Calibrating raw data from the GOME-2 instrument on Metop – Lessons learned

RÜDIGER LANG, ROSE MUNRO, ANTOINE LACAN, CHRISTIAN RETSCHER, GABRIELE POLI, MICHAEL GRZEGORSKI , RICHARD DYER AND AHMED GHANI EUMETSAT

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013

SLIDE:

The GOME-2 instrument on Metop

Measuring atmospheric composition

Wavelength [nm]

Orbit file sizes

GOME-2 L1B ~ 1GB IASI L1C ~ 2GB

GOME-2:

- series of 3 instruments on Metop (Metop A launched in 10/2006)
- sun-synchronous orbit, 09:30
- 412 orbits (29 days) repeat cycle
- Global coverage 1.5 days
- > 240 nm to 800 nm
- 0.25 to 0. 5 nm spectral resolution (FWHM)
- 4 channels with 4098 energy measurements of polarisation corrected radiances (40 x 80 km²)
- 2 channels with 512 energy measurements of linear polarised light in perpendicular direction (S/P) (40 x 10 km²)

Timelines for the Metop / GOME-2 level 1 products Processor versions: Reprocessed and NRT data

• Release of second set of reprocessed level 1 data (R2) from Metop-A GOME-2 in August 2012

(Covering: 25th January 2007 to 25th January 2012)

- Metop-B with GOME-2 flight-model 2 (FM2) launched in-orbit 17th September 2012
- Metop-A GOME-2 will continue until launch of Metop-C (October 2017)

EUMETSAT

EPS Metop-B Product ValidationReport: GOME-2 Level 1 13th February 2013: Start of pre-operational level 1 dissemination to all users

7th May 2013: Start of operational level 1 dissemination (fully validated; see Cal-Val report)

Mid July: Start of operational dissemination of GOME-2 MetopB level-2 data

Mid July: Start of GOME-2 tandem operations with two different swath width:

- GOME-2 / Metop-A 960 km (40x40 km)
- GOME-2 / Metop-A 1920 km (80x40 km)

Doc.No. : EUW/OPS-EPS/DOC/12/0760 Issue : v3A Date : 17 May 2013

150 pages!

EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555

© EUMETSAT The copyright of this document is the property of EUMETSAT. http://www.eumetsat.int/groups/ops/documents/ document/pdf_gome_prod_val_metopb.pdf

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SLIDE: 4

GOME-2 optical layout

Scanning grating spectrometer with a random-access linear silicon photodiode array

Figure 1: GOME-2 optical layout. The optics lie in one plane (except insets A and B). Nadir is in -Z direction, **TSAT**

GOME-2 optical layout

Scanning grating spectrometer with a random-access linear silicon photodiode array

The generic calibration equation can be rewritten as:

$$I(\lambda_i) = \frac{S_i - SS_i - DS_i}{c_{pol}(\lambda_i, p_t(\lambda_i)) \cdot (R_{0,i} / PPG_{0,i})(\lambda_i) \cdot PPG_{t,i} \cdot m_t(\lambda_i) \cdot E_t(\lambda_i)}$$
 where (408)

subscript 0 denotes the quantity at a reference time t = 0subscript t denotes the quantity at the time of measurement

 $(R_{0,i}/PPG_{0,i})(\lambda_i)$ represents the smooth part of the response function as a function of wavelength, for unpolarised input

 $c_{pol}(\lambda_i, p_t(\lambda_i))$ is the polarisation correction factor as a function of wavelength and input polarisation

 $PPG_{t,i}$ is the pixel-to-pixel part of the response function at detector pixel i

 $m_t(\lambda_i)$ represents the degradation correction as a function of wavelength and

 $E_t(\lambda_i)$ represents the change in Etalon as a function of wavelength.

PGS 7

http://www.eumetsat.int/groups/ops/documents/document/PDF_TEN_990011-EPS-GOME-PGS.pdf

GOME-2: Scanning grating spectrometer with a random-access linear silicon photodiode array

Mature, with limitations, critical

Calibration step	Algorithm	Key-data pre-launch	Key-data in- flight	In-flight measurements	Criticality
Dark signal correction	mature	not needed	not needed	needed	Stability and light tightness
Detector pixel-to-pixel differences	mature	not needed	not needed	LED	Stable
Stray-light	Some limitations	needed but comes with large uncertainties	potentially	potentially	Critical because of characterisation and stability
Polarisation	mature (although complex)	Needed but with significant uncertainties	potentially	needed for correction	Stable if combined with in-flight correction

GOME-2: Scanning grating spectrometer with a random-access linear silicon photodiode array

Mature, with limitations, critical

Calibration step	Algorithm	Key-data pre-launch	Key-data in- flight	In-flight measurements	Criticality
Geo-pointing and spatial aliasing	mature	potentially	potentially	Potentially depending on approach	open
Radiometric calibration	mature	Needed but comes with significant uncertainties	potentially with solar calibrations	Potentially for instrument degradation correction	Critical because of characterisation and stability
Spectral calibration	Mature (avoid use of polynomials)	not needed	needed	Yes (sun or SLS)	Stable
Slit function	mature	Needed but comes with significant uncertainties	Potentially for FWHM not for shape	yes	Critical because of characterisation and stability

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SI

SLIDE: 8

GOME-2: Scanning grating spectrometer with a random-access linear silicon photodiode array

Calibration step	Criticality	Status and lessons learnt
Dark signal correction	Stability and light tightness	Challenge: Acquire enough statistics (enough measurements per integration time and within dark side eclipse)
Stray-light	Critical because of characterisation and stability	Lack of stable and/or representative in-flight targets and very limited on-ground characterisation: much better on- ground characterisation needed
Polarisation	Stable if combined with in-flight correction	Stokes fractions for special geometries (q=0) can be efficiently used to correct on-ground calibration deficiencies in key-data

Mature, with limitations, critical

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SLIDE: 9

Calibration step	Criticality	Status and lessons learnt
Radiometric calibration	Critical because of characterisation and stability	 Much higher accuracies (->0.1%) are needed than currently can be established on-ground end-to end (1-2%) The goniometric diffuser distribution can be evaluated from in-flight but only after one year of stable data- acquisition
Slit function	Critical because of characterisation and stability	For GOME-2 Metop-A a continuous change in FWHM has been observed. The latter can potentially be corrected, however not any potential changes in the shape
Degradation	Critical for S/N and because of differential degradation	 Optical bench needs to be fully thermally controlled. Cold finger close to detectors or other sensitive parts. Instrument handling and storage is critical Contamination through conformal coating outgassing, through ice built-up, UV triggered contamination (ketones) and radiation damage must be mitigated

Mature, with limitations, critical

GOME-2 level-1 product status – previous updates Online Stokes fraction correction – PPF 4.3 and higher

from approx. 1 day of special geometry band readouts

New algorithm development: Online correction to **keydata** in 3D space

 $\overline{\Delta} = \frac{M_s}{M_P} - \frac{S^s}{S^P} = 0$

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SLI

SLIDE: 11

In-flight online (continuous) Stokes fraction correction Correcting PMD-P and S radiance ratio values

Is polarisation sensitivity a problem? – No!

Online in-orbit correction possible using special geometry Stokes fractions! q=0

Metop-B / FM2

Metop-A / FM3

In-flight online (continuous) Stokes fraction correction Correcting PMD-P and S radiance ratio values – q and u Stokes fractions

Metop-B / FM2

q-fraction

u-fraction

Metop-A / FM3

q-fraction

u-fraction PMD grid at 414.4576 nm

-1 -0.5 0 0.5 1

u-fraction

Assumption used for u: $u = u_{ss}/q_{ss} *q$

In-flight online (continuous) Stokes fraction correction Correcting PMD-P and S radiance ratio values – q validation using V-Lidort

Metop-B / FM2

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013

SLIDE: 14

In-flight online (continuous) Stokes fraction correction Retrievals of aerosol optical properties

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SLIDE: 15 Goniometry: Angular dependence for Solar Measurements (AIRR) Comparison between current key-data and high res. elevation angle grid

Band 3 solar signals at 420 nm

GOME-2/Metop-A

Key-data - angle resolution

In-flight derived values with increased angular resolution

Goniometry: Improved AIRR measurements for FM-2 TNO FM2 delta calibration campaign (Kenter et al.)

SAA: 0.5 resolution (317 to 333) Elevation: 0.1 resolution (-1.5 to 1.5) Similar to L1-processor angle fine-grid as defined in initialisation file!

Goniometry: Angular dependence for Solar Measurements (AIRR) Comparison between current key-data and high res. elevation angle grid

Is the characterisation of the angular dependence for irradiance a problem? Yes and No!

The Angular dependence of irradiance on the diffuser in elevation and solar azimuth $I_0(\phi,e)$ is

- difficult to measure on-ground (long-measurement period / in vacuum)
- but one can derive it from inflight data
- 1 year of in-flight data needed

Of relevance also for other current and future missions!

Findings during GOME202-2 Delta Calibration Radiometric Calibration – On-ground Irradiance response

Irradiance Calibration

Radiometric Calibration Investigations

Same principle setup but measured at different times (i.e. With new realignments)

Large deviations +/- 4-5% !!!

Findings during GOME202-2 Delta Calibration Radiometric Calibration – Potential stray-light contribution

Irradiance Calibration: Effect of Straylight

Radiometric Calibration Investigations

The influence of environmental straylight was in this case small.

Findings during GOME202-2 Delta Calibration

Radiometric Calibration – Alignment issues

Irradiance Calibration: Effect of Measurement Distance Radiometric Calibration Investigations

For irradiance the effects of deviations due to change in distance between the lamp and diffuser are most likely due to non-ideal geometry of the setup. The closer the source is to the diffuser the more non-ideal the geometry will be. This is confirmed by the fact that the deviation between the measurements for the longest distances are way below 1%, whereas the shortest distance shows a larger deviation.

Findings during GOME202-2 Delta Calibration

Radiometric Calibration – Alignment issues

Radiance Calibration

Radiometric Calibration Investigations

Smaller deviations (with evidence of residual etalon from the earlier calibration)

Findings in-orbit after GOME202-2 Delta Calibration Channel 3: Key-data artifacts

GOME-2 FM2

Metop-B

- 00

Findings in-orbit after GOME202-2 Delta Calibration Channel 3: Key-data artifacts – viewing angle direction

Angular dependence of "Zeta" in channel 3 (Chi for Zeta) (pol. Sensitivity for 45 degrees polarised light)

GOME-2 FM2

Metop-B

Key-data has been corrected in recent updates for FM2 and FM3 (May/June 2013)!

Findings in-orbit after GOME202-2 Delta Calibration Channel 3: Key-data artifacts – impact on radiances

Residuals are small but spectrally persistent and varying in viewing angle

GOME-2 FM2

Metop-B

Key-data has been corrected in recent updates for FM2 and FM3 (May/June 2013)!

Findings in-orbit after GOME202-2 Delta Calibration Channel 3: Key-data artifacts – impact on retrievals

GOME-2 FM2 Metop-B

Initial retrieval differences observed (preliminary)

Courtesy:

Recommendations for On-Ground Characterization

Considerations for On-Ground Characterisation Campaign (I)

Time ... Time ... Time

 Characterisation campaigns should be long enough to allow for measurements to be repeated for *consistency checking*

- Assess impact of lamp position & alignment errors
- Allow sufficient time for stabilisation

Recommendations for On-Ground Characterization Environment

Considerations for On-Ground Characterisation Campaign (I)

Environment

 Essential that all characterisation measurements are carried out in thermal vacuum and that the thermal environment including gradients is representative of the in-orbit situation

- Scan-angle dependencies should also be characterized in vacuum

Recommendations for On-Ground Characterization Procedures I

Considerations for Measurements

Procedures I

Alignment procedures should be *documented and reproducible* with photo/video documentation

- Ensure *reproducibility* of distance measurements
- Close attention should be paid to frames of reference, coordinate systems & angles (e.g. GOME-2 flip of elevation angles diagnosed in orbit)
- All sources should be well commissioned prior to the start of measurement
- Radiometric calibration must be connected to standards e.g. NIST
- All measurements and procedures must be *traceable & under configuration control* including software versions and documentation of which precise measurement is used in the generation of key data
- Data processing should be *automated* as far as possible

Recommendations for On-Ground Characterization Procedures II

Considerations for Measurements

Procedures II

- Check temperature sensitivity in case thermal stability is not as expected
- Ensure sufficient angular discretisation for characterisation of diffuser BSDF
- For slit function characterisation need requirements from the data analysis activity (signal:noise, spectral coverage and sampling, source commissioning requirements etc) before planning the measurements
- Ensure that all required supplementary calibration measurements (e.g. dark signal etc) are taken close to the time of each measurement (GOME-2 monitoring block)
- Ensure sufficient sampling points for straylight characterisation
- Ensure that the slit is overfilled

Recommendations for In-Orbit Calibration Summary

Considerations for In-Orbit Calibration & Performance Verification

 Consider taking necessary in-orbit calibration measurements adjacent to Sun measurements if possible

- Take dark measurements under the same conditions as measurements
- Much longer measurement time will be needed for e.g. WLS over diffuser as opposed to WLS direct (if used for monitoring diffuser) so it is necessary to ensure this is compatible with lamp lifetime and recommended use
- Take many monitoring and calibration measurements early in instrument life
- Be wary of coatings etc that will require time to stabilise and outgas
- Be aware of any temperature dependencies of output or aging issues in on-baord targets (e.g. LED/WLS).
- ...

Recommendations for In-Orbit Calibration Summary cnt.

 Instrument should typically be stored in a container over pressured using nitrogen

- Regular reactivation is required
- Extreme attention to cleanliness required
- Assess what monitoring measurements can be made during regular re-activation in ambient.

EUMETSAT

Instrument degradation Comparison Metop-B/A - first months in orbit

Instrument degradation (Metop-B / FM2) SMR ratio with respect to February 2007 – R2 campaign

31st August 2009 (before 2nd TT) 30th October 2009 (after 2nd TT) 31st July 2011

relative to February 2007

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SLIDE: 35

Instrument degradation (Metop-B / FM2)

Earthshine measurement co-location to Metop-A / FM3 / Reflectivity residuals and background

ED LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SLIDE: 36
Instrument degradation (Metop-B / FM2) FM3 co-location (Sahara)

07

GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B

Instrument degradation (Metop-B / FM2) **Metop-A** FM3 co-location (Sahara) – Degradation residual of FM3 subtracted GOME-2 FM2 **Metop-B** FM3 degradation subtracted FM2 (M01) vs FM3 (M02) avg. residual for Sahara box 20121225084918 0.05 Avg. M01/M02 Sahara box residual / FM3 degradation removed 0.04 0.03 0.02 0.01 Ξ 0 -0.01 -0.02 -0.03 -0.04

-0.05 ______ 200 300 400 500 600 700 800 Wavlength [nm]

Slide

ETSAT

Slit function characterization FWHM FM3 from on-board spectral light source – Stability in time

This is very likely not (!) an effect of thermal environment changes(different spectral behaviour)

Hypothesis: slowly decreasing FWHM due to degradation.

EUMETSAT

Slit function characterization Degradation study IUP Bremen (Dikty/Richter)

- In calibration of GOME-2 solar spectra on Kurucz Fraunhofer atlas the FWHM (of a Gaussian slit function) is also fitted
- FWHM changes consistently over channel 2
- FWHM decreases over time
- No effect of throughput test

Instrument degradation

Summary findings after comparing to FM2 - first month in orbit.

• Both GOME-2 instruments on board Metop (FM3 and FM2) degrade roughly speaking in the same way when comparing the first month in-orbit

- FM3 develops a Etalon type signature in channel 1 which is not present in the white light source signal potentially evolving on the diffuser
- There are indications of a contamination by substances out-gassing from the conformal coatings of the electronics (Arathene signature)
- UV induced contamination or radiation damage of the detectors cannot be excluded
- No 100% conclusive single origin could be identified so far after two dedicated tests in orbit for FM3 (Jan/Sep 2009) and one for FM2 (March 2013).
- Reports are available on EUMETSAT technical documentation web-site

Lessons learned:

- Contamination and UV/radiation damage have to be considered as very serious issues. Both for pre- and in-flight handling of UV/vis instrumentation.
- Full thermal control of the entire optical bench is absolutely essential.
- Cold-trap/out-gassing mechanisms are highly recommended.
- All electronics should be isolated as much as possible from the optical parts of the instrument.

Instrument degradation Way forward for corrections.

Challenges:

- We need to correct all 4096 wavelengths (240 790 nm)
- Using V-Lidort forward model works for cloud free / short wavelengths (<350nm)
- Main problem for rigorous correction (using forward model with "best input") is the surface albedo and the surface BRDF (large investment needed for absolute accuracy

• Vicarious calibration methods and inter-calibration methods achieved accuracies currently not below 2-5%

We need 0.5 to 1% accuracy! 😕

Summary recommendations Lessons learned from the GOME-2 on Metop mission

• Key-issues concern the instrument characterisation both onground and in-flight

• Most issues concerning the applied algorithms are usually of transient importance or meanwhile have been solved.

The responsible agencies should address instrument key-data issues through the programme (all phases) and lay open and respond to (potential) problems, limitations and uncertainties as soon as possible.

Users have the responsibility to report back the problems they observe in a way which supports the investigations.

Summary recommendations Lessons learned from the GOME-2 on Metop mission

Agencies:

- 1. Lay open all observed or known problems on level 1 as early as possible.
- 2. Be responsive to user concerns on data quality.
- 3. Invest in close/short loop cycles between investigation and updates (requires a certain/significant amount of in-house expertise to analyse, address and respond to issues)

Users:

- 1. Report on issues in a way meaningful for the agencies (i.e. the level 1 quality issues), i.e. fit quality indicators spectrally and angularly and temporarily resolved (e.g. In pre-defined target areas).
- 2. Try to reduce / separate potential retrieval problems from level-2 problems (don't try to hide your own problems!)
- 3. Don't start on your personal level-0 to 1 calibration! Its not to the benefit of the whole community (so in the end also not to your own benefit)

The end

Three myths about GOME-2 Myth 1: Polarisation sensitivity - Is it a problem?

Is polarisation sensitivity a problem? – No!

Polarisation sensitivity increases the amount of on-ground calibration keydata applied during level 0 to 1 processing:

Can be corrected on-line using special geometry Stokes fractions
Stokes fractions can be used to retrieve additional level-2 information

Three myths about GOME-2 Myth 3: Reflectivity degradation

Is signal degradation a problem? – Yes, but....

Jan 2007 – Aug 2009 Reflectivity degradation: 1-2% per year (Radiance degradation: 16%/year)

Sep 2009 – Aug 2011 Reflectivity degradation: 2-6% per year (Radiance degradation: 4%/year)

See Level 1 validation report for the reprocessed data-set R2: <u>www.eumetsat.int</u> > <u>Data & Products</u> > Resources > EPS Product Validation Reports **METSA**

Three myths about GOME-2 Myth 3: Reflectivity degradation

Is signal degradation a problem? – Yes, but....

- Degradation predominantly affects fit residuals and scatter
- Retrieved values are less or not affected
- Fitting residuals increase over time
- Effect is largest in channel 2, but NO₂ is also affected
- The same is true for other absorbers (SO₂, HCHO, CHOCHO)
- All operational products of GOME-2 / Metop-A are still within specifications

Study by:

S. Dikty and A. Richter, IUP Bremen

See Level 2 report on the impact of degradation on level 2 products: <u>www.eumetsat.int</u> > <u>Data & Products</u> > Resources > EPS Product Validation Reports **METSAT**

GOME-2 Metop-A/B Tandem Operations Principle idea

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013

SLIDE: 49

GOME-2 Metop-A/B Tandem Operations First, preliminary results from the test campaign

GOME-2 Metop-A/B Tandem Operations First, preliminary results from the test campaign

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SLIDE: 52

GOME-2 Metop-A/B Tandem Operations

Metop-A/B / GOME-2 Radiometric accuracy and calibration Earthshine measurement co-location FM2 to FM3 / Co-location criteria

- **Co-location criteria:**
- Area overlap > 80%
- Geo. AMF diff < 2%

• Relative O₂ A-Band residual (ROR) smaller than empirical threshold

Metop-A/B / GOME-2 Radiometric accuracy and calibration Earthshine measurement co-location FM2 to FM3 / Co-locations

26th December 2012

10th January 2013

Co-locations FM2 (M01) vs FM3 (M02) residuals for M01 +-48.2 min-shift viewing

Metop-A/B / GOME-2 Radiometric accuracy and calibration Earthshine measurement co-location FM2 to FM3 / Reflectivity residuals

Residual in reflectivity

+ Lin. background subtracted per channel
+ 20 pix. moving average smoothing
+ Relative Oxygen-A band Residual (ROR) selection criterium

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SLIDE: 55

450

500

Wavelength [nm]

550

600

650

700

750

800

400

-20

250

300

350

Metop-A/B / GOME-2 Radiometric accuracy and calibration Earthshine measurement co-location FM2 to FM3 / Average over all Residuals per day

FM2-East/FM3-West FM2-West/FM3-East Nadir

Separation between East/West/Nadir at +-20 degree viewingangle

Metop-A/B / GOME-2 Radiometric accuracy and calibration Earthshine measurement co-location FM2 to FM3 / Comparison with V-LIDORT

Left up: Residual FM3 with V-LIDORT Residual FM2 with V-LIDORT

•Broad-band structure in FM3 channel 3 •Small-scale structures in FM2 channel 3

Bottom: Residuals between FM3 and FM2

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SL

SLIDE: 57

GOME-2 reflectivity inter-calibration

GOME-2 reflectivity inter-calibration AVHRR ch1 / Metop-A

AVHRR channel 1 to GOME-2 offset in reflectivity of ~9% (AVHRR < GOME-2)

Preliminary results indicate that the offset has been quite stable during the last four years.

see GSICS Quarterly Newsletters, vol 5, number 3, *Latter et al.*

GOME-2 reflectivity inter-calibration SEVIRI ch1/ MSG-2 – preliminary results

GOME-2 reflectivity inter-calibration SEVIRI ch1/ MSG-2 – preliminary results

-100

-80

GOME2--MSG reflectancies vis0.6 channel [%] 20110728050255 20110728150255

-20

20

40

60

80

Co-location of GOME-2 Metop-A with Seviri / MSG data.

Spatial collocation: Average of all Seviri measurements (~4km) in one GOME-2 ground pixel (40 by 80 km)

Temporal collocation: Within +- 7.5 min of sensing time.

100

GOME-2 reflectivity inter-calibration SEVIRI / MSG-2 – preliminary results at 0°/0°

GOME2--MSG reflectancies vis0.6 channel [%] 20110728050255 20110728150255

No SNPs yet!

MSG (vis0.6) / GOME-2 co-located reflectancies [-] 20110728050255 20110728150255

More work needed!!! GC

- 1. Improve spatial co-location by taking spatial aliasing into account
- 2. Improved temporal co-location still possible at the expense of worse statistics
- 3. Filter for low variability, low path length difference, etc..

SLIDE: 62

GOME-2 Long-term throughput changes Solar Mean Reference (SMR) spectrum

Reprocessed signals R2 PPF 5.2 until August 2011 relative to February 2007

GOME-2 Long-term throughput changes Solar Mean Reference (SMR) spectrum

PMD-P

PMD-S

Reprocessed signals R2 PPF 5.2 until August 2011 relative to February 2007

Long-term degradation FPA vs PMD Solar Mean Reference 310 nm

FPA-SMR smoothed (black line) with PMD spectral response function.

Long-term degradation FPA vs PMD Solar Mean Reference 330 nm

FPA-SMR smoothed (black line) with PMD spectral response function.

Long-term degradation FPA vs PMD Solar Mean Reference 380 nm

FPA-SMR smoothed (black line) with PMD spectral response function.

Long-term degradation FPA vs PMD Solar Mean Reference 420 nm

FPA-SMR smoothed (black line) with PMD spectral response function.

Long-term degradation FPA vs PMD Solar Mean Reference 570 nm

FPA-SMR smoothed (black line) with PMD spectral response function.

Long-term degradation FPA vs PMD Solar Mean Reference 745 nm

FPA-SMR smoothed (black line) with PMD spectral response function.

Earthshine degradation until December 2010 Sahara – 311nm – relative to mean of 2007

Earthshine Sahara

- Normalised to 2007
 Every 2nd scanner angle position is used (coloured solid lines)
 Solar Mean Reference (black dashed line)
 - Low outliers are due to interfering narrow scan

Earthshine degradation until December 2010 Sahara – 311nm – relative to mean of 2007 – PMD-P

Earthshine Sahara

- Normalised to 2007
 Every 2nd scanner angle position is used (coloured solid lines)
 Solar Mean Reference (black dashed line)
 Low outliers are due to
 - Low outliers are due to interfering narrow scan

R1 campaign Jan 2007 – Dec 2010

Earthshine degradation until December 2010 Sahara – 420nm – relative to mean of 2007

Earthshine Sahara

- Normalised to 2007
- Every 2nd scanner angle position is used (coloured solid lines)
- Solar Mean Reference (black dashed line)
 - Low outliers are due to interfering narrow scan

R2 campaign Jan 2007 – Aug 2011

Earthshine degradation until December 2010 Sahara – 311nm – relative to mean of 2007 – PMD-P

Earthshine Sahara

- Normalised to 2007
 Every 2nd scanner angle position is used (coloured solid lines)
 Solar Mean Reference (black dashed line)
 - Low outliers are due to interfering narrow scan

R1 campaign Jan 2007 – Dec 2010

Earthshine degradation until December 2010 Sahara – 420nm – relative to mean of 2007

Earthshine Sahara

- Normalised to 2007
- Every 2nd scanner angle position is used (coloured solid lines)
- Solar Mean Reference (black dashed line)
 - Low outliers are due to interfering narrow scan

R2 campaign Jan 2007 – Aug 2011

GOME scan mirror contribution Adapted SRON GOME-1 model results for GOME-2

Scan mirror degradation

Adapted to GOME-2 from GOME-1 in spectral and temporal space

Model data provided by Snel and Krijger, SRON

EUMETSAT

GOME-2 SCAN MIRROR CONTRIBUTION VS INSTRUMENT

DEGRADATION

SMR AND SCAN MIRROR CONTRIBUTION

Scan mirror and instrument degradation

Scan mirror model data based on GOME-1 provided by Snel and Krijger, SRON

EO LESSONS LEARNED, ESA-ESRIN, FRASCATI, JUNE 2013 SLIDE: 77

EUMEI JAT

GOME-2 INSTRUMENT DEGRADATION Hypothesis by the ESA/EUMETSAT/INDUSTRY GOME-2 TIGER TEAM

Arathene out-gassing by conformal coatings. Hyposesis posed by the "ESA/EUMETSAT/Industry GOME-2 tiger team on instrument degradation."

Arathene absorption spectra

"Peak at 310 nm corresponds to a more volatile component in the Arathene, which is effectively removed from the conformal coating by the bake-out process which is applied in the "real instrument PCBs" Scan mirror model data based on GOME-1 provided by Snel and Krijger, SRON

SMR and Mirror contribution ratio w.r.t. 20070201121246

Metop-B / FM2 Radiometric accuracy and calibration Earthshine measurement co-location to Metop-A / FM3 / Radiances

Findings during GOME202-2 Delta Calibration Radiometric Calibration – Potential stray-light contribution

Irradiance Calibration: Vacuum Window Effect

Radiometric Calibration Investigations

Results for irradiance measured with TVC windows and without TVC window overlap, apart from the wiggles, it is therefore concluded that the window does not introduce any effect on the irradiance measurement results.

Findings at GOME202-2 Delta Calibration Radiometric Calibration (6)

Irradiance Calibration: Effect of alignment

Radiometric Calibration Investigations

Irradiance measurements carried out after each alignment show large deviations. The deviation can be caused by a wrong determination of the distance. This was unexpected based on the theodolite procedure and the expected accuracies, but it is considered the most likely explanation.

Slit function from FM2/Metop-B On-ground calibration FM2-1 vs FM2-2

Considered to be an instrument feature from small bending of the gratings due to thermal gradients along the optical bench.

Instrument provider (SELEX/Galileo) report.

Largest effect expected for initial changes before/after launch!

Slit function from FM2/Metop-B On-ground calibration FM2-1 vs FM2-2

Considered to be an instrument feature from small bending of the gratings due to thermal gradients along the optical bench.

Instrument provider (SELEX/Galileo) report.

Largest effect expected for initial changes before/after launch!

Slit function from FM2/Metop-B On-ground calibration FM2-1 vs FM2-2

Considered to be an instrument feature from small bending of the gratings due to thermal gradients along the optical bench.

Instrument provider (SELEX/Galileo) report.

Largest effect expected for initial changes before/after launch!

