dependence factor of the total aerosol optical thickness τ^a , $f[iaer, \lambda, \tau^a]$, as follows,

$$f[iaer, \lambda, \tau^{a}] = \frac{\sum_{layer=1}^{3} \tau^{a}_{550, layer}[iaer, \tau^{a}] \cdot \frac{\sigma^{layer}_{e,\lambda}}{\sigma^{layer}_{e,s50}}}{\sum_{layer=1}^{3} \tau^{a}_{550, layer}[iaer, \tau^{a}] \cdot \frac{\sigma^{layer}_{e,s50}}{\sigma^{layer}_{e,s50}}}, \quad with \quad \tau^{a} = \sum_{layer=1}^{3} \tau^{a}_{550, layer}$$

 $\tau_{550,layer}^{a}$ is the aerosol optical thickness at 550*nm* for the aerosol layer *layer*, and σ_{e}^{layer} its associated extinction coefficient at the wavelength λ or 550*nm* or 865*nm*. Note that the *layer* values of 1, 2 and 3 correspond respectively to the boundary layer (*layer #1* referred also as 'bound'), the tropospheric aerosol layer (*layer #2* referred also as 'tropo') and the stratospheric aerosol layer (*layer #3* referred also as 'strato').

<u>Warning</u>: Only the last 6 $\tau_{550,layer}^{a}$ values from LUT136 (Section 6.13.1.1) and from LUT409 (Section 6.13.1.3) are considered for the *f* table computation. The fields corresponding to the first AOT value (*i.e.*, $\tau_{550,layer}^{a}$ =0) in the *f* table are filled with 0 values.

The extinction coefficients for the 3 aerosol layers (*'bound'*, *'tropo'* and *'strato'*) are computed with the OTC/SCAMAT and are already normalized at a reference wavelength (here, 550 nm), thus $\sigma_{e,550}^{layer}=1$.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 289

<u>Note</u>: In order to keep the size of the output LUT as defined in the previous FUB recipe above, the $f[iaer, \lambda, \tau^a]$ LUT is completed with null values for *iaer* from #13 to #30.

Scientific content:

 $f[iaer, \lambda, \tau^a]$ describes the spectral dependence of the total aerosol optical thickness, for each of the 16 SAMs (*iaer*), for each of the 15 MERIS wavelengths (λ), and for each of the 6 (non-null) pre-selected total aerosol optical thicknesses (τ^a) at 550 nm. Values of $f[iaer, \lambda, \tau^a]$ are normalized to the reference wavelength at 865 nm.

Resources:

Estimated CPU time:	3 sec (if LUT419 already generated, otherwise 13263 sec)
Output disk space:	$34 \times 15 \times 7 \times 4$ bytes/fl = 14280 bytes

Acceptance:

Comparison with another OTC from the LOV institute.

6.13.6 GADS Aerosol Optical Thickness at 865 nm

6.13.6.1 Aerosol optical thickness at 865 nm, $\tau^a_{865}(iaer, \tau^a)$

6.13.6.1.1 FUB Recipe

<u>Reference</u>: τ_a _bl865, LUT139

[AD-8] Section 6.13.6, GADS field 1

Dependencies:

LUT136, LUT137, LUT409

Tool:

OTC/MIE

<u>Note</u>: The optical properties (*i.e.*, phase function, extinction and scattering coefficients, and single scattering albedo) for the aerosol models have to be computed with the *Mie's* theory (*see* [AD-7] for more details).

Procedure:

Inputs: *iaer* τ^{al} Aerosol assemblage # [*dl*] (among the 34 aerosol assemblages) Aerosol optical thickness at 550*nm* [*dl*] for the boundary layer (aerosol layer #1), *see* Section 6.13.1.1 (LUT136)

- τ^{a2} Aerosol optical thickness at 550*nm* [*dl*] for the dust layer (aerosol layer #2), see Section 6.13.1.2 (LUT137) τ^{a3} Aerosol optical thickness at 550*nm* [*dl*] for the tropospheric layer
 - Aerosol optical thickness at 550nm [*dl*] for the tropospheric layer (aerosol layer #3), see Section 6.13.1.3 (LUT409)
 - Aerosol optical thickness at 550*nm* [*dl*] for the stratospheric layer (aerosol layer #4) fixed to 0.005 whatever the wavelength and the assemblage except for the first one (*iaer*#0, $\tau^{a4} = 0$)
- Output: τ_{a} _bl865[*iaer*, τ^{a}], referred also as τ^{a}_{865} [*iaer*, τ^{a}] Aerosol optical thickness at 865*nm* for each of the 34 aerosol assemblages (*iaer*) and for each aerosol optical thickness (τ^{a}) at 550*nm*.

units: [dl]

 τ^{a4}

 τ_{865}^{a} [*iaer*, τ^{a}] is computed as the sum of the products between the aerosol optical thickness $\tau_{550,layer}^{a}$ [*iaer*, τ^{a}] at 550*nm* and the extinction coefficients ratio ($\sigma_{e,865}^{layer}/\sigma_{e,550}^{layer}$), describing the spectral dependence of the aerosol model, for each of the 4 aerosol layers (*layer*) (*i.e.*, boundary, dust, troposphere and stratosphere). This calculation is achived with the following steps:

Step-1: Select each aerosol model among the 23 models used in the 34 ocean-aerosol assemblages, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/MIE (FUB) and the associated input *Mie* card:

/FUB/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_dbdsz_byy, sc_dbdwz_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy

with $xx = \{50, 70, 90, 99\}$ (i.e., relative humidity), $yy = \{01, ..., 15\}$ (i.e., MERIS bands #), $z = \{1, 2, 3\}$ (i.e., 3 scale heights), $ww = \{01, 02, 03\}$ (i.e., 3 Log-normal distributions)

Step-2: Extract the extinction coefficients at 865nm ($\sigma_{e,865}^{model}$) and 550nm ($\sigma_{e,550}^{model}$) from the 4 aerosol models, and compute τ_{865}^a [*iaer*, τ^a], the total optical thickness at 865nm, as follows,

$$\tau_{865}^{a}[iaer,\tau^{a}] = \sum_{layer=1}^{4} \tau_{550,layer}^{a}[iaer,\tau_{550}^{a}] \cdot \frac{\sigma_{e,865}^{layer}}{\sigma_{e,550}^{layer}}$$

with $\tau^{a} = \sum_{layer=1}^{4} \tau^{a}_{550,layer} = \tau^{a}_{550,bound} + \tau^{a}_{550,dust} + \tau^{a}_{550,tropo} + \tau^{a}_{550,strato}$

where $\tau^a_{550,bound}$, $\tau^a_{550,dust}$, $\tau^a_{550,tropo}$, $\tau^a_{550,strato}$ correspond to τ^{a1} , τ^{a2} , τ^{a3} , τ^{a4} , respectively.

<u>Warning</u>: Only the last 6 $\tau_{550,layer}^{a}$ values from LUT136 (Section 6.13.1.1), from LUT137 (Section 6.13.1.2) and from LUT409 (Section 6.13.1.3) are considered for the τ_{865}^{a} table computation. The fields corresponding to the first AOT value (*i.e.*, $\tau_{550,layer}^{a}$ =0) in the τ_{865}^{a} table are filled with 0 values.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 291

Scientific content:

 τ_{865}^{a} [*iaer*, τ^{a}] describes the aerosol optical thickness at 865 nm for the whole atmosphere (0–50 km), for each of the 34 aerosol assemblages (*iaer*) and for each of the 6 (non null) total aerosol optical thicknesses (τ^{a}) at 550 nm, from which depends the aerosol mixing ratio. This reference table is required due to the fact that the AOTs are normalized to the 865 nm wavelength.

Resources:

Estimated CPU time: 1 sec (if LUT399 already generated, otherwise 18198 sec) Output disk space: $34 \times 7 \times 4$ bytes/fl = 952 bytes

Acceptance:

Comparison with another OTC from the LOV institute.

6.13.6.1.2 <u>UdL Recipe</u>

<u>Reference</u>: τ_a bl865, LUT139

[AD-8] Section 6.13.6, GADS field 1

Dependencies:

LUT136, LUT409

Tool:

OTC/SCAMAT

<u>Note</u>: The optical properties (*i.e.*, phase function, extinction and scattering coefficients, and single scattering albedo) for the aerosol models have to be computed with the *Mie's* theory (*see* [AD-7] for more details).

Procedure:

Inputs:	iaer	Aerosol assemblage # [<i>dl</i>] (16 SAMs [iaer#0+MAR+COA+RUR+BLU-IOP])
	$ au^{al}$	Aerosol optical thickness at $550 nm [dl]$ for the boundary layer (aerosol
		layer #1), see Section 6.13.1.1 (LU1136)
	$ au^{a2}$	Aerosol optical thickness at $550nm$ [dl] for the tropospheric layer
		(aerosol layer #3), see Section 6.13.1.3 (LUT409)
	$ au^{a3}$	Aerosol optical thickness at 550nm [dl] for the stratospheric layer
		(aerosol layer #4) fixed to 0.005 whatever the wavelength and the
		assemblage except for the first one (<i>iaer</i> #0, $\tau^{a4} = 0$)

Output:

put: τ_a _bl865[*iaer*, τ^a], referred also as τ^a_{865} [*iaer*, τ^a]

Aerosol optical thickness at 865 *nm* for each of the 16 SAMs (*iaer*) and for each aerosol optical thickness (τ^a) at 550 *nm*.

units: [*dl*]

 τ_{865}^{a} [*iaer*, τ^{a}] is computed as the sum of the products between the aerosol optical thickness $\tau_{550,layer}^{a}$ [*iaer*, τ^{a}] at 550*nm* and the extinction coefficients ratio ($\sigma_{e,865}^{layer} / \sigma_{e,550}^{layer}$), describing the spectral dependence of the aerosol model, for each of the 3 aerosol layers (*layer*) (*i.e.*, boundary, troposphere and stratosphere). This calculation is achived with the following steps:

Step-1: Select each aerosol model among the 17 models used in the 16 SAMs, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/SCAMAT (UdL) and the associated input *Scamat* card:

/UdL/INPUT/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy

with $xx = \{50, 70, 90, 99\}$ (i.e., relative humidity), $yy = \{01, ..., 15\}$ (i.e., MERIS bands #), $ww = \{01, 02, 03\}$ (i.e., 3 Log-normal distributions)

Step-2: Extract the extinction coefficients at 865*nm* ($\sigma_{e,865}^{model}$) and 550*nm* ($\sigma_{e,550}^{model}$) for each of the 3 aerosol layers (*layer*), and compute τ_{865}^{a} [*iaer*, τ^{a}], the total optical thickness at 865*nm*, as follows,

$$\tau_{865}^{a}[iaer, \tau^{a}] = \sum_{layer=1}^{3} \tau_{550, layer}^{a}[iaer, \tau_{550}^{a}] \cdot \frac{\sigma_{e,865}^{layer}}{\sigma_{e,550}^{layer}}$$

with $\tau^{a} = \sum_{layer=1}^{3} \tau^{a}_{550,layer} = \tau^{a}_{550,bound} + \tau^{a}_{550,tropo} + \tau^{a}_{550,strato}$

where $\tau^{a}_{550,bound}$, $\tau^{a}_{550,tropo}$, $\tau^{a}_{550,strato}$ correspond to τ^{al} , τ^{a2} , τ^{a3} , respectively.

<u>Warning</u>: Only the last 6 $\tau_{550,layer}^{a}$ values from LUT136 (Section 6.13.1.1) and from LUT409 (Section 6.13.1.3) are considered for the τ_{865}^{a} table computation. The fields corresponding to the first AOT value (*i.e.*, $\tau_{550,layer}^{a}$ =0) in the τ_{865}^{a} table are filled with 0 values.

<u>Note</u>: In order to keep the size of the output LUT as defined in the previous FUB recipe above, the τ_{865}^a [*iaer*, τ^a] LUT is completed with null values for *iaer* from #13 to #30.

Scientific content:

 τ_{865}^{a} [*iaer*, τ_{a}^{a}] describes the aerosol optical thickness at 865 nm for the whole atmosphere (0 - 50 km), for each of the 16 SAMs (*iaer*) and for each of the 6 (non null) total aerosol optical thicknesses (τ^{a}) at

550*nm*, from which depends the aerosol *mixing ratio*. This reference table is required due to the fact that the aerosol optical properties are normalized to the 865*nm* wavelength.

Resources:

Estimated CPU time:	1 sec (if LUT419 already generated, otherwise 13261 sec)
Output disk space:	$34 \times 7 \times 4$ bytes/fl = 952 bytes

Acceptance:

Comparison with another OTC from the LOV institute.

6.13.7 GADS Aerosol Single Scattering Albedo

6.13.7.1 Aerosol sin	gle scattering	albedo, d	ω_o^a (iaer,	λ)
----------------------	----------------	-----------	---------------------	----

6.13.7.1.1 <u>FUB Recipe</u>

<u>Reference</u>: $\omega_a tab_LUT$, LUT140

[AD-8] Section 6.13.7, GADS field 1

Dependencies:

LUT130

Tool:

OTC/MIE

<u>Note</u>: The optical properties (*i.e.*, phase function, extinction and scattering coefficients, and single scattering albedo) for the aerosol models have to be computed with the *Mie's* theory (*see* [AD-7] for more details).

Procedure:

Inputs:	iaer λ	Aerosol model # [<i>dl</i>] (among the 34 aerosol assemblages) MERIS wavelength [<i>nm</i>] (15 values), <i>see</i> Section 6.13.4.1, (LUT130)
Output:	$\omega_a tab_LUT[iae$	$[r,\lambda]$, referred also as $\omega_o^a[iaer,\lambda]$ Aerosol single scattering albedo for each of the 34 aerosol assemblages $(iaer)$ and for each of the 15 MERIS wavelengths (λ) .
units	[dl]	

- <u>Note</u>: The *Mie*'s computations for the different aerosol models have to be performed with the input cards placed in */FUB/sca_in*. All the input parameters for these calculations are described and defined in [AD-6] and [AD-7], respectively.
- Step-1: Select each aerosol model among the 23 models used in the 34 ocean-aerosol assemblages, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/MIE (FUB) and the associated input *Mie* card:

/FUB/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_dbdsz_byy, sc_dbdwz_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy

with $xx = \{50, 70, 90, 99\}$ (i.e., relative humidity), $yy = \{01, ..., 15\}$ (i.e., MERIS bands #), $z = \{1, 2, 3\}$ (i.e., 3 scale heights), $ww = \{01, 02, 03\}$ (i.e., 3 Log-normal distributions)

Step-2: Determine the single scattering albedo $\omega_o^a[iaer, \lambda]$ for each of the 34 aerosol assemblages (*iaer*) and for each of the 15 MERIS wavelengths (λ), by combining the different aerosol components in each of the 4 aerosol layers (as defined according to WCRP or *Shettle and Fenn* (1979) [RD-8], see also [AD-6] for more details) and their optical properties (*i.e.*, extinction / scattering coefficients and single scattering albedo) for the boundary, dust, tropospheric and stratospheric layers.

The single scattering albedo (ω_0) is defined as the ratio between the scattering (b) and the extinction (c) coefficient. $\omega_0^a[iaer, \lambda]$ will then be computed as the ratio of a weighted average on the scattering to a weighted average on the extinction. The weighting factor is defined by the optical thickness. As an example, for an aerosol assemblage composed with the aerosol models a_1 (boundary layer), a_2 (dust layer), a_3 (troposphere) and a_4 (stratosphere) for which the optical thicknesses are respectively τ^{al} , τ^{a2} , τ^{a3} and τ^{a4} the scattering coefficients b_1 , b_2 , b_3 and b_4 and the extinction coefficients c_1 , c_2 , c_3 and c_4 , the resulting single scattering albedo ω_0 will be:

$$arphi_{\mathrm{o}} = rac{\displaystyle\sum_{k=1}^{4} b_k \cdot au^{a_k}}{\displaystyle\sum_{k=1}^{4} c_k \cdot au^{a_k}}$$

For the computation, τ^{a1} and τ^{a2} will be selected as the 5th value in the set of 7 AOT550 respectively for the boundary and the dust layer (LUT136 & LUT137).

Note that the ω_0 values have to be positive and lower or equal to 1.

Scientific content:

 $\omega_o^a[iaer, \lambda]$ describes the aerosol single scattering albedo for the whole atmosphere (0 - 50km), for each of the 34 aerosol assemblages (*iaer*) and for each of the 15 MERIS wavelengths (λ). This table is required for the atmospheric correction algorithm over ocean.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 295

Resources:

Estimated CPU time:	1 sec (if LUT399 already generated, otherwise 18198 sec)
Output disk space:	$34 \times 15 \times 4$ bytes/fl = 2040 bytes

Acceptance:

Comparison with another OTC from the LOV institute.

6.13.7.1.2 <u>UdL Recipe</u>

<u>Reference</u>: $\omega_a tab_LUT$, LUT140

[AD-8] Section 6.13.7, GADS field 1

Dependencies:

LUT130

Tool:

OTC/SCAMAT

<u>Note</u>: The optical properties (*i.e.*, phase function, extinction and scattering coefficients, and single scattering albedo) for the aerosol models have to be computed with the *Mie's* theory (*see* [AD-7] for more details).

Procedure:

Inputs:	iaer	Aerosol model # [<i>dl</i>] (16 SAMs [iaer#0 + MAR+ COA + RUR + BLU IOP])	-
	λ	MERIS wavelength [nm] (15 values), see Section 6.13.4.1, (LUT130)	
Output:	$\omega_a tab_L$	$T[iaer, \lambda]$, referred also as $\omega_0^a[iaer, \lambda]$	
		Aerosol single scattering albedo for each of the 16 SAMs (<i>iaer</i>) and fo each of the 15 MERIS wavelengths (λ).	r
u	nits:	dI]	
Step-1:	Select each	erosol model among the 17 models used in the 16 SAMs, and compute th	e

Step-1: Select each aerosol model among the 17 models used in the 16 SAMs, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/SCAMAT (UdL) and the associated input *Scamat* card:

/UdL/INPUT/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy

with $xx = \{50, 70, 90, 99\}$ (i.e., relative humidity), $yy = \{01, ..., 15\}$ (i.e., MERIS bands #), $ww = \{01, 02, 03\}$ (i.e., 3 Log-normal distributions)

Step-2: Determine the single scattering albedo $\omega_o^a[iaer, \lambda]$ for each of the 16 SAMs (*iaer*) and for each of the 15 MERIS wavelengths (λ), by combining the different aerosol components in each of the 3 aerosol layers and their optical properties (*i.e.*, extinction / scattering coefficients and single scattering albedo) for the boundary, dust, tropospheric and stratospheric layers.

 $\omega_o^a[iaer, \lambda]$ is then computed as the ratio of a weighted average on the scattering to a weighted average on the extinction. For an aerosol assemblage composed with the aerosol models a_1 (boundary layer), a_2 (troposphere) and a_3 (stratosphere) for which the optical thicknesses are respectively τ^{a1} , τ^{a2} and τ^{a3} , the scattering coefficients b_1 , b_2 and b_3 and the extinction coefficients c_1 , c_2 and c_3 , the resulting single scattering albedo ω_0 is computed as:

$$\omega_{\mathrm{o}} = \frac{\sum\limits_{k=1}^{3} b_k \cdot \tau^{a_k}}{\sum\limits_{k=1}^{3} c_k \cdot \tau^{a_k}}$$

For the computation, τ^{a1} will be selected as the 5th value in the set of 7 AOT550 for the boundary layer (LUT136).

Note that the ω_0 values have to be positive and lower or equal to 1.

<u>Note</u>: In order to keep the size of the output LUT as defined in the previous FUB recipe above, the ω_0^a [*iaer*, λ] LUT is completed with null values for *iaer* from #13 to #30.

Scientific content:

Par **Bleu**

technol ogies

 $\omega_o^a[iaer, \lambda]$ describes the aerosol single scattering albedo for the whole atmosphere (0 - 50km), for each of the 16 SAMs (*iaer*) and for each of the 15 MERIS wavelengths (λ). This table is required for the atmospheric correction algorithm over ocean.

Resources:

Estimated CPU time:	1 sec (if LUT419 already generated, otherwise 13261 sec)
Output disk space:	$34 \times 15 \times 4$ bytes/fl = 2040 bytes

Acceptance:

Comparison with another OTC from the LOV institute.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 297

6.13.8 GADS Aerosol Forward Scattering Proportion

6.13.8.1 Aerosol forward scattering proportion, $fp^{a}(iaer, \lambda)$

6.13.8.1.1 <u>FUB Recipe</u>

<u>Reference</u>: f_atab_LUT, LUT141

[AD-8] Section 6.13.8, GADS field 1

Dependencies:

LUT130

Tools:

OTC/MIE OTC/SCFP_2

<u>Note</u>: The optical properties (*i.e.*, phase function, extinction and scattering coefficients, and single scattering albedo) for the aerosol models have to be computed with the *Mie's* theory (*see* [AD-7] for more details).

The OTC/SCFP_2 allows one to compute the aerosol forward scattering proportion using aerosol optical properties generated with the OTC/MIE.

Procedure:

Inputs:	iaer	Aerosol model # $[dl]$ (among the 34 aerosol assemblages)
	λ	MERIS wavelength [<i>nm</i>] (15 values), see Section 6.13.4.1, (LUT130)
Output:	$f_a tab_L b$	$T[iaer, \lambda]$, referred also as $f_a[iaer, \lambda]$
		aerosol forward scattering proportion for each of the 34 aerosol assemblages (<i>iaer</i>) and for each of the 15 MERIS wavelengths (λ).
ı	units:	$\left[dl \right]$

- <u>Note</u>: The *Mie*'s computations for the different aerosol models have to be performed with the input cards placed in */FUB/sca_in*. All the input parameters for these calculations are described and defined in [AD-6] and [AD-7], respectively.
- Step-1: Select each aerosol model among the 23 models used in the 34 ocean-aerosol assemblages, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/MIE (FUB) and the associated input *Mie* card:

/FUB/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_dbdsz_byy, sc_dbdwz_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy

with $xx = \{50, 70, 90, 99\}$ (i.e., relative humidity), $yy = \{01, .., 15\}$ (i.e., MERIS bands #), $z = \{1, 2, 3\}$ (i.e., 3 scale heights), $ww = \{01, 02, 03\}$ (i.e., 3 Log-normal distributions)

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 298

- Step-2: Build the '*scpf.ein*' file with the list of aerosol models, launch the computations of the aerosol forward scattering proportion for each aerosol models with the OTC/SCFP_2, and save results in an output file namely '*ae_fp.d*'.
- Step-3: Determine the forward scattering proportion $f_a[iaer, \lambda]$ for each of the 34 aerosol assemblages (*iaer*) and for each of the 15 MERIS wavelengths (λ), by combining the different aerosol components in each of the 4 aerosol layers (as defined according to WCRP or *Shettle and Fenn* (1979) [RD-8], see also [AD-6] for more details).

The forward scattering proportion (f_a) is defined as the sum of the individual forward scattering probabilities of the aerosol models in the 4 aerosol layers weighted by their associated optical thicknesses. As an example, for an aerosol assemblage composed with the aerosol models a_1 (boundary layer), a_2 (dust layer), a_3 (troposphere) and a_4 (stratosphere) for which the optical thicknesses are respectively τ^{a1} , τ^{a2} , τ^{a3} & τ^{a4} and the forward scattering probabilities $f_{a_1}, f_{a_2}, f_{a_3}$ & f_{a_4} , the resulting forward scattering proportion f_a will be:

$$f_a = rac{{\sum\limits_{k = 1}^4 {{f_{{a_k}}} \cdot {{ au}^{{a_k}}} } }}{{\sum\limits_{k = 1}^4 {{ au}^{{a_k}}} }}$$

For the computation, τ^{a1} and τ^{a2} will be selected as the 5th value in the set of 7 AOT550 respectively for the boundary and the dust layer (LUT136 & LUT137).

Note that the f_a values have to be positive and lower or equal to 1.

Scientific content:

 $f_a[iaer, \lambda]$ describes the aerosol forward scattering proportion for the whole atmosphere (0 - 50km), for each of the 34 aerosol assemblages (*iaer*) and for each of the 15 MERIS wavelengths (λ). This table is required for the atmospheric correction algorithm over ocean.

Resources:

Estimated CPU time:	2 sec (if LUT399 already generated, otherwise 64808 sec)
Output disk space:	$34 \times 15 \times 4$ bytes/fl = 2040 bytes

Acceptance:

Comparison with another computations should have be done.

6.13.8.1.2 <u>UdL Recipe</u>

<u>Reference</u>: $f_a tab_L UT$, LUT141

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 299

[AD-8] Section 6.13.8, GADS field 1

Dependencies:

LUT130

Tools:

OTC/SCAMAT OTC/COMPUTE_FSP

<u>Note</u>: The optical properties (*i.e.*, phase function, extinction and scattering coefficients, and single scattering albedo) for the aerosol models have to be computed with the *Mie's* theory (*see* [AD-7] for more details).

The OTC/COMPUTE_FSP allows one to compute the aerosol forward scattering proportion using aerosol optical properties generated with the OTC/SCAMAT.

Procedure:

Inputs:	iaer	Aerosol model # [<i>dl</i>] (16 SAMs [iaer#0 + MAR+ COA + RUR + BLU-IOP])
	λ	MERIS wavelength [nm] (15 values), see Section 6.13.4.1, (LUT130)
Output:	$f_a tab_LUT[i]$	<i>iaer</i> , λ], referred also as $f_a[iaer,\lambda]$ Aerosol forward scattering proportion for each of the 16 SAMs (<i>iaer</i>) and for each of the 15 MERIS wavelengths (λ).
ur	nits: [d	7]
Step-1:	Select each ae	rosol model among the 17 models used in the 16 SAMs, and compute the

Step-1: Select each aerosol model among the 17 models used in the 16 SAMs, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/SCAMAT (UdL) and the associated input *Scamat* card:

/UdL/INPUT/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy

with $xx = \{50, 70, 90, 99\}$ (i.e., relative humidity), $yy = \{01, .., 15\}$ (i.e., MERIS bands #), $ww = \{01, 02, 03\}$ (i.e., 3 Log-normal distributions)

- Step-2: Compute the aerosol forward scattering proportion for each of all the aerosol models with OTC/COMPUTE_FSP by using as input the *Scamat* ouput files from step-1.
- Step-3: For each of the 16 SAMs (*iaer*) and each of the 15 MERIS wavelengths (λ), extract from the output files generated with OTC/COMPUTE_FSP the aerosol forward scattering proportion $f_a[k,\lambda]$ (value at $\theta=0$ deg.) for each of the 3 models (k) used in the boundary, tropospheric and stratospheric layers, then compute the forward scattering proportion $f_a[iaer,\lambda]$ as:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 300

where τ^{a_k} is the associated optical thicknesses with the aerosol model (*k*).

$$f_a = rac{{\sum\limits_{k = 1}^3 {{f_{{a_k}}} \cdot {{ au}^{{a_k}}} } }}{{\sum\limits_{k = 1}^3 {{ au}^{{a_k}}} }}$$

For the computation, τ^{al} will be selected as the 5th value in the set of 7 AOT550 for the boundary layer (LUT136).

Note that the f_a values have to be positive and lower or equal to 1.

<u>Note</u>: In order to keep the size of the output LUT as defined in the previous FUB recipe above, the $f_a tab_LUT[iaer, \lambda]$ LUT is completed with null values for *iaer* from #13 to #30.

Scientific content:

 $f_a[iaer, \lambda]$ describes the aerosol forward scattering proportion for the whole atmosphere (0–50 km), for each of the 16 SAMs (*iaer*) and for each of the 15 MERIS wavelengths (λ). This table is required for the atmospheric correction algorithm over ocean.

Resources:

Estimated CPU time: 2 sec (if LUT419 already generated, otherwise 45902 sec) Output disk space: $34 \times 15 \times 4$ bytes/fl = 2040 bytes

Acceptance:

Comparison with another computations should have be done.

6.13.9 GADS Blue TOA Reflectance Threshold - ROGC

6.13.9.1 Threshold on the glint corrected blue TOA reflectance $\rho_{GC}(412.5)$

<u>Reference</u>: $\rho_{GCthresh}$ _LUT, LUT142

[AD-8] Section 6.13.9, ADSR field 1

Dependencies:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 301

LUT130, LUT132, LUT133, LUT134, LUT136, LUT137, LUT409, LUT410

Tools:

RTC/UPRAD (MOMO) Multi-linear interpolation

Procedure:

Inputs:	iaer	Aerosol assemblage #27 ('MAR-BDW2-3')
	λ	MERIS band #1 (412.5 <i>nm</i>), see Section 6.13.4.1, (LUT130)
	θ_s	Solar zenith angle [deg], see Section 6.13.4.3, (LUT132)
	$ heta_{v}$	View zenith angle [deg], see Section 6.13.4.4, (LUT133)
	$\Delta \phi$	Relative azimuth angle [deg], see Section 6.13.4.5, (LUT134)
	k	Polynomial coefficient order [dl], $k = [0;2]$
	$ au^{al}$	Aerosol optical thickness at $550nm$ [dl] for the boundary layer (aerosol layer #1), see Section 6.13.1.1 (LUT136)
	τ^{a2}	Aerosol optical thickness at $550nm [dl]$ for the dust layer (aerosol layer #2), see Section 6.13.1.2 (LUT137)
	$ au^{a3}$	Aerosol optical thickness at $550 nm [dl]$ for the troposphere layer (aerosol layer #3), see Section 6.13.1.3 (LUT409)
	t^{a4}	Aerosol optical thickness at $550nm$ [<i>dl</i>] for the stratospheric layer, fixed to 0.005 whatever wavelength and assemblage except for the first one (<i>iaer#0</i> , $\tau^{a4} = 0$)
	$ au^{R}$	Rayleigh optical thickness [dl] (15 values), see Section 6.11.1.1, (LUT410)
Output:	$ ho_{GCthresh}$	$LUT[\theta_s, \theta_v, \Delta \phi]$ TOA reflectance thresholds at 412.5 <i>nm</i> as function of the illumination and viewing configuration $(\theta_s, \theta_v, \Delta \phi)$
units		[dl]

Step-0: Select each aerosol model used in the ocean-aerosol assemblage #27 ('*MAR-BDW2-3*'), and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at the 412.5 nm MERIS wavelength (λ) with the OTC/MIE (FUB) and the associated input *Mie* card:

/FUB/sca_in/sc_mar90_b01, sc_dbdw2_b01, sc_conti_b01, sc_H2SO4_b01

Step-1: Generate TOA normalized radiance $L_{TOA_{-}I}[\theta_{s}, \theta_{v}, \Delta\phi]$ at 412.5 nm (MERIS band #1) for a maritime atmosphere (using aerosol assemblage #27, 'MAR-BDW2-3') over a flat black sea surface, for all illumination and viewing configurations $(\theta_{s}, \theta_{v}, \Delta\phi)$, with the RTC/MOMO (FUB). Note that the first cloud layer is used as an aerosol layer for stratosphere.

RTC/MOMO Inputs (OCEAN)

vulue vulue commentas

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 302

Variable	Value	Comments
out_file	"./up_out/uprad_out"	
i_branch	3	For including the 4 aerosol layers in the radiative transfer computation
$n(\lambda)$	1	Selected from Section 6.13.4.1 (412.5 nm)
U _{H2O}	0	
$ESFT_{H2O}$	-	N/A
U_{O2}	0	
$ESFT_{O2}$	-	N/A
U_{O3}	0	
$ESFT_{O3}$	-	N/A
P_s	1013.25	
$ au^R(\lambda)$	tauR	Selected from Section 6.11.1.1
aerosol1	"./sca_out/sc_mar90_b01.s"	Boundary layer (assemblage #27)
$\tau^{al}(550)$	0.05	Selected from Section 6.13.1.1
aerosol2	"./sca_out/sc_dbdw2_b01.s"	Dust layer [0-7 km] (assemblage#27)
$\tau^{a2}(550)$	2.0	Selected from Section 6.13.1.2
aerosol3	"./sca_out/sc_conti_b01.s"	Troposphere layer (assemblage #27)
$\tau^{a3}(550)$	0.025	Selected from Section 6.13.1.3
cloud1	"./sca_out/sc_H2SO4_b01.s"	Stratosphere layer (assemblage #27)
$\tau^{cl}(550)$	0.005	
cloud2	-	N/A
$\tau^{c^2}(550)$	0	
cloud3	-	N/A
$\tau^{c^{3}}(550)$	0	
phyto	-	N/A
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{_{ys}}_{_{a,\lambda}}$	-	N/A
vertical	"./sca_vert/vtp1_lut143_0_7km"	Vertical profile with 12 atmospheric layers: boundary layer [0;2 <i>km</i>]; dust layer [0;7 <i>km</i>]; troposphere [2;12 <i>km</i>]; stratosphere [>12 <i>km</i>]
I_s	70	
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle a,\lambda}$	99	
W_{s}	0	
n_s , n_v , $n_{\Delta\phi}$	16, 10, 25	

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Issue</u>: 3 <u>Rev.</u>: C <u>Date</u>: 27-Feb-11 <u>Page</u>: 303

Variable	Value	Comments
θ_{s}	Gaussian angles	From Gauss-Lobatto quadrature (in RTC/FUB)
θ_{v}	Gaussian angles	From Gauss-Lobatto quadrature (in RTC/FUB)
$\Delta \phi$	see inputs	See Section 6.13.4.5

Step-2: Apply a multi-linear interpolation to output the TOA normalized *Rayleigh* radiance L_{TOA} $_{I}[\theta_{s}, \theta_{v}, \Delta\phi]$ into the input angular grid in (θ_{s}, θ_{v}) :

 $L_{TOA \ I}[\theta_{s}, \theta_{v}, \Delta\phi] = interpolation(L_{TOA \ I}[\theta_{s}, \theta_{v}, \Delta\phi])$

Step-3: Compute blue TOA reflectance thresholds at 412.5 nm ($\rho_{GCthresh} LUT[\theta_s, \theta_v, \Delta \phi]$) as,

$$\rho_{GCthresh_LUT}[\theta_s, \theta_v, \Delta\phi] = \pi \cdot \frac{L_{TOA_I}[\theta_s, \theta_v, \Delta\phi]}{\cos(\theta_s)}$$

Scientific content:

These blue TOA reflectance thresholds define the maximum reflectance as observed at 412.5 *nm* over flat sea surfaces (*i.e.*, oceanic surfaces corrected for the sun glint).

Resources:

Estimated CPU time: $31 \ sec$ Output disk space: $23 \times 13 \times 25 \times 4$ bytes/fl = 29900 bytes

Acceptance:

Comparison with another RTC.

6.13.10 ADS Coefficients of ρ_T / ρ_R to τ_a Relation

6.13.10.1 Polynomial coefficients for (ρ_T / ρ_R) to total AOT relationship

6.13.10.1.1 FUB Recipe

Reference: XCtab_LUT, LUT143

[AD-8] Section 6.13.10, ADSR field 1, 2 & 3

Dependencies:

LUT130, LUT132, LUT133, LUT134, LUT135, LUT136, LUT137, LUT409, LUT410

Tools:

RTC/MOMO (FUB) Multi-linear interpolation Polynomial fit

Procedure:

Inputs:		iaer	Aerosol assemblage # $[dl]$ (among the 34 aerosol assemblages)
		λ	MERIS wavelength [<i>nm</i>] (15 values), see Section 6.13.4.1, (LUT130)
		W_{s}	Wind-speed $[m.s^{-1}]$ (3 values), see Section 6.13.4.6, (LUT135)
		θ_s	Solar zenith angle [deg], see Section 6.13.4.3, (LUT132)
		θ_{v}	View zenith angle [deg], see Section 6.13.4.4, (LUT133)
		$\Delta \phi$	Relative azimuth angle [deg], see Section 6.13.4.5, (LUT134)
		k	Polynomial coefficient order $[dl], k = [0;2]$
		τ^{al}	Aerosol optical thickness at $550nm [dl]$ for the boundary layer (aerosol layer
			#1), see Section 6.13.1.1 (LUT136)
		τ^{a2}	Aerosol optical thickness at 550nm [dl] for the dust layer (aerosol layer #2), see
			Section 6.13.1.2 (LUT137)
		τ^{a3}	Aerosol optical thickness at $550 nm \ [dl]$ for the troposphere layer (aerosol layer
			#3), see Section 6.13.1.3 (LUT409)
		τ^{a4}	Aerosol optical thickness at $550 nm [dl]$ for the stratospheric layer, fixed to 0.005 whatever wavelength and assemblage except for the first one (<i>iaer#0</i> , τ^{a4} =
		R	0).
		$ au^{n}$	<i>Rayleigh</i> optical thickness [<i>dl</i>] (15 values), see Section 6.11.1.1, (LU1410)
Output:		XCtab_L	$UT[iaer, \lambda, w_s, \theta_s, \theta_v, \Delta \phi, k]$
			polynomial coefficients for the relation between the normalized radiance ratio
			(ρ_T / ρ_R) to the total aerosol optical thickness (τ^a) at 550 <i>nm</i> , as function of the aerosol assemblage (<i>iaer</i>), the MERIS wavelength (λ), the wind-speed above sea level (w_r) and the illumination and viewing configuration ($\theta_r = \theta_r / d\phi$)
		г <i>л</i> л	(3,50, <u>24</u>)
u	nits:	$\lfloor dl \rfloor$	

- <u>Note</u>: The total aerosol optical thicknesses (τ^a) at 550 nm is the sum of the 4 aerosol optical thicknesses (*resp.*, τ^{a1} , τ^{a2} , τ^{a3} and τ^{a4}) at 550 nm for the 4 aerosol layers (*resp.*, boundary, dust, troposphere, and stratosphere), *see* table from Section 6.13.5.1.
- Warning: The process for generating this XCtab_LUT table is very time-consuming. To avoid loosing data in case of a power failure during the processing, temporary binary files are created after Step3 and Step7 described below: Rayleigh_Wy.LUT401 and Mxx_Wy_Tz.LUT401 (where xx stands for the identification of the aerosol assemblage [00...33], y for the identification of the wind-speed [0,1], and z for the identification of the total aerosol optical thickness at 550nm). This allows one to resume the processing after a power failure. If we want fully restart the generation procedure, then the temporary binary files should be first deleted before relaunching the process.

See Section 6.13.1.7 (LUT401) for the description of these intermediate tables.

Moreover the total aerosol thickness (τ_{λ}^{a}) for each RTC/MOMO run is saved in the intermediate binary file (LUT405), see Section 6.13.1.7.

Step-1: Generate TOA normalized *Rayleigh* radiance $L_R[\lambda, w_s, \theta_s^{'}, \Phi_v^{'}, \Delta\phi]$ for a pure *Rayleigh* atmosphere over 3 wind-roughened black sea surfaces $(w_s=1.5, 5.0 \text{ and } 10 \text{ m.s}^{-1})$, for each MERIS wavelength (λ) , and for all illumination and viewing configurations $(\theta_s^{'}, \theta_v^{'}, \Delta\phi)$, with the RTC/MOMO (FUB). Note that the first cloud layer is used as an aerosol layer for stratosphere.

<u>Note</u>: The sun glint (*i.e.*, the direct to direct contribution) is accounted for in $L_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi]$.

RTC/MOMO Inputs (OCEAN)			
Variable	Value	Comments	
out_file	"./up_out/uprad_out"		
i_branch	3	For using 4 aerosol layers in RTC	
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15	All MERIS bands, see Section 6.13.4.1	
U_{H2O}	0		
$ESFT_{H2O}$	-	N/A	
U_{O2}	0		
$ESFT_{O2}$	-	N/A	
U_{O3}	0		
$ESFT_{O3}$	-	N/A	
P_s	1013.25		
$\tau^{R}(\lambda)$	tauR	See Section 6.11.1.1	
aerosol1	-		
$\tau^{al}(550)$	0		
aerosol2	-		
$\tau^{a2}(550)$	0		
aerosol3	-		
$\tau^{a3}(550)$	0		

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 306

Variable	Value	Comments
cloud1	-	N/A
$\tau^{cl}(550)$	0	
cloud2	-	N/A
$\tau^{c^2}(550)$	0	
cloud3	-	N/A
$\tau^{c3}(550)$	0	
phyto	-	N/A
$\sigma^{_{p}}_{_{e,\lambda}}$	-	N/A
$\omega_{\mathrm{o},\lambda}^{p}$	-	N/A
spm	-	N/A
$\sigma^{\scriptscriptstyle spm}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\mathscr{O}^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle a,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./sca_vert/vtp1_lut143_0_2km"	Vertical profile with 12 atmospheric layers
I_s	70	
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle a,\lambda}$	99	
Ws	1.5, 5.0 and 10	See Section 6.13.4.6
n_s , n_v , $n_{\Delta\phi}$	16, 10, 25	
θ_{s}	Gaussian angles	From Gauss-Lobatto quadrature (in RTC/FUB)
θ_{v}	Gaussian angles	From Gauss-Lobatto quadrature (in RTC/FUB)
$\Delta \phi$	see inputs	See Section 6.13.4.5

 $L_{R}[\lambda, w_{s}, \theta_{s}^{\prime}, \theta_{v}^{\prime}, \Delta \phi]$

Step-2: Compute the *Rayleigh* reflectance $\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta\phi]$ as follows,

$$\rho_{R}[\lambda, w_{s}, \theta_{s}^{'}, \theta_{v}^{'}, \Delta\phi] = \pi \cdot \frac{L_{R}[\lambda, w_{s}, \theta_{s}^{'}, \theta_{v}^{'}, \Delta\phi]}{\cos(\theta_{s}^{'})}$$

Remove the sun glint reflectance at TOA ($\rho_{G_{-TOA}}$) from the *Rayleigh* reflectance (only for the case where $w_s \neq 0$). This is achieved with the procedure described in Section 6.11.12.1.

Step-3: Apply a multi-linear interpolation to output the *Rayleigh* reflectance $\rho_R[\lambda, w_s, \theta_s^{'}, \theta_v^{'}, \Delta \phi]$ into the input angular grid in (θ_s, θ_v) :

 $\rho_{R}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta \phi] = interpolation(\rho_{R}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta \phi])$

Step-4: Select each aerosol model among the 23 models used in the 34 ocean-aerosol assemblages, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/MIE (FUB) and the associated input *Mie* card:

 $/FUB/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_dbdsz_byy, sc_dbdwz_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy$ $with xx = {50, 70, 90, 99} (i.e., relative humidity), yy = {01,...,15} (i.e., MERIS bands #), z = {1, 2, 3} (i.e., 3 scale heights), ww = {01, 02, 03} (i.e., 3 Log-normal distributions)$

- Step-5: Generate TOA normalized radiances $L_T[\lambda, w_s, \theta_s, \theta_v, \Delta\phi, \tau^a, iaer]$ for a maritime atmosphere (*Rayleigh* + aerosols) over 3 wind-roughened black sea surfaces ($w_s=1.5$, 5.0 and $10 m.s^{-1}$), for each selected aerosol assemblage (τ^a , *iaer*), for each MERIS wavelength (λ), and for all illumination and viewing configurations ($\theta_s, \theta_v, \Delta\phi$), with the RTC/MOMO (FUB). Note that the first cloud layer is used as an aerosol layer for stratosphere.
- <u>Note</u>: The sun glint (*i.e.*, the direct to direct contribution) is accounted for in $L_T[\lambda, w_s, \theta_s, \theta_v, \Delta\phi, \tau^a, iaer]$.

Variable	Value	Comments
out_file	"./up_out/uprad_out"	
i_branch	3	For using 4 aerosol layers in RTC
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15	All MERIS bands, see Section 6.13.4.1
U _{H2O}	0	
$ESFT_{H2O}$	-	N/A
U_{O2}	0	
$ESFT_{O2}$	-	N/A
U_{O3}	0	
$ESFT_{O3}$	-	N/A
P_s	1013.25	
$ au^{R}(\lambda)$		See Section 6.11.1.1
aerosol1	"./sca_out/sc_marxx_byy.s"	For maritime, coastal and rural aerosols, xx
	"./sca_out/sc_coaxx_byy.s"	depends on RH and <i>yy</i> on $n(\lambda)$.
	"./sca_out/sc_rurxx_byy.s"	For blue aerosols, w depends on the Ang-ström
	"./sca out/sc bluew byy.s"	exponent and <i>yy</i> on $n(\lambda)$.

RTC/MOMO Inputs (OCEAN)

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 308

Variable	Value	Comments	
$\tau^{al}(550)$	tauA1	See Section 6.13.1.1 (last 6 values only) or table in Section 6.13.5.1	
aerosol2	"./sca_out/sc_dbdsz_byy.s"	<i>yy</i> depends on $n(\lambda)$ and <i>z</i> on the height of the	
	"./sca_out/sc_dbdwz_byy.s"	top of aerosol layer	
$\tau^{a2}(550)$	tauA2	See Section 6.13.1.2 (last 6 values only) or table in Section 6.13.5.1	
aerosol3	"./sca_out/sc_conti_byy.s"	<i>yy</i> depends on $n(\lambda)$	
$\tau^{a3}(550)$	tauA3	See Section 6.13.1.3 (last 6 values only) or table in Section 6.13.5.1	
cloud1	"./sca_out/sc_H2SO4_byy.s"	<i>yy</i> depends on $n(\lambda)$	
$\tau^{cl}(550)$	0	For the first assemblage (<i>iaer#0</i>)	
	0.005	For the other assemblages (<i>iaer</i>)	
cloud2	-	N/A	
$\tau^{c^2}(550)$	0		
cloud3	-	N/A	
$\tau^{c^{3}}(550)$	0		
phyto	-	N/A	
$\sigma^{_{p}}_{_{e,\lambda}}$	-	N/A	
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A	
spm	-	N/A	
$\sigma^{spm}_{e,\lambda}$	-	N/A	
$\mathscr{O}^{spm}_{\mathrm{o},\lambda}$	-	N/A	
$\sigma^{_{ys}}_{_{a,\lambda}}$	-	N/A	
vertical	"./sca_vert/vtp1_lut143_0_7km"	For assemblages: <i>iaer</i> #15, 18, 21, 24, 27, 30	
	"./sca_vert/vtp1_lut143_0_5km"	For assemblages: <i>iaer</i> #14, 17, 20, 23, 26, 29	
	"./sca_vert/vtp1_lut143_0_2km"	For the other assemblages	
I_s	70		
$ ho_s$	0		
Eo	1		
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle a,\lambda}$	99		
W_{S}	1.5, 5.0 and 10	See Section 6.13.4.6	
n_s , n_v , $n_{\Delta\phi}$	16, 10, 25		
θ_{s}	Gaussian angles	From Gauss-Lobatto quadrature (in RTC/FUB)	
θ_{v}	Gaussian angles	From Gauss-Lobatto quadrature (in RTC/FUB)	
$\varDelta \phi$	see inputs	See Section 6.13.4.5	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 309

Step-6: Compute the total TOA reflectance (*Rayleigh* + aerosols) $\rho_T[\lambda, w_s, \theta_s^{\prime}, \theta_v, \Delta\phi, \tau^a, iaer]$ as follows,

$$\rho_{T}[\lambda, w_{s}, \theta_{s}^{'}, \theta_{v}^{'}, \Delta\phi, \tau^{a}, iaer] = \pi \cdot \frac{L_{T}[\lambda, w_{s}, \theta_{s}^{'}, \theta_{v}^{'}, \Delta\phi, \tau^{a}, iaer]}{\cos(\theta_{s}^{'})}$$

Remove the sun glint reflectance at TOA ($\rho_{G_{TOA}}$) from the *Rayleigh* reflectance (only for the case where $w_s \neq 0$). This is achieved with the procedure described in Section 6.11.12.1.

- <u>Note</u>: For each RTC/MOMO run, the total aerosol optical thickness (τ_{λ}^{a}) is extracted from the output MOMO file (in the *'/FUB/mom_out/'* directory) and saved in an intermediate binary file (LUT405), *see* Section 6.13.1.7.
- Step-7: Apply a multi-linear interpolation to output the total TOA reflectance $\rho_T[\lambda, w_s, \theta_s^{'}, \theta_v^{'}, \Delta\phi, \tau^a, iaer]$ into the input angular grid in (θ_s, θ_v) :

 $\rho_{T}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, \tau^{a}, iaer] = interpolation(\rho_{T}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, \tau^{a}, iaer])$

Step-8: Compute the TOA reflectance ratio $\rho_T / \rho_R [\lambda, w_s, \theta_s, \theta_v, \Delta \phi, \tau_a^a, iaer]$,

$$\rho_T / \rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta\phi, \tau^a, iaer] = \frac{\rho_T[\lambda, w_s, \theta_s, \theta_v, \Delta\phi, \tau^a, iaer]}{\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta\phi]}$$

Step-9: Apply a 2nd order polynomial fit on the TOA reflectance ratio $\rho_T / \rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi, \tau^a, iaer]$ as function of the total aerosol optical thickness τ^a_{λ} , for retrieving polynomial coefficients *XCtab_LUT*[*iaer*, $\lambda, w_s, \theta_s, \theta_v, \Delta \phi, k$],

$$\rho_{T}/\rho_{R}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, \tau^{a}, iaer] = XCtab_LUT[iaer, \lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, 0] \\ + XCtab_LUT[iaer, \lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, 1] \cdot \tau_{\lambda}^{a} \\ + XCtab_LUT[iaer, \lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, 2] \cdot [\tau_{\lambda}^{a}]^{2}$$

Note that these coefficients will be determined by fitting 7 points to a 2^{nd} order polynomial for which 6 of these points derive from the MOMO simulations (*i.e.*, 6 total AOTs (τ^a)), and the 7th one is simply (0,1) corresponding to a TOA reflectance ratio of 1 for an aerosol-free

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 310

atmosphere. More a quality test is applied to the 2nd order polynomial fits in order to check the unique solution in the total AOT (τ_{λ}^{a}) retrieval (*i.e.*, to avoid the τ_{λ}^{a} value corresponding to the extremum of the 2nd order polynomial fit within the range of AOTs used as input for this fitting). The approach consists to establish the fit by decreasing the number of points (while keeping an acceptable range in τ^{a} defined by the first 2 non-null input τ^{a} values) as long as the quality test is not valid.

Step-10: Build the *XCtab_LUT*[*iaer*, λ , w_s , θ_s , θ_v , $\Delta\phi$,k] table.

Scientific content:

XCtab_LUT[*iaer*, λ , w_s , θ_s , θ_v , $\Delta\phi$,k] describes the coefficients of a polynomial fit which expresses the TOA reflectance ratio $\rho_T / \rho_R [iaer, \lambda, w_s, \theta_s, \theta_v, \Delta\phi]$ (in other words, the relative increase in the path reflectance from an aerosol-free atmosphere to an atmosphere with an aerosol loading) as function of the total aerosol optical thickness τ_{λ}^a . These regression coefficients (k = [0;2]) depends on the aerosol assemblage (*iaer*), the MERIS wavelength (λ), the wind-speed above sea level (w_s), and the illumination and viewing geometries (θ_s , θ_v , $\Delta\phi$).

This table is useful for the aerosol correction algorithm over wind-roughened oceanic surface, and allows one to compute the total path to *Rayleigh* reflectances ratio $(\rho_T / \rho_R [iaer, \lambda, w_s, \theta_s, \theta_v, \Delta \phi, \tau^a])$ knowing the total aerosol optical thickness τ_{λ}^a at wavelength λ .

Note that the values of these coefficients will be extracted from this table by using multiple linear interpolations.

The current baseline is:

1

Resources:

Estimated CPU time:	101663 sec (if LUT399 already generated, otherwise 166469 sec)
Output disk space:	$34 \times 15 \times 3 \times 23 \times 13 \times 25 \times 3 \times 4$ bytes/fl = 137241000 bytes

Acceptance:

Some comparisons with another RTC, such as the RTC/UPRAD (SO) from UdL have been done, as well as a quality check with tables generated by the LOV institute.

6.13.10.1.2 <u>UdL Recipe</u>

<u>Reference</u>: XCtab_LUT, LUT143

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 311

[AD-8] Section 6.13.10, ADSR field 1, 2 & 3

Dependencies:

LUT130, LUT132, LUT133, LUT134, LUT135, LUT136, LUT409, LUT410

Tools:

RTC/UPRAD (SO) Polynomial fit

Procedure:

Inputs:	iaer	Aerosol assemblage # [<i>dl</i>] (16 SAMs [iaer#0+MAR+COA+RUR+BLU-IOP])
	λ	MERIS wavelength [<i>nm</i>] (15 values), see Section 6.13.4.1, (LUT130)
	W_s	Wind-speed $[m.s^{-1}]$ (3 values), see Section 6.13.4.6, (LUT135)
	θ_s	Solar zenith angle [deg], see Section 6.13.4.3, (LUT132)
	$ heta_{\!\scriptscriptstyle \mathcal{V}}$	View zenith angle [deg], see Section 6.13.4.4, (LUT133)
	$\varDelta \phi$	Relative azimuth angle [deg], see Section 6.13.4.5, (LUT134)
	k	Polynomial coefficient order $[dl]$, $k = [0;2]$
	$ au^{al}$	Aerosol optical thickness at 550 <i>nm</i> [<i>dl</i>] for the boundary layer (aerosol layer #1), <i>see</i> Section 6.13.1.1 (LUT136)
	$ au^{a2}$	Aerosol optical thickness at 550 <i>nm</i> [<i>dl</i>] for the tropospheric layer (aerosol layer #3), <i>see</i> Section 6.13.1.3 (LUT409)
	$ au^{a3}$	Aerosol optical thickness at $550nm$ [<i>dl</i>] for the stratospheric layer (aerosol layer #4) fixed to 0.005 whatever the wavelength and the assemblage except for the first one (<i>iaer#0</i> , $\tau^{a4} = 0$)
	$ au^{R}$	Rayleigh optical thickness [dl] (15 values), see Section 6.11.1.1, (LUT410)
Output:	XCtab LUT	[<i>iaer</i> , λ , w_s , θ_s , θ_v , $\Delta\phi$, k]
	—	Polynomial coefficients for the relation between the normalized radiance
		ratio (ρ_T / ρ_R) to the total aerosol optical thickness (τ^a) at 550 nm, as
		function of the aerosol assemblage (<i>iaer</i>), the MERIS wavelength (λ), the wind-speed above sea level (w_s), and the illumination and viewing configuration ($\theta_s, \theta_v, \Delta \phi$)

units: [*dl*]

- <u>Note</u>: Because the RTC/SO (UdL) composes with 3 aerosol layers only, then the 18 dust assemblages are discarded. The total aerosol optical thicknesses (τ^a) at 550 nm is then the sum of the 3 aerosol optical thicknesses (*resp.*, τ^{aI} , τ^{a2} and τ^{a3}) at 550 nm for the 3 aerosol layers (*resp.*, boundary, troposphere and stratosphere), *see* table from Section 6.13.5.1.
- **Warning**: The process for generating this *XCtab_LUT* table is very time-consuming. To avoid loosing data in case of a power failure during the processing, temporary binary files are created after *Step2* and *Step5* described below: *Rayleigh_Wy.LUT401* and *Mxx_Wy_Tz.LUT401* (where xx

MEdium Resolution Imaging Spectrometer <u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Issue</u>: 3 <u>Rev.</u>: C <u>Date</u>: 27-Feb-11 <u>Page</u>: 312

stands for the identification of the aerosol assemblage [00 ... 16], y for the identification of the wind-speed [0,1,2], and z for the identification of the total aerosol optical thickness at 550 nm). This allows one to resume the processing after a power failure. If we want fully restart the generation procedure, then the temporary binary files should be first deleted before relaunching the process.

See Section 6.13.1.7 (LUT401) for the description of these intermediate tables.

Moreover the total aerosol thickness (τ_{λ}^{a}) for each RTC/SO run is saved in the intermediate binary file (LUT405), *see* Section 6.13.1.7. Because the size of this LUT remains unchanged then it will be completed with null values.

- Step-1: Generate TOA normalized *Rayleigh* radiance $L_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi]$ for a pure *Rayleigh* atmosphere over 3 wind-roughened black sea surfaces ($w_s=1.5$, 5.0 and $10m.s^{-1}$), for each MERIS wavelength (λ), and for all illumination and viewing configurations ($\theta_s, \theta_v, \Delta \phi$), with the RTC/UPRAD (SO). The sun glint (*i.e.*, the direct to direct contribution) is not accounted for in $L_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi]$.
- <u>Note</u>: An internal sun glint flag has been desactivated in the RTC/SO for excluding the direct to direct contribution in the computation of TOA normalized radiance.

Variable	Value	Value Comments	
out_file	"./OUTPUT/uprad_out"		
i_branch	2		
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15	All MERIS bands, see Section 6.13.4.1	
U_{H2O}	0		
U_{O2}	0		
ESFT	-	N/A	
P_s	1013.25		
$ au^R(\lambda)$	tauR	See Section 6.11.1.1	
aerosoll	-		
$\tau^{al}(550)$	0		
aerosol2	-		
$\tau^{a^2}(550)$	0		
aerosol3	-		
$\tau^{a3}(550)$	0		
cloud1	-	N/A	
cloud2	-	N/A	
cloud3	-	N/A	
phyto	-	N/A	
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e,\lambda}$	-	N/A	

RTC/UPRAD (SO) Inputs (OCEAN)

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 313

Variable	Value	Comments
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{0,\lambda}$	-	N/A
$\sigma^{_{ys}}_{_{a,\lambda}}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO (H_R =8 km)
I_s	79	
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle W}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{\scriptscriptstyle W}_{\scriptscriptstyle o,\lambda}$	-	N/A
Ws	1.5, 5.0 and 10	See Section 6.13.4.6
$n_s, n_v, n_{\Delta\phi}$	23, 13, 25	
θ_s	Gaussian angles	First 23 angles selected from <i>Gauss</i> quadrature; See Section 6.13.4.3
$ heta_{v}$	Gaussian angles	First 13 angles selected from <i>Gauss</i> quadrature; See Section 6.13.4.4
$\Delta \phi$	see inputs	See Section 6.13.4.5
pol	1	

Step-2: Compute the *Rayleigh* reflectance $\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta\phi]$ as follows,

$$\rho_{R}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta \phi] = \pi \cdot \frac{L_{R}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta \phi]}{\cos(\theta_{s})}$$

Step-3: Select each aerosol model among the 17 models used in the 16 SAMs, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/SCAMAT (UdL) and the associated input *Scamat* card:

MEdium Resolution Imaging Spectrometer

/UdL/INPUT/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy with xx = {50, 70, 90, 99} (i.e., relative humidity), yy = {01,...,15} (i.e., MERIS bands #),

- $ww = \{01, 02, 03\}$ (i.e., 3 Log-normal distributions) Step-4: Generate TOA normalized radiances $L_T[\lambda, w_s, \theta_s, \theta_v, \Delta\phi, \tau^a, iaer]$ for a maritime atmosphere
- Step-4: Generate TOA normalized radiances $L_T[\lambda, w_s, \theta_s, \theta_v, \Delta\phi, \tau^*, iaer]$ for a maritime atmosphere (*Rayleigh* + aerosols) over 3 wind-roughened black sea surfaces (w_s =1.5, 5.0 and 10 m.s⁻¹), for each selected aerosol assemblage (τ^a , *iaer*), for each MERIS wavelength (λ), and for all illumination and viewing configurations ($\theta_s, \theta_v, \Delta\phi$), with the RTC/UPRAD (SO).
- <u>Note</u>: An internal sun glint flag has been desactivated in the RTC/SO for excluding the direct to direct contribution in the computation of TOA normalized radiance.

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	2	
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15	All MERIS bands, see Section 6.13.4.1
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^{R}(\lambda)$	tauR	See Section 6.11.1.1
aerosol1	"./INPUT/sca_out/sc_marxx_byy" "./INPUT/sca_out/sc_coaxx_byy"	For maritime, coastal and rural aerosols, xx depends on RH and yy on $n(\lambda)$.
	"./INPUT/sca_out/sc_rurxx_byy" "./INPUT/sca_out/sc_bluew_byy"	For blue aerosols, <i>w</i> depends on the <i>Ang-ström</i> exponent and <i>yy</i> on $n(\lambda)$.
$\tau^{al}(550)$	tauA1	See Section 6.13.1.1 (last 6 values only) or table in Section 6.13.5.1
aerosol2	"./INPUT/sca_out/sc_conti_byy"	<i>yy</i> depends on $n(\lambda)$
$\tau^{a2}(550)$	tauA2	See Section 6.13.1.3 (last 6 values only) or table in Section 6.13.5.1
aerosol3	"./INPUT/sca_out/sc_H2SO4_byy"	<i>yy</i> depends on $n(\lambda)$
$\tau^{a3}(550)$	0 0.005	For the first assemblage (<i>iaer#0</i>) For the other assemblages (<i>iaer</i>)
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{{}^{p}}_{_{e,\lambda}}$	-	N/A
$\mathscr{O}_{\mathrm{o},\lambda}^{p}$	-	N/A

RTC/UPRAD (SO) Inputs (OCEAN)

MEdium Resolution Imaging Spectrometer

<u>Ref.</u>: PO-RS-PAR-GS-0002 3 Rev.: C Issue: Date: 27-Feb-11

Page: 315

spm	-	N/A
$\sigma^{\scriptscriptstyle{spm}}_{\scriptscriptstyle{e,\lambda}}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{_{ys}}_{_{a,\lambda}}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO (optically homogeneous layers)
I_s	79	
ρ_s	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{w}_{\mathrm{o},\lambda}$	-	N/A
Ws	1.5, 5.0 and 10	See Section 6.13.4.6
n_s , n_v , $n_{\Delta\phi}$	23, 13, 25	
θ_s	Gaussian angles	First 23 angles selected from <i>Gauss</i> quadrature; See Section 6.13.4.3
$ heta_{v}$	Gaussian angles	First 23 angles selected from <i>Gauss</i> quadrature; See Section 6.13.4.4
$\Delta \phi$	see inputs	See Section 6.13.4.5
pol	1	

Step-5: Compute the total TOA reflectance (*Rayleigh* + aerosols) $\rho_T[\lambda, w_s, \theta_s, \theta_v, \Delta\phi, \tau^a, iaer]$ as follows,

$$\rho_{T}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, \tau^{a}, iaer] = \pi \cdot \frac{L_{T}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, \tau^{a}, iaer]}{\cos(\theta_{s})}$$

<u>Note</u>: For each RTC/UPRAD (SO) run, the total aerosol optical thickness (τ_{λ}^{a}) is extracted from the output file ('./OUTPUT/uprad_out') and saved in an intermediate binary file (LUT405), see Section 6.13.1.7.

Step-6: Compute the TOA reflectance ratio $\rho_T / \rho_R [\lambda, w_s, \theta_s, \theta_v, \Delta \phi, \tau^a, iaer],$

$$\rho_T / \rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta\phi, \tau^a, iaer] = \frac{\rho_T[\lambda, w_s, \theta_s, \theta_v, \Delta\phi, \tau^a, iaer]}{\rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta\phi]}$$

Step-7: Apply a 2nd order polynomial fit on the TOA reflectance ratio $\rho_T / \rho_R[\lambda, w_s, \theta_s, \theta_v, \Delta \phi, \tau^a, iaer]$ as function of the total aerosol optical thickness τ^a_{λ} , for retrieving polynomial coefficients *XCtab_LUT*[*iaer*, $\lambda, w_s, \theta_s, \theta_v, \Delta \phi, k$],

$$\rho_{T}/\rho_{R}[\lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, \tau^{a}, iaer] = XCtab_LUT[iaer, \lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, 0] \\ + XCtab_LUT[iaer, \lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, 1] \cdot \tau_{\lambda}^{a} \\ + XCtab_LUT[iaer, \lambda, w_{s}, \theta_{s}, \theta_{v}, \Delta\phi, 2] \cdot [\tau_{\lambda}^{a}]^{2}$$

Note that these coefficients will be determined by fitting 7 points to a 2nd order polynomial for which 6 of these points derive from the MOMO simulations (*i.e.*, 6 total AOTs (τ^a)), and the 7th one is simply (0,1) corresponding to a TOA reflectance ratio of 1 for an aerosol-free atmosphere. More a quality test is applied to the 2nd order polynomial fits in order to check the unique solution in the total AOT (τ^a_{λ}) retrieval (*i.e.*, to avoid the τ^a_{λ} value corresponding to the extremum of the 2nd order polynomial fit within the range of AOTs used as input for this fitting). The approach consists to establish the fit by decreasing the number of points (while keeping an acceptable range in τ^a defined by the first 2 non-null input τ^a values) as long as the quality test is not valid.

- Step-8: Build the *XCtab_LUT*[*iaer*, $\lambda, w_s, \theta_s, \theta_v, \Delta \phi, k$] table for the 16 SAMs (iaer#0, 4 MAR, 4 COA, 4 RUR, 3 BLU-IOP).
 - <u>Note</u>: In order to keep the same LUT size as the one defined in the previous FUB recipe above then this *XCtab_LUT*[*iaer*, λ , w_s , θ_s , θ_v , $\Delta\phi_s$] LUT will be completed with null values for *iaer* from #13 to #30.

Scientific content:

 $XCtab_LUT[iaer,\lambda,w_s,\theta_s,\theta_v,\Delta\phi,k]$ describes the coefficients of a polynomial fit which expresses the TOA reflectance ratio $\rho_T/\rho_R[iaer,\lambda,w_s,\theta_s,\theta_v,\Delta\phi]$ (in other words, the relative increase in the path reflectance from an aerosol-free atmosphere to an atmosphere with an aerosol loading) as function of the total aerosol optical thickness τ_{λ}^a . These regression coefficients (k = [0;2]) depends on the aerosol assemblage (*iaer*), the MERIS wavelength (λ), the wind-speed above sea level (w_s), and the illumination and viewing geometries ($\theta_s, \theta_v, \Delta\phi$).

This table is useful for the aerosol correction algorithm over wind-roughened oceanic surface, and allows one to compute the total path to *Rayleigh* reflectances ratio $(\rho_T / \rho_R [iaer, \lambda, w_s, \theta_s, \theta_v, \Delta \phi, \tau^a])$ knowing the total aerosol optical thickness τ_{λ}^a at wavelength λ .

Note that the values of these coefficients will be extracted from this table by using multiple linear interpolations.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 317

The current baseline is:

N_w_s	which corresponds to 3 predefined wind-speeds of 1.5, 5.0 and $10m.s^{-1}$
N_{θ_s}	which corresponds to 23 predefined values (see Section 6.13.4.3)
$N_{-}\theta_{v}$	which corresponds to 13 predefined values (see Section 6.13.4.4)

 $N \Delta \phi$ which corresponds to 25 preselected values (see Section 6.13.4.5)

Resources:

Estimated CPU time:	47841 sec (if LUT419 already generated, otherwise 93741 sec)
Output disk space:	$34 \times 15 \times 3 \times 23 \times 13 \times 25 \times 3 \times 4$ bytes/fl = 137241000 bytes

Acceptance:

Some comparisons with another RTC, such as the RTC/MOMO from FUB have been done, as well as a quality check with tables generated by the LOV institute.

6.13.11 ADS Transmittances

- 6.13.11.1 Total downward transmittance (direct+diffuse)
 - **<u>NOTE</u>**: The recipe of this LUT is presently not included in the MERISAT tool. This LUT is currently generated with an input user specified file.

Reference:	Tdown_LUT,	LUT485
[AD-8]	Section 6.13.11, ADSR field 1	, 2 & 3

Dependencies:

LUT130, LUT132, LUT135, LUT136, LUT409, LUT410

Tools:

RTC/UPRAD (SO)

Procedure:

Inputs:	iaer	Arosol assemblage # [<i>dl</i>] (16 SAMs [iaer#0+MAR+COA+RUR+BLU-IOP])
	λ	MERIS wavelength [nm] (15 values), see Section 6.13.4.1, (LUT130)
	W_{S}	Wnd-speed $[m.s^{-1}]$ (3 values), see Section 6.13.4.6, (LUT135)
	$ heta_{s}$	Solar zenith angle [deg], see Section 6.13.4.3, (LUT132)
	$ au^{al}$	Aerosol optical thickness at 550 nm [dl] for the boundary layer (aerosol
		layer #1), see Section 6.13.1.1 (LUT136)
	τ^{a2}	Aerosol optical thickness at 550 <i>nm</i> [<i>dl</i>] for the tropospheric layer (aerosol layer #3), <i>see</i> Section 6.13.1.3 (LUT409)

 τ^{a3} Aerosol optical thickness at 550*nm* [*dl*] for the stratospheric layer (aerosol layer #4) fixed to 0.005 whatever the wavelength and the assemblage except for the first one (*iaer*#0, $\tau^{a4} = 0$) τ^{R} Rayleigh optical thickness [*dl*] (15 values) see Section 6.11.1.1

Rayleigh optical thickness [*dl*] (15 values), see Section 6.11.1.1, (LUT410)

Output:

Tdown LUT[*iaer*, w_s , λ , θ_s , τ^a]

Total downward (diffuse+direct) transmittance, as function of the aerosol assemblage (*iaer*), the wind-speed above sea level (w_s), the MERIS wavelength (λ), the solar zenith angle (θ_s), and the total AOT550 (τ^a)

units: [*dl*]

- <u>Note</u>: Because the RTC/SO (UdL) composes with 3 aerosol layers only, then the 18 dust assemblages are discarded. The total aerosol optical thicknesses (τ^a) at 550 nm is then the sum of the 3 aerosol optical thicknesses (*resp.*, τ^{al} , τ^{a2} and τ^{a3}) at 550 nm for the 3 aerosol layers (*resp.*, boundary, troposphere and stratosphere), *see* table from Section 6.13.5.1.
- Step-1: Select each aerosol model among the 17 models used in the 16 SAMs, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/SCAMAT (UdL) and the associated input *Scamat* card:

 $/UdL/INPUT/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy$ $with xx = {50, 70, 90, 99} (i.e., relative humidity), yy = {01,...,15} (i.e., MERIS bands #), ww = {01, 02, 03} (i.e., 3 Log-normal distributions)$

- Step-2: Generate total downwelling atmospheric transmittance $T_{down}[iaer, w_s, \lambda_s, \theta_s, \tau^a]$ for a pure *Rayleigh* atmosphere and a maritime atmosphere (*Rayleigh* + aerosols) over 3 wind-roughened black sea surfaces (w_s =1.5, 5.0 and 10 m.s⁻¹), for each selected aerosol assemblage (τ^a , *iaer*), for each MERIS wavelength (λ), and for all illumination configurations (θ_s), with the RTC/UPRAD (SO).
- <u>Note</u>: An internal sun glint flag has been desactivated in the RTC/SO for excluding the direct to direct contribution in the computation of total downwelling atmospheric transmittance.

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	2	
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15	All MERIS bands, see Section 6.13.4.1
U _{H2O}	0	
U_{O2}	0	
ESFT	-	N/A

RTC/UPRAD (SO) Inputs (OCEAN)

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 319

P_s	1013.25	
$ au^R(\lambda)$	tauR	See Section 6.11.1.1
aerosol1	"./INPUT/sca_out/sc_marxx_byy" "./INPUT/sca_out/sc_coaxx_byy" "./INPUT/sca_out/sc_rurxx_byy"	For maritime, coastal and rural aerosols, xx depends on RH and yy on $n(\lambda)$. For blue aerosols, w depends on the <i>Ang-ström</i>
	"./INPUT/sca_out/sc_bluew_byy"	exponent and yy on $n(\lambda)$.
$\tau^{al}(550)$	tauA1	See Section 6.13.1.1 (7 values)
aerosol2	"./INPUT/sca_out/sc_conti_byy"	<i>yy</i> depends on $n(\lambda)$
$\tau^{a^2}(550)$	tauA2	See Section 6.13.1.3 (7 values)
aerosol3	"./INPUT/sca_out/sc_H2SO4_byy"	<i>yy</i> depends on $n(\lambda)$
$\tau^{a3}(550)$	0 0.005	For the first assemblage (<i>iaer#0</i>) For the other assemblages (<i>iaer</i>)
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{p}_{e,\lambda}$	-	N/A
$\mathscr{O}^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle spm}$	-	N/A
$\mathcal{O}^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{_{ys}}_{_{a,\lambda}}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO (optically homogeneous layers)
I_s	0	First Fourier term only
ρ_s	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{w}_{\mathrm{o},\lambda}$	-	N/A
Ws	1.5, 5.0 and 10	See Section 6.13.4.6
n_s , n_v , $n_{\Delta\phi}$	23, 13, 25	
$ heta_{s}$	Gaussian angles	First 23 angles selected from <i>Gauss</i> quadrature; <i>See</i> Section 6.13.4.3
$ heta_{v}$	Gaussian angles	First 13 angles selected from <i>Gauss</i> quadrature; <i>See</i> Section 6.13.4.4
$\Delta \phi$	see inputs	See Section 6.13.4.5
pol	1	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 320

Step-3: For each RTC/UPRAD (SO) run, extract the total downwelling transmittance in the output file ('./OUTPUT/uprad_out') and build the *Tdown_LUT*[*iaer*, w_s , λ ,, θ_s , τ^a] table for the 16 SAMs (iaer#0, 4 MAR, 4 COA, 4 RUR, 3 BLU-IOP).

<u>Note</u>: This *Tdown_LUT*[*iaer*, w_s , λ_s , θ_s , τ^a] LUT will be completed with null values for *iaer* from #13 to #30.

Scientific content:

Tdown_LUT[*iaer*, w_s , λ_s , θ_s , τ^a] describes the total downwelling atmospheric transmittance.

This table is useful for the aerosol correction algorithm over wind-roughened oceanic surface.

Note that the values of these coefficients will be extracted from this table by using multiple linear interpolations.

The current baseline is:

N_w_s	which corresponds to 3 predefined wind-speeds of 1.5, 5.0 and $10ms^{-1}$
$N_{-}\theta_{s}$	which corresponds to 23 predefined values (see Section 6.13.4.3)
N_{τ^a}	which corresponds to 7 predefined values (including the pure Rayleigh case)

Resources:

Estimated CPU time:	21600 sec (if LUT419 already generated, otherwise 34860 sec)
Output disk space:	$34 \times 15 \times 3 \times 23 \times 7 \times 4$ bytes/fl = 985320 bytes

Acceptance:

Some comparisons with *Gordon and Wrang* (1994) approximation and with another RTC, such as the RTC/MOMO from FUB have been done, as well as a quality check with tables generated by the LOV institute.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 321

6.13.11.2 Total upward transmittance (direct+diffuse)

<u>NOTE</u>: The recipe of this LUT is presently not included in the MERISAT tool. This LUT is currently generated with an input user specified file.

Reference: Tup LUT, LUT486

[AD-8] Section 6.13.12, ADSR field 1

Dependencies:

LUT130, LUT133, LUT136, LUT409, LUT410

Tools:

RTC/UPRAD (SO)

Procedure:

Inputs:	iaer	Aerosol assemblage # [<i>dl</i>] (16 SAMs [iaer#0 + MAR+ COA + RUR + BLU-IOP])
	λ	MERIS wavelength [<i>nm</i>] (15 values), see Section 6.13.4.1, (LUT130)
	W_{s}	Wind-speed $[m.s^{-1}]$ (3 values), see Section 6.13.4.6, (LUT135)
	$ heta_{v}$	View zenith angle [deg], see Section 6.13.4.4, (LUT133)
	$ au^{al}$	Aerosol optical thickness at 550 <i>nm</i> [<i>dl</i>] for the boundary layer (aerosol layer #1), <i>see</i> Section 6.13.1.1 (LUT136)
	$ au^{a2}$	Aerosol optical thickness at $550nm$ [<i>dl</i>] for the tropospheric layer (aerosol layer #3), see Section 6.13.1.3 (LUT409)
	$ au^{a3}$	Aerosol optical thickness at 550 nm [dl] for the stratospheric layer (aerosol layer #4) fixed to 0.005 whatever the wavelength and the assemblage except for the first one (<i>iaer</i> #0, $\tau^{a4} = 0$)
	$ au^{R}$	Rayleigh optical thickness [dl] (15 values), see Section 6.11.1.1, (LUT410)
_		

Output:

 $Tup_LUT[iaer, \lambda,, \theta_{v}, \tau^{a}]$ Total de

Total downward (diffuse+direct) transmittance, as function of the aerosol assemblage (*iaer*), the MERIS wavelength (λ), the view zenith angle (θ_v), and the total AOT550 (τ^a)

units: [*dl*]

<u>Notes</u>: Because the RTC/SO (UdL) composes with 3 aerosol layers only, then the 18 dust assemblages are discarded. The total aerosol optical thicknesses (τ^a) at 550*nm* is then the sum of the 3 aerosol optical thicknesses (*resp.*, τ^{al} , τ^{a2} and τ^{a3}) at 550*nm* for the 3 aerosol layers (*resp.*, boundary, troposphere and stratosphere), *see* table from Section 6.13.5.1.

Using the principle of reciprocity, the upwelling atmospheric transmittance over a windroughned black sea surface corresponds to the downwelling atmospheric transmittance over a black land surface.

Step-1: Select each aerosol model among the 17 models used in the 16 SAMs, and compute the scattering phase matrix and the IOPs (extinction & scattering coefficients, and single scattering albedo) at each of the 15 MERIS wavelengths (λ) with the OTC/SCAMAT (UdL) and the associated input *Scamat* card:

 $/UdL/INPUT/sca_in/sc_marxx_byy, sc_coaxx_byy, sc_rurxx_byy, sc_IOPww_byy, sc_conti_byy, sc_H2SO4_byy$ $with xx = {50, 70, 90, 99} (i.e., relative humidity), yy = {01,...,15} (i.e., MERIS bands #), ww = {01, 02, 03} (i.e., 3 Log-normal distributions)$

Step-2: Generate total upwelling atmospheric transmittance $T_{up}[iaer,\lambda_{,,}\theta_{v},\tau^{a}]$ for a pure *Rayleigh* atmosphere and a maritime atmosphere (*Rayleigh* + aerosols) over a black land, for each selected aerosol assemblage (τ^{a} , *iaer*), for each MERIS wavelength (λ), and for all illumination configurations (θ_{s}), with the RTC/UPRAD (SO).

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15	All MERIS bands, see Section 6.13.4.1
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^R(\lambda)$	tauR	See Section 6.11.1.1
aerosol1	"./INPUT/sca_out/sc_marxx_byy" "./INPUT/sca_out/sc_coaxx_byy"	For maritime, coastal and rural aerosols, xx depends on RH and yy on $n(\lambda)$.
	"./INPUT/sca_out/sc_rurxx_byy" "./INPUT/sca_out/sc_bluew_bvv"	For blue aerosols, w depends on the <i>Ang-ström</i> exponent and yy on $n(\lambda)$.
$\tau^{al}(550)$	tauA1	See Section 6.13.1.1 (7 values)
aerosol2	"./INPUT/sca_out/sc_conti_byy"	<i>yy</i> depends on $n(\lambda)$
$\tau^{a2}(550)$	tauA2	See Section 6.13.1.3 (7 values)
aerosol3	"./INPUT/sca_out/sc_H2SO4_byy"	<i>yy</i> depends on $n(\lambda)$
$\tau^{a3}(550)$	0	For the first assemblage (<i>iaer#0</i>)
	0.005	For the other assemblages (<i>iaer</i>)
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega_{\mathrm{o},\lambda}^{p}$	-	N/A

RTC/UPRAD (SO) Inputs (OCEAN)

MEdium Resolution Imaging Spectrometer

<u>Ref.:</u> PO-RS-PAR-GS-0002 Rev.: C Issue: 3 Date: 27-Feb-11

Page: 323

spm	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle spm}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{_{ys}}_{_{a,\lambda}}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO (optically homogeneous layers)
I_s	0	First Fourier term only
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle W}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{\scriptscriptstyle W}_{\scriptscriptstyle \mathrm{o},\lambda}$	-	N/A
Ws	0	
n_s , n_v , $n_{\Delta\phi}$	23, 13, 25	
θ_s	Gaussian angles	First 23 angles selected from <i>Gauss</i> quadrature; See Section 6.13.4.3
$ heta_{v}$	Gaussian angles	First 13 angles selected from <i>Gauss</i> quadrature; See Section 6.13.4.4
$\Delta \phi$	see inputs	See Section 6.13.4.5
pol	1	

Step-3: For each RTC/UPRAD (SO) run, extract from the total downwelling transmittance in the output file ('./OUTPUT/uprad_out') and build the Tup LUT[iaer, $\lambda_{i}, \theta_{v}, \tau^{a}$] table for the 16 SAMs (iaer#0, 4 MAR, 4 COA, 4 RUR, 3 BLU-IOP).

<u>Note</u>: This *Tup_LUT*[*iaer*, λ ,, θ_v , τ^a] LUT will be completed with null values for *iaer* from #13 to #30.

Scientific content:

Tup LUT[*iaer*, $\lambda_{,}, \theta_{v}, \tau^{a}$] describes the total upwelling atmospheric transmittance.

This table is useful for the aerosol correction algorithm over wind-roughened oceanic surface.

Note that the values of these coefficients will be extracted from this table by using multiple linear interpolations.

The current baseline is:

$N_{-}\theta_{v}$	which corresponds to 13 predefined values (see Section 6.13.4.4)
N_{τ^a}	which corresponds to 7 predefined values (including the pure Rayleigh case)

Resources:

Estimated CPU time:	7200 sec (if LUT419 already generated, otherwise 20460 sec)
Output disk space:	$34 \times 15 \times 13 \times 7 \times 4$ bytes/fl = 185640 bytes

Acceptance:

Some comparisons with *Gordon and Wrang* (1994) approximation and with another RTC, such as the RTC/MOMO from FUB have been done, as well as a quality check with tables generated by the LOV institute.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 325

6.14 LAND-AEROSOL PARAMETERS

6.14.1 C.P.

6.14.1.1 C.P. Imaginary parts of refractive indices for land-aerosol models

Reference:	ni,	LUT144
[AD-6]		
PARBLI	EU provided	
Dependencie	<u>28</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	ni	Imaginary parts of refractive indices for land-aerosol models (78 values)
ι	inits: [dl]	
Step:	User specified	
Scientific co	<u>ntent</u> :	
Set of 78 78 land-a	n_i values corresponderosol models	ding to the imaginary parts of refractive indices of particles included in the
Current l	baseline: vector wi	th 78 null values $[dl]$

Resources:

Estimated CPU time: -Output disk space: 78×4 bytes/fl = 312 bytes

Acceptance:

Corresponds to the latest definition.

6.14.2 MPH

Not covered in this document (see [AD-8] for a detailed description)

6.14.3 SPH

Not covered in this document (see [AD-8] for a detailed description)

6.14.4 GADS General

6.14.4.1 Zenith angles

Reference: ZA, LUT147

[AD-8] Section 6.14.4, GADS field 1.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none Output: ZA Zenith angles (12 values) units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

Set of 12 zenith angles (θ) selected from the *Gauss* quadrature generated for 24 discrete directions with the RTC/Gauss tool (UdL)

Current baseline: 12 Gaussian angles (see Section 6.2.13.1)

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/ul = 60 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 327

Acceptance:

Corresponds to the latest definition.

6.14.4.2 Stored indices for $(\theta_s \times \theta_v)$ combinations

Reference:	SVZA index,	LUT148
------------	-------------	--------

[AD-8] Section 6.14.4, GADS field 2.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	SVZA_index	Stored indices for $(\theta_s \mathbf{x} \theta_v)$ combinations (78 values)
units		

Step: User specified.

Scientific content:

Current baseline: 78 angular combinations (SZA x VZA) (see Section 6.10.7.14)

<u>Note</u>: Due to the fact that the matrix is symmetrical in the $(\theta_s \times \theta_v)$ directions, we can then store only a half triangular matrix, *i.e.*, N(N+1)/2 instead of N² elements (78 instead of 144).

Resources:

Estimated CPU time: -Output disk space: $78 \times 2 \times 1$ byte/uc = 156 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 328

6.14.4.3 Relative azimuth angles

Reference: RAA, LUT149

[AD-8] Section 6.14.4, GADS field 3.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	2	
Output:	RAA	!	Relative azimuth angle (18 values)
u	nits:	[10 ⁻⁶ deg]	

Step: User specified.

Scientific content:

The set of the relative azimuth angles $(\Delta \phi)$ between illumination and viewing directions is regularly spaced and listed hereafter:

Current baseline: 18 RAA values ($\Delta \phi$) within [0;180] deg., with a step of 10 deg.

Resources:

Estimated CPU time: -Output disk space: 19×4 bytes/ul = 76 bytes

Acceptance:

Corresponds to the latest definitions

6.14.4.4 Cosine of scattering angles

<u>Reference</u>: Cos_Theta_Sca, LUT150

[AD-8] Section 6.14.4, GADS field 4.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 329

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output:

Cos_Theta_Sca Cosine of scattering angle

units: [*dl*]

Step: User specified.

Scientific content:

Set of 83 scattering angles (Θ) computed with angles deriving from the *Gauss* quadrature for 40 discrete directions (+ nadir/zenith) with the RTC/Gauss tool (UdL)

i	$\cos(\Theta_i)$	i	$\cos(\Theta_i)$	i	$\cos(\Theta_i)$	i	$\cos(\Theta_i)$
1	-1.0000000000	22	-0.6896376010	43	0.0195113830	64	0.7440002561
2	-0.9995538000	23	-0.6608598830	44	0.0585044362	65	0.7695024014
3	-0.9976498480	24	-0.6310757400	45	0.0974083543	66	0.7938326597
4	-0.9942275290	25	-0.6003305910	46	0.1361640096	67	0.8169541359
5	-0.9892912510	26	-0.5686712270	47	0.1747122407	68	0.8388314247
6	-0.9828485250	27	-0.5361458660	48	0.2129944563	69	0.8594313860
7	-0.9749091270	28	-0.5028041010	49	0.2509523034	70	0.8787225485
8	-0.9654850360	29	-0.4686965940	50	0.2885280252	71	0.8966755271
9	-0.9545907380	30	-0.4338753220	51	0.3256643414	72	0.9132630825
10	-0.9422427420	31	-0.3983933930	52	0.3623047471	73	0.9284598231
11	-0.9284598230	32	-0.3623047470	53	0.3983933926	74	0.9422427416
12	-0.9132630830	33	-0.3256643410	54	0.4338753223	75	0.9545907378
13	-0.8966755270	34	-0.2885280250	55	0.4686965942	76	0.9654850364
14	-0.8787225480	35	-0.2509523030	56	0.5028041005	77	0.9749091268
15	-0.8594313860	36	-0.2129944560	57	0.5361458659	78	0.9828485250
16	-0.8388314250	37	-0.1747122410	58	0.5686712265	79	0.9892912507
17	-0.8169541360	38	-0.1361640100	59	0.6003305912	80	0.9942275286
18	-0.7938326600	39	-0.0974083540	60	0.6310757399	81	0.9976498485

Current baseline: 83 values of $\cos(\Theta)$

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 330

i	$\cos(\Theta_i)$	i	$\cos(\Theta_i)$	i	$\cos(\Theta_i)$	i	$\cos(\Theta_i)$
19	-0.7695024010	40	-0.0585044360	61	0.6608598828	82	0.9995537996
20	-0.7440002560	41	-0.0195113830	62	0.6896376014	83	1.0000000000
21	-0.7173651460	42	0.0000000000	63	0.7173651457		

Resources:

Estimated CPU time: -Output disk space: 83×4 bytes/fl = 332 bytes

Acceptance:

Corresponds to the latest definitions

6.14.4.5 Indices of band numbers (starting from 1) for in-land waters and islands screening

Reference:	(No variable used),	LUT151
[AD-8]	Section 6.14.4, GADS	field 5
ACRI pro	vided	

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none							
Output:	(no variable)	Indices of bavelines of bavelines)	and numbers	for in-land	waters an	nd islands	screening	(2

units: [*dl*]

Step: User specified.

Scientific content:

2 MERIS bands selected for in-land waters and islands screening

Current baseline: {7, 13}

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 331

Estimated CPU time: -Output disk space: 1×2 bytes/us = 2 bytes

Acceptance:

Corresponds to the latest definitions

6.14.4.6 Threshold for in-land waters screening spectral slope test

<u>Refe</u>	rence:	(No variable used), LUT152
	[AD-8]	Section 6.14.4, GADS field 6
	ACRI prov	vided
Depe	endencies	
	None	
<u>Tool</u>	:	
-	None	
Proc	edure:	
]	Input:	none
(Output:	(no variable) Threshold for in-land waters screening spectral slope test
	un	hits: $[dl]$
5	Step:	User specified.
<u>Scier</u>	ntific con	tent:
,	Threshold	used for in-land waters screening spectral slope test
(Current ba	aseline: 1
Reso	ources:	
-	Estimated Output dis	CPU time: - sk space: 1×4 bytes/fl = 4 bytes
Acce	eptance:	
	Correspon	ids to the latest definitions

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 332

6.14.4.7 Threshold for islands screening spectral slope test

Reference: (No variable used), LUT153 Section 6.14.4, GADS field 7 [AD-8] ACRI provided Dependencies: None Tool: None Procedure: Input: none Output: Threshold for islands screening spectral slope test (no variable) units: [dl]User specified. Step: Scientific content: Threshold used for islands screening spectral slope test Current baseline: 1 Resources: Estimated CPU time: Output disk space: 1×4 bytes/fl = 4 bytes Acceptance: Corresponds to the latest definitions 6.14.4.8 Aerosol optical properties (real part of refractive index, Angstroem exponent) for land-aerosol models

Reference:	Aerosol_angstrom,	LUT154
	& Aerosol refindex	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 333

[AD-8] Section 6.14.4, GADS field 8.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Inputs:	iaer k	Aerosol mod Output index	lel # $[dl]$ (among the 78 aerosol m x $[dl]$ (for selecting the aerosol pro-	odels) perty)
Outputs:	Aerosol_refind Aerosol_angstr	ex[iaer] k=1 com[iaer] k=2	1 refractive index (real part) 2 Angström coefficient (α)	
units:	[dl]			

Step: User specified.

Scientific content:

The first parameter is the *Angström* exponent (α) which describes the wavelength dependence of the aerosol optical thickness $\tau^a(\lambda)$,

$$\frac{\tau^{a}(\lambda)}{\tau^{a}(\lambda')} = \left(\frac{\lambda}{\lambda'}\right)^{a}$$

The latter is employed in the definition of the *Junge* size distribution n(r) which is a power-law well known as the simplest but realistic description.

 $n(r) \approx r^{\alpha-3}$

The second parameter is the real part of the refractive index m (referred as Re(m)) which is related to the aerosol optical characteristic. The aerosol absorption is accounted for with the imaginary part of the refractive index (Im(m)).

78 aerosol models have been defined to be used in the atmospheric correction algorithm over land. The latters results from different values for the *Angström* exponent (α) and the refractive index (*m*) which is considered as independent on the wavelength.

Current baseline: 78 x 2 values

MERIS / ENVISAT-1 MEdium Resolution Imaging

Spectrometer

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Issue</u>: 3 <u>Rev.</u>: C <u>Date</u>: 27-Feb-11 <u>Page</u>: 334

iaer	<i>Re(m)</i> [k=1]	α [k=2]	Im(m)
1	1.33	0.0	0
2	1.33	0.1	0
3	1.33	0.2	0
4	1.33	0.3	0
5	1.33	0.4	0
6	1.33	0.5	0
7	1.33	0.6	0
8	1.33	0.7	0
9	1.33	0.8	0
10	1.33	0.9	0
11	1.33	1.0	0
12	1.33	1.1	0
13	1.33	1.2	0
14	1.33	1.3	0
15	1.33	1.4	0
16	1.33	1.5	0
17	1.33	1.6	0
18	1.33	1.7	0
19	1.33	1.8	0
20	1.33	1.9	0
21	1.33	2.0	0
22	1.33	2.1	0
23	1.33	2.2	0
24	1.33	2.3	0
25	1.33	2.4	0
26	1.33	2.5	0

iaer	Re(m)	α	Im(m)
	[k=1]	[k=2]	
27	1.44	0.0	0
28	1.44	0.1	0
29	1.44	0.2	0
30	1.44	0.3	0
31	1.44	0.4	0
32	1.44	0.5	0
33	1.44	0.6	0
34	1.44	0.7	0
35	1.44	0.8	0
36	1.44	0.9	0
37	1.44	1.0	0
38	1.44	1.1	0
39	1.44	1.2	0
40	1.44	1.3	0
41	1.44	1.4	0
42	1.44	1.5	0
43	1.44	1.6	0
44	1.44	1.7	0
45	1.44	1.8	0
46	1.44	1.9	0
47	1.44	2.0	0
48	1.44	2.1	0
49	1.44	2.2	0
50	1.44	2.3	0
51	1.44	2.4	0
52	1.44	2.5	0

iaer	<i>Re(m)</i> [k=1]	α [k=2]	Im(m)
53	1.55	0.0	0
54	1.55	0.1	0
55	1.55	0.2	0
56	1.55	0.3	0
57	1.55	0.4	0
58	1.55	0.5	0
59	1.55	0.6	0
60	1.55	0.7	0
61	1.55	0.8	0
62	1.55	0.9	0
63	1.55	1.0	0
64	1.55	1.1	0
65	1.55	1.2	0
66	1.55	1.3	0
67	1.55	1.4	0
68	1.55	1.5	0
69	1.55	1.6	0
70	1.55	1.7	0
71	1.55	1.8	0
72	1.55	1.9	0
73	1.55	2.0	0
74	1.55	2.1	0
75	1.55	2.2	0
76	1.55	2.3	0
77	1.55	2.4	0
78	1.55	2.5	0

Angström exponent (α) and real and imaginary part of refractive index (m) for each of the 78 aerosol models used in the atmospheric correction algorithm.

Resources:

Estimated CPU time: -Output disk space: $78 \times 2 \times 4$ bytes/fl = 624 bytes

Acceptance:

Corresponds to the latest definitions

6.14.4.9 Aerosol optical thicknesses at 550 nm

Reference: AOT550,

LUT155

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 335

[AD-8] Section 6.14.4, GADS field 9.

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Inputs: none

Outputs: tauA

units: [*dl*]

Step: User specified.

Scientific content:

Set of 16 aerosol optical thicknesses at 550 nm (τ_a) used for the aerosol climatology over land

Aerosol optical thickness (16 values of τ_a)

Current baseline: 16 τ_a values from 0 to 1.5 by step of 0.1.

Resources:

Estimated CPU time: -Output disk space: 16×4 bytes/fl = 64 bytes

Acceptance:

Corresponds to the latest definitions.

6.14.4.10 Gamma coefficient for ARVI computation

Reference: Gamma, LUT156

[AD-8] Section 6.14.4, ADSR field 10

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Inputs: none

Outputs:		Gamma	Gamma coefficient for ARVI computation ()
un	nits:	[dl]	
Step:		User specifie	d.

Scientific content:

This γ coefficient is required for the ARVI (Atmospherically Resistant Vegetation Index) computation. The latter has been introduced by *Kauffman and Tanré* (1992) [RD-9] to decrease the atmospheric effects by adding a blue band to the NDVI (Normalized Difference Vegetation Index). Using the MERIS bands, ARVI is expressed as:

$$ARVI = \frac{\rho_{aG}(865) - \rho_{RB}}{\rho_{aG}(865) + \rho_{RB}}$$

where $\rho_{aG}(865)$ is the *Rayleigh*-corrected TOA reflectance at the 865 *nm* MERIS wavelength and ρ_{RB} is a linear combinaison of *Rayleigh*-corrected TOA reflectances in the blue and red bands. For the MERIS wavelengths, the latter is defined as:

$$\rho_{RB} = \rho_{aG}(665) - \gamma \cdot \left[\rho_{aG}(442.5) - \rho_{aG}(665)\right]$$

From a practical point of view, an optimal value for the γ coefficient could be derived from RTC simulations for a selected DDV (Dense Dark Vegetation) model, several aerosol models and different illumination and viewing geometries. This sensitivity study on the simulated ARVI versus the γ value should allow then to deduce the optimized γ value of DDV remote sensing for which the ARVI is less sensitive to the aerosol loading and models.

Kauffman and Tanré (1992) stressed that this optimal γ value may be set up to 1.3 for DDVs over forest covers [RD-9].

Current baseline: 1.3

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Numerous studies have already stressed that the γ optimal value for DDV was equal to 1.3.

6.14.4.11 Aerosol optical thickness increment for iterative procedure

Reference:	dtauA,	LUT157
[AD-8]	Section 6.14.4,	ADSR field 11
ACRI prov	rided	
Dependencies:	:	
None		
<u>Tool</u> :		
None		
Procedure:		
Inputs:	none	
Outputs: un	<i>dtauA</i> its: [<i>dl</i>]	Aerosol optical thickness increment ($\Delta \tau_a$)
Step:	User specifie	ed.
Scientific cont	ent:	

This increment in aerosol optical thickness ($\Delta \tau_a$) is used in the iterative procedure.

Current baseline: 0.1

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.14.4.12 Dense dark vegetation, DDV(biome,month)

Reference: DDV, LUT309

[AD-8] Section 6.14.4, ADSR field 12

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 338

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Inputs:	Bi month	Biome # [<i>dl</i>], type of vegetation (11 values) Period [<i>month</i>] (12 values)
Outputs:	DDV	Dense dark vegetation
units:	[dl]	

Step: User specified.

Scientific content:

This increment in aerosol optical thickness ($\Delta \tau_a$) is used in the iterative procedure.

Current baseline: 11 x 12 values

Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
9	9	9	9	9	9	9	9	9	9	9	9
10	10	10	10	10	10	10	10	10	10	10	10
0	0	11	11	11	11	11	11	0	0	0	0
1	1	12	12	12	12	12	12	12	12	1	1
2	2	13	13	13	13	13	13	2	2	2	2
3	3	14	14	14	14	14	14	3	3	3	3
4	4	15	15	15	15	15	15	4	4	4	4
5	5	16	16	16	16	16	16	5	5	5	5
6	6	17	17	17	17	17	17	6	6	6	6
7	7	18	18	18	18	18	18	7	7	7	7
8	8	19	19	19	19	19	19	8	8	8	8

Resources:

Estimated CPU time: -Output disk space: $11 \times 12 \times 1$ byte/uc = 132 bytes

Acceptance:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 339

Corresponds to the latest definition.

6.14.4.13 Latitudes for DDV climatology

Reference: lat, LUT310

[AD-8] Section 6.14.4, ADSR field 13

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Inputs:	none	
Outputs:	lat	Latitude (180 values)
units:	[10 ⁻⁶ deg]	

Step: User specified.

Scientific content:

Set of 180 latitudes (lat) used as the geographic grid for the DDV climatology

Current baseline: [-89.5;89.5] deg. by step of 1 deg.

Resources:

Estimated CPU time: -Output disk space: 180×4 bytes/sl = 720 bytes

Acceptance:

Corresponds to the latest definition.

6.14.4.14 Longitudes for DDV climatology

Reference: Long, LUT311

[AD-8] Section 6.14.4, ADSR field 14

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 340

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Inputs: none

Outputs: *long* Longtitude (360 values)

units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

Set of 360 longitudes (long) used as the geographic grid for the DDV climatology

Current baseline: [-179.5;179.5] deg. by step of 1 deg.

Resources:

Estimated CPU time: -Output disk space: 360×4 bytes/sl = 1440 bytes

Acceptance:

Corresponds to the latest definition.

6.14.4.15 Effective radius values

<u>Reference</u>: Strato_rad, LUT312

[AD-8] Section 6.14.4, ADSR field 15

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Inputs: none

Outputs: *Strato_rad* Effective radius for stratospheric aerosols (18 values) units: [*dl*]

Step: User specified.

Scientific content:

Set of 18 effective radii for the 18 stratospheric aerosol models

Current baseline: {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2}

Resources:

Estimated CPU time: -Output disk space: 18×1 byte/uc = 18 bytes

Acceptance:

Corresponds to the latest definition.

6.14.4.16 Record numbers of GADS multiplicative function to account for volcanic aerosol multiple scattering effects

Reference: Strato_multi, LUT313

[AD-8] Section 6.14.4, ADSR field 16

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

In	puts:	none	
O	utputs:	Strato_multi	Record numbers of GADS multiplicative function to account for volcanic aerosol multiple scattering effects (18 values)
	units:	[dl]	
St	ep:	User specified.	
Scient	ific conten	<u>t</u> :	
Se	et of 18 reco	rd numbers for t	he 18 stratospheric aerosol models
Cu	urrent baseli	ne: {12, 13,	14, 12, 13, 14, 12, 13, 14, 12, 13, 14, 12, 13, 14, 12, 13, 14, 12, 13, 14}
Resou	rces:		
Es Ot	stimated CP utput disk sj	U time: - pace: 18 ×	1 byte/uc = 18 bytes
<u>Accep</u>	tance:		
Co	orresponds t	to the latest define	nition.
6.14.4.17	7 Volcanic a	aerosol optical	thicknesses, $\tau^{ya}(iaer)$
Refere	ence: St	rato_tau,	LUT314
[A]	D-8] Se	ction 6.14.4, AD	OSR field 17
A	CRI provide	ed	
Depen	dencies:		
N	one		
<u>Tool</u> :			
N	one		
Procee	<u>lure</u> :		
In	puts:	none	
O	utputs:	Strato_tau	Volcanic aerosol optical thickness (18 values)
	units:	[dl]	

Step: User specified.

Scientific content:

Set of 18 volcanic aerosol optical thicknesses ($\tau^{\nu a}$) for the 18 stratospheric aerosol models

Resources:

Estimated CPU time: -Output disk space: 18×4 bytes/fl = 72 bytes

Acceptance:

Corresponds to the latest definition.

6.14.4.18 Reflectance threshold at 865 nm for DDV screening

Reference:	(No variable used),	LUT439
	())	

[AD-8] Section 6.14.4, ADSR field 18

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

- Inputs: none
- Outputs:(no variable)Reflectance threshold at 865 nm for DDV screeningunits:[dl]

Step: User specified.

Scientific content:

Threshold on reflectance at 865 nm for screening the DDV pixels

Current baseline: 0.2

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 344

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.14.4.19 Ground reflectance threshold at 665 nm for iterative aerosol identification

<u>Ref</u>	erence:	(No variable used),	LUT487		
	[AD-8]	Section 6.14.4, ADSR field 19			
	ACRI prov	vided			
<u>Der</u>	endencies	:			
	None				
Toc	<u>ol</u> :				
	None				
Pro	cedure:				
	Inputs:	none			
	Outputs:	(no variable) Ground ref	ectance threshold at 665 nm for iterative aerosol identification		
	un	its: [<i>dl</i>]			
	Step:	User specified.			
Scie	entific con	tent:			
	Threshold on ground reflectance at 665 nm for iterative aerosol identification				
	Current baseline: 0.2				
Res	ources:				
	Estimated Output dis	CPU time: - k space: 1×4 bytes/fl = 4	bytes		

Acceptance:

Corresponds to the latest definition.

6.14.4.20 List of band indices (starting from 1) to be used for land aerosols remote sensing

Reference: (No variable used), LUT488 [AD-8] Section 6.14.4, ADSR field 20 ACRI provided Dependencies: None Tool: None Procedure: Inputs: none Outputs: List of band indices (starting from 1) to be used for land aerosols remote (no variable) sensing (3 values) units: [dl]User specified. Step: Scientific content:

4 MERIS bands are available for the land-aerosol remote sensing algorithm (band#1 [412.5nm], band#2 [442.5nm], band#3 [490nm], band#7 [665nm]). 2 or 3 bands can be then selected. If only 2 bands are used then the last index will be set to 1.

For the current MERIS processing, only 2 bands are used for the land-aerosols remote sensing algorithm (band#2 and #7)).

Current baseline: $\{2, 7, -1\}$

Resources:

Estimated CPU time: -Output disk space: 3×2 bytes/us = 6 bytes

Acceptance:

Corresponds to the latest definition.

6.14.5 GADS Reflectance Thresholds for Inland Waters and Islands Screening

6.14.5.1 α - Constant applied to threshold for inland waters screening

Referenc	<u>e</u> : α	7thresh,		LUT158			
[AD-	- <mark>8]</mark> Se	Section 6.14.5, ADSR field 1					
ACR	I provid	ed					
<u>Depende</u>	ncies:						
None	e						
<u>Tool</u> :							
None	e						
Procedur	<u>e</u> :						
Input	ts:	none					
Outp	uts: units:	$lpha_{7thresh}$ $[dl]$	α - constant	applied to thre	shold for inland	l waters screening	
Step:		User specified.					

Scientific content:

This multiplicative factor ($\alpha_{7thresh}$) is applied to the TOA reflectance thresholds at 665 nm for inland waters screening processing identification to take the environment and the bathymetric effects into account.

Current baseline: 1

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.14.5.2 TOA reflectance thresholds at 665 nm for inland waters screening, $\rho_{T,665}(\theta_s \times \theta_{v}, \Delta \phi)$

<u>Reference</u>: $\rho_{7 \text{thresh}}$ LUT, LUT159

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 347

[AD-8] Section 6.14.5, ADSR field 2

Dependencies:

LUT144, LUT147, LUT148, LUT149, LUT154

Tools:

OTC/SCAMAT OTC/RAYLEIGH RTC/UPRAD (SO)

Procedure:

Inputs:	iaer	Aerosol model # [dl] (among the 78 Junge's models) characterized by an Angström exponent (α) and a refractive index, see Section 6.14.4.4 (LUT144) and Section 6.14.1.1 (LUT154).
	θ	Zenith angle [<i>deg</i>]; tabulated values used for $(\theta_s \times \theta_v)$ combinations, <i>see</i> Section 6.14.4.1, (LUT147)
	$\theta_s \times \theta_v$	Stored indices for angular combinations [dl] (78 values), see Section 6.14.4.2, (LUT148)
	$\Delta \phi$	Relative azimuth angle [deg], see Section 6.14.4.3, (LUT149)
Output:	$ ho_{7 thresh} LU$	$T[\theta_s \times \theta_v, \Delta \phi]$

TOA reflectance thresholds at 665 nm as function of the illumination and viewing configuration $(\theta_s, \theta_v, \Delta \phi)$

units: [dl]

- Step-0: Compute the IOPs (aerosol phase function, single scattering albedo, extinction coefficient) for all the 78 aerosol models. Eiher generate the LUT170 (*see* Section 6.14.11) or launch the *Mie*'s computations with OTC/SCAMAT using as inputs the *Angström* exponent and refractive index (real and imaginary parts).
- Step-1: Generate TOA normalized radiance $L_{TOA_{-7}}[iaer, \theta_s \times \theta_{\nu,\Delta} \phi]$ at 665 nm (MERIS band #7) for a continental atmosphere over a land reflective surface, for each of the 78 land aerosol models (*iaer*) and all illumination and viewing configurations ($\theta_s, \theta_{\nu,\Delta} \phi$), with the RTC/UPRAD (SO).

RTC/UPRAD (SO) Inputs (LAND)

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	7	665 nm
U_{H2O}	0	
U_{O2}	0	

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 348

Variable	Value	Comments		
ESFT	-	N/A		
P_s	1013.25			
$ au^R(\lambda)$	tauR	Computed with OTC/RAYLEIGH		
aerosoll	"./INPUT/sca_out/sc_landyy_b05"	<i>yy</i> depends on the selected <i>Junge</i> 's model (<i>iaer</i> =1 to 78)		
$\tau^{al}(550)$	1.5			
aerosol2	-			
$\tau^{a2}(550)$	0			
aerosol3	-			
$\tau^{a3}(550)$	0			
cloud1	-	N/A		
cloud2	-	N/A		
cloud3	-	N/A		
phyto	-	N/A		
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e,\lambda}$	-	N/A		
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A		
spm	-	N/A		
$\sigma^{spm}_{e,\lambda}$	-	N/A		
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A		
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A		
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_a=2 \ km; H_R=8 \ km$)		
I_s	79			
$ ho_s$	0.02			
Eo	1			
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A		
$\mathscr{O}_{\mathrm{o},\lambda}^{w}$	-	N/A		
W_s	0			
n_s , n_v , $n_{\Delta\phi}$	12, 12, 19	Use a loop for 78 $\theta_s \mathbf{x} \theta_v$ combinations.		
θ_{s}	see inputs	See Section 6.14.4.1 and Section 6.14.4.2		
θ_v	see inputs	See Section 6.14.4.1 and Section 6.14.4.2		
$\Delta \phi$	see inputs	See Section 6.14.4.3		
pol	1			

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 349

Step-2: Select among all the aerosol models the one which yields to the highest number of maximum values of $L_{TOA_{-7}}$ for all $\theta_s \times \theta_v$ and $\Delta \phi$ combinations, and use this $L_{TOA_{-7}}$ value to compute the TOA reflectance threshold at 665 nm ($\rho_{7thresh}_LUT[\theta_s \times \theta_v, \Delta \phi]$) as,

$$\rho_{7thresh_LUT}[\theta_s \times \theta_v, \Delta \phi] = \pi \cdot \frac{L_{TOA_7}[\theta_s \times \theta_v, \Delta \phi]}{\cos(\theta_s)}$$

Scientific content:

These TOA reflectance thresholds define the maximum reflectances as observed at 665*nm* over water surfaces. The latters are useful for the inland waters discrimination in the pixels classification algorithm.

Resources:

Estimated CPU time: 7078 sec Output disk space: $78 \times 19 \times 4$ bytes/fl = 5928 bytes

Acceptance:

Comparison with another RTC.

6.14.5.3 α - Constant applied to threshold for islands screening

 Reference:
 α_{13thresh},
 LUT437

 [AD-8]
 Section 6.14.5, ADSR field 8

 ACRI provided
 Dependencies:

 None
 Tool:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 350

Procedure:

Inputs: none

Outputs: $\alpha_{13thresh}$ α - constant applied to threshold for islands screening

units: [*dl*]

Step: User specified.

Scientific content:

This multiplicative factor ($\alpha_{13thresh}$) is applied to the TOA reflectance thresholds at 865*nm* for islands screening processing identification.

Current baseline: 0.375

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.14.5.4 TOA reflectance thresholds at 865 nm for islands screening, $\rho_{T,865}(\theta_s \times \theta_v, \Delta \phi)$

<u>Reference</u>: $\rho_{13thresh}$ LUT, LUT438

[AD-8] Section 6.14.5, ADSR field 4

Dependencies:

LUT144, LUT147, LUT148, LUT149, LUT154

Tools:

OTC/SCAMAT OTC/RAYLEIGH RTC/UPRAD (SO)

iaer

Procedure:

Inputs:

Aerosol model # [dl] (among the 78 Junge's models) characterized by an Angström exponent (α) and a refractive index, see Section 6.14.4.4 (LUT144) and Section 6.14.1.1 (LUT154).

- $\theta \qquad \qquad \text{Zenith angle } [deg]; \text{ tabulated values used for } (\theta_s \times \theta_v) \text{ combinations, see} \\ \text{Section } 6.14.4.1, (LUT147) \\ \theta_s \times \theta_v \qquad \qquad \text{Stored indices for angular combinations } [dl] (78 \text{ values}), see \text{Section} \\ \end{array}$
 - Stored indices for angular combinations [dl] (78 values), see Section 6.14.4.2, (LUT148)
- $\Delta \phi$ Relative azimuth angle [*deg*], *see* Section 6.14.4.3, (LUT149)

Output:

 $\rho_{13thresh} LUT[\theta_s \times \theta_{v}, \Delta \phi]$ TOA reflectance thresholds at 865 *nm* as function of the illumination and viewing configuration ($\theta_s, \theta_{v}, \Delta \phi$)

units:

[dl]

- Step-0: Compute the IOPs (aerosol phase function, single scattering albedo, extinction coefficient) for all the 78 aerosol models. Eiher generate the LUT170 (*see* Section 6.14.11) or launch the *Mie*'s computations with OTC/SCAMAT using as inputs the *Angström* exponent and refractive index (real and imaginary parts).
- Step-1: Generate TOA normalized radiance $L_{TOA_I3}[iaer, \theta_s \times \theta_v, \Delta \phi]$ at 865*nm* (MERIS band #13) for a continental atmosphere over a land reflective surface, for each of the 78 continental aerosol models (*iaer*) and all illumination and viewing configurations ($\theta_s, \theta_v, \Delta \phi$), with the RTC/UPRAD (SO).

RTC/UPRAD (SO) Inputs (LAND)

	1	
Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	13	865 nm
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^R(\lambda)$	tauR	Computed with OTC/RAYLEIGH
aerosoll	"./INPUT/sca_out/sc_landyy_b05"	yy depends on the Junge's model (iaer=1 to 78)
$\tau^{al}(550)$	1.5	
aerosol2	-	
$\tau^{a2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle p}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 352

Variable	Value	Comments
spm	-	N/A
$\sigma^{\scriptscriptstyle{spm}}_{\scriptscriptstyle{e,\lambda}}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{_{ys}}_{_{e,\lambda}}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_a=2km$; $H_R=8km$)
I_s	79	
$ ho_{s}$	0.02	
Eo	1	
$\sigma^{\scriptscriptstyle W}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^w_{\mathrm{o},\lambda}$	-	N/A
Ws	0	
n_s , n_v , $n_{\Delta\phi}$	12, 12, 19	Use a loop for 78 $\theta_s \mathbf{x} \theta_v$ combinations.
θ_s	see inputs	See Section 6.14.4.1 and Section 6.14.4.2
θ_{v}	see inputs	See Section 6.14.4.1 and Section 6.14.4.2
$\Delta \phi$	see inputs	See Section 6.14.4.3
pol	1	

Step-2: Select among all the aerosol models the one which yields to the highest number of maximum values of L_{TOA_13} for all $\theta_s \times \theta_v$ and $\Delta \phi$ combinations, and use this L_{TOA_13} value to compute the TOA reflectance threshold at 865 nm ($\rho_{13thresh_}LUT[\theta_s \times \theta_v, \Delta \phi]$) as,

$$\rho_{13thresh_LUT}[\theta_{s} \times \theta_{v}, \Delta \phi] = \pi \cdot \frac{L_{TOA_I3}[\theta_{s} \times \theta_{v}, \Delta \phi]}{\cos(\theta_{s})}$$

Scientific content:

These TOA reflectance thresholds define the maximum reflectances as observed at 865*nm* over water surfaces. The latters are useful for the islands discrimination in the pixels classification algorithm.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 353

Resources:

Estimated CPU time: 7078 sec Output disk space: $78 \times 19 \times 4$ bytes/fl = 5928 bytes

Acceptance:

Comparison with another RTC.

6.14.5.5 Altitude threshold above which in-land waters screening is disabled

Reference:	Alt_thresh,	LUT489				
[AD-8]	Section 6.14.5, ADSR field 5					
ACRI pro	wided					
Dependencies	<u>s</u> :					
None						
<u>Tool</u> :						
None						
Procedure:						
Inputs:	none					
Outputs:	<i>Alt_thresh</i> Altitude th	reshold above which in-land waters screening is disabled				
ur	nits: [<i>m</i>]					
Step:	User specified.					
Scientific con	ntent:					
Altitude tl	Altitude threshold above which in-land waters screening is disabled.					
Current ba	Current baseline: 0 m					
Resources:						
Estimated Output dis	I CPU time:-sk space: 1×4 bytes/fl = 4	bytes				
Acceptance:						

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 354

Corresponds to the latest definition.

6.14.6 ADS ARVI Thresholds for DDV models

6.14.6.1 ARVI thresholds used for DDV models, ARVI thresh(iddv, $\theta_s \times \theta_{v}, \Delta \phi$)

<u>Reference:</u> ARVI thresh, LUT160

[AD-8] Section 6.14.6, ADSR field 1

Dependencies:

LUT147, LUT148, LUT149, LUT156

Tool:

RTC/UPRAD (SO)

Warning: Take care with the azimuth angle (ϕ) convention. The CESBIO files and the MERIS sensor used the same azimuth (relative azimuth angle) convention ($\Delta \phi$) while the RTCs works in the opposite convention (π - $\Delta \phi$).

Procedure:

Inputs:	heta	Zenith angle [<i>deg</i>], tabulated values used for $(\theta_s \times \theta_v)$ combinations, <i>see</i> Section 6.14.4.1, (LUT147)
	$\theta_{s} \times \theta_{v}$	Stored indices for angular combinations [dl] (78 values), see Section 6.14.4.2, (LUT148)
	$\varDelta \phi$	Relative azimuth angle [deg], see Section 6.14.4.3, (LUT149)
	γ	gamma coefficient for ARVI computation [<i>dl</i>], see Section 6.14.4.10, (LUT156)
	iddv	DDV model # [<i>dl</i>] (among the 20 DDV models, [019]) CESBIO DDV reflectances files (<i>i.e.</i> , 'lut12-xx' with xx in [1-20]), $\rho_{DDV}(\lambda, \theta_v, \Delta \phi, \theta_s, \rho_o)$

Output:	DDV	ARVI LUT	$[iddv, \theta_s]$	$\times \theta_{\nu}, \Delta \phi$									
			ARVI	threshold	as	function	of	the	DDV	model	(iddv)	and	the
			illumin	ation and v	iew	ing config	urati	ion (<i>t</i>	$\theta_s, \theta_v, \Delta \phi$)			

units: [dl]

Warning: The process for generating this table is time-consuming. To avoid loosing data in case of a power failure, several temporary binary files are created after few hours of processing: LTOA443_xx.LUT160, LTOA665_xx.LUT160, LTOA865_xx.LUT160 (xx stands for the 20 DDV models [00..19]). This allows one to resume the processing after a power failure. If we want fully restart the generation procedure, then the temporary binary files should be first deleted before relaunching the process.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 355

Step-1: Generate TOA normalized radiance $L_{TOA_aer}[iddv,iaer, \tau^a(\lambda), \theta_s \times \theta_{v,\Delta}\phi]$ for 442.5 nm, 665 nm and 865 nm (MERIS band #2, 7 and 13 used for ARVI) for a pure aerosol atmosphere over each of the 20 DDV models (*iddv*), for 1 aerosol model (*iaer=37*) and all illumination and viewing configurations ($\theta_s, \theta_{v,\Delta}\phi$]), with the RTC/UPRAD (SO).

RTC/UPRAD (SO) Inputs (LAND)

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	2, 7 and 13	442.5, 665 & 865 nm
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^R(\lambda)$	0	
aerosol1	"./INPUT/sc_land37_b05"	<i>Junge</i> 's model #37 ($m=1.44$, $\alpha=-1$)
$\tau^{al}(550)$	0.310 (442.5 <i>nm</i>), 0.207 (665 <i>nm</i>)	
	and 0.159 (865 <i>nm</i>)	
aerosol2	-	
$\tau^{a^2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{{}_{p}}_{{}_{e,\lambda}}$	-	N/A
$\omega_{\mathrm{o},\lambda}^{p}$	-	N/A
spm	-	N/A
$\sigma^{\scriptscriptstyle spm}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\mathscr{O}^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_a=2km$)
I_s	79	
ρ_s	"./INPUT/lut12_yy"	<i>yy</i> depends on the DDV model #
Eo	1	
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle w}$	-	N/A
$\omega_{\mathrm{o},\lambda}^{w}$	-	N/A

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 356

Variable	Value	Comments
W_{S}	0	
n_s , n_v , $n_{\Delta\phi}$	12, 12, 19	Use a loop for 78 $\theta_s \mathbf{x} \theta_v$ combinations.
θ_s	see inputs	See Section 6.14.4.1 and Section 6.14.4.2
θ_{v}	see inputs	See Section 6.14.4.1 and Section 6.14.4.2
$\Delta \phi$	see inputs	See Section 6.14.4.3
pol	1	

 $L_{TOA \ aer}[iddv, 37, \tau^{a}(\lambda), \theta_{s} \times \theta_{v}, \Delta \phi]$

Step-2: Determine the ARVI threshold $(DDV_ARVI_LUT[iddv,\theta_s \times \theta_v,\Delta\phi])$ using the 3 TOA normalized radiances $L_{TOA_aer}[iddv,37,\tau^a(\lambda),\theta_s \times \theta_v,\Delta\phi]$ at 442.5*nm*, 665*nm* and 865*nm* for each of the 20 DDV models (iddv) as follows,

$$DDV _ ARVI _ LUT[iddv, \theta_s \times \theta_v, \Delta\phi] = \frac{L_{865}[iddv, \theta_s \times \theta_v, \Delta\phi] - L_{RB}[iddv, \theta_s \times \theta_v, \Delta\phi]}{L_{865}[iddv, \theta_s \times \theta_v, \Delta\phi] + L_{RB}[iddv, \theta_s \times \theta_v, \Delta\phi]}$$

with $L_{RB} = L_{665} - \gamma \cdot [L_{443} - L_{665}]$

where,

$$L_{443}[iddv, \theta_s \times \theta_v, \Delta \phi] = L_{TOA_aer}[iddv, 37, \tau^a(442.5), \theta_s \times \theta_v, \Delta \phi]$$

$$L_{665}[iddv, \theta_s \times \theta_v, \Delta \phi] = L_{TOA_aer}[iddv, 37, \tau^a(665), \theta_s \times \theta_v, \Delta \phi]$$

$$L_{865}[iddv, \theta_s \times \theta_v, \Delta \phi] = L_{TOA_aer}[iddv, 37, \tau^a(865), \theta_s \times \theta_v, \Delta \phi]$$

and, $\gamma=1.3$ (optimal value found for dense dark forests)

Scientific content:

 $DDV_ARVI_LUT[iddv, \theta_s \times \theta_v, \Delta \phi]$ defines the TOA ARVI threshold simulated as function of each DDV model (*iddv*) and each illumination and viewing configuration ($\theta_s, \theta_v, \Delta \phi$). In the DDV detection algorithm the ARVI is computed for each pixel (*iddv*, $\theta_s, \theta_v, \Delta \phi$) within the MERIS scene, and this value is compared with the corresponding tabulated ARVI threshold simulated with the RTC/SO at TOA. If the latter is greater than the tabulated ARVI threshold, then the pixel will be identified as a DDV pixel.

Resources:

Estimated CPU time: 94428 sec

Output disk space: $20 \times 78 \times 19 \times 4$ bytes/fl = 118560 bytes

Acceptance:

Comparison with another RTC.

6.14.7 ADS Standard Surface Reflectance Ranges for DDV Models

6.14.7.1 Mean DDV reflectances for 412.5 nm, 442.5 nm, 490 nm and 665 nm, $\rho_{DDV mean}(iaer, \lambda)$

Reference:	DDV_THR_LU	Γ, LUT161					
[AD-8]	Section 6.14.7, ADSR field 1, 2, 3 and 4						
ACRI pro	vided						
Dependencies	<u>3</u> :						
LUT147,	LUT148, LUT149						
<u>Tool</u> :							
None							
Procedure:							
Inputs:	$\lambda \\ heta$	4 MERIS wavelengths [<i>nm</i>] (412.5, 442.5, 490 and 665 <i>nm</i>) Zenith angle [<i>deg</i>], tabulated values used for ($\theta_s \times \theta_v$) combinations, <i>see</i> Section 6.14.4.1, (LUT147)					
	$ heta_{s} imes heta_{v}$	Stored indices for angular combinations [<i>dl</i>] (78 values), see Section 6.14.4.2, (LUT148)					
	∆¢ iddv lut12-xx	Relative azimuth angle [<i>deg</i>], <i>see</i> Section 6.14.4.3, (LUT149) DDV model # [<i>dl</i>] (among the 20 DDV models, [019]) <i>CESBIO DDV</i> reflectances files, $\rho_{DDV}(\lambda, \theta_v, \Delta \phi, \theta_s, \rho_o)$ (with xx in [1-20])					
Output:	DDV_THR_LU	$[T[iddv, \lambda, \theta_s \times \theta_v, \Delta \phi]$ Mean DDV reflectances at 4 wavelengths (λ), as function of the DDV model (<i>iddv</i>) and the illumination and viewing configuration ($\theta, \phi, \Delta \phi$)					
u	nits: [<i>dl</i>]	model (<i>max</i>) and the multimation and viewing configuration ($v_s, v_r, \Delta \psi$)					
Step:	User specified						

Scientific content:

 $DDV_THR_LUT[iddv,\lambda,\theta_s \times \theta_v,\Delta\phi]$ defines the mean DDV reflectances at 412.5, 442.5, 490 and 665 nm for each of the 20 DDV models and for a set of illumination and viewing geometries ($\theta_s, \theta_v, \Delta\phi$). These table is useful for retrieving aerosol optical characteristics over DDV pixels.

Current baseline: $(20 \times 4 \times 78 \times 19)$ values

Resources:

Estimated CPU time: -Output disk space: $20 \times 4 \times 78 \times 19 \times 4$ bytes/fl = 474240 bytes

Acceptance:

Corresponds to the latest definitions

6.14.8 ADS Aerosol Spherical Albedo

6.14.8.1 Aerosol spherical albedo, $S_a(iaer, \tau^a)$

<u>Reference:</u> SA_LUT, LUT167

[AD-8] Section 6.14.8, ADSR field 1

Dependencies:

LUT144, LUT154, LUT155

Tools:

OTC/SCAMAT RTC/GAUSS RTC/UPRAD (SO) Numerical integration

Procedure:

Inputs:	iaer	Aerosol model # [<i>dl</i>] (among the 78 Junge's models) characterized by ar Angström exponent (α) and a refractive index, see Section 6.14.4.4 (LUT144) and Section 6.14.1.1 (LUT154).	
	$ au \Box^{a}$	Aerosol optical thickness at 550 nm [dl] (16 values), see Section 6.14.4.9, (LUT155)	
	$ heta_s$	Solar zenith angle[deg], Gaussian angles computed with RTC/GAUSS	
Output:	$SA_LUT[iaer, \tau]$		
		Aerosol spherical albedo for each <i>Junge</i> 's model (<i>iaer</i>) and each aerosol optical thickness at 550 $nm(\tau^a)$	
units:	[dl]		

Step-0: Compute the IOPs (aerosol phase function, single scattering albedo, extinction coefficient) for all the 78 aerosol models. Eiher generate the LUT170 (see Section 6.14.11) or launch the Mie's

computations with OTC/SCAMAT using as inputs the *Angström* exponent and refractive index (real and imaginary parts).

- Step-1: Compute *Gaussian* angles $\mu (=\cos\theta_s)$ and their corresponding weighting factors $w(\mu)$ with the RTC/GAUSS ($n_s=12$).
- Step-2: Compute the aerosol transmittance $T_a[iaer, \tau^a, \theta_s]$ corresponding to the first order of *Legendre* decomposition ($I_s=0$) of phase function with the RTC/UPRAD (SO). For extracting the total atmospheric transmittance, we need to set $I_s=0$ and $\theta_v=-1$.

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	1	Not used. Aerosol transmittance is computed as function of τ^{al} (tabulated values).
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^R(\lambda)$	0	
aerosoll	"./INPUT/sca_out/sc_landyy_b05"	yy depends on the Junge's model (<i>iaer</i> =1 to 78)
$\tau^{al}(550)$	tauA1	See Section 6.14.4.9, if $\tau^{a1}(550)=0$ then $T_a=1.0$
aerosol2	-	
$\tau^{a2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_a=2 \ km$)
I_s	0	
ρ_s	"./INPUT/lut12_yy"	<i>yy</i> depends on the DDV model #

RTC/UPRAD (SO) Inputs (LAND)

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 360

Variable	Value	Comments
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{\scriptscriptstyle w}_{\scriptscriptstyle \mathrm{o},\lambda}$	-	N/A
Ws	0	
n_s , n_v , $n_{\Delta\phi}$	24, 1, 1	Use a loop for 24 θ_s
θ_s	Gaussian angles	Computed with RTC/GAUSS
θ_{v}	-1	To get the total atmospheric transmittance
$\Delta \phi$	0	
pol	1	

Step-3: Compute the aerosol spherical albedo $SA_LUT[iaer, \tau^a]$ by the following angular numerical integration,

$$SA_LUT[iaer, \tau^{a}] = 1 - 2 \cdot \int_{0}^{1} T_{a}[iaer, \tau^{a}, \mu] \cdot w(\mu) \cdot \mu \cdot d\mu$$

with μ the *Gaussian* angle ($\mu = \cos(\theta_s)$) and $w(\mu)$ its associated weighting factor.

Scientific content:

 $SA_LUT[iaer, \tau^a]$ defines the aerosol spherical albedo for each of the 78 continental aerosol models (*iaer*) and each of 16 aerosol optical thicknesses at 550*nm* (τ^a). This table is useful to account for the multiple coupling between the ground surface and the aerosol layers in the TOA aerosol correction algorithm over land.

Resources:

Estimated CPU time:	2044 sec
Output disk space:	$78 \times 16 \times 4$ bytes/fl = 4992 bytes

Acceptance:

Comparison with another RTC.

6.14.9 ADS Aerosol Transmittance

6.14.9.1 Aerosol transmittance, $T_a(iaer, \theta_s, \tau^a)$

<u>Reference</u>: TA_LUT, LUT168

[AD-8] Section 6.14.9, ADSR field 1

Dependencies:

LUT144, LUT147, LUT154, LUT155

Tool:

OTC/SCAMAT RTC/UPRAD (SO)

Procedure:

Par Bleu		MERIS / ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0002 Issue: 3 Rev.: C Date: 27-Feb-11 Page: 362
Inputs:	iaer $ heta_s$ $ au^a$	Aerosol model # [dl] (among the 78 Angström exponent (α) and a refi (LUT144) and Section 6.14.1.1 (LUT Solar zenith angle [deg], see Section Aerosol optical thickness at 550 nn (LUT155)	Junge's models) characterized by an ractive index, see Section 6.14.4.4 [154]. 6.14.4.1, (LUT147) n (16 values), see Section 6.14.4.9,
Output:	TA_LUT[iaer,	τ^{a}, θ_{s}] (also referred as $T_{a}[iaer, \tau^{a}, \theta_{s}]$) Aerosol transmittance for each aero optical thickness at 550 <i>nm</i> (τ^{a}) and f	osol model (<i>iaer</i>), for each aerosol for each illumination direction (θ_s)
units	: [<i>dl</i>]		

- Step-0: Compute the IOPs (aerosol phase function, single scattering albedo, extinction coefficient) for all the 78 aerosol models. Eiher generate the LUT170 (*see* Section 6.14.11) or launch the *Mie*'s computations with OTC/SCAMAT using as inputs the *Angström* exponent and refractive index (real and imaginary parts).
- Step-1: Compute the aerosol transmittance $T_a[iaer, \tau^a, \theta_s]$ with the RTC/UPRAD (SO). For extracting the total atmospheric transmittance, we need to set $I_s=0$ and $\theta_v=-1$.

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	1	Not used. Aerosol transmittance is computed as function of t^{a1} (tabulated values).
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^R(\lambda)$	0	
aerosoll	"./INPUT/sca_out/sc_landyy_b05"	<i>yy</i> depends on the <i>Junge</i> 's model (<i>iaer</i> =1 to 78)
$\tau^{al}(550)$	tauA1	See Section 6.14.4.9, if $\tau^{al}(550)=0$ then $T_a=1.0$
aerosol2	-	
$\tau^{a2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e,\lambda}$	-	N/A

RTC/UPRAD (SO) Inputs (LAND)

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 363

Variable	Value	Comments
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{e,\lambda}^{_{ys}}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_a=2 \ km$)
Is	0	
ρ_s	"./INPUT/lut12_yy"	<i>yy</i> depends on the DDV model #
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega_{\mathrm{o},\lambda}^{w}$	-	N/A
w _s	0	
$n_s, n_v, n_{\Delta\phi}$	12, 1, 1	Use a loop for 12 θ_s
θ_s	Gaussian angles	See Section 6.14.4.1
θ_v	-1	To get the total atmospheric transmittance
$\Delta \phi$	0	
pol	1	

Scientific content:

 $TA_LUT[iaer, \tau^a, \theta_s]$ defines the aerosol transmittance for each of the 78 continental aerosol models (*iaer*), for each of 16 aerosol optical thicknesses at 550 nm (τ^a), and for each of the 12 solar zenith angles (*Gaussian* angles). This table is useful for the TOA aerosol correction algorithm over land.

Resources:

Estimated CPU time: 1022 sec Output disk space: $78 \times 12 \times 16 \times 4$ bytes/fl = 59904 bytes

Acceptance:

Comparison with another RTC.

6.14.10 ADS Multiplicative Function to account for Aerosol Multiple Scattering Effects

6.14.10.1 Fourier series terms of polynomial coefficients for multiplicative aerosol scattering function retrieval

Reference: Aermult_LUT, LUT169

[AD-8] Section 6.14.10, ADSR field 1

Dependencies:

LUT144, LUT147, LUT148, LUT149, LUT154, LUT155

Tools:

OTC/SCAMAT RTC/UPRAD (SO) *Fourier* series expansion (FTS) Polynomial fit

Procedure:

Inputs:	iaer	Aerosol model # [dl] (among the 78 Junge's models + 3 stratospheric models) characterized by an Angström exponent (α) and a refractive index. see Section 6.14.4.4 (LUT144) and Section 6.14.1.1 (LUT154).
	heta	Zenith angle [<i>deg</i>]; tabulated values used for $(\theta_s \times \theta_v)$ combinations, <i>see</i> Section 6.14.4.1, (LUT147)
	$\theta_s \times \theta_v$	Stored indices for angular combinations [<i>dl</i>] (78 values), <i>see</i> Section 6.14.4.2, (LUT148)
	$\Delta \phi$	Relative azimuth angle [deg], see Section 6.14.4.3, (LUT149)
	$ au^{a'}$	Aerosol optical thickness at 550 <i>nm</i> [<i>dl</i>] (16 values), <i>see</i> Section 6.14.4.9, (LUT155)
	S	Fourier series term $[dl]$, $s = [0:5]$
	k	Polynomial coefficient orders $[dl]$, $k = [0;3]$
Output:	Aermult LU	$T[iaer, \theta_{s} \times \theta_{y}, s, k]$
	_	<i>Fourier</i> series terms of multiplicative aerosol scattering function polynomial coefficients for each continental aerosol model, as function of the acceptable combinations (sun/view zenith angles)
u	nits: [<i>dl</i>]	

Warning: The process for generating this *Aermult_LUT* table is very time-consuming. To avoid loosing data in case of a power failure during the processing, temporary binary files are created after

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 365

Step1 and Step2 described below: LTOA_xx.LUT169, LP_TOA_xx.LUT169 (where xx stands for the identification of the aerosol model [00 .. 80]) and MultiFactor.LUT169, respectively. This allows one to resume the processing after a power failure. If we want fully restart the generation procedure, then the temporary binary files should be first deleted before relaunching the process.

- Step-0: Compute the IOPs (aerosol phase function, single scattering albedo, extinction coefficient) for all the 78 aerosol models. Eiher generate the LUT170 (*see* Section 6.14.11) or launch the *Mie*'s computations with OTC/SCAMAT using as inputs the *Angström* exponent and refractive index (real and imaginary parts).
- Step-1: Generate TOA normalized radiances $L_{TOA}[iaer, \tau^a, \theta_s \times \theta_v, \Delta \phi]$ and the TOA normalized primary radiances $L_{P_TOA}[iaer, \tau^a, \theta_s \times \theta_v, \Delta \phi]$, with the RTC/UPRAD (SO) for a pure aerosol atmosphere over a black land surface.

Note that for a first LUT generation, the computations have been completed with the same '*scamat*' inputs ('*sc_land27_b05*') both for the 3 stratospheric aerosol models. This LUT will be reprocessed as soon as the definitions of these stratospheric aerosol models will be available.

Variable	Value	Comments	
out_file	"./OUTPUT/uprad_out"		
i_branch	1 and 11	1 for L_{TOA} , and 11 for $L_{P TOA}$	
$n(\lambda)$	1		
U_{H2O}	0		
U_{O2}	0		
ESFT	-	N/A	
P_s	1013.25		
$ au^R(\lambda)$	0		
aerosol1	"./INPUT/sca_out/sc_landyy_b05"	<i>yy</i> depends on the set of 78 <i>Junge</i> 's models + 3 stratospheric models (<i>iaer</i> =1 to 81)	
$\tau^{al}(550)$	tauA1	See Section 6.14.4.9	
aerosol2	-		
$\tau^{a2}(550)$	0		
aerosol3	-		
$\tau^{a3}(550)$	0		
cloud1	-	N/A	
cloud2	-	N/A	
cloud3	-	N/A	
phyto	-	N/A	
$\sigma^{{}_{p}}_{e,\lambda}$	-	N/A	
$\mathscr{O}^{p}_{\mathfrak{o},\lambda}$	-	N/A	
spm	-	N/A	

RTC/UPRAD (SO) Inputs (LAND)

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 366

Variable	Value	Comments
$\sigma_{e,\lambda}^{spm}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{_{y_s}}_{_{e,\lambda}}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_a=2 \ km$)
I_s	79	
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{w}_{\mathrm{o},\lambda}$	-	N/A
Ws	0	
n_s , n_v , $n_{\Delta\phi}$	12, 12, 19	Use a loop for 78 $\theta_s \mathbf{x} \theta_v$ combinations.
θ_s	Gaussian angles	See Section 6.14.4.1 and Section 6.14.4.2
θ_{v}	Gaussian angles	See Section 6.14.4.1 and Section 6.14.4.2
$\Delta \phi$	see inputs	See Section 6.14.4.3
pol	1	

Step-2: Compute the multiplicative aerosol scattering function $f_a[iaer, \tau^a, \theta_s \times \theta_{v,\Delta} \phi]$ as follows,

 $f_{a}[iaer, \tau^{a}, \theta_{s} \times \theta_{v}, \Delta \phi] = L_{TOA}[iaer, \tau^{a}, \theta_{s} \times \theta_{v}, \Delta \phi] / L_{P_TOA}[iaer, \tau^{a}, \theta_{s} \times \theta_{v}, \Delta \phi]$

Step-3: Expand $f_a[iaer, \tau^a, \theta_s \times \theta_v, \Delta \phi]$ into a *Fourier* series of 6 terms with the FTS tool (which expands a function into *Fourier* series terms),

$$f_a[iaer, \tau^a, \theta_s \times \theta_v, s] = FTS(f_a[iaer, \tau^a, \theta_s \times \theta_v, \Delta \phi])$$

Step-4: Apply a 3rd order polynomial fit on each of the 6 *Fourier* terms of the multiplicative aerosol scattering function (*i.e.*, on each term $f_a[iaer, \tau^a, \theta_s \times \theta_v, \Delta \phi, s]$) as function of the aerosol optical thickness (τ^a) for retrieving polynomial coefficients *Aermult_LUT* [*iaer*, $\theta_s \times \theta_v, s, k$],

 $f_{a}[iaer, \tau^{a}, \theta_{s} \times \theta_{v}, s] = Aermult_LUT [iaer, \theta_{s} \times \theta_{v}, s, 0] \\ + Aermult_LUT [iaer, \theta_{s} \times \theta_{v}, s, 1] . (\tau^{a}) \\ + Aermult \ LUT [iaer, \theta_{s} \times \theta_{v}, s, 2] . (\tau^{a})^{2}$

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 367

+ Aermult_LUT [iaer, $\theta_s \times \theta_{v}$, s,3]. $(\tau^a)^3$

Scientific content:

These sets of polynomial coefficients are useful to compute the multiplicative aerosol scattering function whatever the illumination (θ_s) and viewing (θ_v) configuration, whatever the aerosol model (*iaer*) and aerosol optical thickness at 550nm (τ^a), and for each *Fourier* series (s) term used in the *Fourier* series expansion of these polynomial coefficients. This multiplicative aerosol scattering function is then used to correct the aerosol primary TOA radiance for the multiple scattering.

Note:

The computation of the aerosol reflectance is based on the same approximations as for the *Rayleigh* reflectance (*i.e.*, by decoupling the primary and the multiple scattering and using the *Fourier* series expansion to remove the azimuthal dependence).

Thus for a selected aerosol model (*iaer*), the aerosol reflectance (ρ_a) is written as,

$$\rho_a(iaer, \vartheta_s, \vartheta_v, \Delta\phi, \tau^a) = \rho_{a,P}(iaer, \vartheta_s, \vartheta_v, \Delta\phi, \tau^a) \cdot f_a(iaer, \vartheta_s, \vartheta_v, \Delta\phi, \tau^a)$$

with $\rho_{a,P}$ the primary scattering reflectance for the aerosols computed in the atmospheric correction algorithm over land, and f_a the multiplicative aerosol function which depends on the aerosol optical thickness (τ^a) at 550*nm* and accounts for the multiple scattering.

The multiplicative aerosol scattering function (f_a) is then deduced from this formulation by simulating ρ_a and $\rho_{a,P}$ with the RTC/UPRAD (SO). The *Fourier* series expansion is then applied on f_a instead of ρ_a due to the fact that f_a is less sensitive to the azimuthal angle than ρ_a , which permits to reduce the order of the series (*i.e.*, to the first 6 *Fourier* series terms).

For each *Fourier* series term s, a third order polynomial fit as function of τ^a has been determined using the set of multiplicative aerosol scattering functions $(f_a^{(s)})$:

$$f_a^{(s)}(iaer, \mathcal{G}_s, \mathcal{G}_v, \tau^a) = \sum_{i=0}^3 k_i^{(s)}(iaer, \mathcal{G}_s, \mathcal{G}_v) \cdot (\tau^a)^i$$

with $k_i^{(s)}$ the polynomial coefficient for the *Fourier* series terms *s*.

The aerosol scattering function (f_a) is then computed by recombining the first 6 Fourier series terms:

$$f_a(iaer, \vartheta_s, \vartheta_v, \Delta\phi, \tau^a) = \sum_{s=0}^{5} (2 - \delta_{0,s}) \cdot f_a^{(s)}(iaer, \vartheta_s, \vartheta_v, \tau^a) \cdot \cos(s \cdot \Delta\phi)$$
(1)

Resources:

Estimated CPU time: 177329 sec Output disk space: $81 \times 78 \times 6 \times 4 \times 4$ bytes/fl = 606528 bytes

Acceptance:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 368

Comparison with another RTC.

6.14.11 ADS Aerosol Phase Function times Single Scattering Albedo

6.14.11.1 Aerosol phase function times single scattering albedo, $\omega_o^a(iaer).P_a(iaer, cos\Theta)$

<u>Reference:</u> Aerpha_LUT, LUT170

[AD-8] Section 6.14.11, ADSR field 1

Dependencies:

LUT144, LUT150, LUT154

Tool:

OTC/SCAMAT

Note: The imaginary part of the refractive index is stored in a C.P. file, see Section 6.14.1.1. (LUT144).

Procedure:

Inputs:	iaer Sca_cos		Aerosol model # [<i>dl</i>] (among the 78 <i>Junge</i> 's models) Cosine of scattering angle [<i>dl</i>], <i>see</i> Section 6.14.4.4, (LUT150)
	k		Output index (for selecting the aerosol property)
	Aerosol_refindex[iaer]	<i>k</i> =1	refractive index (real part) [dl],
	Aerosol_angstrom[iaer]	<i>k</i> =2	Angström coefficient (α) [dl],
			see Section 6.14.4.8, (LUT154)
	<i>n</i> _i		Imaginary part of refractive index [dl], see Section 6.14.1.1., (LUT144)
Output:	Aerpha_LUT[iaer,Sca_cos]		Aerosol phase function times single scattering albedo
units	:: [<i>dI</i>]		for each aerosol model (<i>iaer</i>)

Step-1: Compute the aerosol scattering phase matrix $P_a[iaer, \Theta]$ (with Θ the scattering angle derived from the OTC/SCAMAT) and the single scattering albedo ($\omega_o^a[iaer]$) with the OTC/SCAMAT, for each of the 78 aerosol models.

SCAMAT Inputs				
Variable	Value	Comments		

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 369

Variable	Value	Comments
scamat_out	"./INPUT/sca_out/sc_landyy_b05"	<i>yy</i> depends on the continental aerosol model (<i>iaer</i> =1 to 78)
λ	550	Wavelength
λ_{ref}	550	Reference wavelength
n_2	83	Number of scattering angles
N	1	Number of size distribution
$m_{\lambda}(1), k_{\lambda}(1)$	see inputs	See Section 6.14.4.8 and Section 6.14.1.1
$m_{\lambda ref}(1), k_{\lambda ref}(1)$	see inputs	See Section 6.14.4.8 and Section 6.14.1.1
$r_{min}(1), r_{max}(1), dr(1)$	0.001, 20, 0.001	Minimum, maximum radii and size increment
<i>ind</i> (1),	1	Junge size distribution
a(1),b(1)	$0.01, m_{\lambda}(i+1) + 3$	See Section 6.14.4.8 for $m_{\lambda}(i)$
n(1)/n	1	Component mixing ratio

Note: Refractive index are independent on the wavelength for the continental aerosol models.

Step-2: Determine Aerpha LUT[iaer, Θ] for each of the 78 continental aerosol models (iaer) as follows,

Aerpha_LUT[iaer, Θ] = ω_o^a [iaer] x P_a [iaer, Θ].

Step-3: Interpolate values from $Aerpha_LUT[iaer, \Theta]$ to the input scattering angles (*Sca_cos*) to obtain *Aerpha_LUT[iaer,Sca_cos*] with the interpolation tool.

 $Aerpha_LUT[iaer,Sca_cos] = Interpolation(Aerpha_LUT[iaer,\Theta])$

Scientific content:

Aerpha_LUT[*iaer*,*Sca_cos*] determines the aerosol phase function times the single scattering albedo for each of the 78 continental aerosol models. The latter which describes the aerosol reflectances for each aerosol model (*iaer*), is useful for the aerosol correction algorithm over land.

Resources:

Estimated CPU time: 2458 sec Output disk space: $78 \times 83 \times 4$ bytes/fl = 25896 bytes

Acceptance:

Comparison with another OTC, such as the OTC/MIE from the FUB institute.

6.14.12 ADS Volcanic Aerosol Spherical Albedo

6.14.12.1 Volcanic aerosol spherical albedo, $S_{va}(iaer, \lambda)$

Reference: Strato_sphalb, LUT315

[AD-8] Section 6.14.12, ADSR field 1

Dependencies:

None

Tools:

RTC/GAUSS RTC/UPRAD (SO) Numerical integration

Procedure:

Inputs:	iaer $ heta_{s}$ λ	Aerosol model # [<i>dl</i>] (among the 18 volcanic aerosol models) Solar zenith angle [<i>deg</i>], <i>Gaussian</i> angles computed with RTC/GAUSS MERIS wavelength [<i>nm</i>], (15 values)	
Output:	Strato_sphalb units: [dl]	$b[iaer, \lambda]$ Volcanic aerosol spherical albedo for each aerosol model (<i>iaer</i>) and each MERIS wavelength (λ)	
Step-1: Compute <i>Gaussian</i> angles $\mu (=\cos\theta_s)$ and their corresponding weighting factors $w(\mu)$ with the RTC/GAUSS ($n_s=12$).			
Step-2: Compute the volcanic aerosol transmittance $T_{va}[iaer, \theta_s, \lambda]$ with the RTC/UPRAD (SO). For extracting the total atmospheric transmittance, we need to set $I_s=0$ and $\theta_v=-1$.			
Note that for a first LUT generation, the computations have been completed with the same 'scamat' inputs ('sc_land27_b05') both for all the 18 volcanic aerosol models whatever the wavelength. This LUT will be reprocessed as soon as the definitions of these volcanic aerosol models will be available.			
	RTC/UPRAD (SO) Inputs (LAND)		

	Variable Value Comments	
--	-------------------------	--

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 371

Variable	Value	Comments
out_file	"./OUTPUT/uprad_out"	
i_branch	1	
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15	All MERIS bands, but only one band is implemented in the MERISAT tool.
U_{H2O}	0	
U_{O2}	0	
ESFT	-	N/A
P_s	1013.25	
$ au^{R}(\lambda)$	0	
aerosol1	"./INPUT/sc_landyy_b05"	yy depends on the volcanic aerosol model # (<i>iaer</i> =1 to 18). However these models are not available, and only 1 aerosol model ('sc_land27_b05') is implemented in the MERISAT tool.
$\tau^{al}(550)$	0.1	
aerosol2	-	
$\tau^{a2}(550)$	0	
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	-	N/A
cloud2	-	N/A
cloud3	-	N/A
phyto	-	N/A
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{p}_{\mathfrak{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{\scriptscriptstyle{spm}}_{\scriptscriptstyle{e,\lambda}}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle ys}$	-	N/A
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_a=2 \ km$)
I_s	0	
$ ho_s$	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{w}_{\mathrm{o},\lambda}$	-	N/A
Ws	0	
n_s , n_v , $n_{\Delta\phi}$	24, 1, 1	Use a loop for 24 θ_s
θ_{s}	Gaussian angles	Computed with RTC/GAUSS
$ heta_{v}$	-1	To get the total atmospheric transmittance

MERIS / ENVISAT-1 MEdium Resolution Imaging

Spectrometer

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Issue</u>: 3 <u>Rev.</u>: C <u>Date</u>: 27-Feb-11 <u>Page</u>: 372

Variable	Value	Comments
$\Delta \phi$	0	
pol	1	

Step-2: Compute the volcanic aerosol spherical albedo *Strato_sphalb[iaer,\lambda]* by the following angular numerical integration,

Strato
$$_sphalb[iaer, \lambda] = 1 - 2 \cdot \int_{0}^{1} T_{va}[iaer, \lambda, \mu] \cdot w(\mu) \cdot \mu \cdot d\mu$$

with μ the *Gaussian* angle ($\mu = \cos(\theta_s)$) and $w(\mu)$ its associated weighting factor.

Scientific content:

Strato_sphalb[iaer, λ] defines the volcanic aerosol spherical albedo for each of the 18 volcanic aerosol models (*iaer*) and each of 15 MERIS wavelengths (λ). This table is useful for the stratospheric aerosol correction algorithm over land.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 373

Resources:

Estimated CPU time: $363 \ sec$ Output disk space: $18 \times 15 \times 4$ bytes/fl = 1080 bytes

Acceptance:

Comparison with another RTC.

6.14.13 ADS Volcanic Aerosol Transmittance

6.14.13.1 Volcanic aerosol transmittance, $T_{va}(iaer, \lambda, \theta_s)$

Reference: TA_strato_LUT, LUT316

[AD-8] Section 6.14.13, ADSR field 1

Dependencies:

LUT147

Tool:

RTC/UPRAD (SO)

Procedure:

Inputs:		iaer $ heta_s$ λ		Aerosol model # [<i>dl</i>] (among the 18 volcanic aerosol models) Solar zenith angle [<i>deg</i>], <i>see</i> Section 6.14.4.1, (LUT147) MERIS wavelength [<i>nm</i>],(15 values)
Output:		TA_	_strato_L	$UT[iaer, \lambda, \theta_s]$ (also referred as $T_{va}[iaer, \lambda, \theta_s]$) Volcanic aerosol transmittance for each aerosol model (<i>iaer</i>), for each MERIS wavelength (λ), and for each illumination direction (θ_s)
	units:		[dl]	
Step:	Comp extrac	oute ting:	the volca	nic aerosol transmittance $T_{va}[iaer, \lambda, \theta_s]$ with the RTC/UPRAD (SO). For atmospheric transmittance, we need to set $I_s=0$ and $\theta_v=-1$.

Note that for a first LUT generation, the computations have been completed with the same 'scamat' inputs ('sc_land27_b05') both for all the 18 volcanic aerosol models whatever the wavelength. This LUT will be reprocessed as soon as the definitions of these volcanic aerosol models will be available.

RTC/UPRAD (SO) Inputs (LAND)		
Variable	Value	Comments

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 374

Variable	Value	Value Comments	
out_file	"./OUTPUT/uprad_out"		
i_branch	1		
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15	All MERIS bands, but only 1 band is implemented in the MERISAT tool.	
U_{H2O}	0		
U_{O2}	0		
ESFT	-	N/A	
P_s	1013.25		
$ au^{\kappa}(\lambda)$	0		
aerosol1	"./INPUT/sc_landyy_b05"	<i>yy</i> depends on the volcanic aerosol model # (<i>iaer</i> =1 to 18). However these models are not available, and only 1 aerosol model (<i>'sc_land27_b05'</i>) is implemented in the MERISAT tool.	
$\tau^{al}(550)$	0.1		
aerosol2	-		
$\tau^{a2}(550)$	0		
aerosol3	-		
$\tau^{a3}(550)$	0		
cloud1	-	N/A	
cloud2	-	N/A	
cloud3	-	N/A	
phyto	-	N/A	
$\sigma^{p}_{e,\lambda}$	-	N/A	
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A	
spm	-	N/A	
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle spm}$	-	N/A	
$\mathcal{O}^{spm}_{\mathrm{o},\lambda}$	-	N/A	
$\sigma^{_{ys}}_{_{e,\lambda}}$	-	N/A	
vertical	"./INPUT/vertical_out"	Not used, vertical distribution determined in RTC/SO ($H_a=2 km$)	
I_s	0		
$ ho_s$	0		
Eo	1		
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle e,\lambda}$	-	N/A	
$\omega^{w}_{\mathrm{o},\lambda}$	-	N/A	
W_{S}	0		
n_s , n_v , $n_{\Delta\phi}$	12, 1, 1	Use a loop for 12 θ_s	
$ heta_{s}$	Gaussian angles	See Section 6.14.4.1	
θ_{v}	-1	To get the total atmospheric transmittance	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 375

Variable	Value	Comments
$\Delta \phi$	0	
pol	1	

Scientific content:

 $TA_strato_LUT[iaer, \lambda, \theta_s]$ defines the volcanic aerosol transmittance for each of the 18 volcanic aerosol models (*iaer*), for each of 15 MERIS wavelengths (λ), and for each of the 12 solar zenith angles (*Gaussian* angles). This table is useful for the volcanic aerosol correction algorithm over land.

Resources:

Estimated CPU time: 183 sec Output disk space: $18 \times 15 \times 12 \times 4$ bytes/fl = 12960 bytes

Acceptance:

Comparison with another RTC.

6.14.14 ADS Volcanic Aerosol Reflectance

6.14.14.1 Volcanic aerosol phase function times single scattering albedo, $\omega_o^{va}(iaer, \lambda).P_{va}(iaer, \lambda, \cos \Theta)$

<u>Reference:</u> Strato_aerpha_LUT, LUT317

[AD-8] Section 6.14.14, ADSR field 1

Dependencies:

LUT150, LUT154

Tools:

OTC/SCAMAT Interpolation

Procedure:

Inputs:

iaer		Aerosol model # $[dl]$ (among the 3 stratospheric models distinguished by the effective volcanic aerosol radius)
Sca_cos		Cosine of scattering angle [<i>dl</i>], see Section 6.14.4.4, (LUT150)
k Aerosol_refindex[iaer] Aerosol_angstrom[iaer]	k=1 k=2	Output index (for selecting the aerosol property) refractive index (real part) $[dl]$, <i>Angström</i> coefficient (α) $[dl]$, <i>see</i> Section 6.14.4.8, (LUT154)

Output: $Strato_aerpha_LUT[iaer, \lambda, Sca_cos]$

Aerosol phase function times single scattering albedo for each aerosol model (*iaer*)

units: [*dl*]

Step-1: Compute the aerosol scattering phase matrix $P_{va}[iaer,\lambda,\Theta]$ (with Θ the scattering angle derived from the OTC/SCAMAT) and the single scattering albedo ($\omega_0^{va}[iaer,\lambda]$) with the OTC/SCAMAT, for each of the 3 stratospheric aerosol models.

Note that for a first LUT generation, the computations have been completed with the same '*scamat*' inputs ('*sc_land27_b05*') both for all the 3 stratospheric aerosol models whatever the wavelength. This LUT will be reprocessed as soon as the definitions of these volcanic aerosol models will be available.

SCAMAT	Tinnuts
SCHMAN	inputs

Variable	Value	Comments
Scamat_out	"./INPUT/sca_out/sc_stratoyy_b05"	<i>yy</i> depends on the stratospheric aerosol model (<i>iaer</i> =1 to 3). However these models are not available, and only 1 aerosol model (<i>'sc_strato_b05'</i>) is implemented in the MERISAT tool.
λ	550	Wavelength
λ_{ref}	550	Reference wavelength
n_2	83	Number of scattering angles
N	1	Number of size distribution
$m_{\lambda}(1), k_{\lambda}(1)$	see inputs	See Section 6.14.4.8 and Section 6.14.1.1
$m_{\lambda ref}(1), k_{\lambda ref}(1)$	see inputs	See Section 6.14.4.8 and Section 6.14.1.1
$r_{min}(1), r_{max}(1),$ $dr(1)$	0.001, 20, 0.001	Minimum, maximum radii and size increment
<i>ind</i> (1),	1	Junge size distribution
a(1),b(1)	$0.01, m_{\lambda}(i+1) + 3$	See Section 6.14.4.8 for $m_{\lambda}(i)$
n(1)/n	1	Component mixing ratio

<u>Note</u>: These scamat inputs are the same as for the continental aerosol models du to the fact that the definitions of the 3 stratospheric aerosol models are not available.

Step-2: Determine *Strato_aerpha_LUT*[*iaer*, λ , Θ] for each of the 3 stratospheric aerosol models (*iaer*) as follows,

Strato aerpha LUT[iaer, λ, Θ] = ω_0^{va} [iaer, λ] x P_{va} [iaer, λ, Θ]

Step-3: Interpolate values from *Strato_aerpha_LUT*[*iaer*, λ , Θ] to the input scattering angles (*Sca_cos*) to obtain *Strato_aerpha_LUT*[*iaer*, λ ,*Sca_cos*] with the interpolation tool.

 $Strato_aerpha_LUT[iaer, \lambda, Sca_cos] = Interpolation(Strato_aerpha_LUT[iaer, \lambda, \Theta])$

Scientific content:

Strato_aerpha_LUT[*iaer*, λ ,*Sca_cos*] defines the stratospheric aerosol phase function times the single scattering albedo for each of the 3 volcanic aerosol models, and each of the 15 MERIS wavelengths. The latter, which describes the volcanic aerosol spectral reflectances for each model (*iaer*), is useful for the volcanic aerosol correction algorithm over land.

Resources:

Estimated CPU time: 40 sec Output disk space: $3 \times 15 \times 83 \times 4$ bytes/fl = 14940 bytes

Acceptance:

Comparison with another OTC, such as the OTC/MIE from the FUB institute.

6.14.14.2 Spectral dependence of the volcanic aerosol optical thickness (with normalization at reference wavelength)

<u>Reference</u>: Strato_spectr, LUT318

[AD-8] Section 6.14.14, ADSR field 2

ACRI provided

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Issue</u>: 3 <u>Rev.</u>: C <u>Date</u>: 27-Feb-11 <u>Page</u>: 378

Dependencies:

None

Tool:

None

Procedure:

Inputs:	iaer b	Volcanic aerosol model # (among 3 models) MERIS band # (15 bands)
Outputs:	Strato_spectr[i	aer,b]
		Spectral dependence $(f_{strato}[iaer, \lambda])$ of the volcanic aerosol optical thickness (with normalization at reference wavelength)
units:	[dl]	
Step:	User specified.	

Scientific content:

 $f_{strato}[iaer,\lambda]$ describes the spectral dependence of the volcanic aerosol optical thickness (stratosphere), for each of the 3 aerosol models (*iaer*) and for each of the 15 MERIS wavelengths (λ). These values are normalized to the reference wavelength at 865 *nm*.

Current baseline: (3 x 15) values set to 1

Resources:

Estimated CPU time: -Output disk space: $3 \times 15 \times 4$ bytes/fl = 180 bytes

Acceptance:

Corresponds to the latest definition.

6.14.15 GADS Dense Dark Vegetation Climatology

6.14.15.1 Biome index, DDV_clim(lat,long)

Reference: DDV_clim, LUT319

[AD-8] Section 6.14.15, ADSR field 1

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 379

Dependencies:

LUT310, LUT311

Tool:

None

Procedure:

	Inputs:	lat	Latitude [deg] (180 values), see Section 6.14.4.13 (LUT310)
	-	long	Longitude [deg] (360 values), see Section 6.14.4.14 (LUT311)
	Outputs: DDV_clim[lat,long]		
			Spectral dependence $(f_{strato}[iaer, \lambda])$ of the volcanic aerosol optical thickness (with normalization at reference wavelength)
	units:	[dl]	
	Step:	User specified.	
Scie	entific conten	<u>t</u> :	
	DDV climatology given on a geographic map with a 1 deg cell resolution in (lat, long)		
	Current basel	ine: (180 x 360)	values.
Resources:			

Acceptance:

Corresponds to the latest definition.

Estimated CPU time:

Output disk space:

6.14.16 ADS DDV Parameters for Bidirectionality Correction

6.14.16.1 Rayleigh-ground DDV coupling bidirectionality term, $\overline{\rho}_{RG}$ (iddv, λ , θ_{v})

 $180 \times 360 \times 1$ byte/uc = 64800 bytes

<u>Reference:</u> robar_Rg_LUT, LUT320

_

[AD-8] Section 6.14.16, ADSR field 1

Dependencies:

LUT147

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 380

Tools:

RTC/MOS (lut_rhob_Rgddv) Interpolation Numerical integration (*Gauss* quadrature) Numerical integration (*Newton-Cotes* method)

<u>Note</u>: Both the interpolation and numerical integrations tools are included in the RTC/MOS (lut_rhob_Rgddv). The latter has been developed for the sun/view geometries in the MOS ground-segment.

Procedure:

Inputs:	λ	4 MERIS wavelengths [<i>nm</i>] (412.5, 442.5, 490 and 665 <i>nm</i>)
-	θ	Zenith angle [deg]; tabulated values used for $(\theta_s \times \theta_v)$ combinations, see
		Section 6.14.4.1, (LUT147)
	$\Delta \phi$	Relative azimuth angle [deg]; 72 values derived from a parabolic
		distribution centred at 0 deg.
	iddv	DDV model # $[dl]$ (among the 20 DDV models, $[019]$)
	param_Hapke	CESBIO input file containing 4 <i>Hapke</i> 's parameters (ω , g , S and h) for
		each of the 20 DDV models, each of the 4 wavelengths (<i>i.e.</i> , 412.5, 442.5,
		490 and 665 nm) and for all illumination and viewing configurations (see
		[AD-7] for more details).
		ω : single scattering albedo
		g : assymmetry factor
		S: amplitude of the hot-spot
		h : width of the hot-spot
Output:	robar_Rg_LU1	$[iddv,\lambda,\theta_v]$, referred also as $\rho_{RG}[iddv,\lambda,\theta_v]$
		Rayleigh-ground DDV coupling bidirectionality term as function of the
		DDV model (<i>iddv</i>), the wavelength (λ), and the viewing zenith angle (θ_{ν})
units	[dl]	

The steps, described hereafter, are implemented in the RTC/MOS (lut_rhob_Rgddv).

Step-1: Generate the DDV BRDF $R_{DDV}[iddv, \lambda, \beta', \beta_{\nu}, \Delta \phi']$ with the RTC/MOS (lut_rhob_Rgddv) using the *Hapke*'s parameters (ω, g, S, h) file, for each DDV model, each wavelength, and each illumination and viewing configuration β', β_{ν} and $\Delta \phi'$ $(N_{g'} = 24; N_{\beta_{\nu}} = 12; N_{\Delta \phi'} = 72)$. The zenith angles (β', β_{ν}) (within $[0^{\circ};90^{\circ}]$) derive from the *Gauss* quadratures and the relative azimuth angles $(\Delta \phi')$ (within $[-180^{\circ};180^{\circ}]$) follow a parabolic distribution centred at 0° .

Step-2: Compute the *Rayleigh*-ground DDV coupling bidirectionality term *robar_Rg_LUT[iddv, \lambda, θ_v]* for each DDV model, each wavelength λ , and each viewing angle ϑ_v , using the numerical angular integration of $R_{\text{DDV}}[iddv, \lambda, \beta', \vartheta_v, \Delta \phi']$ on μ' and $\Delta \phi'$:

$$robar_Rg_LUT[iddv, \lambda, \mathcal{G}_v] = \frac{1}{2\pi} \cdot \int_{0}^{2\pi 1} R_{DDV}[iddv, \lambda, \mathcal{G}', \mathcal{G}_v, \Delta \phi'] \cdot d\mu' \cdot d\Delta \phi'$$

This angular integration on μ' is performed using a *Gauss* quadrature whereas the azimuthal integration on $\Delta \phi'$ is completed with the *Newton-Cotes* method.

Scientific content:

robar_Rg_LUT[*iddv*, λ , θ_v] defines the *Rayleigh*-ground DDV coupling bidirectionality term as function of the DDV model (*iddv*), the wavelength (λ), and the viewing zenith angle (θ_v). The latter which accounts for the multiple scatterings between the ground DDV interface and the *Rayleigh* atmosphere, is useful for the atmospheric correction algorithm over land.

Resources:

Estimated CPU time: 5 sec (If ASCII LUT exists) Output disk space: $20 \times 4 \times 12 \times 4$ bytes/fl = 3840 bytes

Acceptance:

Comparison with another code.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 382

6.14.16.2 Aerosol-ground DDV coupling bidirectionality term, $\overline{\rho}_{aG}$ (iddv, λ , iaer, $\theta_s \mathbf{x} \theta_v$, s)

<u>Reference:</u> robar_ag_LUT, LUT321

[AD-8] Section 6.14.16, ADSR field 2

Dependencies:

LUT144, LUT147, LUT148, LUT150, LUT154

Tools:

OTC/SCAMAT RTC/MOS (lut_rhob_agddv) Fourier series expansion (FTS) Interpolation Numerical integration (Gauss quadrature) Numerical integration (Newton-Cotes method)

<u>Note</u>: Both the FTS, interpolation and numerical integrations tools are included in the RTC/MOS (lut_rhob_agddv). The latter has been developed for the sun/view geometries in the MOS ground-segment.

Procedure:

Inputs:	λ	4 MERIS wavelengths [<i>nm</i>] (412.5, 442.5, 490 and 665 <i>nm</i>)
	θ	Zenith angle [deg]; tabulated values used for $(\theta_s \times \theta_v)$ combinations, see
		Section 6.14.4.1, (LUT147)
	$\theta_s imes \theta_v$	Stored indices for angular combinations [dl] (78 values), see Section 6.14.4.2, (LUT148)
	$\Delta \phi$	Relative azimuth angle [<i>deg</i>]; 72 values derived from a parabolic distribution centred at 0 <i>deg</i> .
	iaer	Aerosol model # $[dl]$ (among the 78 Junge's models) characterized by an
		Angström exponent (α) and a refractive index, see Section 6.14.4.4 (LUT144) and Section 6.14.1.1 (LUT154).
	Sca cos	Cosine of scattering angle [dl], see Section 6.14.4.4, (LUT150)
	iddv	DDV model # $[dl]$ (among the 20 DDV models, $[019]$)
	param_Hapke	CESBIO input file containing 4 Hapke's parameters (ω, g, S and h) for
		each of the 20 DDV models, each of the 4 wavelengths (<i>i.e.</i> , 412.5, 442.5, 490 and 665 <i>nm</i>) and for all illumination and viewing configurations (<i>see</i> [AD-7] for more details).
		ω : single scattering albedo
		g: assymmetry factor
		S: amplitude of the hot-spot
		h : width of the hot-spot
	phase_aer78	Input file containing scattering phase functions for 78 aerosol models (<i>see</i> [AD-7] for more details).

Output: $robar_ag_LUT[iddv,\lambda,iaer,\theta_s \times \theta_v,s]$, referred also as $\overline{\rho}_{aG}[iddv,\lambda,iaer,\theta_s \times \theta_v,s]$

Aerosol-ground DDV coupling bidirectionality term as function of the DDV model (*iddv*), the wavelength (λ), the aerosol model (*iaer*), the illumination and viewing geometry (θ_s , θ_v), and the *Fourier* term (*s*) used to remove the azimuthal dependence

units: [*dl*]

- Step-0: Compute the IOPs (aerosol phase function, single scattering albedo, extinction coefficient) for all the 78 aerosol models. Eiher generate the LUT170 (*see* Section 6.14.11) or launch the *Mie*'s computations with OTC/SCAMAT using as inputs the *Angström* exponent and refractive index (real and imaginary parts).
- Step-1: For each of the 78 aerosol models (*iaer*), interpolate the scattering phase function $P_{scat}[iaer, \Theta]$ to the input scattering angles (*Sca_cos*) to get $P_{scat}[iaer, Sca_cos]$ with the interpolation tool,

 $P_{scat}[iaer,Sca_cos] = Interpolation(P_{scat}[iaer,\Theta]),$

and generate the input file, *phase_aer78*, with the 78 interpolated scattering phase functions.

The steps, described hereafter, are implemented in the RTC/MOS (lut_rhob_agddv).

Step-2: Generate the DDV BRDF $R_{DDV}[iddv, \lambda, \beta', \beta_{\nu}, \Delta \phi']$ with the RTC/MOS (lut_rhob_agddv) using the Hapke's parameters (ω, g, S, h) file, for each DDV model, each wavelength, and each illumination and viewing configuration β', β_{ν} and $\Delta \phi'$ ($N_{g'} = 24$; $N_{g_{\nu}} = 12$; $N_{\Delta \phi'} = 72$). The zenith angles (β', β_{ν}) (within [0°;90°[) derive from the *Gauss* quadratures and the relative azimuth angles ($\Delta \phi'$) (within [-180°;180°]) follow a parabolic distribution centred at 0°.

Step-3: Set a table with pre-computed values of downward normalized aerosol phase function with $N_{g_s} = 12, N_{g'} = 24, N_{\Delta\phi'} = 30, N_{\Delta\phi} = 72$ for all the aerosol models $(N_{aer} = 78)$ and all the scattering geometries $(N_{\theta} = 83)$.

For each combination $(\mathcal{G}_s, \mathcal{G}', \Delta \phi, \Delta \phi')$, we compute:

(a) the scattering angle θ_{sca} as follows:

 $\cos(\theta_{sca}) = \cos(\theta_s)\cos(\theta') + \sin(\theta_s) \cdot \sin(\theta') \cdot \cos(\Delta \phi' - \Delta \phi)$

(b) the aerosol phase function $P(\theta_{sca}, iaer)$ for each aerosol model (*iaer*) by interpolation from tabulated values of $P(\theta, N_{aer})$.

Step-4: Compute the aerosol-ground DDV coupling bidirectionality term $\overline{\rho}_{aG}[iddv, \lambda, iaer, \vartheta_s, \vartheta_v, \Delta \phi]$ for each DDV, each wavelength λ , each aerosol model *iaer* and each illumination and viewing configuration $(\vartheta_s, \vartheta_v, \Delta \phi)$ (with $N_{\vartheta_s} = 12$, $N_{\vartheta_v} = 12$, $N_{\Delta \phi} = 30$):

$$\overline{\rho}_{aG}[iddv,\lambda,iaer,\vartheta_s,\vartheta_v,\Delta\phi] = \frac{\int \int R_{DDV}[iddv,\lambda,\beta',\vartheta_v,\Delta\phi'] \cdot P[\vartheta_s,\beta',\Delta\phi,\Delta\phi',iaer] \cdot d\mu' \cdot d\Delta\phi}{\int \int P[\vartheta_s,\beta',\Delta\phi,\Delta\phi',iaer] \cdot d\mu' \cdot d\Delta\phi'}$$

This angular integration is numerically performed using a *Gauss* quadrature for μ' and the *Newton-Cotes* method for $\Delta \phi'$.

Step-5: Remove the azimuthal dependence $\Delta \phi$ by expanding $\overline{\rho}_{aG}[iddv, \lambda, iaer, \vartheta_s, \vartheta_v, \Delta \phi]$ into Fourier series at the 4th order:

Scientific content:

robar_ag_LUT[*iddv*, λ ,*iaer*, $\theta_s \times \theta_{v,s}$] defines the aerosol-ground DDV coupling bidirectionality term as function of the DDV model (*iddv*), the wavelength (λ),the aerosol model (*iaer*), the illumination and viewing geometry (θ_s , θ_v), and the *Fourier* term (*s*) used to remove the azimuthal dependence. The latter which accounts for the multiple scatterings between the ground DDV interface and the aerosol atmosphere, is useful for the atmospheric correction algorithm over land.

Resources:

Estimated CPU time:6 sec (If ASCII LUT exists)Output disk space: $20 \times 5 \times 4 \times 78 \times 78 \times 4$ bytes/fl = 9734400 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 386

Acceptance:

Comparison with another code.

6.14.16.3 Ground DDV albedo, $\rho_{DDV}(iddv, \lambda)$

<u>Reference</u>: albedo_g, LUT322

[AD-8] Section 6.14.16, ADSR field 3

Dependencies:

None

Tool:

RTC/MOS (lut_alb_gddv)

Procedure:

Inputs:	λ iddv param Hapke	4 MERIS wavelengths [<i>nm</i>] (412.5, 442.5, 490 and 665 <i>nm</i>) DDV model # [<i>dl</i>] (among the 20 DDV models, [019])
	1 _ 1	CESBIO input file containing 4 <i>Hapke</i> 's parameters (ω , g , S and h) for each of the 20 DDV models, each of the 4 wavelengths (<i>i.e.</i> , 412.5, 442.5, 490 and 665 nm) and for all illumination and viewing configurations (see [AD-7] for more details). ω : single scattering albedo g : assymmetry factor S : amplitude of the hot-spot h : width of the hot-spot
Output:	albedo_g[iddv,	λ], referred also as $\rho_{DDV}[iddv,\lambda]$ Ground albedo for each DDV model (<i>iddv</i>) and each wavelength (λ)
units:	[dl]	

Step : Generate the ground DDV albedo $albedo_g[iddv, \lambda]$ for each DDV model and each wavelength, with the RTC/MOS (lut_alb_gddv).

albedo_g [iddv, λ]

Scientific content:

albedo_g[*iddv*, λ] defines the ground DDV albedo as function of the DDV model (*iddv*) and the wavelength (λ). The latter is useful for the atmospheric correction algorithm over land.

Resources:

Estimated CPU time:	7 sec (If ASCII LUT exists)
Output disk space:	$20 \times 4 \times 4$ bytes/fl = 320 bytes

Acceptance:

Comparison with another code.

6.14.17 ADS Aerosol Parameters for Bi-Directionality Correction

6.14.17.1 Polynomial coefficients for aerosol-molecule coupling bidirectionality term retrieval

<u>Reference:</u> robar_aR_LUT, LUT324

[AD-8] Section 6.14.17, ADSR field 1

Dependencies:

LUT144, LUT147, LUT150, LUT154, LUT169

Tool:

OTC/SCAMAT RTC/MOS (lut_rhob_aR) Numerical integration (*Gauss* quadrature) Polynomial fit

<u>Note</u>: Both the numerical integration and polynomial fit tools are included in the RTC/MOS (lut_rhob_aR). The latter has been developed for the sun/view geometries in the MOS ground-segment.

Procedure:

Inputs:	heta	Zenith angle [deg]; tabulated values used for $(\theta_s \times \theta_v)$ combinations, see
		Section 6.14.4.1, (LUT147)
	τ^a	Aerosol optical thickness at 550nm [dl] (15 values in [0.1;1.5] by step of
		0.1)
	iaer	Aerosol model # $[dl]$ (among the 78 Junge's models) characterized by an
		Angström exponent (α) and a refractive index, see Section 6.14.4.4
		(LUT144) and Section 6.14.1.1 (LUT154).
	Sca_cos	Cosine of scattering angle [<i>dl</i>], see Section 6.14.4.4, (LUT150)
	phase_aer78	Input file containing scattering phase functions for 78 continental aerosol
		models (see [AD-7] for more details).
	k	Polynomial coefficient orders $[dl], k = [0;3]$
Output	uchau aD III	Tigor (1)
Output.	robur_uk_LU	
		Polynomial coefficients for the aerosol-molecule coupling bidirectiona-

Polynomial coefficients for the aerosol-molecule coupling bidirectionality term retrieval as function of the aerosol model (*iaer*), and the solar zenith angle θ

units: [*dl*]

- Step-0: Compute the IOPs (aerosol phase function, single scattering albedo, extinction coefficient) for all the 78 aerosol models. Eiher generate the LUT170 (*see* Section 6.14.11) or launch the *Mie*'s computations with OTC/SCAMAT using as inputs the *Angström* exponent and refractive index (real and imaginary parts).
- Step-1: For each of the 78 aerosol models (*iaer*), interpolate the scattering phase function $P_{scat}[iaer, \Theta]$ to the input scattering angles (*Sca_cos*) to get $P_{scat}[iaer, Sca_cos]$ with the interpolation tool,

 $P_{scat}[iaer,Sca_cos] = Interpolation(P_{scat}[iaer,\Theta]),$

and generate the input file, phase_aer78, with the 78 interpolated scattering phase functions.

The steps, described hereafter, are implemented in the RTC/MOS (lut_rhob_agddv).

Step-2: Generate the top of aerosol normalized radiance $L^{(0)}_{TOA_aer}[iaer, \tau^a, \theta_s, \theta_v]$ corresponding to the first order of *Legendre* decomposition ($I_s=0$) of phase function, over a black land surface with the RTC/MOS (*lut_rhob_aR*). Computations have to be completed for each of the 78 continental aerosol models (*iaer*), each of the 15 aerosol optical thickness (τ^a) at 550*nm* (*i.e.*, [0.1;1.5] by step of 0.1), and the pre-selected illumination and viewing configurations (θ_s, θ_v).

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 389

Step-3: Determine the aerosol-molecule coupling bidirectionality term retrieval $\overline{\rho}_{aR}(iaer, \tau^a, \vartheta_s)$ for each aerosol model (*iaer*) and each aerosol optical thickness (τ^a) at 550 nm by performing the numerical angular integration of the top of aerosol normalized radiance $L^{(0)}_{TOA_aer}[iaer, \tau^a, \theta_s, \theta_v]$ over the hemispherical sphere (*i.e.*, over the 24 *Gaussian* angles, $\mu_v = \cos\theta_v$) as follows,

$$\overline{\rho}_{aR}(iaer, \tau^{a}, \theta_{s}) = \int_{0}^{1} L^{(0)}(iaer, \tau^{a}, \theta_{s}, \theta_{v}) \cdot d\mu_{v}$$

$$L^{(0)}_{TOA_aer}[iaer, \tau^{a}, \theta_{s}, \theta_{v}]$$
Numerical integration:
Gauss quadrature for θ_{v}

- $\overline{
 ho}_{aR}[iaer, au^a, heta_s]$
- Step-4: Apply a 3rd order polynomial fit on the $\overline{\rho}^{aR}(iaer, \tau^a, \vartheta_s)$ as function of the aerosol optical thickness (τ^a) at 550 nm, for retrieving the polynomial coefficients robar_aR_LUT[iaer, θ , k],

 $\overline{\rho}_{aR}(iaer, \tau^{a}, \theta_{s}) = robar_aR_LUT[iaer, \theta, 0]$ $+ robar_aR_LUT[iaer, \theta, 1] . (\tau^{a})$ $+ robar_aR_LUT[iaer, \theta, 2] . (\tau^{a})^{2}$ $+ robar_aR_LUT[iaer, \theta, 3] . (\tau^{a})^{3}$

Scientific content:

 $robar_aR_LUT[iaer, \theta, k]$ defines the polynomial coefficients for the aerosol-molecule coupling bidirectionality term retrieval as function of the aerosol model (*iaer*), and the solar zenith angle θ . The latter which accounts for the coupling between the aerosol and the molecule scatterings, is useful for the atmospheric correction algorithm over land.

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 390

Estimated CPU time: $54 \ sec$ Output disk space: $78 \times 12 \times 4 \times 4$ bytes/fl = 14976 bytes

Acceptance:

Comparison with another RTC.

6.14.17.2 (Spare)

Reference:

[AD-8] Section 6.14.17, ADSR field 2

6.14.18 ADS DDV Reflectance Correction Parameters

6.14.18.1 Monthly adjustment for bands at 412.5 nm, 442.5 nm, 490 nm & 665 nm, C(month, lat, long, band)

Reference:	С.	LUT434
recretence.	ς,	Eeriei

[AD-8] Section 6.14.18, ADSR field 1

ACRI provided

Dependencies:

LUT310, LUT311

Tool:

None

Procedure:

Inputs:	moni lat long iban	th d	Month [<i>dl</i>] (12 values) Latitude [<i>deg</i> .] (180 values) Longitude [<i>deg</i> .] (360 values) DDV band # [<i>dl</i>] (among 4 MERIS bands: 412.5, 442.5, 490 & 665 <i>nm</i>)
Output:	C[m	onth, lat, lo	<i>ong, iband</i>] Monthly adjustment as function of geographic location (<i>lat, long</i>) and for each of the 4 MERIS DDV bands
u	inits:	[dl]	
Step:	User	specified.	

Scientific content:

Monthly adjustement coefficients applied on the DDV reflectances at 412.5, 442.5, 490 and 665 nm.

Current baseline: (12 x 180 x 360 x 4) values

Resources:

Estimated CPU time: -Output disk space: $12 \times 180 \times 360 \times 4 \times 4$ bytes/fl = 12441600 bytes

Acceptance:

Corresponds to the latest definition.

6.14.18.2 Linear corrections for bands at 412.5 nm, 442.5 nm, 490 nm & 665 nm, LC(month, lat, long, band)

Reference:	LC,	LUT435
------------	-----	--------

[AD-8] Section 6.14.18, ADSR field 2

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Inputs:	month lat long iband	Month [<i>dl</i>] (12 values) Latitude [<i>deg</i> .] (180 values) Longitude [<i>deg</i> .] (360 values) DDV band # [<i>dl</i>] (among 4 MERIS bands: 412.5, 442.5, 490 & 665 nm)
Output:	LC[month, lat	<i>long, iband</i>] Monthly linear correction as function of geographic location (<i>lat, long</i>) and for each of the 4 MERIS DDV bands
units	: [<i>dl</i>]	
Step:	User specified	

Scientific content:

Monthly linear corrections applied on the DDV reflectances at 412.5, 442.5, 490 and 665 nm.

Resources:

Estimated CPU time: -Output disk space: $12 \times 180 \times 360 \times 4 \times 4$ bytes/fl = 12441600 bytes

Acceptance:

Corresponds to the latest definition.

6.14.18.3 Minimum and maximum seasonal variation of ARVI, [ARVImin, ARVImax](month, DDV model)

Reference:	$\Delta ARVI_{min}$, ΔARV	VI _{max} ,	LUT436	
[AD-8]	Section 6.14.18, A	DSR field 3		
ACRI pro	vided			
Dependencies	<u>3</u> :			
None				
<u>Tool</u> :				
None				
Procedure:				
Inputs:	month lat long	Month [<i>dl</i>] Latitude [<i>de</i> Longitude [(12 values) eg.] (180 values) deg.] (360 values)	

Outputs:	∆ARVI_min[mo	onth, lat, long], $\Delta ARVI_max[month, lat, long]$
		Montly minimum and maximum seasonal variation of the ARVI
units:	[dl]	

Step: User specified.

Scientific content:

Monthly minimum and maximum seasonal variation of ARVI.

Resources:

Estimated CPU time: -Output disk space: $12 \times 180 \times 360 \times 2 \times 4$ bytes/fl = 6220800 bytes

MERIS / ENVISAT-1 MEdium Resolution Imaging

Spectrometer

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 393

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 394

6.15 OCEAN CASE-I PARAMETERS

6.15.1 C.P.

6.15.1.1 C.P. Extinction coefficient and single scattering albedo for chlorophyll

Reference:	Q_{ext} [chl, λ], ω_0 [chl	,λ] LUT418
Configu	ration file	
PARBL	EU provided	
Dependenci	<u>es</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	λ	MERIS wavelength [<i>nm</i>] (412.5, 442.5, 490, 510, 560, 620, 665, 681.25
	chl	and $708.75 nm$) Chlorophyll content $[mg.m^{-3}]$ (0.03, 0.1, 0.3, 1.0, 3.0 and 10 $mg.m^{-3}$)
Output:	$Q_{ext}[chl,\lambda],\omega_0[u]$	<i>chl</i> , λ <i>]</i> Extinction coefficient and single scattering albedo for chlorophyll, for 6 <i>chl</i> -contents and 9 wavelengths (6 x 9 x 2 values)
ur	nits: $[\mu m^{-1}, dl]$	
Step:	User specified.	
Scientific co	ontent:	

The approach used to compute the inherent optical properties (IOPs) of chlorophyll (*i.e.*, the extinction coefficient $\sigma_{e,\lambda}^p$ and the single scattering albedo $\omega_{o,\lambda}^p$ of phytoplankton) are detailed in [AD-6]. These IOPs are tabulated as function of 9 MERIS wavelengths and 6 chlorophyll contents:

Current baseline: $(6 \times 9 \times 2)$ values

MERIS / ENVISAT-1 MEdium Resolution Imaging

Spectrometer

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 395

λ	$\sigma^{{}_{p}}_{_{e,\lambda}}[{}_{chl,\lambda}]$	$\omega_{\mathrm{o},\lambda}^{p}$ [chl, λ]	$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle e,\lambda}$ [chl, λ]	$\omega_{\mathrm{o},\lambda}^{p}$ [chl, λ]	$\sigma^{{}_{p}}_{_{e,\lambda}}[{}_{chl,\lambda}]$	$\omega_{\mathrm{o},\lambda}^{p}$ [chl, λ]
$[chl] mg/m^3$	0.03	0.03	0.1	0.1	0.3	0.3
412.50	0.04697350	0.78449339	0.10981160	0.78280801	0.23639670	0.78764635
442.50	0.04276818	0.80822474	0.10192190	0.80578268	0.22355400	0.80918258
490.00	0.03609181	0.87273818	0.08890710	0.86450017	0.20056330	0.86488408
510.00	0.03307195	0.91832507	0.08366360	0.89510131	0.19162710	0.89043772
560.00	0.02792019	0.99888992	0.07462377	0.94434255	0.17617400	0.93198204
620.00	0.02541830	1.00000000	0.06595910	1.00000000	0.15759933	0.99909687
665.00	0.02384580	1.00000000	0.06302240	1.00000000	0.15298200	1.00000000
681.25	0.02332680	1.00000000	0.06204120	1.00000000	0.15147001	1.00000000
708.75	0.02250040	1.00000000	0.06046560	1.00000000	0.14902399	1.00000000
$[chl] mg/m^3$	1.00	1.00	3.00	3.00	10	10
412.50	0.54620302	0.79520619	1.19614506	0.80683446	2.93732905	0.82630515
442.50	0.52726638	0.81513631	1.17101502	0.82414913	2.89315701	0.83892095
490.00	0.48726630	0.86866462	1.10366905	0.87443882	2.74862409	0.88303459
510.00	0.47157121	0.89220464	1.07605398	0.89687973	2.68517804	0.90389913
560.00	0.44491819	0.93247926	1.02966285	0.93728840	2.57210302	0.94363642
620.00	0.42658740	0.95781308	1.01728654	0.94869143	2.55924201	0.94837844
665.00	0.42385781	0.95390248	1.03372216	0.93360770	2.61654711	0.92760801
681.25	0.42002830	0.95912111	1.03110266	0.93597960	2.61319804	0.92879683
708.75	0.40047300	1.00000000	0.96509099	1.00000000	2.42712998	1.00000000

Resources:

Estimated CPU time: -Output disk space: $6 \times 9 \times 2 \times 4$ bytes/fl = 216 bytes

Acceptance:

Corresponds to the latest definition.

6.15.2 MPH

Not covered in this document (see [AD-8] for a detailed description)

6.15.3 SPH

Not covered in this document (see [AD-8] for a detailed description)

6.15.4 GADS General

6.15.4.1 Wind-speeds for GADS geometrical factor R_{goth}

Reference: Ws_Rg, LUT171

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 396

[AD-8] Section 6.15.4, GADS field 1

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

-	
Input:	none

Output: Ws_Rg Wind-speed (w_s) just above sea level for GADS geometrical $\Re(w_s)$ factor (4 values)

units: $[m.s^{-1}]$

Step: User specified.

Scientific content:

Set of 4 wind-speeds (w_s) just above sea level used for GADS geometrical $\mathcal{R}(w_s)$ factor

Current baseline: $\{0, 4, 10, 16\} m.s^{-1}$

Resources:

Estimated CPU time: -Output disk space: 4×1 byte/uc = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.2 Wavelengths for ADS f₁/Q

<u>Reference</u>: Wvl_fQ, LUT172

[AD-8] Section 6.15.4, GADS field 2

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	Wvl_fQ	MERIS nominal wavelength for ADS f_l/Q (9 values)
units:	[<i>nm</i>]	

Step: User specified.

Scientific content:

Current baseline: {412.5, 442.5, 490.0, 510.0, 560.0, 620.0, 665.0, 681.25, 708.75} nm

Resources:

Estimated CPU time: -Output disk space: 9×4 bytes/fl = 36 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.3 Solar zenith angles for ADS f₁/Q

Reference: SZA_fQ, LUT173

[AD-8] Section 6.15.4, GADS field 3

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 398

Output: SZA_fQ Solar zenith angle for ADS f_l/Q (6 values) units: $[10^{-6}deg.]$

Step: User specified.

Scientific content:

Set of 6 solar zenith angles (θ_s) regularly spaced

Current baseline: {0, 15, 30, 45, 60, 75} deg

Resources:

Estimated CPU time: -Output disk space: 6×4 bytes/ul = 24 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.4 Solar zenith angles for GADS thresholds and ADS glint reflectance

<u>Referen</u>	nce:	SZA,	LUT174
[A]	D-8]	Section 6.15.4, GA	ADS field 4
AC	CRI prov	ided	
Depend	lencies:		
No	ne		
<u>Tool</u> :			
No	ne		
Procedu	ure:		
Inp	out:	none	
Ou	tput:	SZA	Solar zenith angle for GADS thresholds and ADS glint reflectance (27 values)
	units	$[10^{-6} deg.]$	
Ste	p:	User specified.	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 399

Scientific content:

Set of 27 solar zenith angles (θ_s) regularly spaced

Current baseline: 27 angles in [15; 80] *deg*. by step of 2.5 *deg*.

Resources:

Estimated CPU time: -Output disk space: 27×4 bytes/ul = 108 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.5 Zenith angles in water for ADS f₁/Q

<u>Reference</u>: theta_fQ, LUT175

[AD-8] Section 6.15.4, GADS field 5

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output: units:	theta_fQ [10 ⁻⁶ deg.]	Zenith angle in water for ADS f_l/Q (14 values)
Step:	User specified.	
	4.	

Scientific content:

Set of 14 zenith angles in water (θ_w)

Current baseline: {1.078, 3.411, 6.289, 9.278, 12.30, 15.33, 18.37, 21.41, 24.45, 27.50, 30.54, 33.59, 36.64, 39.69} *deg*.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 400

Resources:

Estimated CPU time: -Output disk space: 14×4 bytes/ul = 56 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.6 Zenith angles in water for GADS geometrical factor R_{goth}

<u>Referen</u>	<u>ce</u> : the	eta_Rg,	LUT176
[AD-	-8] Se	ction 6.15.4, GADS f	ield 6
ACR	I provide	ed	
Depende	encies:		
None	e		
<u>Tool</u> :			
None	e		
Procedur	<u>re</u> :		
Inpu	t:	none	
Outp	out:	theta_Rg Zeni	th angle in water for GADS geometrical $\mathcal{R}(w_s)$ factor (19 values)
	units:	$[10^{-6} deg.]$	
Step	:	User specified.	
<u>Scientifi</u>	c conten	<u>t</u> :	
Set o	of 19 zeni	th angles in water (θ_{ν}) used for GADS geometrical $\boldsymbol{\mathcal{R}}(w_s)$ factor
Curr	ent baseli	ne: {0, 5, 10, 15, 20), 25, 30, 35, 40, 45, 50, 55, 60, 60, 60, 60, 60, 60, 60, 60} deg.
Resource	<u>es</u> :		
Estir Outp	nated CP out disk sp	U time: - bace: 19 × 4 byt	es/ul = 76 bytes

Acceptance:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 401

Corresponds to the latest definition.

6.15.4.7 View zenith angles for GADS thresholds and ADS glint reflectance

Reference: VZA, LUT177

[AD-8] Section 6.15.4, GADS field 7

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	VZA	View zenith angle for GADS thresholds and ADS glint reflectance (19 values)
units:	$[10^{-6} deg.]$	

Step: User specified.

Scientific content:

Set of 19 view zenith angles (θ_v) regularly spaced

Current baseline: 19 angles in [0; 45] *deg*. by step of 2.5 *deg*.

Resources:

Estimated CPU time: -Output disk space: 19×4 bytes/ul = 76 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.8 Relative azimuth angles for ADS f₁/Q

<u>Reference</u>: RAA_fQ, LUT178

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 402

[AD-8] Section 6.15.4, GADS field 8

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output:	RAA_fQ	Relative azimuth angle for ADS f_l/Q (13 values)
units:	$[10^{-6} deg.]$	

Step: User specified.

Scientific content:

Set of 13 relative azimuth angles $(\Delta \phi)$ regularly spaced

Current baseline: 13 values in [0; 180] *deg.* by step of 15 *deg.*

Resources:

Estimated CPU time: -Output disk space: 13×4 bytes/ul = 52 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.9 Relative azimuth angles for GADS thresholds and ADS glint reflectance

Reference: RAA, LUT179

[AD-8] Section 6.15.4, GADS field 9

ACRI provided

Dependencies:

None

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Issue</u>: 3 <u>Rev.</u>: C <u>Date</u>: 27-Feb-11 <u>Page</u>: 403

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	RAA	Relative azimuth angle for GADS thresholds and ADS glint reflectance (25 values)
units:	[10 ⁻⁶ deg.]	

Step: User specified.

Scientific content:

Set of 25 relative azimuth angles ($\Delta \phi$) regularly spaced

Current baseline: 25 values in [0; 180] deg. by step of 7.5 deg.

Resources:

Estimated CPU time: -Output disk space: 25×4 bytes/ul = 100 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.10 Chlorophyll contents for ADS $f_1\!/\!Q$

Reference:	Chl1,	LUT180
[AD-8]	Section 6.15.4, GADS field 10	
ACRI pro	vided	
Dependencies	<u>s</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 404

Input:	none	
Output:	Chll	Chlorophyll content for ADS f_l/Q (5 values)

units: $[10^{-3} mg.m^{-3}]$

Step: User specified.

Scientific content:

Set of 5 chlorophyll contents

Current baseline: {0.03, 0.10, 0.30, 1.0, 3.0} mg.m⁻³.

Resources:

Estimated CPU time: -Output disk space: 5×4 bytes/fl = 20 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.11 Aerosol optical thicknesses for ADS f_1/Q

Reference:	tauA,	LUT181
[AD-8]	Section 6.15.4, GA	ADS field 11
ACRI pro	vided	
Dependencies	<u>:</u>	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	tauA	Aerosol optical thickness for ADS f_l/Q (2 values)
unit	s: [<i>dl</i>]	
Step:	User specified.	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 405

Scientific content:

Set of 5 chlorophyll contents

Current baseline: $\{0.2, 0.6\}$

Resources:

Estimated CPU time: -Output disk space: 2×4 bytes/fl = 8 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.12 Wind-speeds for ADS f_1/Q

Reference:	Ws_fQ,	LUT182
Reference.	ws_iQ,	LUIIC

[AD-8] Section 6.15.4, GADS field 12

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Ws_fQ	Wind-speed just above sea level for $ADS f_l/Q$ (2 values)
units:	$[m.s^{-1}]$	

Step: User specified.

Scientific content:

Set of 2 wind-speeds (w_s) just above sea level

Current baseline: $\{0, 7.2\} m.s^{-1}$

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 406

Resources:

Estimated CPU time: -Output disk space: 2×4 bytes/fl = 8 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.13 Initial algal pigment index value for ADS f₁/Q

Reference:	Chl1 fQ	LUT183
	-	

[AD-8] Section 6.15.4, GADS field 13

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Chl1_fQ $[mg \cdot m^{-3}]$	Chlorophyll content for ADS f_1/Q (2 values)
units.	[///8 ///]	

Step: User specified.

Scientific content:

This initial algal pigment index value is required by the *Chl1_fQ* algorithm. The latter is computed from chlorophyll tabulated values f_1/Q used for correction of viewing angle.

Typical values range between $0.03 < Chll_fQ < Chll_fQ_{\text{thres}}$ rangeout

Current baseline: $0.3 mg \cdot m^{-3}$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 8 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 407

Acceptance:

Corresponds to the latest definition.

6.15.4.14 C_i constants for downward atmospheric transmittance

Reference:	Ci,	LUT184
[AD-8]	Section 6.15.4, 0	GADS field 14
ACRI pro	vided	
Dependencies	<u>s</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output: unit	<i>Ci</i> ts: [<i>dl</i>]	Constants for downward atmospheric transmittance (6 values)
Step:	User specifie	d.
Scientific con	tent:	
These con	stants are used fo	r computing the downward atmospheric transmittance.
Current ba	aseline: {0.15; 9	3.885; 1.253; 1.0035; 0.007; 0.95}
Resources:		

Estimated CPU time: -Output disk space: 6×4 bytes/fl = 24 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 408

6.15.4.15 C7 constant for scattering detection

Reference:	С7,	LUT185
[AD-8]	Section 6.15.4	, GADS field 15
ACRI pro	ovided	
Dependencie	<u>s</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	С7	Constant for scattering detection
uni	ts: [<i>dl</i>]	
Step:	User specif	ied.
Scientific content:		
This constant is used for scattering detection.		
Current b	aseline: 1.7	

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.16 Factor relating b_b/a to reflectance just below water surface for a sun at zenith

<u>Reference</u>: (No variable used), LUT186

[AD-8] Section 6.15.4, GADS field 16

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 409

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Factor relating b_b/a to reflectance just below water surface for a sun at zenith
units:	[dl]	
~		

Step: User specified.

Scientific content:

 $f_0(\lambda, Chl1)$ defines the factor which relates the reflectance just below the surface (*R*) to the IOP of the water (b_b/a) for a sun at zenith ($\theta_s = 0$) as follows:

$$R(\lambda, Chl1) = f_0(\lambda, Chl1) \cdot \frac{b_b(\lambda)}{a(\lambda)}$$

with b_b the backscattering coefficient directly related to the selected scattering phase function, and *a* the absorption coefficient. *R* is defined as the ratio of the upward $(E_{u,(0-)})$ to downward $(E_{d,(0-)})$ irradiances just beneath the water surface.

Current baseline: 0.33

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.17 Wind-speeds for GADS glint reflectance

<u>Reference</u>: Ws_rhoG, LUT187

[AD-8] Section 6.15.4, GADS field 17

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 410

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: Ws_Rg

Wind-speed (w_s) just above sea level for GADS glint reflectance (4 values)

units: $[m.s^{-1}]$

Step: User specified.

Scientific content:

Set of 5 wind-speeds (w_s) just above sea level used for GADS glint reflectance

Current baseline: {3.0, 5.0, 7.0, 10., 14.} m.s⁻¹

Resources:

Estimated CPU time: -Output disk space: 5×4 bytes/fl = 20 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.18 Wind azimuth orientations for GADS glint reflectance

Reference: Xhi, LUT188

[AD-8] Section 6.15.4, GADS field 18

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none
--------	------

 Output:
 Xhi
 Wind azimuth orientations for GADS glint reflectance (7 values)

 units:
 [10⁻⁶deg]

Step: User specified.

Scientific content:

Set of 7 wind azimuth orientations (χ) regularly spaced for GADS glint reflectance

Current baseline: 7 values in [0; 180] deg. by step of 30 deg.

Resources:

Estimated CPU time: -Output disk space: 7×4 bytes/fl = 28 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.19 (Spare)

Reference:

[AD-8] Section 6.15.4, GADS field 19

6.15.4.20 Value of f/Q factor for a nadir viewing angle at 510nm

Reference: fQ510_nadir, LUT326

[AD-8] Section 6.15.4, GADS field 20

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output: units:	fQ510_nadir [dl]	Value of f_l/Q factor for a nadir viewing angle at 510 nm
Step:	User specified.	

Scientific content:

Value of f_1/Q factor for a nadir viewing angle at 510 nm

Current baseline: 0.095624961

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.21 Mean value of chlorophyll content

Reference: Chl_mean, LUT327

[AD-8] Section 6.15.4, GADS field 21

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 413

Output: Chl_mean Chlorophyll content in mean valueunits: $[mg.m^{-3}]$

Step: User specified.

Scientific content:

Chlorophyll content in mean value

Current baseline: $0.1 mg.m^{-3}$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.22 Water refractive index

Reference:	Nw,	LUT328
[AD-8]	Section 6.15.4,	GADS field 22
ACRI pr	ovided	
Dependencie	<u>es</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	Nw	Water refractive index
un	its: [<i>dl</i>]	
Step:	User specific	ed.

Refractive index of sea water (assumed to be constant whatever the temperature and salinity)

Current baseline: 1.34

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.23 Value of $\Delta \rho_{510}$ to set the annotation flag

Reference: DRO510 LIM, LUT329

[AD-8] Section 6.15.4, GADS field 23

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: DRO510_LIM

Value of $\Delta \rho_{510}$ to set the annotation flag

units: [*dl*]

Step: User specified.

Scientific content:

 $\Delta \rho_{510}$ to set the annotation flag

Current baseline: 0.005

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 415

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.24 Value of the scattering angle Θ_p for a nadir viewing

Reference:	ThetaP_Zenith,	LUT330
[AD-8]	Section 6.15.4, GADS field 24	

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	ThetaP_Zenith	Value of the scattering angle (Θ_p) for a nadir viewing
uni	ts: $[10^{-6} deg]$	
Step:	User specified.	
Scientific cor	itent:	

Scattering angle (Θ_p) for a nadir viewing

Current baseline: 0 deg.

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/ul = 4 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 416

6.15.4.25 Scaling factor for decoding mean value of water-leaving reflectance at 510 nm

Reference: rhow510mean scale, LUT440 Section 6.15.4, GADS field 25 [AD-8] ACRI provided Dependencies: None Tool: None Procedure: Input: none rhow510mean_scale Output: Scaling factor for decoding mean value of water-leaving reflectance at 510*nm* units: [dl]User specified. Step: Scientific content: Scaling factor for decoding mean value of water-leaving reflectance at 510nm Current baseline: 6.25 10⁻⁵ Resources: Estimated CPU time: Output disk space: 1×4 bytes/fl = 4 bytes Acceptance: Corresponds to the latest definition. 6.15.4.26 Offset for decoding mean value of water-leaving reflectance at 510nm Reference: rhow510mean offset, LUT441

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 417

[AD-8] Section 6.15.4, GADS field 25

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Output:

Procedure:

Input: none

•

rhow510mean_offset Offset factor for decoding mean value of water-leaving reflectance at

510*nm*

units: [*dl*]

Step: User specified.

Scientific content:

Offset factor for decoding mean value of water-leaving reflectance at 510nm

Current baseline: 0

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.27 Scaling factor for decoding variability value of water-leaving reflectance at 510nm

<u>Reference</u>: rhow510var scale, LUT442

[AD-8] Section 6.15.4, GADS field 27

ACRI provided

Dependencies:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 418

None

Tool:

None

Procedure:

Input:	none	
Output:	rhow510var_sc	ale Scaling factor for decoding variability value of water-leaving reflectance at 510 <i>nm</i>
units:	[dl]	

Step: User specified.

Scientific content:

Scaling factor for decoding variability value of water-leaving reflectance at 510nm

Current baseline: 1.953125 10⁻⁵

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.28 Offset for decoding variability value of water-leaving reflectance at 510nm

Reference:	rhow510var_offset,	LUT443	
[AD-8]	Section 6.15.4, GADS field 28		
ACRI provided			
Dependencies:			
None			
<u>Tool</u> :			

None

Procedure:

Input:	none	
Output:	rhow510var_of	<i>fset</i> Offset factor for decoding variability value of water-leaving reflectance at 510 <i>nm</i>
units:	[dl]	
Step:	User specified.	

Scientific content:

Offset factor for decoding variability value of water-leaving reflectance at 510nm

Current baseline: 0

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.29 Latitudes for mean values of water-leaving reflectance at 510nm

Reference: Latitude[lat], LUT444

[AD-8] Section 6.15.4, GADS field 29

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 420

Output: *Latitude[lat]*

Latitude for mean values of water-leaving reflectance at 510nm (1024 values)

units: $[10^{-6} deg.]$

Step: User specified.

Scientific content:

Latitudes used for geographic map of mean values of water-leaving reflectance at 510nm

Current baseline: 1024 latitude values in [89.912109 ; -89.912109] deg. by step of -0.175781 deg.

Resources:

Estimated CPU time: -Output disk space: 1024×4 bytes/sl = 4096 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.30 Longitudes for water-leaving reflectance mean values at 510nm (tabulated values)

<u>Refe</u>	erence:	Longitude[long],		LUT445
	[AD-8]	Section 6.15.4, GA	DS field 30	
	ACRI prov	vided		
Depe	endencies	:		
	None			
Tool	• •			
	None			
Proc	edure:			
	Input:	none		
	Output:	Longitude[long	/ Longitude fo values)	or mean values of water-leaving reflectance at 510nm (2048
	units	S: $[10^{-6} deg.]$		

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 421

Step: User specified.

Scientific content:

Longitudes used for geographic map of mean values of water-leaving reflectance at 510nm

Current baseline: 2048 longitude values in [-179.912109 ; -179.912109] deg. by step of 0.175781 deg.

Resources:

Estimated CPU time: -Output disk space: 2048×4 bytes/sl = 8192 bytes

Acceptance:

Corresponds to the latest definition.

6.15.4.31 Chlorophyll contents for ADS fo factor

Reference:	Chl_fo,	LUT490
[AD-8]	Section 6.15.4, G	ADS field 31
ACRI pro	vided	
Dependencies	<u>.</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output: unit	Chl_fo is: [10 ⁻³ mg.n	Chlrophyll contents for ADS f_0 factor (6 values) n^{-3}]
Step:	User specified	
Scientific con	tent:	
Chlrophyl	l contents for ADS	$f_{\rm o}$ factor

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 422

Current baseline: {0.03, 0.1, 0.3, 1, 3, 10} mg.m⁻³

Resources:

Estimated CPU time: -Output disk space: 6×4 bytes/fl = 24 bytes

Acceptance:

Corresponds to the latest definition.

6.15.5 GADS Geometrical factor R_{goth}

6.15.5.1 Geometrical factor $R_{goth}(\theta', w)$
--

<u>Reference</u>: $R_{ghot}[\theta',ws]$, LUT189

[AD-8] Section 6.15.5, GADS field 1

ACRI provided

Dependencies:

LUT171, LUT176, LUT328

Tool:

None

Procedure:

Input:	$egin{array}{l} eta^{\prime} \ w_s \end{array}$	Zenith angle in water (19 values), see Section 6.15.4.6 (LUT176) Wind-speed (w_s) just above sea level [$m.s^{-1}$] (4 values), see Section 6.15.4.1 (LUT170)
	n_w	Water refractive index [<i>dl</i>], see Section 6.15.4.22 (LUT328)
Output: units:	$R_{ghot} \left[\theta', w_s ight]$ $\left[dl ight]$	Geometrical factor $\mathcal{R}(\theta', w_s)$
Step:	User specified.	

Scientific content:

 R_{ghot} [θ', w_s] defines the geometrical factor, accounting for all refraction and reflection effects at the *airsea* interface, as function of the solar zenith angle (θ_s) and the wind-speed (w_s) just above sea level. The latter is expressed with the *Morel and Gentili* (1996) [RD-10] formula as follows:

$$R_{ghot}[\theta', w_s] = \frac{(1-\overline{\rho}) \cdot (1-\rho_F(\theta'))}{n_w^2 \cdot (1-\overline{r}.R)}$$

with n_w : the refractive index of water ($n_w = 1.34$)

 $ho_{\scriptscriptstyle F}(heta')$: the *Fresnel* reflection coefficient for incident angle heta'

 $\overline{\rho}$: the mean reflection coefficient for the downwelling irradiance at the sea surface

: the average reflection for upwelling irradiance at the water-air interface

: the irradiance reflectance just below the surface (or the diffuse reflectance at null depth) defined as the ratio of the upward (E_u) to downward (E_d) irradiance.

Note that θ' is expressed as:

 \overline{r}

R

$$\theta' = \sin^{-1}\left(\frac{\sin(\theta_v)}{n_w}\right)$$

Current baseline: (19 x 4) values

9'	$\Re[\vartheta', w_s]$	$\Re[\vartheta', w_s]$	$\Re[\vartheta', w_s]$	$\Re[\vartheta', w_s]$
$[w_s] m.s^{-1}$	0	4	10	16
0	0.5287	0.5287	0.5287	0.5287
5	0.5287	0.5287	0.5287	0.5287
10	0.5287	0.5287	0.5287	0.5287
15	0.5287	0.5287	0.5286	0.5286
20	0.5286	0.5286	0.5285	0.5284
25	0.5284	0.5283	0.5283	0.5282
30	0.5280	0.5279	0.5278	0.5276
35	0.5274	0.5272	0.5270	0.5268
40	0.5262	0.5260	0.5257	0.5253
45	0.5242	0.5239	0.5234	0.5229
50	0.5209	0.5204	0.5197	0.5191
55	0.5153	0.5147	0.5138	0.5129
60	0.5061	0.5053	0.5042	0.5034

Resources:

Estimated CPU time: -Output disk space: $19 \times 4 \times 4$ bytes/fl = 304 bytes

Acceptance:

Corresponds to the latest definition.

6.15.6 GADS Thresholds

6.15.6.1 Threshold on water reflectance at 560nm for input validity

<u>Reference</u>: rhow560_thresh, LUT190

[AD-8] Section 6.15.6, GADS field 1

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output: units:	rhow560_thresh [d]]	Threshold on water reflectance at 560 <i>nm</i> ($\rho_{w_{thresh}}(560)$)
Step:	User specified.	

. . . .

Scientific content:

This reflectance threshold defines the maximum reflectance value at 560nm for which the *Chll* algorithm can be applied.

Current baseline: 0.3

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.6.2 Chlorophyll content range (thresholds) for output validity

<u>Reference</u>: Chl1_thresh, LUT191

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 425

[AD-8] Section 6.15.6, GADS field 2

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: $Chll_{thresh}$ Range of chlorophyll content (*min*, *max* values) units: $[10^{-3} mg.m^{-3}]$

Step: User specified.

Scientific content:

This range of chlorophyll content defines the validity domain of retrieved chlorophyll content with the *Chl1* algorithm.

Current baseline: $\{0.01, 30\} mg.m^{-3}$

Resources:

Estimated CPU time: -Output disk space: 2 × 4 bytes/fl = 8 bytes

Acceptance:

Corresponds to the latest definition.

6.15.6.3 (Spare)

Reference:

[AD-8] Section 6.15.6, GADS field 3

6.15.6.4 (Spare)

Reference:

[AD-8] Section 6.15.6, GADS field 4

6.15.6.5 Low glint threshold

Reference:	lowG thresh,	LUT194
------------	--------------	--------

[AD-8] Section 6.15.6, GADS field 5

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	lowG_thresh	Threshold on the low glint reflectance
units.		

Step: User specified.

Scientific content:

Threshold on the low glint reflectance

Current baseline: 5 10⁻⁴

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.6.6 Medium glint threshold

<u>Reference</u> : medG_thresh,	LUT195
---------------------------------	--------

[AD-8] Section 6.15.6, GADS field 6

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 427

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none
P ····	

Output: $medG_thresh$ Threshold on the medium glint reflectance

units: [*dl*]

Step: User specified.

Scientific content:

Threshold on the medium glint reflectance

Current baseline: 0.2

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.6.7 Wind-speed threshold for whitecaps flagging

<u>Reference</u>: Ws_thresh, LUT196

[AD-8] Section 6.15.6, GADS field 7

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Ws_thresh	Threshold on the wind-speed to flag whitecaps
units:	$[m.s^{-1}]$	

Step: User specified.

Scientific content:

Threshold on the wind-speed to flag whitecaps

Current baseline: 10 m.s⁻¹

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.6.8 Reflectance thresholds at 708.75nm for turbid water identification

Reference: ROW9_LUT, LUT197

[AD-8] Section 6.15.6, GADS field 8

Dependencies:

LUT174, LUT177, LUT179, LUT328, LUT417

Tools:

OTC/RAYLEIGH (or used LUT417) RTC/FUB (MOMO)

<u>Note</u>: '*Mom_in/mom_def*' input file have to be correctly set for computing the water-leaving radiance just below the *water-air* interface. The following parameter have to be set into:

' CtrlString (30) - ESA_L_0- ' 1

Procedure:

Inputs:	$n(\lambda)$	MERIS band #9 (λ =708.75 nm)
	θ_s	Solar zenith angles [deg], see Section 6.15.4.4, (LUT174)
	$ heta_{\!\scriptscriptstyle \mathcal{V}}$	View zenith angles [deg], see Section 6.15.4.7, (LUT177)
	$\Delta \phi$	Relative azimuth angles [deg], see Section 6.15.4.9, (LUT179)
	n_w	Refractive index of water [dl], see Section 6.15.4.22 (LUT328)
	ρ_{F} Fresnel reflectance coefficients as function of wind-speed	
		incident angle (θ), see Section 3.2, (LUT417)

Output:

 $ROW9_LUT[\theta_s, \theta_v, \Delta\phi]$

radiometric thresholds on atmospherically corrected TOA water reflectance at 708.75 *nm* as a function of the solar zenith angle (θ_s), view zenith angle (θ_v) and relative azimuth angle ($\Delta \phi$) between sun and viewing directions.

units: [*dl*]

- Note: The radiometric thresholds on the water reflectance at the 708.75 nm (MERIS band #9) will be based on the computation of the water-leaving radiances just below the water-air interface $L_{w(0^{+})_{-}9}[\theta_s, \theta_v, \Delta \phi]$ rather than the water-leaving radiances just above the water-air interface $L_{w(0^{+})_{-}9}[\theta_s, \theta_v, \Delta \phi]$. In fact, the reflected atmospheric radiances $L_{w(0^{+})}$ contain both the sun glint and the reflection of diffuse sky light (sometimes referred as the sky glitter). For the sun glint, only one direction is affected when the sea suface is perfectly flat, while all the directions can be concerned as soon as the sea surface becomes rough. For the sky glitter, all directions are virtually concerned. There exist a simple way to cope with the sun glint (by computing it separately) while the sky glitter cannot be easily removed. Consequently a simple and valid solution will consist in taking the upward radiances just below the sea surface and to apply the *Snellius-Fresnel* law.
- Step-1: Generate the water-leaving radiances $L_{w(0-),9}[\theta_s, \theta_v, \Delta \phi]$ just below the *water-air* interface from a turbid water (SPM=1g.m⁻³) at the 708.75 nm wavelength (MERIS band #9) and for all geometries $(\theta_s, \theta_v, \Delta \phi)$, with the RTC/MOMO. For that, simulations have to be completed over a wind-roughened oceanic surface with purely SPM waters under a maritime atmosphere. The aerosol assemblage #0 with one aerosol optical thickness is selected (*see* table in Section 6.13.5.1).

Variable	Value	Comments
out_file	"./up_out/uprad_out"	
i_branch	2	
$n(\lambda)$	9	708.75 nm
U_{H2O}	0	
$ESFT_{H2O}$	-	N/A
U_{O2}	0	
$ESFT_{O2}$	-	N/A

RTC/MOMO Inputs (OCEAN)

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 430

Variable	Value	Comments
U_{O3}	0	
$ESFT_{O3}$	-	N/A
P_s	1013.25	
$ au^{R}(\lambda)$	tauR	Computed with OTC/RAYLEIGH
aerosol1	"./sca_out/sc_mar99_bxx.s"	xx depends on $n(\lambda)$
$\tau^{al}(550)$	0.2	
aerosol2	"./sca_out/sc_conti_bxx.s"	xx depends on $n(\lambda)$
$\tau^{a2}(550)$	0	
aerosol3	"./sca_out/sc_H2SO4_bxx.s"	xx depends on $n(\lambda)$
$\tau^{a3}(550)$	0	
cloud1	-	N/A
$\tau^{cl}(550)$	0	
cloud2	-	N/A
$\tau^{c^2}(550)$	0	
cloud3	-	N/A
$\tau^{c^{3}}(550)$	0	
phyto	-	N/A
$\sigma^{{}_{p}}_{_{e,\lambda}}$	0	$Chl=0.0 mg.m^{-3}$
$\omega^{p}_{\mathrm{o},\lambda}$	0	$Chl=0.0 mg.m^{-3}$
spm	"./sca_out/sc_spm_1_0.s"	$SPM=1.0g.m^{-3}$
$\sigma^{\scriptscriptstyle{spm}}_{\scriptscriptstyle{e,\lambda}}$	0.4810840	$SPM=1.0g.m^{-3}$
$\omega^{spm}_{\mathrm{o},\lambda}$	0.9933980	$SPM=1.0g.m^{-3}$
$\sigma^{_{ys}}_{_{a,\lambda}}$	0	
vertical	"./sca_vert/oce/vtp1_12_ocean"	Vertical profile with 12 atmospheric layers and 2 oceanic layers (levels at -1 <i>m</i> and -500 <i>m</i>):
		boundary layer [0;2 <i>km</i>]; troposphere [2;12 <i>km</i>]; stratosphere [>12 <i>km</i>]
I_s	70	
$ ho_{s}$	0	
E_{o}	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle a,\lambda}$	0.79150	Database: Pope and Fry (1997) [RD-13]
W_S	3.0	
n_s , n_v , $n_{\Delta\phi}$	27, 19, 25	
θ_s	Gaussian angles	See Section 6.15.4.4
θ_{v}	Gaussian angles	See Section 6.15.4.7
$\Delta \phi$	see inputs	See Section 6.15.4.9

Step-2: Extract the downwelling spectral irradiance just above the *water-air* interface $E_{d(0+)_{-9}}[\theta_s]$ from *'FUB/mom_out/flux_0001'* file. The latter is the sum of the *'DOWNWARD DIFFUSE VECTOR IRRAD.'* and the *'DOWNWARD DIRECT VECTOR IRRAD.'* at the height = 0.

Step-3: Determine the water-leaving radiance just above the *water-air* interface $L_{w(0+)_{-9}}[\theta_s, \theta_{\nu}, \Delta \phi]$, by applying the *Snellius-Fresnel* law on the upward radiances just below the sea surface $L_{w(0-)_{-9}}[\theta_s, \theta_{\nu}, \Delta \phi]$ as follows,

$$L_{w(0+)_{9}}[\theta_{s},\theta_{v},\Delta\phi] = L_{w(0-)_{9}}[\theta_{s},\theta_{v},\Delta\phi] \cdot \left(\frac{1-\rho_{F}}{n_{w}^{2}}\right)$$

- with ρ_F the relevant *Fresnel* reflection coefficient and n_w the water refractive index (n_w =1.34).
- Step-4: Compute the radiometric thresholds on the water reflectance just above the *water-air* interface from a wind-roughened turbid water, as follows,

$$ROW9_LUT[\theta_s, \theta_v, \Delta\phi] = \pi \cdot \frac{L_{w(0+)_9}[\theta_s, \theta_v, \Delta\phi]}{E_{d(0+)_9}[\theta_s]}$$

Scientific content:

In the turbid water identification algorithm, the single scattering corrected water reflectance at 708.75 nm is compared to the corresponding radiometric threshold interpolated from the ROW9_LUT[$\theta_s, \theta_v, \Delta \phi$] table. If this corrected water reflectance is greater than the threshold value then the pixel will be considered as a turbid water, otherwise it will not be it.

Resources:

Estimated CPU time: $24 \ sec$ Output disk space: $27 \times 19 \times 25 \times 4$ bytes/fl = 51300 bytes

Acceptance:

Comparisons with another RTC should have to be done.

6.15.6.9 Water vapour high glint threshold

<u>Reference</u>: (No variable used), LUT205

[AD-8] Section 6.15.6, GADS field 9

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Water vapour high glint threshold
units:	[dl]	

Step: User specified.

Scientific content:

Water vapour high glint threshold

Current baseline: 0.6

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.6.10 Shallow water depth threshold

<u>Reference</u>: (No variable used), LUT206

[AD-8] Section 6.15.6, GADS field 10

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	(no variable)	Threshold on shallow water depth
units:	[m]	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 433

Step: User specified.

Scientific content:

Threshold on shallow water depth

Current baseline: 1000 m

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.7 GADS Log10 polynomial coefficients

6.15.7.1 Log10 polynomial coefficients for 443, 490 and 510 nm

Refe	erence:	log10coeff,	LUT198
	[AD-8]	Section 6.15.7, GA	ADS field 1
	ACRI pro	vided	
<u>Dep</u>	endencies	<u>.</u>	
	None		
<u>Too</u>	<u>l</u> :		
	None		
Proc	cedure:		
	Input:	none	
	Output:	log10coeff	Log10 polynomial coefficients (6 values)
	unit	s: [<i>dl</i>]	
	Step:	User specified.	
<u>Scie</u>	entific con	tent:	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 434

Ratios of (b_b/a) at 443, 490 and 510*nm* upon (b_b/a) at 560*nm* are computed for several chlorophyll contents (*Chl*) using the models from [RD-11] and from [RD-12]. For each of the 3 wavelengths (λ = 443, 490 and 510*nm*), the corresponding set of $[b_b(\lambda)/a(\lambda)]/[b_b(560)/a(560)]$ values are then fitted to a 5th order polynomial in log₁₀(*Chl*).

This table contains 3 sets of 6 polynomial coefficients (*i.e.*, for each of the 3 wavelengths λ), which allows one to determine the pigment index from the ratio $[b_b(\lambda)/a(\lambda)] / [b_b(560)/a(560)]$ either at $\lambda = 443,490$, or 510 *nm*.

These coefficients are here empirically estimated from *Morel*'s measurements [RD-12], and they are used in the Case 1 waters algorithm for deriving the chlorophyll content.

Current baseline: {0.4389, -3.3626, 3.9348, -3.0787, 0.6298, 0.}

Resources:

Estimated CPU time: -Output disk space: 6×4 bytes/fl = 24 bytes

Acceptance:

Corresponds to the latest computations completed at ACRI.

6.15.7.2 Convergence criterium for iterative chlorophyll retrieval

Reference:	(No variable used	l), LUT199			
[AD-8]	Section 6.15.7, GADS field 2				
ACRI prov	vided				
Dependencies					
None					
<u>Tool</u> :					
None					
Procedure:					
Input:	none				
Output: unit	(no variable) s: [dl]	Convergence criterium for iterative chlorophyll retrieval			
Step:	User specified.				

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 435

Scientific content:

Convergence criterium for iterative Chl1 retrieval algorithm

Current baseline: 0.01

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.15.7.3 Irradiance reflectance ratio validity range for algal1 computation using log10 polynomials

Reference:	(No variable used),	LUT491

[AD-8] Section 6.15.7, GADS field 3

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Irradiance reflectance ratio validity range for algal1 computation using log10 polynomials (<i>min</i> , <i>max</i> values)
units:	[dl]	

Step: User specified.

Scientific content:

Validity range of irradiance reflectance ratio for algla1computation with the log10 polynomials

Current baseline: $\{0.5, 20\}$

Resources:

Estimated CPU time:	-
Output disk space:	2×4 bytes/fl = 8 bytes

Acceptance:

Corresponds to the latest definition.

6.15.7.4 Highest order of log10 polynomial coefficients used in the Case-1 waters algorithm

Reference:	N _{A1,}	LUT201		
[AD-8]	Section 6.15.7, 0	GADS field 4		
ACRI pro	ovided			
Dependencie	<u>s</u> :			
None				
<u>Tool</u> :				
None				
Procedure:				
Input:	none			
Output:	N_{AI}	Highest order of log10 polynomial coefficients used in the Case-1 waters algorithm		
uni	ts: [<i>dl</i>]			
Step:	User specifie	ed.		
Scientific con	<u>itent</u> :			
Highest o	Highest order of log10 polynomials used in the Case-1 waters algorithm			
Current b	aseline: 5			
Resources:				
Estimatec Output di	l CPU time: - sk space: 1 >	< 1 byte/uc = 1 byte		

Acceptance:

Corresponds to the latest definition.

6.15.7.5 Bands selected for computation of chlorophyll content (Chl1) (band number starting at 1)

<u>Reference</u>: (No variable used), LUT202

[AD-8] Section 6.15.7, GADS field 5

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output: units:	(no variable) [dl]	MERIS bands selected for <i>Chl1</i> computation (3 bands)

Step: User specified.

Scientific content:

Selected bands used for algal pigment index retrieval (*see* Section 6.15.7.1). Note that the log_{10} coefficients change from band to band, and depend on the chlorophyll content thresholds.

3 MERIS bands are currently selected for *Chl1* computation: band#2 (442.5*nm*), band#3 (490*nm*) and band#4 (510*nm*)

Current baseline: $\{2, 3, 4\}$

Resources:

Estimated CPU time: -Output disk space: 3×1 byte/uc = 3 bytes

Acceptance:

Corresponds to the latest definition.

6.15.8 ADS f/Q Factor

6.15.8.1 f/Q factor

<u>Reference:</u> f_over_Q1_LUT, LUT203

[AD-8] Section 6.15.8, GADS field 1, 2, 3 & 4

Dependencies:

LUT172, LUT173, LUT175, LUT178, LUT180, LUT181, LUT182, LUT418

Tools:

OTC/RAYLEIGH (or used LUT417) RTC/FUB (MOMO)

<u>Note</u>: '*Mom_in/mom_def*' input file have to be correctly set for computing the water-leaving radiance just below the *water-air* interface. The following parameter have to be set into:

' CtrlString (30) - ESA_L_0- ' 1

Procedure:

Inputs:	λ	MERIS wavelength [nm] (9 values), see Section 6.15.4.2, (LUT172)
-	$ heta_{s}$	Solar zenith angle [deg], see Section 6.15.4.3, (LUT173)
	heta'	View zenith angle [deg], see Section 6.15.4.5, (LUT175)
	$\Delta \phi$	Relative azimuth angle [deg], see Section 6.15.4.8, (LUT178)
w _s Wind-sp		Wind-speed $[m.s^{-1}]$ (2 values), see Section 6.15.4.12, (LUT182)
	$ au^a$	Aerosol optical thickness at 550 <i>nm</i> (2 values), <i>see</i> Section 6.15.4.11, (LUT181)
	Chl	Chlorophyll content [mg.m ⁻³] (5 values), see Section 6.15.4.10,(LUT180)
σ	$^{p}_{e,\lambda}, \omega^{p}_{o,\lambda}$	Extinction coefficient and single scattering albedo for chlorophyll, see
		Section 6.15.1.1,(LUT418)

Output:	f o	ver Q LUT	$T[\lambda, w_s, \tau^a, Chl, \theta_s, \theta', \Delta \phi]$
			f/Q factor characterizing the bidirectionality for oceanic diffuse
			reflectance as a function of the MERIS wavelength (λ), the wind-speed
			(w_s) , the chlorophyll content (<i>Chl</i>), the aerosol optical thickness at 550 nm
			(τ^{a}) , the solar zenith angle (θ_{s}) , view zenith angle (θ') and relative
			azimuth angle ($\Delta \phi$) between sun and viewing directions.
	units:	[dl]	

Step-1: Extract according to the chlorophyll content (*Chl*) the absorption a and backscattering coefficients b_b from a table provided by ACRI (see Section 6.15.1.1).

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 439

- Step-2: Calculate $\theta_v = \operatorname{asin}(n_w \sin \theta')$ with n_w the water refractive index ($n_w = 1.34$). Note that this step is automatically taken care by the RTC/MOMO because there exist two sets of *Gauss-Lobatto* quadrature angles, one in the atmosphere and another in the water.
- Step-3: Generate the water-leaving radiances $L_{w(0-)}[\lambda, w_s, \tau^a, Chl, \theta_s, \theta_v, \Delta \phi]$ just below the *water-air* interface from a turbid water (with cholorophyll only) at 9 MERIS wavelengths (λ), for 2 wind-speeds (w_s), 2 aerosol optical thicknesses (τ^a), 5 chlorophyll contents (*Chl*), and for all geometries ($\theta_s, \theta_v, \Delta \phi$), with the RTC/MOMO. For that, simulations have to be completed over purely chlorophyll waters under a maritime atmosphere. The aerosol assemblage #0 is selected (*see* table in Section 6.13.5.1).

Variable	Value	Comments
out_file	"./up_out/uprad_out"	
i_branch	2	
$n(\lambda)$	1, 2, 3, 4, 5, 6, 7, 8 and 9	See Section 6.15.4.2
U_{H2O}	0	
$ESFT_{H2O}$	-	N/A
U_{O2}	0	
$ESFT_{O2}$	-	N/A
U_{O3}	0	
$ESFT_{O3}$	-	N/A
P_s	1013.25	
$ au^R(\lambda)$	tauR	Computed with OTC/Rayleigh
aerosol1	"./sca_out/sc_mar99_bxx.s"	xx depends on $n(\lambda)$
$\tau^{al}(550)$	0.2 and 0.6	See Section 6.15.4.11
aerosol2	"./sca_out/sc_conti_bxx.s"	xx depends on $n(\lambda)$
$\tau^{a2}(550)$	0	
aerosol3	"./sca_out/sc_H2SO4_bxx.s"	<i>xx</i> depends on $n(\lambda)$
$\tau^{a3}(550)$	0	
cloud1	-	N/A
$\tau^{cl}(550)$	0	
cloud2	-	N/A
$\tau^{c^2}(550)$	0	
cloud3	-	N/A
$\tau^{c^{3}}(550)$	0	
phyto	"./sca_out/sc_chl_y_y.s"	y_y depends on the <i>Chl</i> concentration. <i>Chl</i> =0.03, 0.1, 0.3, 1.0 and $3.0 mg.m^{-3}$
$\sigma^{{}^{p}}_{{}^{e,\lambda}}$	ChlExt	Values extracted from CP-LUT"Extinction coefficient and single scattering albedo for chlorophyll". <i>See</i> Section 6.15.1.1
$\mathscr{O}^{p}_{{}_{\mathrm{o},\lambda}}$	ChlAlb	Values extracted from CP-LUT"Extinction coefficient and single scattering albedo for chlorophyll". <i>See</i> Section 6.15.1.1

RTC/MOMO Inputs (OCEAN)

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 440

Variable	Value	Comments
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	0	$SPM=0.0 g.m^{-3}$
$\omega^{spm}_{{ m o},\lambda}$	0	<i>SPM</i> =0.0 <i>g</i> . <i>m</i> ⁻³
$\sigma^{_{ys}}_{_{a,\lambda}}$	0	
vertical	"./sca_vert/oce/vtp1_12_ocean"	Vertical profile with 12 atmospheric layers and 2 oceanic layers (levels at -1 <i>m</i> and -500 <i>m</i>):
		boundary layer [0;2 km]; troposphere [2;12 km]; stratosphere [>12 km]
I_s	70	
ρ_s	0	
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle a,\lambda}$	Water_Abs	Database: Pope and Fry (1997) [RD-13]
Ws	0 and 7.2	See Section 6.15.4.12
n_s , n_v , $n_{\Delta\phi}$	6, 14, 13	
θ_s	see inputs	See Section 6.15.4.3
θ_v	see inputs	See Section 6.15.4.5
$\Delta \phi$	see inputs	See Section 6.15.4.8

Step-4: Extract the downwelling spectral irradiance just below the *water-air* interface $E_{d(0-)}$ [$\lambda, w_s, \tau^a, Chl, \theta_s$] from '*FUB/mom_out/flux_0001*' file. The latter is the sum of the '*DOWNWARD DIFFUSE VECTOR IRRAD.*' and the '*DOWNWARD DIRECT VECTOR IRRAD.*' at the height = 0.01

Step-5: Interpolate $L_{w(0)}[\lambda, w_s, \tau^a, Chl, \theta_s, \theta_v, \Delta \phi]$ and $E_{d(0)}[\lambda, w_s, \tau^a, Chl, \theta_s]$ to the desired geometry

Step-6: Determine the *f_over_Q_LUT*[$\lambda, w_s, \tau^a, Chl, \theta_s, \theta', \Delta \phi$] ratio as follows,

$$f_over_Q_LUT[\lambda, w_s, \tau^a, Chl, \theta_s, \theta', \Delta\phi] = \frac{L_{w(0-)}[\lambda, w_s, \tau^a, Chl, \theta_s, \theta', \Delta\phi]}{E_{d(0-)}[\lambda, w_s, \tau^a, Chl, \theta_s]} \cdot \frac{a[\lambda, Chl]}{b_b[\lambda, Chl]}$$

Scientific content:

 $f_over_Q_LUT[\lambda, w_s, \tau^a, Chl, \theta_s, \theta', \Delta \phi]$ characterizes the bidirectionality for oceanic diffuse reflectance and the sun zenith dependence of the relationship between this reflectance and the inherent optical properties of the Case 1 waters. This LUT, which is function of the MERIS wavelength (λ), the windspeed (w_s), the chlorophyll content (*Chl*), the aerosol optical thickness at 550*nm* (τ^a), the solar zenith angle (θ_s), view zenith angle (θ') and relative azimuth angle ($\Delta \phi$) between sun and viewing directions, is used for the computation of the pigment index and the normalized water-leaving radiances from the water-leaving radiances (which are output of the atmospheric corrections).

The MERIS band #9 (708.75 nm) is not used in the chlorophyll content retrieval algorithm.

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer

Current baseline:

- λ corresponds to the 9 following MERIS wavelengths: 412.5, 442.5, 490, 510, 560, 620, 665, 681.25, and 708.75 nm
- w_s corresponds to the 2 following wind-speeds: 0 and 7.2 m.s⁻¹
- τ^a corresponds to the 2 following optical thicknesses: 0.2 and 0.6
- Chl corresponds to the 5 following values: 0.03, 0.1, 0.3, 1.0, $3.0 mg.m^{-3}$
- θ_s corresponds to the 6 following solar zenith angles: from 0° to 75° with a step of 15°
- θ' corresponds to the 14 following view zenith angles from the *Gauss-Lobatto* quadrature (*i.e.*, ranging from 1.078° to 39.69°)
- $\Delta \phi$ corresponds to the 13 following relative azimuth angles: from 0° to 180° with a step of 15°

Resources:

Estimated CPU time: 4356 sec Output disk space: $6 \times 2 \times 2 \times 9 \times 14 \times 13 \times 5 \times 4$ bytes/fl = 786240 bytes

The storage of this table is achieved by records for different combinations of τ_a^a and w_s (see [AD-8] for exact structure).

Acceptance:

The range checking as well as the examination of trends will be performed (*i.e.*, change as a function of wavelength or of viewing angle).

6.15.9 ADS Glint reflectance

6.15.9.1 Glint reflectance

<u>Reference</u>: rhoG[$\theta_s, w_s, \chi, \theta_v, \Delta \phi$], LUT207

[AD-8] Section 6.15.9, ADS field 1, 2, 3, 4, 5

ACRI provided

Dependencies:

LUT174, LUT177, LUT179, LUT187; LUT188

<u>Tool</u>:

None

Procedure:

Input:	θ_s	Solar zenith angle [deg] (27 values), see Section 6.15.4.4, (LUT174)
	$ heta_{\!\scriptscriptstyle V}$	View zenith angle [deg] (19 values), see Section 6.15.4.7, (LUT177)
	$\Delta \phi$	Relative azimuth angle [deg] (25 values), see Section 6.15.4.9, (LUT179)

Par Bleu	MERIS / ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0002 Issue: 3 Rev.: C Date: 27-Feb-11 Page: 442
$rac{w_s}{arX}$	Wind-speed $[m.s^{-1}]$ (5 values), see So Wind azimuth orientations [deg.] (LUT188)	ection 6.15.4.17, (LUT187) (7 values), see Section 6.15.4.18,
Output: $rhoG[\theta_s, w]$	$(x, \theta_{y}, \Delta \phi)$ Glint reflectance (27 x 19 x 25 x 5 x	7 values)
units: [dl]		
Step: User speci	fied.	
Scientific content:		
This LUT contains specu	lar reflectance as a function of geometry,	wind-speed and wind direction.
Current baseline: w_s corresponds to 5 χ_w corresponds to 7 θ_s corresponds to 2' θ_v corresponds to 1! $\Delta \phi$ corresponds to 2:	values = 3, 5, 7, 10, $14m \cdot s^{-1}$ values varying from 0° to 180° with increa 7 values varying from 15° to 80° with increa 9 values varying from 0° to 45° with increa 5 values varying from 0° to 180° with increa	ment 30° ement 2.5° ment 2.5° ement 7.5°
Resources:		

Estimated CPU time: -Output disk space: $27 \times 5 \times 7 \times 19 \times 25 \times 4$ bytes/fl = 1795500 bytes

Acceptance:

Corresponds to the latest definition.

6.15.10 ADS Mean water-leaving reflectance at 510nm

6.15.10.1 Mean value of water-leaving reflectance at 510 nm, rhow510_mean(month,lat,long)

Reference: rhow510_mean[month,lat,long], LUT446

[AD-8] Section 6.15.10, GADS field 1

ACRI provided

<u>Tool</u>:

None

Procedure:

Inputs: *month* Month

Month (12 values)

ACRI provided

Tool:

None

Procedure:

Inputs:	month lat long	Month (12 values) Latitude [<i>deg</i>] (1024 values), <i>see</i> Section 6.15.4.29, (LUT444) Longitude [<i>deg</i>] (2048 values), <i>see</i> Section 6.15.4.30, (LUT445)
Output:	rhow510_var[n	nonth, lat, long]

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 444

Variability of water-leaving reflectance at 510*nm* as a function of the period (*month*) and the geographic location (*lat*, *long*).

units: [*dl*]

Step: User specified.

Scientific content:

This LUT contains the variability of water-leaving reflectance at 510*nm* as function of the geographic location (*lat*, *long*) and the period (*month*).

Current baseline:

lat corresponds to 1024 values varying from -90° to 90° with increment 0.176° *long* corresponds to 2048 values varying from -180° to 180° with increment 0.176°

Resources:

Estimated CPU time:	-
Output disk space:	$12 \times 1024 \times 2048 \times 1$ byte/uc = 25165824 bytes

Acceptance:

Corresponds to the latest definition.

6.15.11 GADS fo factor

6.15.11.1 Factor fo

Reference: f_o[iband,Chl], LUT492

[AD-8] Section 6.15.11, GADS field 1

ACRI provided

<u>Tool</u>:

None

Procedure:

Inputs:	iband Chl	Index of MERIS band (4 bands) (starting from 0) Chlorophyll content $[mg.m^{-3}]$ (6 values), <i>see</i> Section 6.15.4.31, (LUT490)		
Output:	$f_{o}[iband, Chl]$	f_0 factor as a function of the MERIS wavelength (<i>iband</i>) and the chlorophyll content (<i>Chl</i>).		
units	: [<i>dl</i>]			

Step: User specified.

Scientific content:

The $f_0[\lambda, Chl]$ factor relates the ratio of 2 water IOPs (b_b/a) to the irradiance reflectance just beneath the surface when the Sun is at the zenith. b_b and a are respectively the backscattering and absorption coefficients of sea water.

This LUT contains $f_0[\lambda, Chl]$ as function of the MERIS wavelength and the chlorophyll content (*Chl*).

Current baseline:

- λ corresponds to the MERIS band#2 (442.5*nm*), band#3 (490*nm*), band#4 (510*nm*) and band#5 (560*nm*)
- *Chl* corresponds to 6 values of chlorophyll contents: $\{0.03, 0.1, 0.3, 1, 3, 10\}$ mg.m⁻³

λ [chl] mg/m ³	$f_{ m o}[\lambda, { m chl}] \ 0.03$	$f_{\rm o}[\lambda, { m chl}] \ 0.10$	$f_{ m o}[\lambda, { m chl}] \ 0.30$	$f_{ m o}[\lambda, { m chl}]$ 1.0	$f_{\rm o}[\lambda, {\rm chl}]$ 3.0	$f_{\rm o}[\lambda, { m chl}]$ 10
442.50	0.311601	0.328292	0.341049	0.352109	0.360004	0.370684
490.00	0.347460	0.345364	0.350692	0.362050	0.374337	0.389326
510.00	0.360108	0.350301	0.349293	0.359842	0.376623	0.398074
560.00	0.375790	0.358839	0.349959	0.357937	0.383813	0.424393

Resources:

Estimated CPU time: -Output disk space: $4 \times 6 \times 4$ bytes/fl = 96 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 446

6.16 OCEAN CASE-II PARAMETERS

6.16.1 C.P.

Not covered in this document (see [AD-8] for a detailed description)

6.16.2 MPH

Not covered in this document (see [AD-8] for a detailed description)

6.16.3 SPH

Not covered in this document (see [AD-8] for a detailed description)

6.16.4 GADS General

6.16.4.1 Wavelengths (tabulated values)

Reference:	Wvl,	LUT332
[AD-8]	Section 6.16.4, C	GADS field 1
ACRI pro	ovided	
Dependencie	<u>es</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	Wvl	MERIS wavelength (10 values)
un	its: [<i>nm</i>]	
Step:	User specified	1.
Scientific con	ntent:	

Set of 15 nominal wavelenghts (λ) of the 15 MERIS spectral bands

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 447

Current baseline: {412.50, 442.50, 490.00, 510.00, 560.00, 620.00, 665.00, 681.25, 708.75, 753.75, 761.875, 778.75, 865.00, 885.00, 900.00} *nm*

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.2 Number of polynomial coefficients in Fp computation

Reference: Ncoef, LUT333

[AD-8] Section 6.16.4, GADS field 2

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output:	Ncoef	Number of polynomial coefficients in F_p computation
units:	[dl]	

Step: User specified.

Scientific content:

Number of polynomial coefficients in F_p computation

Current baseline: 8

Resources:

Estimated CPU time: -

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 448

Output disk space: 1×4 bytes/ul = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.3 Wind-speeds for ADS Fp factor

Reference:	Ws.	LUT334
<u>iterenee</u> .	··· 5,	L01551

[AD-8] Section 6.16.4, GADS field 3

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: Ws Wind-speed (w_s) just above sea level (4 values) for ADS F_p factor units: $[m.s^{-1}]$

Step: User specified.

Scientific content:

Set of 4 wind-speeds (w_s)

Current baseline: {0.25, 1.0, 2.75, 5.0} m.s⁻¹

Resources:

Estimated CPU time: -Output disk space: 4×4 bytes/fl = 16 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 449

6.16.4.4 View zenith angles for ADS Fp factor

Reference: VZA, LUT335 [AD-8] Section 6.16.4, GADS field 4 ACRI provided Dependencies: None Tool: None Procedure: Input: none Output: VZAView zenith angle (θ_v) for ADS F_p factor (5 values) $[10^{-6} deg.]$ units: Step: User specified. Scientific content: Set of 5 view zenith angles (θ_v) regularly spaced Current baseline: 5 values of θ_v within [0;60] deg. with a step of 15 deg. Resources: Estimated CPU time: Output disk space: 5×4 bytes/ul = 20 bytes Acceptance: Corresponds to the latest definition.

6.16.4.5 Solar zenith angles for ADS Fp factor

Reference: SZA, LUT336

[AD-8] Section 6.16.4, GADS field 5

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 450

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	SZA	Solar zenith angle (θ_s) for ADS F_p factor (5 values)
units:	[10 ⁻⁶ deg.]	

Step: User specified.

Scientific content:

Set of 5 solar zenith angles (θ_s) regularly spaced

Current baseline: 5 values of θ_s within [15;75] *deg*. with a step of 15 *deg*.

Resources:

Estimated CPU time: -Output disk space: 5×4 bytes/ul = 20 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.6 Relative azimuth angles for ADS Fp factor

Reference:	RAA,	LUT337
------------	------	--------

[AD-8] Section 6.16.4, GADS field 6

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	RAA	Relative azimuth angle $(\Delta \phi)$ for ADS F_p factor (13 values)
units:	$[10^{-6} deg.]$	

Step: User specified.

Scientific content:

Set of 13 relative azimuth angles $(\Delta \phi)$ regularly spaced

Current baseline: 13 values of $\Delta \phi$ within [0;180] deg. with a step of 15 deg.

Resources:

Estimated CPU time: -Output disk space: 13×4 bytes/ul = 52 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.7 View zenith angles for GADS anomalous scattering detection

Reference: VZA asd, LUT338

[AD-8] Section 6.16.4, GADS field 7

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: VZA_asd View zenith angle (θ_v) for GADS anomalous scattering detection (10 values)

units: $[10^{-6} deg.]$

Step: User specified.

Scientific content:

Set of 10 view zenith angles (θ_v) regularly spaced

Current baseline: 10 values of θ_{v} within [0;45] deg. with a step of 5 deg.

Resources:

Estimated CPU time: -Output disk space: 10×4 bytes/ul = 40 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.8 Solar zenith angles for GADS anomalous scattering detection

Ref	erence:	SZA_asd,	LUT339
	[AD-8]	Section 6.16.4, GA	ADS field 8
	ACRI pro	vided	
Dep	endencies		
	None		
<u>Too</u>	<u>l</u> :		
	None		
Pro	cedure:		
	Input:	none	
	Output:	SZA_asd	Solar zenith angle (θ_v) for GADS anomalous scattering detection (10 values)
	unit	s: $[10^{-6} deg.]$	
	Step:	User specified.	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 453

Scientific content:

Set of 10 solar zenith angles (θ_v) regularly spaced

Current baseline: {0, 8.33, 16.66, 25.00, 33.33, 41.66, 50.00, 58.33, 66.66, 75} deg

Resources:

Estimated CPU time: -Output disk space: 10×4 bytes/ul = 40 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.9 Relative azimuth angles for GADS anomalous scattering detection

Reference:	RAA asd.	LUT340

[AD-8] Section 6.16.4, GADS field 9

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	RAA_asd	Relative azimuth angle $(\Delta \phi)$ for GADS anomalous scattering detection (19 values)
units:	[10 ⁻⁶ deg.]	
Step:	User specified.	

Scientific content:

Set of 19 relative azimuth angles $(\Delta \phi)$ regularly spaced

Current baseline: 19 values in [0;180] deg. with a setp of 10 deg.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 454

Resources:

Estimated CPU time: -Output disk space: 19×4 bytes/ul = 76 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.10 Conversion factors for Chl2

Reference:	(No variable used),	LUT431
[AD-8]	Section 6.16.4, GADS	5 field 10
ACRI pr	rovided	
Dependenci	es:	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	(no variable) Co	nversion factors for chlorophyll content (Chl2) (4 values)
ur	its: $[mg.m^{-3}, dl, dl]$, <i>d</i> []
Step:	User specified.	

Scientific content:

Set of 4 conversion factors for chlorophyll content in Case-2 waters (Chl2)

Current baseline: {21, 0, 0, 1.04} mg.m⁻³, dl, dl, dl

Resources:

Estimated CPU time: -Output disk space: 4×4 bytes/fl = 16 bytes

Acceptance:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 455

Corresponds to the latest definition.

6.16.4.11 Conversion factors for SPM

<u>Reference</u>: (No variable used), LUT432

[AD-8] Section 6.16.4, GADS field 11

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Conversion factors for SPM content
units:	$[g.m^{-3}]$	
Step:	User specified.	

1 1

Scientific content:

Conversion factor for SPM content in Case-2 waters (SPM)

Current baseline: 1.73 g.m^{-3}

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.12 Absorption coefficients of pure water

<u>Reference</u>: a_w [iband], LUT448

[AD-8] Section 6.16.4, GADS field 12

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Issue</u>: 3 <u>Rev.</u>: C <u>Date</u>: 27-Feb-11 <u>Page</u>: 456

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	iband	Index of MERIS band (15 bands) (starting from 0)
Output:	a _w [iband]	Absorption coefficient $(a_w(\lambda))$ of pure water in the 15 MERIS spectral bands (15 values)
units:	$[m^{-1}]$	

Step: User specified.

Scientific content:

Set of 15 absorption coefficients of pure water $(a_w(\lambda))$ given at the 15 MERIS wavelengths

Current baseline: 15 values

$\lambda [nm]$	$a_w(\lambda) [m^{-l}]$
412.500	0.00460
442.500	0.00688
490.000	0.01518
510.000	0.03185
560.000	0.06202
620.000	0.27554
665.000	0.42828
681.250	0.47929
708.750	0.81911
753.750	2.86712
761.875	2.86710
778.750	2.69492
865.000	4.61577
885.000	5.55930
900.000	6.40580

Resources:

Estimated CPU time: -

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 457

Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.13 Backscattering coefficients of pure water

<u>Reference</u>: b_w [iband], LUT449

[AD-8] Section 6.16.4, GADS field 13

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	iband	Index of MERIS band (15 bands) (starting from 0)
Output:	b _w [iband]	Backscattering coefficient ($b_w(\lambda)$) of pure water in the 15 MERIS spectral bands (15 values)
units:	$[m^{-1}]$	

Step: User specified.

Scientific content:

Set of 15 backscattering coefficients of pure water $(b_w(\lambda))$ given at the 15 MERIS wavelengths

Current baseline: 15 values

$\lambda [nm]$	$b_{w}(\lambda) [m^{-l}]$
412.500	0.00330584
442.500	0.00244100
490.000	0.00157132
510.000	0.00132193
560.000	0.00088255
620.000	0.00056857
665.000	0.00042007
681.250	0.00037847
708.750	0.00031899
753.750	0.00024451

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 458

$\lambda [nm]$	$b_w(\lambda) [m^{-l}]$
761.875	0.00023510
778.750	0.00021236
865.000	0.00013490
885.000	0.00012221
900.000	0.00011365

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.14 Specific backscattering coefficients of coccoliths

Reference:	b _{sc} [iband],	LUT450
------------	--------------------------	--------

[AD-8] Section 6.16.4, GADS field 14

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	iband	Index of MERIS band (15 bands) (starting from 0)
Output:	b _{sc} [iband]	Specific backscattering coefficient ($b_{sc}(\lambda)$) of coccoliths in the 15 MERIS spectral bands (15 values)
units:	$[m^2.g^{-1}]$	
Step:	User specified.	

Scientific content:

Set of 15 specific backscattering coefficients of coccoliths $(b_{sc}(\lambda))$ given at the 15 MERIS wavelengths Current baseline: 15 values

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 459

$\lambda [nm]$	$b_{sc}(\lambda) [m^2.g^{-l}]$
412.500	0.01186331
442.500	0.01153480
490.000	0.01107381
510.000	0.01089801
560.000	0.01049784
620.000	0.01007903
665.000	0.00980046
681.250	0.00970628
708.750	0.00955384
753.750	0.00932147
761.875	0.00928768
778.750	0.00920060
865.000	0.00882204
885.000	0.00874174
900.000	0.00868317

Resources:

Estimated CPU time:	-
Output disk space:	15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.15 Specific backscattering coefficients of SPM

<u>Reference</u>: b_{spm}[iband], LUT451

[AD-8] Section 6.16.4, GADS field 15

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:

iband

Index of MERIS band (15 bands) (starting from 0)

Output: $b_{spm}[iband]$ Specific backscattering coefficient $(b_{spm}(\lambda))$ of SPM in the 15 MERIS spectral bands (15 values)

units: $[m^2.g^{-1}]$

Step: User specified.

Scientific content:

Set of 15 specific backscattering coefficients of SPM ($b_{spm}(\lambda)$) given at the 15 MERIS wavelengths

Current baseline: 15 values

$\lambda [nm]$	$b_{spm}(\lambda) [m^2.g^{-1}]$
412.500	0.01186331
442.500	0.01153480
490.000	0.01107381
510.000	0.01089801
560.000	0.01049784
620.000	0.01007903
665.000	0.00980046
681.250	0.00970628
708.750	0.00955384
753.750	0.00932147
761.875	0.00928768
778.750	0.00920060
865.000	0.00882204
885.000	0.00874174
900.000	0.00868317

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.16 Number of iterations in brigth pixel atmospheric correction for band set LOW and band set HIGH

<u>Reference</u>: (No variable used), LUT452

[AD-8] Section 6.16.4, GADS field 16

ACRI provided

Dependencies:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 461

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Number of iterations in brigth pixel atmospheric correction for band set LOW and band set HIGH (2 values)
units:	[dl]	

Step: User specified.

Scientific content:

Number of iterations to be used in BPAC for band set LOW and band set HIGH

Current baseline: {30, 60}

Resources:

Estimated CPU time: -Output disk space: 2×2 bytes/us = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.17 Threshold value on total suspended particulate matters to raise CASE2_S flag

Reference: (No variable used), LUT453

[AD-8] Section 6.16.4, GADS field 17

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: (no variable) Threshold on total SPM to raise CASE2_S flag units: $[g.m^{-3}]$

Step: User specified.

Scientific content:

Threshold on total SPM to raise CASE2_S flag

Current baseline: $0.75 g.m^{-3}$

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.18 Convergence criteria on bbp in the BPAC iterations

Reference:	(No variable used),	LUT342	

[AD-8] Section 6.16.4, GADS field 18

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: (no variable) Convergence criteria on bbp in the BPAC iterations

units: [dl]

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 463

Step: User specified.

Scientific content:

Convergence criteria on bbp in the BPAC iterations

Current baseline: 0.001

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.19 Convergence criteria on bb in the rhow_to_bb routine

Reference:	(No variable used).	LUT343
	(

[AD-8] Section 6.16.4, GADS field 19

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: (no variable) Convergence criteria on bb in the rhow_to_bb routine units: [dl]

Step: User specified.

Scientific content:

Convergence criteria on bb in the rhow_to_bb routine

Current baseline: 0.0001

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 464

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.20 Number of iterations in the rhow_to_bb routine

Referen	<u>ce</u> : (1	No variable use	d),	LUT344
[AD	9-8] S	ection 6.16.4, GA	ADS field 20	
AC	RI provid	ed		
Depende	encies:			
Nor	ne			
<u>Tool</u> :				
Nor	ne			
Procedu	<u>re</u> :			
Inpu	ıt:	none		
Out	put: units:	(no variable) [dl]	Number of	iterations in the <i>rhow_to_bb</i> routine
Step):	User specified.		
<u>Scientif</u>	ic conter	<u>nt</u> :		
Nur	nber of it	erations in the rh	<i>how_to_bb</i> ro	utine
Cur	rent base	line: 70		
Resourc	es:			
Esti Out	mated CI put disk s	PU time: - space: 1 × 2	2 bytes/us = 2	bytes

Acceptance:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 465

Corresponds to the latest definition.

6.16.4.21 Specific absorption coefficients of coccoliths

Reference: a_c[iband], LUT345

[AD-8] Section 6.16.4, GADS field 21

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	iband	Index of MERIS band (15 bands) (starting from 0)
Output:	a _c [iband]	Specific absorption coefficient $(a_c(\lambda))$ of coccoliths in the 15 MERIS spectral bands (15 values)
units:	$[m^2.g^{-l}]$	

Step: User specified.

Scientific content:

Set of 15 specific absorption coefficients of coccoliths $(a_c(\lambda))$ given at the 15 MERIS wavelengths

Current baseline: 15 values

$\lambda [nm]$	$a_{1}(\lambda) [m^{2} \sigma^{-l}]$
412 500	0
442 500	0
490.000	0
510,000	0
560.000	0
620,000	0
620.000	0
665.000	0
681.250	0
708.750	0.98298699
753.750	0.88159001
761.875	0
778.750	0.82985902

MERIS / ENVISAT-1 MEdium Resolution Imaging

Spectrometer

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 466

λ [nm]	$a_c(\lambda) [m^2.g^{-l}]$
865.000	0.67356098
885.000	0.64175397
900.000	0

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.22 Specific absorption coefficients of SPM

Reference: a_{spm}[iband], LUT346

[AD-8] Section 6.16.4, GADS field 22

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	iband	Index of MERIS band (15 bands) (starting from 0)
Output:	a _{spm} [iband]	Specific absorption coefficient $(a_c(\lambda))$ of SPM in the 15 MERIS spectral bands (15 values)
units:	$[m^2.g^{-1}]$	

Step: User specified.

Scientific content:

Set of 15 specific absorption coefficients of SPM $(a_{spm}(\lambda))$ given at the 15 MERIS wavelengths

Current baseline: 15 values

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 467

$\lambda [nm]$	$a_c(\lambda) [m^2.g^{-1}]$
412.500	0
442.500	0
490.000	0
510.000	0
560.000	0
620.000	0
665.000	0
681.250	0
708.750	0.98298699
753.750	0.88159001
761.875	0
778.750	0.82985902
865.000	0.67356098
885.000	0.64175397
900.000	0

Resources:

Estimated CPU time: -Output disk space: 15×4 bytes/fl = 60 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.23 Initial estimate of backscatters at 778.75 nm for the LOW and HIGH band estimates

Reference:	(No variable used),	LUT347
------------	---------------------	--------

[AD-8] Section 6.16.4, GADS field 23

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

(no variable) Initial estimate of backscatters at 778.75nm for the LOW and HIGH band Output: estimates (2 values)

 $[m^{-1}]$ units:

User specified. Step:

Scientific content:

Initial estimate of backscatters at 778.75 nm for the LOW and HIGH band estimates

Current baseline: $\{0.001, 0.5\} m^{-1}$

Resources:

Estimated CPU time: 2×4 bytes/fl = 8 bytes Output disk space:

Acceptance:

Corresponds to the latest definition.

6.16.4.24 Initial estimate of the Angstroem exponent

(No variable used), Reference: LUT348 [AD-8] Section 6.16.4, GADS field 24 ACRI provided Dependencies: None Tool: None Procedure: Input: none (no variable) Initial estimate of the Angstroem exponent Output: units: [dl]Step: User specified. Scientific content: **ParBleu Technologies Inc.** 79 Veilleux street • St Jean/Richelieu (Qc) - CANADA J3B-3W7 • Phone: (+450) 357-9140 • Fax: (+450) 346-6914

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 469

Initial estimate of the Angstroem exponent

Current baseline: -0.4

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.25 Threshold on water-leaving reflectance at 778.75 nm to activate the HIGH band set

Reference:	(No variable used),	LUT349

[AD-8] Section 6.16.4, GADS field 25

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Threshold on water-leaving reflectance at 778.75 <i>nm</i> to activate the HIGH band set
units:	[dl]	

Step: User specified.

Scientific content:

Threshold on water-leaving reflectance at 778.75 nm to activate the HIGH band set

Current baseline: 0.015

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 470

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.26 Threshold on water-leaving reflectance at 778.75 nm to desactivate the LOW band set

Reference:	(No variable used),	LUT350

[AD-8] Section 6.16.4, GADS field 26

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Threshold on water-leaving reflectance at $778.75 nm$ to desactivate the LOW band set
units:	[dl]	
Step:	User specified.	

Scientific content:

Threshold on water-leaving reflectance at 778.75 nm to desactivate the LOW band set

Current baseline: 0.02

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 471

6.16.4.27 Minimum TOA normalized radiance measurable at 708.75 nm

Reference: (No variable used), LUT351 Section 6.16.4, GADS field 27 [AD-8] ACRI provided Dependencies: None Tool: None Procedure: Input: none Output: (no variable) Minimum TOA normalized radiance measurable at 708.75 nm $[sr^{-1}]$ units: User specified. Step: Scientific content: Minimum TOA normalized radiance measurable at 708.75 nm Current baseline: 0 Resources: Estimated CPU time: 1×4 bytes/fl = 4 bytes Output disk space:

Acceptance:

Corresponds to the latest definition.

6.16.4.28 bbp value to initialize the rhow_to_bb routine

Reference: (No variable used), LUT352

[AD-8] Section 6.16.4, GADS field 28

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 472

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	<i>bbp</i> value to initialize the <i>rhow_to_bb</i> routine
units:	$[m^{-1}]$	

Step: User specified.

Scientific content:

bbp value to initialize the *rhow_to_bb* routine

Current baseline: $10^{-5} m^{-1}$

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.29 Threshold for flagging yellow substance dominated waters

Reference:	YS_thresh,	LUT353
[AD-8]	Section 6.16.4, GADS field 29	
ACRI pro	vided	
Dependencies	<u>s</u> :	
None		
Tool.		

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 473

Procedure:

	Input:	none							
	Output:	YS_thresh	Threshold for	r flagging y	vellow subst	ance domina	ated waters		
	units:	[dl]							
	Step:	User specified.							
<u>Sci</u>	entific conter	<u>nt</u> :							
	Threshold for	r flagging yellow	substance do	minated wa	iters				
	Current base	line: 5							
Res	ources:								
	Estimated CI Output disk s	PU time: - space: 1 × 4	bytes/fl = 4 b	ytes					
Acc	ceptance:								
	Corresponds	to the latest defin	nition.						
6.16.4	.30 Chl value	es for GADS an	omalous sca	ttering det	ection				
Ref	<u>erence</u> : C	hl_asd,	-	LUT454					
	[AD-8] Se	ection 6.16.4, GA	ADS field 30						
	ACRI provid	ed							
Dep	pendencies:								
	None								
<u>Too</u>	<u>ol</u> :								
	None								
Pro	cedure:								
	Input:	none							
	Output:	Chl_asd	Chlorophyll values)	contents f	for GADS	anomalous	scattering	detection	(26

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 474

units: $[mg.m^{-3}]$

Step: User specified.

Scientific content:

Set of 26 chlorophyll contents (Chl) for GADS anomalous scattering detection

Current baseline: {0.03162, 0.03981, 0.05012, 0.063096, 0.07943, 0.10000, 0.12589, 0.15849, 0.19953, 0.25119, 0.31623, 0.39811, 0.50119, 0.63096, 0.79433, 1.00000, 1.25893, 1.58489, 1.99526, 2.51189, 3.16228, 3.98107, 5.01187, 6.30957, 7.94328, 10.00000} $mg.m^{-3}$

Resources:

Estimated CPU time: -Output disk space: 26×4 bytes/fl = 104 bytes

Acceptance:

Corresponds to the latest definition.

6.16.4.31 Floor values for NN inputs [reflectance threshold, floor NN input]

Reference	<u>e:</u> (No variable used	l), LUT455
[AD	-8] S	Section 6.16.4, GA	DS field 31
ACR	A provi	ded	
Depende	encies:		
Non	e		
<u>Tool</u> :			
Non	e		
Procedui	<u>re</u> :		
Inpu	t:	none	
Outp	out:	(no variable)	Floor values for NN inputs [reflectance threshold, floor NN input] (2 values)
	units:	[dl]	
Step		User specified.	

<u>Ref.</u>: PO-RS-PAR-GS-0002 <u>Rev.</u>: C Issue: 3 Date: 27-Feb-11 Page: 475

Scientific content:

Floor values for NN inputs: reflectance threshold, floor NN input

Current baseline: $\{3 \ 10^{-4}, -9, 6458282\}$

Resources:

Estimated CPU time: 2×4 bytes/fl = 8 bytes Output disk space:

Acceptance:

Corresponds to the latest definition.

6.16.4.32 Threshold for white scatterers detection

|--|

[AD-8] Section 6.16.4, GADS field 32

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Threshold for white scatterers detection
units:	[dl]	

User specified. Step:

Scientific content:

Threshold for white scatterers detection

Current baseline: 4.8

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 476

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.16.5 GADS Case II Yelow Substance Detection Coefficients

6.16.5.1 B_i constants

Reference:	Bi,	LUT354
[AD-8]	Section 6.16	.5, GADS field 1
ACRI pro	vided	
Dependencies	<u>8</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	B_i	Constant values (2 values)
unit	ts: [<i>dl</i>]	
Step:	User spe	cified.
Scientific con	itent:	
2 constant	tvalues	
Current ba	aseline: {2, 2	2}
Resources:		
Estimated Output dis	CPU time: sk space:	-2×4 bytes/fl = 8 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 477

Corresponds to the latest definition.

6.16.5.2 Ai constants for H(443 nm, 560 nm) estimation

Reference: A b2 b5, LUT355

[AD-8] Section 6.16.5, GADS field 2

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	A_b2_b5	Constants for $H(443,560)$ estimation (3 values)
units:	[dl]	

Step: User specified.

Scientific content:

3 constant values for H(443,560) estimation

Current baseline: $\{20, -20, -1\}$

Resources:

Estimated CPU time: -Output disk space: 3×4 bytes/fl = 12 bytes

Acceptance:

Corresponds to the latest definition.

6.16.5.3 A_i constants for H(490 nm, 560 nm) estimation

<u>Reference</u>: A_b3_b5, LUT356

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 478

[AD-8] Section 6.16.5, GADS field 3

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output:	A_b3_b5	Constants for <i>H</i> (490,560) estimation (3 values)
units:	[dl]	

Step: User specified.

Scientific content:

3 constant values for H(490,560) estimation

Current baseline: {20, -20, -1}

Resources:

Estimated CPU time: -Output disk space: 3×4 bytes/fl = 12 bytes

Acceptance:

Corresponds to the latest definition.

6.16.5.4 Ai constants for H(510 nm, 560 nm) estimation

Reference: A_b4_b5, LUT357

[AD-8] Section 6.16.5, GADS field 4

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output:	A_b4_b5	Constants for $H(510,560)$ estimation (3 values)
units:	[dl]	

Step: User specified.

Scientific content:

3 constant values for H(510, 560) estimation

Current baseline: {20, -20, -1}

Resources:

Estimated CPU time: -Output disk space: 3×4 bytes/fl = 12 bytes

Acceptance:

Corresponds to the latest definition.

6.16.5.5 Ni exponents

Reference: Ni, LUT358

[AD-8] Section 6.16.5, GADS field 5

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: N_1 , N_2 , N_3 Exponents (3 values) units: [dl]

Step: User specified.

Scientific content:

3 exponent values (N_1, N_2, N_3)

Current baseline: $\{0, 0, 0\}$

Resources:

Estimated CPU time: -Output disk space: 3×4 bytes/fl = 12 bytes

Acceptance:

Corresponds to the latest definition.

6.16.6 GADS Anomalous Scattering Detection

6.16.6.1 Threshold on reflectance at 560nm

<u>Reference:</u> rhow560_thresh[θ_s , θ_v , $\Delta \phi$, *Chl2*] LUT457

[AD-8] Section 6.16.6, GADS field 1

ACRI provided

Dependencies:

LUT338, LUT339, LUT340, LUT454

Tool:

None

Procedure:

Input:	$ heta_{s}$	Solar zenith angle (10 values) [dl], (see Section 6.16.4.8), LUT339		
	$ heta_{\!\scriptscriptstyle V}$	View zenith angle (10 values) [deg.], (see Section 6.16.4.7), LUT338		
	$\Delta \phi$	Relative azimuth angle (19 values)[deg.], (see Section 6.16.4.9), LUT340		
	Chl2	Chlorophyll content (26 values) $[mg/m^3]$, (see Section 6.16.4.30),		
		LUT454		

Output: rhow560_thresh[θ_s , θ_v , $\Delta \phi$, Chl2]

Threshold on reflectance at 560 nm as function of illumination and viewing geometries (θ_s , θ_v , $\Delta \phi$) and chlorophyll content (*Chl2*) Units: [*dl*]

Step: User Specified

Scientific content:

This LUT contains the thresholds on reflectance at 560 nm as function of sun/view geometries (θ_s , θ_v , $\Delta \phi$) and several chlorophyll contents (*Chl2*).

Current baseline: $(10 \times 10 \times 19 \times 26)$ values

Resources:

Estimated CPU time: -Output disk space: $10 \times 10 \times 19 \times 26 \times 4$ bytes/fl = 197600 bytes

Acceptance:

Corresponds to the latest definition.

6.16.7 GADS Coefficient of F' Factor to IOPs Relation

6.16.7.1 Coefficients of F_{ρ} factor to IOPs relation for 4 wind-speeds

<u>**Reference:**</u> Coef[$\theta_s, w_s, k, \lambda, \theta_v, \Delta \phi$], LUT371

[AD-8] Section 6.16.7, GADS field 1

ACRI provided

Dependencies:

LUT332, LUT333, LUT334, LUT335, LUT336, LUT337

Tool:

None

Procedure:

Input:	λ	MERIS wavelength (15 values) [dl], (see Section 6.16.4.1), LUT332
	$ heta_{s}$	Solar zenith angle (5 values) [dl], (see Section 6.16.4.5), LUT336
	$ heta_{\!\scriptscriptstyle V}$	View zenith angle (5 values) [deg.], (see Section 6.16.4.4), LUT335
	$\Delta \phi$	Relative azimuth angle (13 values)[deg.], (see Section 6.16.4.6), LUT337

Par Bleu	MERIS / ENVISAT-1 MEdium Resolution Imaging Spectrometer	<u>Ref.</u> : PO-RS-PAR-GS-0002 <u>Issue</u> : 3 <u>Rev.</u> : C <u>Date</u> : 27-Feb-11 <u>Page</u> : 482
w _s k	Wind-speed just above sea level (4 v LUT334 Polynomial coefficient order (8 v LUT333	ralues) $[m.s^{-1}]$, (see Section 6.16.4.3), alues) $[dl]$, (see Section 6.16.4.2),
Output: Coef[θ_s , w_s , k , λ Units: [dl]	$(\theta_{v}, \Delta \phi)$ Coefficients of <i>F</i> ' factor to IOPs reliable illumination and viewing geometries above sea level (<i>w_s</i>)	ation as function of wavelength (λ), as (θ_s , θ_v , $\Delta \phi$), and wind-speed just
Step: User Specified Scientific content:	I	

This LUT contains the 7th order polynomial coefficients of *F*' factor to IOPs relation (*Coef*) as function of wavelength (λ), illumination and viewing geometries (θ_s , θ_v , $\Delta \phi$), and wind-speed just above sea level (w_s).

Current baseline: $(5 \times 4 \times 8 \times 15 \times 5 \times 13)$ values

Resources:

Estimated CPU time: -Output disk space: $5 \times 4 \times 8 \times 15 \times 5 \times 13 \times 4$ bytes/fl = 624000 bytes

Acceptance:

Corresponds to the latest definition.

6.16.8 GADS CASE-II Water Neural Network Parameters

6.16.8.1 Case-2 waters neural network parameters

<u>Reference</u>: (No variable used), LUT372

[AD-8] Section 6.16.10, GADS field 1

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	(no variable)	Case-2 waters NN Parameters
units:	[dl]	

Step: User specified.

Scientific content:

This LUT contains the case-2 waters NN parameters.

Current baseline: 262144 values

Resources:

Estimated CPU time:	-
Output disk space:	262144×1 byte/uc = 262144 bytes

Acceptance:

Corresponds to the latest definition.

6.16.8.2 Switch for reflectance log-scaling

<u>Reference</u>: (No variable used), LUT458

[AD-8] Section 6.16.10, GADS field 2

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	(no variable)	Switch for reflectance log-scaling
units:	[dl]	

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 484

Step: User specified.

Scientific content:

Switch for reflectance log-scaling

Current baseline: 1

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.17 CLOUD PARAMETERS

6.17.1 C.P.

6.17.1.1 C.P. Normalized TOA radiances, $L_{TOA}(\lambda, \theta_s, \theta_v, \Delta \phi)$

<u>Reference</u>: (no variable used) LUT402

Intermediate results stored in LUTs.

LUT dimension: $N_{SZA} \times N_{VZA} \times N_{RAA} = 27 \times 18 \times 25$.

Number of intermediate LUTs: •with RTC/FUB: 1754 output simulation files

Resources:

Estimated CPU time: -Output disk space: $1754 \times 27 \times 18 \times 25 \times 4$ bytes/fl = 85244400 bytes

6.17.1.2 C.P. Cloud spherical albedos, $Calb(\theta_s)$

Reference:	Calb[θ _s].	LUT404
		B 01.0.

Intermediate results stored in LUTs.

LUT dimension: $N_{SZA} = 27$.

Number of intermediate LUTs: •with RTC/FUB: 1754 output simulation files

Resources:

Estimated CPU time: -Output disk space: $1754 \times 27 \times 4$ bytes/fl = 189432 bytes

6.17.2 MPH

Not covered in this document (see [AD-8] for a detailed description)

6.17.3 SPH

Not covered in this document (see [AD-8] for a detailed description)

6.17.4 GADS General

6.17.4.1 Latitudes for ADS surface albedo at 761.875 nm

Reference: lat, LUT212

[AD-8] Section 6.17.4, ADSR field 1

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Inputs:	none	
Outputs:	lat	Latitude (3600 values)
units:	$[10^{-6} deg]$	

Step: User specified.

Scientific content:

Set of 3600 latitudes (lat) used as the geographic grid for the surface albedo map at 761.875 nm

Current baseline: [89.975;-89.975] *deg.* by step of -0.05 *deg.*

Resources:

Estimated CPU time: -Output disk space: 3600×4 bytes/sl = 14400 bytes

Acceptance:

Corresponds to the latest definition.

6.17.4.2 Longitudes for ADS surface albedo at 761.875 nm

<u>Reference</u>: long, LUT213

[AD-8] Section 6.17.4, GADS field 2

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 487

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: *long* Longitudes (7200 values)

units: $[10^{-6} deg.]$

Step: User specified.

Scientific content:

Set of 7200 longitudes (long) used as the geographic grid for the surface albedo map at 761.875 nm

Current baseline: [-179.975;179.975] *deg.* by step of 0.05 *deg.*

Resources:

Estimated CPU time: -Output disk space: 7200 × 4 bytes/sl = 28800 bytes

Acceptance:

Corresponds to the latest definition.

6.17.4.3 Solar zenith angles for ADS polynomial coefficients for cloud albedo retrieval & for ADS polynomial coefficients for cloud optical thickness retrieval

Reference: SZA, LUTT214

[AD-8] Section 6.17.4, GADS field 3

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 488

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	SZA	Solar zenith angle (θ_s) for ADS polynomial coefficients for CALB & COT retrievals (27 values)
units:	[10 ⁻⁶ deg.]	

Step: User specified.

Scientific content:

Set of 27 solar zenith angles (θ_s) regularly spaced

Current baseline: 27 values in [15;80] deg. by step of 2.5 deg

Resources:

Estimated CPU time: -Output disk space: 27×4 bytes/ul = 108 bytes

Acceptance:

Corresponds to the latest definition.

6.17.4.4 View zenith angles for ADS polynomial coefficients for cloud albedo retrieval & for ADS polynomial coefficients for cloud optical thickness retrieval

Reference:	VZA,	LUTT215
[AD-8]	Section 6.17.4, GADS field 4	
ACRI pro	vided	
Dependencies	<u>s</u> :	
None		
<u>Tool</u> :		

None

Procedure:

Input: none

Output: SZA

View zenith angle (θ_{ν}) for ADS polynomial coefficients for CALB & COT retrievals (18 values)

units: $[10^{-6} deg.]$

Step: User specified.

Scientific content:

Set of 18 view zenith angles (θ_s) regularly spaced

Current baseline: 18 values in [0;42.5] deg. by step of 2.5 deg

Resources:

Estimated CPU time: -Output disk space: 18×4 bytes/ul = 72 bytes

Acceptance:

Corresponds to the latest definition.

6.17.4.5 Relative azimuth angles for ADS polynomial coefficients for cloud albedo retrieval & for ADS polynomial coefficients for cloud optical thickness retrieval

Reference: RAA, LUT216

[AD-8] Section 6.17.4, GADS field 5

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: *RAA* Relative azimuth angle for ADS polynomial coefficients for CALB & COT retrievals (25 values)

units: $[10^{-6} deg]$

Step: User specified.

Scientific content:

Set of 25 relative azimuth angle $(\Delta \phi)$ regularly spaced

Current baseline: 25 values within [180;0] deg., with a step of -7.5 deg.

Resources:

Estimated CPU time: -Output disk space: 25×4 bytes/ul = 100 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.6 Surface albedos for ADS polynomial coefficients for cloud albedo retrieval & for ADS polynomial coefficients for cloud optical thickness retrieval

Reference:	Salb,	LUT217
[AD-8]	Section 6.17.4, GA	ADS field 6
ACRI pro	vided	
Dependencies	<u>3</u> :	
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	Salb	Suface albedo for ADS polynomial coefficients for CALB & COT retrievals (9 values)
ur	nits: [<i>dl</i>]	
Step:	User specified.	

Scientific content:

Set of 9 surface albedo (S_{alb})

Current baseline: {0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

Resources:

Estimated CPU time: -Output disk space: 9×4 bytes/fl = 36 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.7 Surface albedo scaling factor

Reference:	Salb_scale, LUT218			
[AD-8]	Section 6.17.4, G	ADS field 7		
ACRI pro	vided			
Dependencies	2.			
None				
<u>Tool</u> :				
None				
Procedure:				
Input:	none			
Output:	Scale_Salb	Scaling factor for suface albedo		
ur	nits: $[dl]$			
Step:	User specified	l.		
Scientific content:				
Scale fact	Scale factor for surface albedo			
Current ba	Current baseline: 0.0039215686			

Resources:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 492

Estimated CPU time: -Output disk space: 1×8 bytes/db = 8 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.8 Cloud top pressure neural network solar flux at 753.75 nm & for the 761.875 nm / 753.75 nm ratio

Reference: Eo 754, Eo ratio LUT416 [AD-8] Section 6.17.4, GADS field 8 ACRI provided Dependencies: None Tool: None Procedure: Input: none Output: Eo 754, Eo ratio Solar flux at 753.75nm and solar fluxes ratio between 761.875nm and 753.75 nm MERIS bands $[W.m^2, \mu m^{-1}, dl]$ units: User specified. Step: Scientific content: Both the solar flux at 753.75 nm and the solar fluxes ratio between 761.875 nm and 753.75 nm are used in the cloud top pressure NN. These fluxes (*i.e.*, extraterrestrial solar irradiances) are not corrected for the Sun-Earth distance.

Current baseline: $\{1261.5169678, 1.0184140205\}$ *W.m².µm⁻¹* and *dl*, respectively.

Resources:

Estimated CPU time: -Output disk space: 2×4 bytes/fl = 8 bytes

Acceptance:

Corresponds to the latest definitions

6.17.4.9 Minimum acceptable radiance value for TOA reflectance at 753.75 nm

Reference:	min_TOARb753,	LUT373
------------	---------------	--------

[AD-8] Section 6.17.4, GADS field 9

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none
Output:	<i>min_TOARb753</i> Minimum acceptable radiance value for TOA reflectance at 753.75 <i>nm</i>
unit	s: $[W.m^{-2}.\mu m^{-1}.sr^{-1}]$

Step: User specified.

Scientific content:

Minimum radiance value which can be accepted for TOA reflectance at 753.75nm

Current baseline: $0 W.m^{-2}.\mu m^{-1}.sr^{-1}$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.10 Maximum acceptable radiance value for TOA reflectance at 753.75 nm

<u>Reference</u>: max_TOARb753, LUT374

[AD-8] Section 6.17.4, GADS field 10

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:		none	;	
Output:		max_	_TOARb753	Maximum acceptable radiance value for TOA reflectance at 753.75nm
	units:		$[W.m^{-2}.\mu m^{-1}$	sr^{-1}]

Step: User specified.

Scientific content:

Maximum radiance value which can be accepted for TOA reflectance at 753.75nm

```
Current baseline: 700 W.m^{-2}.\mu m^{-1}.sr^{-1}
```

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.11 Minimum acceptable radiance value for TOA reflectance at 761.875 nm

Reference: min_TOARb762, LUT375

[AD-8] Section 6.17.4, GADS field 11

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 495

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: $min_TOARb762$ Minimum acceptable radiance value for TOA reflectance at 761.875 nm units: $[W.m^{-2}.\mu m^{-1}.sr^{-1}]$

Step: User specified.

Scientific content:

Minimum radiance value which can be accepted for TOA reflectance at 761.875 nm

Current baseline: $0 W.m^{-2}.\mu m^{-1}.sr^{-1}$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.12 Maximum acceptable radiance value for TOA reflectance at 761.875 nm

Reference:	max_TOARb762,	LUT376	
[AD-8]	Section 6.17.4, GADS field 12	2	
ACRI pro	ACRI provided		
Dependencies	<u>s</u> :		
None			
Tool:			

None

Procedure:

Input:	none
Output:	<i>max_TOARb762</i> Maximum acceptable radiance value for TOA reflectance at 761.875 <i>nm</i>
units	$[W.m^{-2}.\mu m^{-1}.sr^{-1}]$

Step: User specified.

Scientific content:

Maximum radiance value which can be accepted for TOA reflectance at 761.875 nm

Current baseline: 400 $W.m^{-2}.\mu m^{-1}.sr^{-1}$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.13 Switch to use spectral shift index

Reference: NN_Use_Shift, LUT415

[AD-8] Section 6.17.4, GADS field 13

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	NN_Use_shift	Shift used for spectral shift index

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 497

units: [*dl*]

Step: User specified.

Scientific content:

Shift used for the spectral shift index

Current baseline: 1

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/ul = 4 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.14 FR-band#11 wavelengths for surface pressure neural network

Ref	erence:	NN_FR_b11,	LUT493
	[AD-8]	Section 6.17.4, GA	ADS field 14
	ACRI prov	vided	
Der	oendencies	:	
	None		
Тос	<u>ol</u> :		
	None		
Pro	cedure:		
	Input:	none	
	Output:	NN_FR_b11	FR-band#11wavelengths for surface pressure NN (3700 values)
	un	nits: [<i>nm</i>]	
	Step:	User specified.	

Scientific content:

Set of 3700 wavelengths for MERIS band#11 to be used in the surface pressure NN in the full resolution mode

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 498

Current baseline: 3700 values

Resources:

Estimated CPU time: -Output disk space: 3700×4 bytes/fl = 14800 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.15 RR-band#11 wavelengths for surface pressure neural network

Reference: NN_RR_b11, LUT494

[AD-8] Section 6.17.4, GADS field 15

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	NN_RR_b11	RR- band#11wavelengths for surface pressure NN (925 values)
units:	[<i>nm</i>]	

Step: User specified.

Scientific content:

Set of 925 wavelengths for MERIS band#11 to be used in the surface pressure NN in the reduced resolution mode

Current baseline: 925 values

Resources:

Estimated CPU time: -Output disk space: 925×4 bytes/fl = 3700 bytes

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 499

Acceptance:

Corresponds to the latest definition

6.17.4.16 FR residual stray-light correction factor

Reference: FR_SL_corr, LUT495

[AD-8] Section 6.17.4, GADS field 16

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	FR_SL_corr	FR residual stray-light correction factor (3700 values)
units:	[dl]	

Step: User specified.

Scientific content:

Set of 3700 corrective factors for the residual effect of the stray-light in the full resolution mode

Current baseline: 3700 values

Resources:

Estimated CPU time: -Output disk space: 3700 × 4 bytes/fl = 14800 bytes

Acceptance:

Corresponds to the latest definition

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 500

6.17.4.17 RR residual stray-light correction factor

<u>Reference</u>: RR_SL_corr, LUT496

[AD-8] Section 6.17.4, GADS field 17

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	RR_SL_corr	RR residual stray-light correction factor (925 values)
units	: [<i>dl</i>]	

Step: User specified.

Scientific content:

Set of 925 corrective factors for the residual effect of the stray-light in the reduced resolution mode

Current baseline: 925 values

Resources:

Estimated CPU time: -Output disk space: 925×4 bytes/fl = 3700 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.18 Minimum acceptable value for surface albedo

Reference: Min_Salb, LUT377

[AD-8] Section 6.17.4, GADS field 18

ACRI provided

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 501

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	min_Salb	Minimum acceptable value for surface albedo
units	[dl]	

Step: User specified.

Scientific content:

Minimum value which can be accepted for surface albedo

Current baseline: 0

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.19 Maximum acceptable value for surface albedo

Reference: Max_Salb, LUT378

[AD-8] Section 6.17.4, GADS field 19

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none

Output:max_SalbMaximum acceptable value for surface albedo

units: [*dl*]

Step: User specified.

Scientific content:

Minimum value which can be accepted for surface albedo

Current baseline: 1.

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.20 Cloud top pressures (CTP) for ADS cloud type index

Reference:	Ctype_P_range,	LUT379	
[AD-8]	Section 6.17.4, GAD	DS field 20	
ACRI pr	ovided		
Dependencie	<u>es</u> :		
None			
<u>Tool</u> :			
None			
Procedure:			
Input:	none		
Output:	Ctype_P_range	Cloud top pressure for ADS cloud type index (10) values)
ι	units: [<i>hPa</i>]		

Step: User specified.

Scientific content:

Set of 10 cloud top pressures used for ADS cloud type index

Current baseline: {50., 440., 680., 1000., 1000., 1000., 1000., 1000., 1000.} hPa

Resources:

Estimated CPU time: -Output disk space: 10×4 bytes/fl = 40 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.21 Cloud optical thicknesses (CTP) for ADS cloud type index

Ref	erence:	Ctype_OT_range,	LUT380			
	[AD-8]	Section 6.17.4, GADS field 21				
	ACRI provided					
Dependencies:						
	None					
<u>Too</u>	<u>ol</u> :					
	None					
<u>Pro</u>	cedure:					
	Input:	none				
	Output:	<i>Ctype_OT_range</i> Cloud optic	al thickness for ADS cloud type index (10 values)			
units: [<i>dl</i>]						
	Step:	User specified.				
Scientific content:						
Set of 10 cloud optical thicknesses used for ADS cloud type index						

Current baseline: {0., 3.6, 23., 379., 379., 379., 379., 379., 379., 379.]

Resources:

Estimated CPU time: -Output disk space: 10×4 bytes/fl = 40 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.22 Number of cloud top pressures

Reference: Ctype n P, LUT381

[AD-8] Section 6.17.4, GADS field 22

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Ctype_n_P	Number of cloud top pressures
units	[dl]	

Step: User specified.

Scientific content:

Number of cloud top pressures used for ADS cloud type index

Current baseline: 4

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 505

Corresponds to the latest definition

6.17.4.23 Number of cloud optical thicknesses

<u>Reference:</u> Ctype_n_OT, LUT382

[AD-8] Section 6.17.4, GADS field 23

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	Ctype_n_OT	Number of cloud optical thicknesses
unit	ts: [<i>dl</i>]	

Step: User specified.

Scientific content:

Number of cloud optyical thicknesses for ADS cloud type index

Current baseline: 4

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition

6.17.4.24 Solar flux at 753.75 nm for cloud LUTs

Reference: Eo_754, LUT383

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 506

[AD-8] Section 6.17.4, GADS field 24

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: Eo_754

Solar flux at 753.75 nm

units: $[W.m^2.\mu m^{-1}, dl]$

Step: User specified.

Scientific content:

Solar flux at 753.75*nm* used for the cloud LUTs. This flux (*i.e.*, extraterrestrial solar irradiances) is not corrected for the *Sun-Earth* distance.

Current baseline: 1261.5169678 $W.m^2.\mu m^{-1}$

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.25 Minimum valid values for surface pressure neural network inputs

<u>Reference</u>: (no variable used), LUT497

[AD-8] Section 6.17.4, GADS field 25

ACRI provided

Dependencies:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 507

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	(no variable)	Minimum valid values for surface pressure NN inputs (7 values)
units:	$\lfloor dl \rfloor$	

Step: User specified.

Scientific content:

Minimum valid values for the surface pressure NN input parameters

Current baseline: {0.0129, 0.181, 0.149, 0.342, 0.680, -0.733, 760.00}

Resources:

Estimated CPU time: -Output disk space: 7×4 bytes/fl = 28 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.26 Maximum valid values for surface pressure neural network inputs

Reference:	(no variable used),	LUT498
[AD-8]	Section 6.17.4, GADS field 26	
ACRI pro	vided	
Dependencies	<u>.</u>	
None		
<u>Tool</u> :		
None		
Procedure:		

Input: none

Output: *(no variable)* Maximum valid values for surface pressure NN inputs (7 values) units: [*dl*]

Step: User specified.

Scientific content:

Maximum valid values for the surface pressure NN input parameters

Current baseline: {0.307, 0.771, 0.151, 0.975, 1.000, 0.733, 763.00}

Resources:

Estimated CPU time: -Output disk space: 7×4 bytes/fl = 28 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.27 Minimum valid value for surface pressure neural network output

Reference: (no variable used), LUT499 [AD-8] Section 6.17.4, GADS field 27 ACRI provided Dependencies: None Tool: None Procedure: Input: none (no variable) Minimum valid value for surface pressure NN output Output: units: [hPa]Step: User specified. Scientific content:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 509

Minimum valid values for the surface pressure NN output

Current baseline: 300 hPa

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.28 Maximum valid value for surface pressure neural network output

<u>Reference</u>: (no variable used), LUT500

[AD-8] Section 6.17.4, GADS field 28

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	(no variable)	Maximum valid value for surface pressure NN output
units:	[hPa]	

Step: User specified.

Scientific content:

Maximum valid values for the surface pressure NN output

Current baseline: 1050 hPa

Resources:

Estimated CPU time: -

Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition

6.17.4.29 Default AOT value for surface pressure neural network

Reference: (no variable used), LUT501

[AD-8] Section 6.17.4, GADS field 29

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	(no variable)	Default AOT value for surface pressure NN
units:	[dl]	

Step: User specified.

Scientific content:

Default AOT value for surface pressure NN

Current baseline: 0.15

Resources:

Estimated CPU time: -Output disk space: 1 × 4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 511

6.17.4.30 Maximum allowed surface pressure difference

Reference:	(no variable used),	LUT502	
[AD-8]	Section 6.17.4, GADS fie	eld 30	
ACRI pro	vided		
Dependencies	<u>y:</u>		
None			
<u>Tool</u> :			
None			
Procedure:			
Input:	none		
Output:	(no variable) Maxir	num allowed surface pressure difference	
ur	nits: [<i>hPa</i>]		
Step:	User specified.		
Scientific con	tent:		
Maximum	allowed surface pressure	difference	
Current ba	Current baseline: 60		
Resources:			
Estimated Output dis	CPU time: - sk space: 1 × 4 bytes/	fl = 4 bytes	
Acceptance:			
Correspor	ids to the latest definition		

6.17.5 GADS Surface Albedo

6.17.5.1 Surface albedo at 761.875 nm, S_{alb}(month,latitude,longitude)

Reference: Salb, LUT219

[AD-8] Section 6.17.5, GADS field 1

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 512

ACRI provided

Dependencies:

LUT212, LUT213

Tool:

None

Procedure:

Inputs:	month lat long	Month [<i>dl</i>] (12 values) Latitude [<i>deg</i>] (3600 values), <i>see</i> Section 6.17.4.1 (LUT212) Longitude [<i>deg</i>] (7200 values), <i>see</i> Section 6.17.4.2 (LUT213)
Outputs:	Salb[month, la	<i>t, long]</i> Monthly value of surface albedo at 761.875 <i>nm</i> as function of geographic location (<i>lat, long</i>)
un	its: [<i>dl</i>]	
Step:	User specified.	
Scientific con	tent:	

Salb[month, lat, long] describes the monthly surface albedo at 761.875nm (band#11), for an angular grid of 0.05 deg. in latitude (lat) and in longitude (long).

Current baseline: Set of 311040000 values given for 12 months and for an accurate angular *lat-long* grid (3600 x 7200).

Resources:

Estimated CPU time: -Output disk space: $12 \times 3600 \times 7200 \times 1$ byte/uc = 311040000 bytes

Acceptance:

Corresponds to the latest definition.

6.17.6 ADS Polynomial Coefficients for Cloud Albedo Retrieval

6.17.6.1 Polynomial coefficients for cloud albedo retrieval

Reference: Calb, LUT220

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 513

[AD-8] Section 6.17.6, GADS field 1, 2 & 3

ACRI provided

Dependencies:

LUT214, LUT215, LUT216, LUT217

Tool:

OTC/RAYLEIGH RTC/FUB (MOMO) Polynomial fit

Procedure:

Inputs:	$ heta_{s}$	Solar zenith angle [deg], see Section 6.17.4.3, (LUT214)
	$ heta_{v}$	View zenith angle [deg], see Section 6.17.4.4, (LUT215)
	$\Delta \phi$	Relative azimuth angle [deg], see Section 6.17.4.5, (LUT216)
	S_{alb}	Surface albedo [dl], see Section 6.17.4.6, (LUT217) or the input database
		from the 'FUB/input.cloud' file (9 values)
	k	Polynomial coefficient orders $[dl]$, $k = [0,2]$

Output: $Calb[S_{alb}, \theta_s, \theta_v, \Delta \phi, k]$

Polynomial coefficients for cloud albedo retrieval

units: [*dl*]

Step-1: Build input cards for the RTC/MOMO using the input database from the '*FUB/input.cloud*' file. The latter is formatted in 6 columns and comprises,

- (a) the identification number of the simulation case (xxxx)
- (b) the cloud optical thickness (τ^c) at 550 nm
- (c) the cloud top height $(z_c) [m]$
- (d) the effective radius of cloud droplets (r_e) [μm]
- (e) the index (*itau*) to select the aerosol type (*i.e.*, for selecting the aerosol layer, #1 or #2)
- (f) the surface albedo $\times 100 (S_{alb})$

A LUT file with TOA normalized radiances will be generated for each case (*i.e.*, for each input data line from the '*FUB/input.cloud*' file) at 753.75*nm* (MERIS band #10) and for all illumination/viewing geometries $(\theta_s, \theta_v, \Delta \phi)$.

- Step-2: Generate TOA normalized radiances $L_{TOA_l0}[S_{alb}, \theta_s, \theta_v, \Delta \phi]$ for each case (*i.e.*, for each input data line from the '*FUB/input.cloud*' file), for all illumination/viewing geometries ($\theta_s, \theta_v, \Delta \phi$) over a black/reflective surface (S_{alb}), with the RTC/MOMO.
- **Warning**: The process for generating this table is very time-consuming. To avoid loosing data in case of a power failure, temporary binary files are created after few hours of processing: *CLOUD_xxx.LUT404 (xxx stands for the simulation identification).* This allows one to resume

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 514

the processing after a power failure. If we want fully restart the generation procedure, then the temporary binary files should be first deleted before relaunching the process.

RTC/MOMO Inputs (CLOUD)

Variable	Value	Comments
out_file	"./up_out/uprad_out"	
i_branch	3	
$n(\lambda)$	10	753.75 nm
U_{H2O}	0	
$ESFT_{H2O}$	-	N/A
U_{O2}	0	
$ESFT_{O2}$	-	N/A
U_{O3}	0	
$ESFT_{O3}$	-	N/A
P_s	1013.25	
$\tau^{R}(\lambda)$	tauR	Computed with OTC/RAYLEIGH
aerosol1	"./sca_out/sc_marcld90_bxx.s"	xx depends on $n(\lambda)$
$\tau^{al}(550)$	0.15	Only if <i>aerotype</i> = 0 otherwise $\tau^{al}(550) = 0$ Value of aerotype is taken from the <i>'FUB/input.wv.cloud'</i> definition table
aerosol2	"./sca_out/sc_conticld_bxx.s"	xx depends on $n(\lambda)$
$t^{a2}(550)$	0.3	Only if <i>aerotype</i> = 1 otherwise $t^{a^2}(550) = 0$ Value of aerotype is taken from the <i>'FUB/input.wv.cloud'</i> definition table
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud1	"./sca_out/sc_cldyy_bxx.s"	<i>xx</i> depends on $n(\lambda)$ and <i>yy</i> on the effective cloud droplets radius. <i>yy</i> is taken from the <i>'FUB/input.cloud'</i> definition table.
$\tau^{c1}(550)$	tauC/2 (if <i>cloudtype</i> =10) or tauC (otherwise)	Values of <i>cloudtype</i> and <i>tauC</i> are taken from the ' <i>FUB/input.cloud</i> ' definition table
cloud2	"./sca_out/sc_cld17_bxx.s"	xx depends on $n(\lambda)$
$\tau^{c^2}(550)$	tauC/2 (if cloudtype=10) or 0 (otherwise)	Values of <i>cloudtype</i> and <i>tauC</i> are taken from the <i>'FUB/input.cloud'</i> definition table
cloud3	-	
$\tau^{c^{3}}(550)$	0	
phyto	-	N/A
$\sigma^{p}_{_{e,\lambda}}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma_{\scriptscriptstyle e,\lambda}^{\scriptscriptstyle spm}$	-	N/A

MERIS / ENVISAT-1 MEdium Resolution Imaging

Spectrometer

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 515

Variable	Value	Comments
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{_{ys}}_{_{a,\lambda}}$	-	N/A
vertical	"./sca_vert/cld/vtp1_zzzz"	zzzz depends on the cloud top altitude (2500, 5000, 7500 and 10000 <i>m</i>). The latter is taken from the <i>'FUB/input.cloud'</i> definition table
I_s	70	
ρ_s	Salb	Surface albedo taken from the <i>'FUB/input.cloud'</i> definition table (<i>see</i> Section 6.17.4.7)
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle a,\lambda}$	-	N/A
W_{S}	0	
n_s , n_v , $n_{\Delta\phi}$	27, 18, 25	
θ_s	Gaussian angles	See Section 6.17.4.3
θ_{v}	Gaussian angles	See Section 6.17.4.4
$\Delta \phi$	see inputs	See Section 6.17.4.5

Extract after each simulation the cloud albedo $(S_{cld}[S_{alb}, \theta_s, \theta_v, \Delta \phi])$ from the 'FUB/mom_out/flux_0001' file. The latter is referred as the 'HEMISPHERICAL REFLECTANCE' label at the TOA and the corresponding value is saved in the MERISAT internal tables: CLOUD_xxx.LUT404.

Step-3: Apply a 2nd order polynomial fit on the cloud albedos $S_{cld}[S_{alb}, \theta_s, \theta_v, \Delta \phi]$ (extracted from *CLOUD_xxx.LUT404* files) as function of the TOA normalized radiances $L_{TOA_{10}}[S_{alb}, \theta_s, \theta_v, \Delta \phi]$, for retrieving polynomial coefficients *Calb_LUT*[$S_{alb}, \theta_s, \theta_v, \Delta \phi, k$].

 $S_{cld}[S_{alb},\theta_{s},\theta_{v},\Delta\phi] = Calb_LUT[S_{alb},\theta_{s},\theta_{v},\Delta\phi,0] \\ + Calb_LUT[S_{alb},\theta_{s},\theta_{v},\Delta\phi,1] \cdot L_{TOA_I0}[S_{alb},\theta_{s},\theta_{v},\Delta\phi] \\ + Calb_LUT[S_{alb},\theta_{s},\theta_{v},\Delta\phi,2] \cdot (L_{TOA_I0}[S_{alb},\theta_{s},\theta_{v},\Delta\phi])^{2}$

Scientific content:

 $Calb_LUT[S_{alb}, \theta_s, \theta_v, \Delta\phi, k]$ describes the coefficients of the polynomial fit applied on the cloud albedos $S_{cld}[S_{alb}, \theta_s, \theta_v, \Delta\phi]$, as function of the TOA normalized radiances $L_{TOA_10}[S_{alb}, \theta_s, \theta_v, \Delta\phi]$, computed in the MERIS band #10. These regression coefficients (k = [0;2]) depends on the illumination and viewing geometries ($\theta_s, \theta_v, \Delta\phi$) and on the surface albedo (S_{alb}) at 753.75 nm.

Note that the radiance computations with the RTC/MOMO are completed with an angular grid $(\theta_s, \theta_v, \Delta \phi)$ which differs from the one defined as input. In fact, the radiance propagation directions (zenith angles) within the RTC/MOMO are determined with the *Gauss-Lobatto* quadrature. Consequently, an interpolation scheme will be applied to superimpose the output radiance matrices derived from the RTC/MOMO computations with the requested angular grid (specified as input).

Current baseline:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 516

- θ_s corresponds to 27 solar zenith angles from 15° to 80° with a step of 2.5°
- θ_v corresponds to 18 view zenith angles from 0° to 42.5° with a step of 2.5°
- $\Delta \phi$ corresponds to 25 relative azimuth angles from 0° to 180° with a step of 7.5°
- S_{alb} corresponds to 9 surface albedos from 0 to 0.8 with a step of 0.1

Resources:

Estimated CPU time: 19129 sec Output disk space: $27 \times 3 \times 18 \times 25 \times 9 \times 4$ bytes/fl = 1312200 bytes

The storage of this table is completed with several records for the different indices of polynomial coefficients (*see* [AD-8] for the exact structure).

Acceptance:

The quality check of the polynomial fits can be tested by applying them on the input dataset.

6.17.7 ADS Polynomial Coefficients for Cloud Optical Thickness Retrieval

6.17.7.1 Polynomial coefficients for cloud optical thickness retrieval

Reference:	Cthick_LUT,	LUT223
[AD-8]	Section 6.17.7, GADS fi	eld 1, 2, 3 & 4
ACRI pro	ovided	

Dependencies:

LUT214, LUT215, LUT216, LUT217

Tool:

OTC/RAYLEIGH RTC/FUB (MOMO) Polynomial fit

Procedure:

Inputs:	θ_s	Solar zenith angle [deg], see Section 6.17.4.3, (LUT214)
	$ heta_{v}$	View zenith angle [deg], see Section 6.17.4.4, (LUT215)
	$\Delta \phi$	Relative azimuth angle [deg], see Section 6.17.4.5, (LUT216)
	S_{alb}	Surface albedo [dl], see Section 6.17.4.6, (LUT217) or the input database
		from the 'FUB/input.cloud' file (9 values)
	k	Polynomial coefficient orders [<i>dl</i>], $k = [0;3]$
Output:	$COT[S_{alb},$	$(heta_s, heta_v, \Delta \phi, k]$

Polynomial coefficients for cloud optical thickness retrieval

units: [*dl*]

- Step-1: Build input cards for the RTC/MOMO using the input database from the '*FUB/input.cloud*' file. The latter is formatted in 6 columns and comprises,
 - (a) the identification number of the simulation case (xxxx)
 - (b) the cloud optical thickness (τ^{c}) at 550nm
 - (c) the cloud top height $(z_c) [m]$
 - (d) the effective radius of cloud droplets (r_e) [μm]
 - (e) the index (*itau*) to select the aerosol type (*i.e.*, for selecting the aerosol layer, #1 or #2)
 - (f) the surface albedo x 100 (S_{alb})

A LUT file with TOA normalized radiances will be generated for each case (*i.e.*, for each input data line from the '*FUB*/input.cloud' file) at 753.75nm (MERIS band #10) and for all illumination/viewing geometries $(\theta_s, \theta_v, \Delta \phi)$.

- Step-2: Generate TOA normalized radiances $L_{TOA_I0}[S_{alb}, \theta_s, \theta_v, \Delta \phi]$ for each case (*i.e.*, for each input data line from the '*FUB*/input.cloud' file), for all illumination/viewing geometries ($\theta_s, \theta_v, \Delta \phi$) over a black/reflective surface (S_{alb}), with the RTC/MOMO.
- **Warning**: The process for generating this table is very time-consuming. To avoid loosing data in case of a power failure, temporary binary files are created after few hours of processing: *CLOUD_xxx.LUT402(xxx stands for the simulation identification)*. This allows one to resume the processing after a power failure. If we want fully restart the generation procedure, then the temporary binary files should be first deleted before relaunching the process. Note that the output radiances will be the same as those computed for LUT220 (*see* Section 6.17.6.1).

RTC/MOMO Inputs (CLOUD)

Variable	Value	Comments
out_file	"./up_out/uprad_out"	
i_branch	3	
$n(\lambda)$	10	753.75 nm
U_{H2O}	0	
$ESFT_{H2O}$	-	N/A
U_{O2}	0	
$ESFT_{O2}$	-	N/A
U_{O3}	0	
$ESFT_{O3}$	-	N/A
P_s	1013.25	
$ au^{R}(\lambda)$	tauR	Computed with OTC/RAYLEIGH
aerosoll	"./sca_out/sc_marcld90_bxx.s"	<i>xx</i> depends on $n(\lambda)$
$\tau^{al}(550)$	0.15	Only if <i>aerotype</i> = 0 otherwise $\tau^{al}(550) = 0$ Value of aerotype is taken from the <i>'FUB/input.wv.cloud'</i> definition table
aerosol2	"./sca_out/sc_conticld_bxx.s"	xx depends on $n(\lambda)$

ParBleu Technologies Inc.

79 Veilleux street • St Jean/Richelieu (Qc) - CANADA J3B-3W7 • Phone: (+450) 357-9140 • Fax: (+450) 346-6914

MERIS / ENVISAT-1

MEdium Resolution Imaging Spectrometer
 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 518

Variable	Value	Comments
$\tau^{a2}(550)$	0.3	Only if <i>aerotype</i> = 1 otherwise $t^{a2}(550) = 0$ Value of aerotype is taken from the <i>'FUB/input.wv.cloud'</i> definition table
aerosol3	-	
$\tau^{a3}(550)$	0	
cloud l	"./sca_out/sc_cldyy_bxx.s"	<i>xx</i> depends on $n(\lambda)$ and <i>yy</i> on the effective cloud droplets radius. <i>yy</i> is taken from the <i>'FUB/input.cloud'</i> definition table.
$\tau^{cl}(550)$	tauC/2 (if <i>cloudtype</i> =10) or tauC (otherwise)	Values of <i>cloudtype</i> and <i>tauC</i> are taken from the ' <i>FUB/input.cloud</i> ' definition table
cloud2	"./sca_out/sc_cld17_bxx.s"	<i>xx</i> depends on $n(\lambda)$
$\tau^{c^2}(550)$	tauC/2 (if cloudtype=10) or 0 (otherwise)	Values of <i>cloudtype</i> and <i>tauC</i> are taken from the ' <i>FUB/input.cloud</i> ' definition table
cloud3	-	
$\tau^{c^{3}}(550)$	0	
phyto	-	N/A
$\sigma^{\scriptscriptstyle P}_{\scriptscriptstyle e,\lambda}$	-	N/A
$\omega^{p}_{\mathrm{o},\lambda}$	-	N/A
spm	-	N/A
$\sigma^{spm}_{e,\lambda}$	-	N/A
$\omega^{spm}_{\mathrm{o},\lambda}$	-	N/A
$\sigma^{_{ys}}_{_{a,\lambda}}$	-	N/A
vertical	"./sca_vert/cld/vtp1_zzzz"	zzzz depends on the cloud top altitude (2500, 5000, 7500 and 10000 <i>m</i>). The latter is taken from the <i>'FUB/input.cloud'</i> definition table
I_s	70	
$ ho_s$	Salb	Surface albedo taken from the <i>'FUB/input.cloud'</i> definition table (<i>see</i> Section 6.17.4.7)
Eo	1	
$\sigma^{\scriptscriptstyle w}_{\scriptscriptstyle a,\lambda}$	-	N/A
Ws	0	
n_s , n_v , $n_{\Delta\phi}$	27, 18, 25	
$ heta_{s}$	Gaussian angles	See Section 6.17.4.3
$ heta_{v}$	Gaussian angles	See Section 6.17.4.4
$\Delta \phi$	see inputs	See Section 6.17.4.5

Step-2: Extract the cloud optical thicknesses (τ^c) for all the simulation cases from the input database *'FUB/input.cloud'.'*

Step-3: Apply a 3rd order polynomial fit on the cloud optical thicknesses (τ^c) as function of the TOA normalized radiances $L_{TOA_I0}[S_{alb}, \theta_s, \theta_v, \Delta \phi]$, for retrieving the polynomial coefficients $COT[S_{alb}, \theta_s, \theta_v, \Delta \phi, k]$.

$$\begin{aligned} \tau^{c} = & \operatorname{Exp} \left\{ \begin{array}{l} COT[S_{alb}, \theta_{s}, \theta_{v}, \Delta\phi, 0] \\ &+ COT[S_{alb}, \theta_{s}, \theta_{v}, \Delta\phi, 1] \cdot L_{TOA_10}[S_{alb}, \theta_{s}, \theta_{v}, \Delta\phi] \\ &+ COT[S_{alb}, \theta_{s}, \theta_{v}, \Delta\phi, 2] \cdot (L_{TOA_10}[S_{alb}, \theta_{s}, \theta_{v}, \Delta\phi])^{2} \right\} \\ &+ COT[S_{alb}, \theta_{s}, \theta_{v}, \Delta\phi, 3] \cdot (L_{TOA_10}[S_{alb}, \theta_{s}, \theta_{v}, \Delta\phi])^{3} \right\} \end{aligned}$$

Scientific content:

Cthick_LUT[$S_{alb}, \theta_s, \theta_v, \Delta \phi, k$] describes the coefficients of the polynomial fit applied on the cloud optical thicknesses τ , as function of the TOA radiances $L_{TOA_10}[S_{alb}, \theta_s, \theta_v, \Delta \phi]$, computed in the MERIS band #10. These regression coefficients (k = [0;3]) depends on the illumination and viewing geometries ($\theta_s, \theta_v, \Delta \phi$) and on the surface albedo (S_{alb}) at 753.75 nm.

Note that the radiance computations with the RTC/MOMO are completed with an angular grid $(\theta_s, \theta_v, \Delta \phi)$ which differs from the one defined as input. In fact, the radiance propagation directions (zenith angles) within the RTC/MOMO are determined with the *Gauss-Lobatto* quadrature. Consequently, an interpolation scheme will be applied to superimpose the output radiance matrices derived from the RTC/MOMO computations with the requested angular grid (specified as input).

Current baseline:

- θ_s corresponds to the 27 following solar zenith angles: from 15° to 80° with a step of 2.5°
- θ_v corresponds to the 18 following view zenith angles: from 0° to 42.5° with a step of 2.5°
- $\Delta \phi$ corresponds to the 25 following relative azimuth angles: from 0° to 180° with a step of 7.5°

 S_{alb} corresponds to the 9 following surface albedos: from 0 to 0.8 with a step of 0.1

Resources:

Estimated CPU time: 19016 sec Output disk space: $27 \times 4 \times 18 \times 25 \times 9 \times 4$ bytes/fl = 1749600 bytes

Acceptance:

The quality check of the polynomial fits can be tested by applying them on the input dataset.

6.17.8 GADS Cloud Top Pressure Neural Network for not null Surface Albedo

6.17.8.1 Cloud top pressure neural network for not null surface albedo

Reference: (No variable used), LUT384

[AD-8] Section 6.17.8, GADS field 1

ACRI provided

Dependencies:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 520

None

Tool:

None

Procedure:

Input:	none	
Output: un	(no variable) its: [dl]	Cloud top pressure NN parameters for not null surface albedo
Step:	User specified.	
	LUT processed	at the FUB institute with a NN tool and delivered to ACRI.

Scientific content:

Cloud top pressure NN parameters for not null surface albedo

Current baseline: 262144 values

Resources:

Estimated CPU time: -Output disk space: 262144×1 byte/uc = 262144 bytes

Acceptance:

Corresponds to the latest definition

6.17.9 GADS Cloud Top Pressure Neural Network for null Surface Albedo

6.17.9.1 Cloud top pressure neural network for null surface albedo

<u>Reference</u>: (No variable used), LUT385

[AD-8] Section 6.17.9, GADS field 1

ACRI provided

Dependencies:

None

Tool:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 521

None

Procedure:

Input:	none	
Output: units:	(no variable) [dl]	Cloud top pressure NN parameters for null surface albedo
Step:	User specified.	

LUT processed at the FUB institute with a NN tool and delivered to ACRI.

Scientific content:

Cloud top pressure NN parameters for null surface albedo

Current baseline: 262144 values

Resources:

Estimated CPU time: -Output disk space: 262144×1 byte/uc = 262144 bytes

Acceptance:

Corresponds to the latest definition

6.17.10 GADS Cloud type index

6.17.10.1 Cloud type index

Reference: Ctype[ctp,cot], LUT386

[AD-8] Section 6.17.10, GADS field 1

ACRI provided

Dependencies:

LUT379, LUT380

Tool:

None

Procedure:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 522

Input:	ctp cot	Cloud top pressure [<i>hPa</i>] (10 values), <i>see</i> Section 6.17.4.20, LUT379 Cloud top pressure [<i>dl</i>] (10 values), <i>see</i> Section 6.17.4.21, LUT380
Output:	Ctype[ctp,cot]	Cloud type index as function of the cloud top pressure (<i>ctp</i>) and of the cloud optical thickness (<i>cot</i>).

units: [*dl*]

Step: User specified.

Scientific content:

Cloud type index (*Ctype*[*ctp*,*cot*]) depending on the cloud top pressure (*ctp*) and the cloud optical thickness (*cot*)

Current baseline: (10×10) values

Resources:

Estimated CPU time: -Output disk space: $10 \times 10 \times 1$ byte/uc = 100 bytes

		Cloud Top Pressure [hPa]								
COT	50	440	680	1000	1000	1000	1000	1000	1000	1000
0.0	135	136	137	128	128	128	128	128	128	128
3.6	132	133	134	128	128	128	128	128	128	128
23.0	129	130	131	128	128	128	128	128	128	128
379.0	128	128	128	128	128	128	128	128	128	128
379.0	128	128	128	128	128	128	128	128	128	128
379.0	128	128	128	128	128	128	128	128	128	128
379.0	128	128	128	128	128	128	128	128	128	128
379.0	128	128	128	128	128	128	128	128	128	128
379.0	128	128	128	128	128	128	128	128	128	128
379.0	128	128	128	128	128	128	128	128	128	128

Acceptance:

Corresponds to the latest definition

6.17.11 GADS Surface Pressure Neural Network Parameters

6.17.11.1 Surface pressure neural network

<u>Reference</u>: (No variable used), LUT503

[AD-8] Section 6.17.10, GADS field 1

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 523

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	None
F ····	

Output: (No variable) Surface pressure NN parameters.

units: [*dl*]

Step: User specified.

Scientific content:

Surface pressure NN parameters

Current baseline: 262144 values

Resources:

Estimated CPU time: -Output disk space: 262144×1 byte/uc = 262144 bytes

Acceptance:

Corresponds to the latest definition

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 524

6.18 LAND VEGETATION INDEX PARAMETERS

6.18.1 C.P.

None

6.18.2 MPH

Not covered in this document (see [AD-8] for a detailed description)

6.18.3 SPH

Not covered in this document (see [AD-8] for a detailed description)

6.18.4 GADS General

6 18 4 1	RIUP M	vavelenath	hand	number f	for T	$\Delta A - VI$	com	nutation
0.10.4.1	DIUE N	avelenyun	Danu			UA-VI	com	Julalion

Reference:	Blue_band_N,	LUT387
[AD-8]	Section 6.18.4, GA	ADS field 1
ACRI prov	vided	
Dependencies		
None		
<u>Tool</u> :		
None		
Procedure:		
Input:	none	
Output:	Blue_band_N	Blue band # for TOA-vegetation index computation
unit	s: [<i>dl</i>]	
Step:	User specified.	
Scientific con	tent:	

MERIS band in the blue region used for computation of TOA vegetation index

Current baseline: 2

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.18.4.2 Red wavelength band number for TOA-VI computation

Reference. Red Danu N, LUISC	Reference:	Red band N,	LUT388
------------------------------	------------	-------------	--------

[AD-8] Section 6.18.4, GADS field 2

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none	
Output:	Red_band_N	Red band # for TOA-vegetation index computation
units:	[dl]	

Step: User specified.

Scientific content:

MERIS band in the red region used for computation of TOA vegetation index

Current baseline: 8

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.18.4.3 Near-infrared wavelength band number for TOA-VI computation

Refe	rence:	NIR_band_N,	LUT389
[[AD-8]	Section 6.18.4, GADS field 3	
I	ACRI prov	ided	
<u>Depe</u>	endencies:		
1	None		
<u>Tool</u>	:		
1	None		
Proce	edure:		
Ι	Input:	none	
(Output:	<i>NIR_band_N</i> NIR band	# for TOA-vegetation index computation
	units	[dl]	
S	Step:	User specified.	

Scientific content:

MERIS band in the NIR region used for computation of TOA vegetation index

Current baseline: 13

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.18.4.4 K_i normalization parameters for blue, red & NIR bands and for vegetated & bright soils

<u>Reference</u>: K_i,

ParBleu Technologies Inc.

LUT390

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 527

[AD-8] Section 6.18.4, GADS field 4

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output:	K_i	k_i normalization parameters for blue, red & NIR bands and for vegetated & bright soils (2 x 3 values)
•.	F 10	

units: [*dl*]

Step: User specified.

Scientific content:

K_i normalization parameters in blue, red and NIR MERIS bands for vegetated and bright soils

Current baseline: 2 sets of 3 coefficients $k(\lambda)$ in 3 spectral bands (blue, red, NIR) for vegetated and bright soils

	k(blue)	k(red)	k(NIR)
Vegetated	0.56192	0.70879	0.86523
Bright soil	0.68545	0.87412	0.89788

Resources:

Estimated CPU time: -Output disk space: $2 \times 3 \times 4$ bytes/fl = 24 bytes

Acceptance:

Corresponds to the latest definition.

6.18.4.5 Theta_i normalization parameters for blue, red & NIR bands and for vegetated & bright soils

Reference: Theta_i, LUT391

[AD-8] Section 6.18.4, GADS field 5

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input:	none

Output:Theta_i θ_i normalization parameters for blue, red & NIR bands and for vegetated
& bright soils (2 x 3 values)

units: [*dl*]

Step: User specified.

Scientific content:

Theta_i normalization parameters in blue, red and NIR MERIS bands for vegetated area and bright soils

Current baseline: 2 sets of 3 coefficients $\theta(\lambda)$ in 3 spectral bands (blue, red, NIR) for vegetated and bright soils

	θ (blue)	θ (red)	$\theta(NIR)$
Vegetated	-0.04203	0.03700	-0.00123
Bright soil	-0.02263	-0.00357	-0.01377

Resources:

Estimated CPU time: -Output disk space: $2 \times 3 \times 4$ bytes/fl = 24 bytes

Acceptance:

Corresponds to the latest definition.

6.18.4.6 Rho_i normalization parameters for blue, red & NIR bands and for vegetated & bright soils

Reference: Rho_i, LUT392

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 529

[AD-8] Section 6.18.4, GADS field 6

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

_	
Input:	none

Output: Rho_i ρ_i normalization parameters for blue, red & NIR bands and for vegetated
& bright soils (2 x 3 values)

units: [*dl*]

Step: User specified.

Scientific content:

Rho_i normalization parameters in blue, red and NIR MERIS bands for vegetated area and bright soils

Current baseline: 2 sets of 3 coefficients $\rho(\lambda)$ in 3 spectral bands (blue, red, NIR) for vegetated and bright soils

	ho (blue)	ho (red)	ρ (NIR)
Vegetated	0.24012	-0.46273	0.63841
Bright soil	0.42640	0.55649	0.65740

Resources:

Estimated CPU time: -Output disk space: $2 \times 3 \times 4$ bytes/fl = 24 bytes

Acceptance:

Corresponds to the latest definition.

6.18.4.7 Maximum reflectances for blue, red and NIR bands used in TOA-VI computation

Reference: Rho_max, LUT393

[AD-8] Section 6.18.4, GADS field 7

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 530

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none

Output: *Rho_max* Maximum reflectances for blue, red and NIR bands used in TOA vegetation index computation (3 values)

units: [dl]

Step: User specified.

Scientific content:

Maximum reflectances for blue, red and NIR bands used in TOA-VI computation

Current baseline: {0.3, 0.5, 0.7}

Resources:

Estimated CPU time: -Output disk space: 3×4 bytes/fl = 12 bytes

Acceptance:

Corresponds to the latest definition.

6.18.4.8 Polynomial coefficients for blue, red and NIR bands for TOA-VI computation

Reference: L, LUT394

[AD-8] Section 6.18.4, GADS field 8

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:		none	
Output:		L	Polynomial coefficients for blue, red and 3 NIR bands used in TOA vegetation index computation (12 x 5 values)
u	nits:	[dl]	
Step:		User specified.	

Scientific content:

Polynomial coefficients for blue, red and NIR bands used in TOA-VI computation

Current baseline: Set of 12 coefficients $L(\lambda)$ for 5 spectral bands (blue, red, NIR#1, NIR#2, NIR#3)

Coefficient	L_l	2	3	4	5	6
Blue band	0.00000	0.00000	0.00000	-0.30600	0.25500	0.00450
Red band	-9.26150	3.25450	9.82680	0.53737	0.36349	0.00235
NIR band #1	-0.47131	-0.04516	-0.80707	0.19812	-0.00691	-0.02108
NIR band #2	0.79999	-0.24396	-1.73300	0.40182	-0.30209	-0.04305
NIR band #3	-0.10065	0.12671	-0.39783	0.08429	-0.07737	-0.00584

Coefficient	7	8	9	10	11	12
Blue band	1.00000	1.00000	0.00000	0.64000	-0.64000	0.19980
Red band	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
NIR band#1	-0.04836	-0.54507	-1.10270	0.12063	0.51893	-0.19873
NIR band #2	6.30930	-0.10645	-9.12470	2.03210	0.60438	-0.69423
NIR band #3	0.56605	-0.11131	-0.87161	0.05628	0.23144	-0.11890

Resources:

Estimated CPU time: -Output disk space: $5 \times 12 \times 4$ bytes/fl = 240 bytes

Acceptance:

Corresponds to the latest definition.

6.18.4.9 Infrared to NIR reflectance ratio threshold for TOA-VI computation

<u>Reference</u>: IR-NIR_rho_ratio_thresh, LUT395

MERIS / ENVISAT-1 MEdium Resolution Imaging

Spectrometer

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 532

[AD-8] Section 6.18.4, GADS field 9

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none								
Output:	IR-NIR_rho_rat	<i>tio_thresh</i> Threshold covegetation in	on reflectance rat	o between	infrered	and	NIR	for	ТОА
units:	[dl]								
Step:	User specified.								

Scientific content:

Threshold on infrared to NIR reflectance ratio for TOA-VI computation

Current baseline: 1.3

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

Acceptance:

Corresponds to the latest definition.

6.18.4.10 Red wavelength band number for BOA-VI computation

Reference: BOAVI_Red_band_N, LUT396

[AD-8] Section 6.18.4, GADS field 10

ACRI provided

Dependencies:

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 533

None

Tool:

None

Procedure:

Input:	none	
Output:	BOAVI_Red_band_N Red band # used in BOA vegetation index computation	on
units:	[dl]	

Step: User specified.

Scientific content:

MERIS band in the red region used for computation of BOA vegetation index

Current baseline: 8

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

Acceptance:

Corresponds to the latest definition.

6.18.4.11 Near-infrared wavelength band #1 for BOA-VI computation

Reference: BOAVI_NIR_band1_N, LUT397

[AD-8] Section 6.18.4, GADS field 11

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input: none Output: BOAVI NIR band1 N NIR band #1 used in BOA vegetation index computation units:

[dl]

Step: User specified.

Scientific content:

MERIS band#1 in the NIR region used for computation of BOA vegetation index

Current baseline: 9

Resources:

Estimated CPU time: Output disk space: 1×1 byte/uc = 1 byte

6.18.4.12 Near-infrared wavelength band #2 for BOA-VI computation

BOAVI NIR band2 N, Reference: LUT459 [AD-8] Section 6.18.4, GADS field 12 ACRI provided Dependencies: None Tool: None Procedure: Input: none Output: BOAVI NIR band2 N NIR band #2 used in BOA vegetation index computation units: [dl]Step: User specified.

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 535

Scientific content:

MERIS band#2 in the NIR region used for computation of BOA vegetation index

Current baseline: 10

Resources:

Estimated CPU time: -Output disk space: 1 × 1 byte/uc = 1 byte

6.18.4.13 Near-infrared wavelength band #3 for BOA-VI computation

BOAVI NIR band3 N, Reference: LUT460 [AD-8] Section 6.18.4, GADS field 13 ACRI provided Dependencies: None Tool: None Procedure: Input: none Output: BOAVI NIR band3 N NIR band #3 used in BOA vegetation index computation units: [dl]User specified. Step: Scientific content: MERIS band#3 in the NIR region used for computation of BOA vegetation index Current baseline: 13

Resources:

Estimated CPU time: -Output disk space: 1×1 byte/uc = 1 byte

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 536

6.18.4.14 BOA-VI acceptable range

Reference: BOAVI_min, BOAVI_max, LUT398

[AD-8] Section 6.18.4, GADS field 14

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none
Output:	BOAVI_min, BOAVI_max Acceptable range for BOA vegetation index (min & max values)
units:	[dl]

Step: User specified.

Scientific content:

Acceptable range for BOA vegetation index

Current baseline: $\{0., 5.5\}$

Resources:

Estimated CPU time: -Output disk space: 2×4 bytes/fl = 8 bytes

6.18.4.15 Maximum value of top of aerosol reflectance in red band to allow the MTCI computation

Reference: rhoaer_red_max, LUT461

[AD-8] Section 6.18.4, GADS field 14

ACRI provided

Dependencies:

None

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page: 537

Tool:

None

Procedure:

Input:	none	
Output:	<i>rhoaer_red_max</i> Maximum top of aerosol reflectance in red band	
units:	[dl]	
Step:	User specified.	

Scientific content:

Maximum value of top of aerosol reflectance in the red band to allow the computation of the MERIS terrestrial chlorophyll index

Current baseline: 0.3

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

6.18.4.16 Minimum value of top of aerosol reflextance in NIR band#2 for MTCI

<u>Reference</u>: rhoaer_NIR_b2_min, LUT462

[AD-8] Section 6.18.4, GADS field 14

ACRI provided

Dependencies:

None

<u>Tool</u>:

None

Procedure:

Input: none

Output: rhoaer_NIR_b2_min

Minimum top of aerosol reflectance in NIR band#2

units: [dl]

Step: User specified.

Scientific content:

Minimum value of top of aerosol reflectance in the red band to allow the computation of the MERIS terrestrial chlorophyll index

Current baseline: 0.1

Resources:

Estimated CPU time: Output disk space: 1×4 bytes/fl = 4 bytes

6.18.4.17 Minimum value of top of aerosol reflectance difference between NIR#1 and red bands to allow the MTCI computation

<u>Re</u>	eference:	rhoaer_NIR1_red_min,	LUT463		
	[AD-8]	Section 6.18.4, GADS field 14	4		
	ACRI pro	vided			
Dependencies:					
	None				
<u>Tc</u>	<u>ool</u> :				
	None				
Pr	ocedure:				
	Input:	none			
	Output:	<i>rhoaer_NIR1_red_min</i> Minimum bands	of top of aerosol reflectance difference between NIR#1 and red		

units: [dl]

Step: User specified.

Scientific content:

Minimum value of top of aerosol reflectance difference between NIR #1 and red bands to allow the computation of the MERIS terrestrial chlorophyll index

Current baseline: 10⁻⁶

Resources:

Estimated CPU time: -Output disk space: 1×4 bytes/fl = 4 bytes

6.18.4.18 Minimum value of top of aerosol reflectance difference between NIR#3 and red bands to allow the MTCI computation

Reference: rhoaer_NIR3_red_min, LUT464

[AD-8] Section 6.18.4, GADS field 14

ACRI provided

Dependencies:

None

Tool:

None

Procedure:

Input:	none	
Output:	rhoaer_NIR3_	<i>red_min</i> Minimum of top of aerosol reflectance difference between NIR#3 and red bands
units:	[dl]	

Step: User specified.

Scientific content:

Minimum value of top of aerosol reflectance difference between NIR #3 and red bands to allow the computation of the MERIS terrestrial chlorophyll index

Current baseline: 0.05

Resources:

MERIS / ENVISAT-1 MEdium Resolution Imaging Spectrometer

 Ref.:
 PO-RS-PAR-GS-0002

 Issue:
 3
 Rev.:
 C

 Date:
 27-Feb-11
 Page:
 540

Estimated CPU time: Output disk space:

 1×4 bytes/fl = 4 bytes

_

- END OF DOCUMENT -

ParBleu Technologies Inc.