
LS-IAS-01 
Version 1.0 

Department of the Interior 
U.S. Geological Survey 
 
 
 
 
 
LANDSAT 7 (L7) 
IMAGE ASSESSMENT SYSTEM (IAS)  
GEOMETRIC ALGORITHM THEORETICAL BASIS 
DOCUMENT (ATBD) 
 
 
 
 
 
 
 
 
 
 
Version 1.0 
 
December 2006 
 
 
 
 

 



 - ii - LS-IAS-01 
  Version 1.0 

 

LANDSAT 7 (L7) 
IMAGE ASSESSMENT SYSTEM (IAS) 

GEOMETRIC ALGORITHM THEORETICAL BASIS DOCUMENT 
(ATBD) 

December 2006 

 
 
 
 
Prepared By: Reviewed By: 
 
______________________________ ______________________________ 
J. Storey Date D. Strande Date 
Chief Systems Engineer IAS Systems Engineer 
SAIC  SAIC 
 
 
Reviewed By: Reviewed By: 
 
______________________________ ______________________________ 
R. Hayes Date A. Meyerink Date 
Landsat CalVal Task Lead Landsat A&P Task Lead 
SAIC USGS  
 
 
Reviewed By: Approved By: 
 
______________________________ ______________________________ 
S. Labahn Date J. Lacasse Date 
Landsat Ground Segment Manager Landsat Mission Managmement Officer 
SAIC USGS  
 
 
 
 
 
 
 
 

 
EROS 

Sioux Falls, South Dakota 



 - iii - LS-IAS-01 
  Version 1.0 

 

Contents 

Contents ........................................................................................................................ iii 
List of Figures .............................................................................................................. iv 
List of Tables ................................................................................................................. v 
Section 1 Introduction .............................................................................................. 1 

1.1 Purpose............................................................................................................. 1 
Section 2 Overview and Background Information ................................................. 3 

2.1 Experimental Objective ..................................................................................... 3 
2.2 Historical Perspective ....................................................................................... 4 
2.3 Instrument Characteristics ................................................................................ 4 
2.4 Ancillary Input Data ........................................................................................... 4 

Section 3 Algorithm Descriptions ........................................................................... 6 
3.1 Theoretical Description ..................................................................................... 6 

3.1.1 Landsat 7 ETM+ Viewing Geometry Overview .......................................... 6 
3.1.2 Coordinate Systems................................................................................... 8 
3.1.3 Coordinate Transformations .................................................................... 15 
3.1.4 Time Systems .......................................................................................... 18 
3.1.5 Mathematical Description of Algorithms ................................................... 21 
3.1.6 Variance or Uncertainty Estimates ......................................................... 157 

Section 4 Constraints, Limitations, Assumptions ............................................. 172 
4.1 Atmospheric Refraction Correction ............................................................... 172 
4.2 Resampling ................................................................................................... 172 
4.3 Speed of Light Correction ............................................................................. 172 

References ................................................................................................................. 173 
 
 



 - iv - LS-IAS-01 
  Version 1.0 

 

List of Figures 

Figure 3-1.  ETM+ Geometry Overview ........................................................................... 7 
Figure 3-2.  ETM+ Detector Array Ground Projection ..................................................... 8 
Figure 3-3.  ETM+ Focal Plane Coordinate System ........................................................ 9 
Figure 3-4.  ETM+ Sensor Coordinate System .............................................................. 10 
Figure 3-5.  Orbital Coordinate System ......................................................................... 12 
Figure 3-6.  Earth-Centered Inertial (ECI) Coordinate System ...................................... 13 
Figure 3-7.  Earth-Centered Rotating (ECR) Coordinate System .................................. 14 
Figure 3-8.  Geodetic Coordinate System ..................................................................... 15 
Figure 3-9.  Model Initialization ..................................................................................... 26 
Figure 3-10.  Rectification and Resampling ................................................................... 26 
Figure 3-11.  Precision Correction Solution ................................................................... 27 
Figure 3-12.  Precision/Terrain Correction .................................................................... 27 
Figure 3-13.  Scan Mirror Profile Deviations .................................................................. 44 
Figure 3-14.  Effect of Roll Jitter on Line-of-Sight Directionn ......................................... 47 
Figure 3-15. Magnitude Response of Gyro and ADS .................................................... 58 
Figure 3-16. Magnitude Response of Gyro Plus ADS ................................................... 59 
Figure 3-17. Magnitude Response of Gyro + Magnitude Response of ADS ................. 60 
Figure 3-18. Attitude Processing Network ..................................................................... 61 
Figure 3-19. Input Image Gridding Pattern Relating Input to Output Space .................. 79 
Figure 3-20. Extended Pixels and Scan Alignment ....................................................... 88 
Figure 3-21. Calculation of Scan Gap ........................................................................... 89 
Figure 3-22. Scan Misalignment and Gap ..................................................................... 90 
Figure 3-23. Extended Scan Lines ................................................................................ 90 
Figure 3-24. Cubic Spline Weights ................................................................................ 91 
Figure 3-25. Inverse Mapping with “Rough” Polynomial ................................................ 91 
Figure 3-26. “Rough” Polynomial – First Iteration .......................................................... 92 
Figure 3-27. Results Mapped Back to Input Space ....................................................... 92 
Figure 3-28. Nearest Neighbor Resampling .................................................................. 93 
Figure 3-29. Detector Delay Definition .......................................................................... 95 
Figure 3-30. Resampling Weight Determination ............................................................ 96 
Figure 3-31. Definition of Orbit Reference System ........................................................ 97 
Figure 3-32. Look Vector Geometry ............................................................................ 101 
Figure 3-33. Terrain Correction Geometry .................................................................. 117 
Figure 3-34. DOQ Quarter-quad Images Covering About 20 TM Scans ..................... 136 
Figure 3-35. Legendre Differences .............................................................................. 138 
Figure 3-36. Difference between Actual Mirror Profiles ............................................... 138 
Figure 3-37. Correlation Errors .................................................................................... 149 
Figure 3-38. Correlation Standard Deviations ............................................................. 150 
Figure 3-39. Road Cross-Section Example ................................................................. 151 
Figure 3-40. Correlation Errors .................................................................................... 152 
Figure 3-41. Alignment Estimation Accuracy vs. Number of Scenes .......................... 165 
Figure 3-42. Band-to-Band Test Point Number vs. Accuracy ...................................... 167 
 
 



 - v - LS-IAS-01 
  Version 1.0 

 

List of Tables 

Table 3-1. At-Launch 1Gs Geodetic Error Budget ....................................................... 159 
Table 3-2. 1Gs Geodetic Error Budget after Alignment Calibration ............................. 160 
Table 3-3. Pointing Error Estimate Accuracy Analysis—Inputs and Results ............... 162 
Table 3-4. Alignment Estimate Accuracy ..................................................................... 163 
Table 3-5. Scan Mirror Calibration Accuracy Analysis Input Assumptions .................. 164 
Table 3-6. Band-to-Band Registration Error Budget .................................................... 169 
Table 3-7. Image-to-Image Registration Error Budget ................................................ 171 



 - 1 - LS-IAS-01 
  Version 1.0 

 

Section 1 Introduction 

1.1  Purpose 

This document describes the geometric algorithms used by the Landsat 7 Image 
Assessment System (IAS). These algorithms are implemented as part of the IAS Level 
1 processing, geometric characterization, and geometric calibration software 
components.  

The overall purpose of the IAS geometric algorithms is to use Earth ellipsoid and terrain 
surface information, in conjunction with spacecraft ephemeris and attitude data, and 
knowledge of the Enhanced Thematic Mapper Plus (ETM+) instrument and Landsat 7 
satellite geometry to relate locations in ETM+ image space (band, scan, detector, 
sample) to geodetic object space (latitude, longitude, and height).  These algorithms are 
used to create accurate Level 1 output products, characterizing the ETM+ absolute and 
relative geometric accuracy, and to derive improved estimates of geometric calibration 
parameters such as the sensor-to-spacecraft alignment.   

This document presents background material that describes the relevant coordinate 
systems, time systems, ETM+ sensor geometry, and Landsat 7 spacecraft geometry, as 
well the IAS processing algorithms. 

Level 1 processing algorithms include:    
 
• Payload Correction Data (PCD) processing    
• Mirror Scan Correction Data (MSCD) processing    
• ETM+/Landsat 7 sensor/platform geometric model creation    
• Sensor line-of-sight generation and projection    
• Output space/input space correction grid generation    
• Image resampling    
• Geometric model precision correction using ground control 
• Terrain correction 

These algorithms are discussed in detail in 3.1.5.1.3.  

The geometric calibration algorithms, discussed in 3.1.5.4, include:   
 
• ETM+ sensor alignment calibration   
• Focal plane calibration (focal plane band-to-band alignment)   
• Scan mirror calibration 
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The geometric characterization algorithms, discussed in 3.1.5.5, include:   
 
• Band-to-band registration   
• Image-to-image registration 
• Geodetic accuracy assessment (absolute external accuracy)   
• Geometric accuracy assessment (relative internal accuracy)   
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Section 2 Overview and Background Information 

The Landsat 7 Enhanced Thematic Mapper Plus (ETM+) continues the Landsat 
program of multispectral space-borne Earth remote sensing satellites that began with 
the launch of Landsat 1 in 1972.  Landsat 7 provides data consistent with the Landsat 
historical record in the time period between the decommissioning of the still-functioning 
Landsat 5 and the introduction of successor instruments based on newer technology in 
the next century.   

The basic sensor technology used in the ETM+ is similar to the Thematic Mapper (TM) 
instruments flown in Landsats 4 and 5 and the Enhanced Thematic Mapper (ETM) built 
for Landsat 6, which suffered a launch failure.  The geometric processing, 
characterization, and calibration algorithms described in this document take into 
account the new 15-meter panchromatic band (also present in Landsat 6) and the 
higher resolution thermal band in adapting the processing techniques applied to Landsat 
4/5 TM data to Landsat 7 ETM+ data. 

The inclusion of an Image Assessment System (IAS) as an integral part of the Landsat 
7 ground system illustrates the more systematic approach to instrument calibration, in-
orbit monitoring, and characterization necessitated by the more stringent calibration 
requirements of the Landsat 7 ETM+ (as compared to earlier Landsat missions).  This is 
especially true of the radiometric calibration requirements, which include using partial- 
and full-aperture solar calibrations to monitor the stability and performance of ETM+ 
detectors and on-board calibration lamps.  The IAS also provides a platform for 
systematic geometric performance monitoring, characterization, and calibration as 
described in the remainder of this document. 

2.1  Experimental Objective 

The objective of the Landsat 7 ETM+ mission is to provide high-resolution (15-meter 
panchromatic, 30-meter multispectral, 60-meter thermal) imagery of Earth’s land areas 
from near polar, sun-synchronous orbit.  These data extend the continuous data record 
collected by Landsats 1–5, provide higher spatial resolution in the new panchromatic 
band, provide greater calibration accuracy to support new and improved analysis 
applications, and provide a high-resolution reference for the Earth Observing System 
(EOS)-AM1 Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle 
Imaging Spectroradiometer (MISR), and Advanced Spaceborne Thermal Emission and 
Reflection (ASTER) instruments.   

The geometric algorithms described in this document are used by the Landsat 7 IAS 
and by the Level 1 Product Generation System (LPGS) to ensure that the complex 
ETM+ internal geometry is sufficiently modeled and characterized to permit generation 
of Level 1 products that meet the Landsat 7 system geometric accuracy specifications. 
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2.2 Historical Perspective 

The Landsat 7 ETM+ mission continues the evolutionary improvement of the Landsat 
family of satellites, which began with Landsats 1, 2, and 3 carrying the Multi-Spectral 
Scanner (MSS), and builds on the Landsat 4/5 TM heritage.  The ETM+ adds a 15-
meter Ground Sample Distance (GSD) panchromatic band, similar to that used in the 
ETM instrument built for Landsat 6, improves the thermal band spatial resolution from 
120 meters (TM/ETM) to 60 meters (ETM+), and improves the radiometric calibration 
accuracy from 10 percent (TM/ETM) to 5 percent (ETM+).  The Landsat 7 system also 
takes a more systematic approach to monitoring and measuring system geometric 
performance in flight than was applied to Landsats 4 and 5, which were turned over to 
commercial operation in October 1985. 

2.3  Instrument Characteristics 

The fundamental ETM+ instrument geometric characteristics include: 
 
• Nadir viewing +/–7.5 degree instrument field of view (FOV) 
• Bi-directional, cross-track scanning mirror 
• Along-track scan line corrector mirrors 
• Eight bands, three resolutions, two focal planes 
• Even/odd detectors staggered on focal planes 
• Pre-launch, ground-calibrated, non-linear mirror profile 
• Scan angle monitor that measures actual mid-scan and scan end times (as 

deviations from nominal) 
• High frequency (2–125 Hertz [Hz]) angular displacement sensors that measure 

instrument jitter 

2.4  Ancillary Input Data 

The Landsat 7 ETM+ geometric characterization, calibration, and correction algorithms 
are applied to the wideband data (image plus supporting Payload Correction Data [PCD] 
and Mirror Scan Correction Data [MSCD]) contained in Level 0R (raw) or 1R 
(radiometrically corrected) products. Some of these algorithms also require additional 
ancillary input data sets, including: 

 
• Precise ephemeris from the Flight Dynamics Facility—used to minimize 

ephemeris error when performing sensor-to-spacecraft alignment calibration 
• Ground control/reference images for geometric test sites—used in precision 

correction, geodetic accuracy assessment, and geometric calibration algorithms 
• Digital elevation data for geometric test sites—used in terrain correction and 

geometric calibration 
• Pre-launch ground calibration results, including band/detector placement and 

timing, scan mirror profiles, and attitude sensor data transfer functions (gyro and 
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Attitude Displacement Sensors [ADS]), to be used in the generation of the initial 
Calibration Parameter File 

• Earth parameters, including static Earth model parameters (e.g., ellipsoid axes, 
gravity constants) and dynamic Earth model parameters (e.g., polar wander 
offsets, Universal Time Code (UTC)-Corrected (UT1) time corrections)—used in 
systematic model creation and incorporated into the Calibration Parameter File
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Section 3 Algorithm Descriptions 

This section presents the underlying theory and mathematical development of the Image 
Assessment System (IAS) geometric algorithms.   

3.1  Theoretical Description 

The supporting theoretical concepts and mathematics of the IAS geometric algorithms are 
presented in the following subsections.  Section 3.1.1 presents a review of the Landsat 7 
Enhanced Thematic Mapper Plus (ETM+) viewing geometry to put the subsequent 
discussion in context.  Sections 3.1.2 and 3.1.3 address the coordinate systems used by 
the algorithms and the relationships between them, citing references where appropriate.  
Section 3.1.4 briefly defines and discusses the various time systems used by the IAS 
algorithms.  Section 3.1.5 presents the mathematical development of, and solution 
procedures for, the Level 1 processing, geometric calibration, and geometric 
characterization algorithms.  Section 3.1.6 discusses estimates of uncertainty (error 
analysis) associated with each of the algorithms. 

3.1.1 Landsat 7 ETM+ Viewing Geometry Overview 

The ETM+ instrument detectors are aligned in parallel rows on two separate focal planes: 
the primary focal plane, containing bands 1–4 and 8 (panchromatic), and the cold focal 
plane, containing bands 5, 6, and 7.  The primary focal plane is illuminated by the ETM+ 
scanning mirror, primary mirror, secondary mirror, and scan line corrector mirror.  In 
addition to these optical elements, the cold focal plane optical train includes the relay 
folding mirror and the spherical relay mirror.  This is depicted in Figure 3-1.  The ETM+ 
scan mirror provides a nearly linear cross-track scan motion that covers a 185-kilometer 
(km) wide swath on the ground.  The scan line corrector compensates for the forward 
motion of the spacecraft and allows the scan mirror to produce usable data in both scan 
directions. 

Within each focal plane, the rows of detectors from each band are separated in the along-
scan (cross-track) direction.  The odd and even detectors from each band are also 
separated slightly.  The detector layout geometry is shown in Figure 3-2.  Samples from 
the ETM+ detectors are packaged into minor frames as they are collected (in time order) 
for downlink in the wideband data stream.   

Within each minor frame, the output from the odd detectors from bands 1–5 and 7 and all 
band 8 detectors are held at the beginning of the minor frame.  The even detectors from 
bands 1–5 and 7 and all band 8 detectors are held at the midpoint of the minor frame.  
The even and odd detectors from band 6 are held at the beginning of alternate minor 
frames.   

The bands are nominally aligned during Level 0R ground processing by delaying the even 
and odd detector samples from each band to account for the along-scan motion needed 
to view the same target point.  These delays are implemented as two sets of fixed integer 
offsets for the even and odd detectors of each band—one set for forward scans and one 
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set for reverse scans.  Two sets of offset delays are necessary since the band/detector 
sampling sequence with respect to a ground target is inverted for reverse scans.  Level 
0R ground processing also reverses the sample time sequence for reverse scans to 
provide nominal spatial alignment between forward and reverse scans. 
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Figure 3-1.  ETM+ Geometry Overview 
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The instrument's 15-degree field of view is swept over the ETM+ focal planes by the scan 
mirror.  Each scan cycle, consisting of a forward and reverse scan, is 142.245 
milliseconds.  The scan mirror period for a single forward or reverse scan is nominally 
71.462 milliseconds.  Of this time, approximately 60.743 milliseconds is devoted to the 
Earth viewing portion of the scan, with 10.719 milliseconds devoted to the collection of 
calibration data and mirror turnaround.  Within each scan, detector samples (minor 
frames) are collected every 9.611 microseconds (with two samples per minor frame for 
the 15-meter resolution panchromatic band).  More detailed information on the ETM+ 
instrument's construction, operation, and pre-flight testing is provided in Reference 5. 
 

Band 8 Band 1 Band 2 Band 3 Band 4 Band 7 Band 5 Band 6
Cold Focal PlanePrimary Focal Plane

Optical
  Axis

25 IFOV 25 IFOV 25 IFOV 25 IFOV 45 IFOV 26 IFOV 34.75 IFOV

10.4

 

Figure 3-2.  ETM+ Detector Array Ground Projection 

The 15-degree instrument field of view sweeps out a ground swath approximately 185 
kilometers (km) wide.  This swath is sampled 6,320 (nominally) times by the ETM+ 30-
meter resolution bands.  Since 16 detectors from each 30-meter band are sampled in 
each data frame, the nominal scan width is 480 meters.  The scan line corrector 
compensates for spacecraft motion during the scan to prevent excessive (more than 1 
pixel) overlap or underlap at the scan edges.  Despite this, the varying effects of Earth 
rotation and spacecraft altitude (both of which are functions of position in orbit) will lead to 
variations in the scan-to-scan gap observed. 

3.1.2  Coordinate Systems 

The coordinate systems used by Landsat 7 are described in detail in Reference 2.  There 
are ten coordinate systems of interest for the Landsat 7 IAS geometric algorithms.  These 
coordinate systems are referred to frequently in the remainder of this document and are 
briefly defined here to provide context for the subsequent discussion.  They are presented 
in the order in which they would be used to transform a detector and sample time into a 
ground position. 

1. ETM+ Array Reference (Focal Plane) Coordinate System 

The focal plane coordinate system is used to define the band and detector offsets 
from the instrument optical axis, which are ultimately used to generate the image 
space viewing vectors for individual detector samples.  It is defined so that the Z-
axis is along the optical axis and is positive toward the scan mirror.  The origin is 
where the optical axis intersects the focal planes (see Figure 3-3).  The X-axis is 
parallel to the scan mirror's axis of rotation and is in the along-track direction after 
a reflection off the scan mirror, with the positive direction toward detector 1.  The 
Y-axis is in the focal plane's along-scan direction with the positive direction toward 
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band 8.  This definition deviates from the description in the Landsat 7 Program 
Coordinates System Standard Document in that the origin is placed at the focal 
plane/optical axis intersection rather than at an arbitrary reference detector 
location. 

X

Y

8 1 2 3 4 7 5 6

1

32

1

16

1

16

1

16

1

16

1

16

1

16

1

8

 

Figure 3-3.  ETM+ Focal Plane Coordinate System 

2. ETM+ Sensor Coordinate System 

The scan mirror and scan line corrector models are defined in the sensor 
coordinate system.  This is the coordinate system in which an image space vector, 
representing the line of sight from the center of a detector, and scan mirror and 
scan line corrector angles are converted to an object space-viewing vector.   

The Z-axis corresponds to the Z-axis of the focal plane coordinate system (optical 
axis) after reflection off the scan mirror and is positive outward (toward the Earth).  
The X-axis is parallel to the scan mirror axis of rotation and is positive in the along-
track direction.  The Y-axis completes a right-handed coordinate system.   

Scan mirror angles are rotations about the sensor X axis and are measured in the 
sensor Y-Z plane with the Z axis corresponding to a zero scan angle and positive 
angles toward the Y axis (west in descending mode).  Scan line corrector angles 
are rotations about the sensor Y-axis and are measured in the sensor X-Z plane 
with the Z-axis corresponding to a zero scan line corrector angle and positive 
angles toward the X-axis (the direction of flight).   

The sensor coordinate system is depicted in Figure 3-4.  In this coordinate system, 
the scan line corrector performs a negative rotation (from a positive angle to a 
negative angle) on every scan, while the scan mirror performs a positive-to-
negative rotation for forward scans and a negative-to-positive rotation for reverse 
scans. 
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Figure 3-4.  ETM+ Sensor Coordinate System 

3. Navigation Reference Coordinate System  

The navigation reference frame is the body-fixed coordinate system used for 
spacecraft attitude determination and control.  The coordinate axes are defined by 
the spacecraft attitude control system (ACS), which attempts to keep the 
navigation reference frame aligned with the orbital coordinate system so that the 
ETM+ optical axis is always pointing toward the center of the Earth.  It is the 
orientation of this coordinate system relative to the inertial coordinate system that 
is captured in spacecraft attitude data. 

4. IMU Coordinate System 

The spacecraft orientation data provided by the gyros in the inertial measurement 
unit are referenced to the Inertial Measurement Unit (IMU) coordinate system.  
This coordinate system is nominally aligned with the navigation reference 
coordinate system.  The actual alignment of the IMU with respect to the navigation 
reference is measured pre-flight as part of the ACS calibration.  This alignment 
transformation is used by the IAS to convert the gyro data contained in the Landsat 
7 Payload Correction Data (PCD) to the navigation reference coordinate system for 
blending with the ACS quaternions and the Angular Displacement Assembly (ADA) 
jitter measurements. 
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5. ADA Coordinate System 

The high-frequency angular displacements of the sensor line of sight (jitter) 
measured by the ADA are referenced to the ADA coordinate system.  This 
reference frame is at a nominal 20-degree angle with respect to the sensor 
coordinate system, corresponding to a 20-degree rotation about the ADA X-axis, 
which is nominally coincident with the sensor X-axis.   

The ADA output recorded in the Landsat 7 PCD is converted from the ADA 
coordinate system to the sensor coordinate system (using the ADA alignment 
matrix), and then to the navigation reference coordinate system (using the sensor 
alignment matrix), so that the high-frequency jitter data can be combined with the 
low-frequency gyro data to determine the actual ETM+ sensor line-of-sight pointing 
as a function of time. 

6. Orbital Coordinate System 

The orbital coordinate system is centered on the satellite, and its orientation is 
based on the spacecraft position in inertial space (see Figure 3-5).  The origin is 
the spacecraft’s center of mass, with the Z-axis pointing from the spacecraft’s 
center of mass to the Earth’s center of mass.  The Y-axis is the normalized cross 
product of the Z-axis and the instantaneous (inertial) velocity vector and 
corresponds to the negative of the instantaneous angular momentum vector 
direction.  The X-axis is the cross product of the Y and Z-axes. 
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Figure 3-5.  Orbital Coordinate System 

7. ECI Coordinate System 

The Earth-Centered Inertial (ECI) coordinate system is space-fixed with its origin at 
the Earth's center of mass (see Figure 3-6).  The Z-axis corresponds to the mean 
north celestial pole of epoch J2000.0.  The X-axis is based on the mean vernal 
equinox of epoch J2000.0.  The Y-axis is the cross product of the Z and X axes.  
This coordinate system is described in detail in Reference 2 and Reference 7.  
Data in the ECI coordinate system are present in the Landsat 7 ETM+ Level 0R 
product in the form of ephemeris and attitude data contained in the spacecraft 
PCD. 

Although the IAS uses J2000, there is some ambiguity in the existing Landsat 7 
system documents that discuss the inertial coordinate system.  Reference 2 states 
that the ephemeris and attitude data provided to and computed by the spacecraft 
on-board computer are referenced to the ECI True of Date (ECITOD) coordinate 
system (which is based on the celestial pole and vernal equinox of date rather than 
at epoch J2000.0).  This appears to contradict Reference 1, which states that the 
ephemeris and attitude data contained in the Landsat 7 PCD (i.e., from the 
spacecraft on-board computer) are referenced to J2000.0.  The relationship 
between these two inertial coordinate systems consists of the slow variation in 
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orientation due to nutation and precession, which is described in Reference 2 and 
Reference 7.  
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Figure 3-6.  Earth-Centered Inertial (ECI) Coordinate System 

8. ECR Coordinate System 

The Earth-Centered Rotating (ECR) coordinate system is Earth-fixed with its origin 
at the Earth’s center of mass (see Figure 3-7).  It corresponds to the Conventional 
Terrestrial System defined by the Bureau International de l’Heure (BIH), which is 
the same as the U.S. Department of Defense World Geodetic System 1984 
(WGS84) geocentric reference system.  This coordinate system is described in 
Reference 7. 
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Figure 3-7.  Earth-Centered Rotating (ECR) Coordinate System 

9. Geodetic Coordinate System 

The geodetic coordinate system is based on the WGS84 reference frame with 
coordinates expressed in latitude, longitude, and height above the reference Earth 
ellipsoid (see Figure 3-8).  No ellipsoid is required by definition of the ECR 
coordinate system, but the geodetic coordinate system depends on the selection of 
an Earth ellipsoid.  Latitude and longitude are defined as the angle between the 
ellipsoid normal and its projection onto the equator and the angle between the local 
meridian and the Greenwich meridian, respectively.  The scene center and scene 
corner coordinates in the Level 0R product metadata are expressed in the geodetic 
coordinate system. 
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Figure 3-8.  Geodetic Coordinate System 

10.  Map Projection Coordinate System 

Level 1 products are generated with respect to a map projection coordinate 
system, such as the Universal Transverse Mercator, which provides mapping from 
latitude and longitude to a plane coordinate system that is an approximation of a 
Cartesian coordinate system for a portion of the Earth’s surface.  It is used for 
convenience as a method of providing digital image data in an Earth-referenced 
grid that is compatible with other ground-referenced data sets.  Although the map 
projection coordinate system is only an approximation of a true local Cartesian 
coordinate system at the Earth’s surface, the mathematical relationship between 
the map projection and geodetic coordinate systems is defined precisely and 
unambiguously; the map projections the IAS uses are described in Reference 8. 

3.1.3 Coordinate Transformations 

There are nine transformations between the ten coordinate systems used by the IAS 
geometric algorithms.  These transformations are referred to frequently in the remainder 
of this document and are defined here.  They are presented in the logical order in which a 
detector and sample number would be transformed into a ground position. 
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1. Focal Plane-to-Sensor Transformation 

The relationship between the focal plane and sensor coordinate systems is a 
rapidly varying function of time, incorporating the scan mirror and scan line 
corrector models.  The focal plane location of each detector from each band can 
be specified by a set of field angles in the focal plane coordinate system, as 
described in 3.1.5.1.1.  They are transformed to sensor coordinates based on the 
sampling time (sample/minor frame number from scan start), which is used to 
compute mirror and scan line corrector angles based on the models described in 
3.1.5.1.2 and 3.1.5.1.3. 

2. Sensor-to-Navigation Reference Transformation 

The relationship between the sensor and navigation reference coordinate systems 
is described by the ETM+ instrument alignment matrix.  The transformation from 
sensor coordinates to navigation reference coordinates is described in 4.21 of 
Reference 2.  It includes a three-dimensional rotation, implemented as a matrix 
multiplication, and an offset to account for the distance between the ACS reference 
and the instrument scan mirror. The transformation matrix is initially defined as 
fixed (non-time varying), with improved estimates provided post-launch.  
Subsequent analysis may detect repeatable variations with time, which can be 
effectively modeled, making this a (slowly) time-varying transformation.  The 
nominal rotation matrix is the identity matrix. 

3. IMU-to-Navigation Reference Transformation 

The IMU coordinate system is related to the navigation reference coordinate 
system by the IMU alignment matrix, which captures the orientation of the IMU 
axes with respect to the navigation base.  This transformation is applied to gyro 
data prior to their integration with the ADA data and the ACS quaternions.  The 
IMU alignment is measured pre-flight and is nominally the identity matrix.  This 
transformation is defined in 4.22 of Reference 2. 

4. ADA -to-Sensor Transformation 

The angular displacement assembly (ADA) is nominally aligned with the sensor 
coordinate system with a 20-degree rotation about the X-axis.  The actual 
alignment is measured pre-launch and is used to rotate the ADA jitter observations 
into the sensor coordinate system, from which they can be further rotated into the 
navigation reference system using the sensor-to-navigation reference alignment 
matrix. 
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5. Navigation Reference-to-Orbital Transformation 

The relationship between the navigation reference and orbital coordinate systems 
is defined by the spacecraft attitude.  This transformation is a three-dimensional 
rotation matrix with the components of the rotation matrix being functions of the 
spacecraft roll, pitch, and yaw attitude angles.  The nature of the functions of roll, 
pitch, and yaw depends on the exact definition of these angles (i.e., how they are 
generated by the attitude control system).  In the initial model, it is assumed that 
the rotations are performed in the order roll-pitch-yaw as shown in 4.17 of 
Reference 2.  Since the spacecraft attitude is constantly changing, this 
transformation is time varying.  The nominal rotation matrix is the identity matrix, 
since the ACS strives to maintain the ETM+ instrument pointing toward the Earth’s 
center. 

6. Orbital-to-ECI Transformation 

The relationship between the orbital and ECI coordinate systems is based on the 
spacecraft's instantaneous ECI position and velocity vectors.  The rotation matrix 
to convert from orbital to ECI can be constructed by forming the orbital coordinate 
system axes in ECI coordinates: 

 
P = spacecraft position vector in ECI 
V = spacecraft velocity vector in ECI 
Teci/orb = rotation matrix from orbital to ECI 
 
b3 = –p / |p| (nadir vector direction) 
b2 = (b3 x v) / |b3 x v| (negative of angular momentum vector direction) 
b1 = b2 x b3 (circular velocity vector direction) 
Teci/orb = [ b1  b2  b3 ] 

7. ECI-to-ECR Transformation 

The transformation from ECI-to-ECR coordinates is a time-varying rotation due 
primarily to the Earth’s rotation, but it also contains more slowly varying terms for 
precession, astronomic nutation, and polar wander.  The ECI-to-ECR rotation 
matrix can be expressed as a composite of these transformations: 

 
Tecr/eci = A B C D 

 
A = polar motion 
B = sidereal time 
C = astronomic nutation 
D = precession 
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Each of these transformation terms is defined in Reference 2 and is described in 
detail in Reference 7. 

8. ECR-to-Geodetic Transformation 

The relationship between ECR and geodetic coordinates can be expressed simply 
in its direct form: 

 
e2 = 1 – b2 / a2 
N = a / (1 – e2 sin2(lat))1/2 
X = (N + h) cos(lat) cos(lon) 
Y = (N + h) cos(lat) sin(lon) 
Z = (N (1 – e2) + h) sin(lat) 
 

where: 
 

X, Y, Z = ECR coordinates 
lat, lon, h = geodetic coordinates 
N = ellipsoid radius of curvature in the prime vertical 
e2 = ellipsoid eccentricity squared 
a, b = ellipsoid semi-major and semi-minor axes 

 

The closed-form solution for the general inverse problem (the problem of interest 
here) involves the solution of a quadratic equation and is not typically used in 
practice.  Instead, an iterative solution is used for latitude and height for points that 
do not lie on the ellipsoid surface.  A procedure for performing this iterative 
calculation is described in 6.4.3.3 of Reference 4. 

9. Geodetic-to-Map Projection Transformation 

The transformation from geodetic coordinates to the output map projection 
depends on the type of projection selected.  The mathematics for the forward and 
inverse transformations for the Universal Transverse Mercator (UTM), Lambert 
Conformal Conic, Transverse Mercator, Oblique Mercator, Polyconic, Polar Stereo 
Graphic, and the Space Oblique Mercator (SOM) are given in Reference 8.  
Further details of the SOM mathematical development are presented in Reference 
17. 

3.1.4 Time Systems 

Four time systems are of primary interest for the IAS geometric algorithms: International 
Atomic Time (Temps Atomique International [TAI]), Universal Time—Coordinated (UTC), 
Universal Time—Corrected for polar motion (UT1), and Spacecraft Time (the readout of 
the spacecraft clock, nominally coincident with UTC).  Spacecraft Time is the time system 
applied to the spacecraft time codes found in the Level 0R PCD and MSCD.  UTC, which 
the spacecraft clock aspires to, is the standard reference for civil timekeeping.  UTC is 
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adjusted periodically by whole leap seconds to keep it within 0.9 seconds of UT1.  UT1 is 
based on the actual rotation of the Earth and is needed to provide the transformation from 
stellar-referenced inertial coordinates (ECI) to terrestrial-referenced Earth-fixed 
coordinates (ECR).  TAI provides a uniform, continuous time stream that is not interrupted 
by leap seconds or other periodic adjustments.  It provides a consistent reference for 
resolving ambiguities arising from the insertion of leap seconds into UTC, which can lead 
to consecutive seconds with the same UTC time.  These and a variety of other time 
systems, and their relationships, are described in Reference 4.  The significance of each 
of these four time systems with respect to the IAS geometric algorithms is described 
below. 

1. Spacecraft Time 

The Landsat 7 Mission Operations Center attempts to maintain the on-board 
spacecraft clock time to within 145 milliseconds of UTC (see Reference 5, 
3.7.1.3.16) by making clock updates nominally once per day during periods of 
ETM+ inactivity.  Additionally, the spacecraft PCD includes a quadratic clock 
correction model, which can be used to correct the spacecraft clock readout to 
within 15 milliseconds of UTC, according to Reference 1.  The clock correction 
algorithm is: 

 
dt = ts/c – tupdate 
tUTC = ts/c + C0 + C1 dt + 0.5 C2 dt2 

 
where: 
 

dt = spacecraft clock time since last update 
tUTC = corrected spacecraft time (UTC +/– 15 milliseconds) 
ts/c = spacecraft clock time 
tupdate = spacecraft clock time of last ground-commanded clock update 
C0 = clock correction bias term 
C1 = clock drift rate 
C2 = clock drift acceleration 

 

The Landsat 7 onboard computer uses corrected spacecraft clock data to 
interpolate the ephemeris data (which are inserted into the PCD) from the uplinked 
ephemeris (which is referenced to UTC).  The residual clock error of 15 
milliseconds (3 sigma) leads to an additional ephemeris position uncertainty of 
approximately 114 meters (3 sigma), which is included in the overall geodetic 
accuracy error budget.  Since the time code readouts in both the PCD and MSCD 
are uncompensated, the clock correction algorithm must be applied on the ground 
to get the Level 0R time reference to within 15 milliseconds of UTC. 

If the on-board computer were not using the clock drift correction model for 
ephemeris interpolation, the ground-processing problem would be more 
complicated.  Since the spacecraft time is used as a UTC index to interpolate the 
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ephemeris points, the times associated with these ephemeris points are true 
UTC—they simply do not correspond to the actual (corrected) UTC spacecraft 
time.  In this case, the PCD time code errors of up to 145 milliseconds would cause 
a temporal misregistration of the interpolated ephemeris and the associated orbital 
orientation reference coordinate system, relative to the spacecraft clock.  In 
making the spacecraft clock corrections, the times associated with the ephemeris 
points would not be changed in recognition of the fact that they are interpolation 
indices against a UTC time reference. 

2. UTC 

As mentioned above, UTC is maintained within 0.9 seconds of UT1 by the 
occasional insertion of leap seconds.  It is assumed that the insertion of leap 
seconds into the spacecraft clock will be performed on the appropriate dates as 
part of the daily clock update and that this clock update will be coordinated with the 
ephemeris updates provided by the Flight Dynamics Facility (FDF), so that the 
spacecraft clock UTC epoch is the same as the FDF provided ephemeris UTC 
epoch.  Even though UTC provides a uniform time reference for any given scene 
or sub-interval, it is beneficial for the IAS to have access to a table of leap seconds 
relating UTC to TAI to support time-related problem tracking and resolution.  This 
information can be obtained from the National Earth Orientation Service (NEOS) 
Web site at http://maia.usno.navy.mil. 

3. UT1 

UT1 represents time with respect to the actual rotation of the Earth and is used by 
the IAS algorithms, which transform inertial ECI coordinates or lines of sight to 
Earth-fixed ECR coordinates.  Failure to account for the difference between UT1 
and UTC in these algorithms can lead to ground position errors as large as 400 
meters at the equator (assuming the maximum 0.9-second UT1-UTC difference).  
The UT1-UTC correction typically varies at the rate of approximately 2 milliseconds 
per day, corresponding to an Earth rotation error of about 1 meter.  Thus, UT1-
UTC corrections should be interpolated or predicted to the actual image acquisition 
time to avoid introducing errors of this magnitude.  This information can be 
obtained from the National Earth Orientation Service (NEOS) Web site at 
http://maia.usno.navy.mil. 
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4. TAI 

Although none of the IAS algorithms are designed to use TAI in normal operations, 
it is included here for completeness.  As mentioned above, there is the possibility 
that  system anomalies will be introduced as a result of timing errors, particularly in 
the vicinity of UTC leap seconds.  The ability to use TAI as a standard reference 
that can be related to UTC and spacecraft time using a leap second file will assist 
IAS operations staff in anomaly resolution.  For this reason, even though there are 
no IAS software requirements for a leap second reference, it is strongly 
recommended that access be provided to the ECS SDP Toolkit leap second file. 

3.1.5 Mathematical Description of Algorithms 

3.1.5.1  ETM+ Instrument Model 

3.1.5.1.1  Detector/Focal Plane Geometry 

The location of each detector for each band is described in the ETM+ array reference 
coordinate system by using a pair of angles, one in the along-scan, or coordinate Y, 
direction and one in the across-scan, or coordinate X, direction.  In implementing the IAS 
Level 1 processing algorithm, each of these angles is separated into two parts:  the ideal 
band/detector locations used to model the relationship between the sensor image space 
and ground object space and the sub-pixel offsets unique to each detector, which are 
applied during the image resampling process.  This approach makes it possible to 
construct a single analytical model for each band from which nominal detector projections 
can be interpolated and then refined during resampling, rather than performing the image-
to-ground projection computation for each detector.  The capability to rigorously project 
each detector, including all sub-pixel detector placement and timing offsets, has been 
developed to support geometric characterization and calibration. 

Along-scan angles are modeled as the sum of the band odd detector angle from the 
optical axis, common to all detectors for one band, and the sub-pixel offset and time 
delay, unique to each detector within the band.  The IAS algorithms assume that the 
angular displacement between even and odd detectors in each band is exactly 
compensated for by the time delay used to align nominally the even and odd detectors.  
Band center location angles, relative to the sensor optical axis, are stored in the 
Calibration Parameter File.  The odd detector offset from band center (1.25 IFOVs for the 
30-meter bands) is subtracted from the band center angle to yield the nominal detector 
locations.  The along-scan angle is computed as: 
 

along_angle = bandoff_along[BAND] – odd_det_off[BAND] 
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where: 
 

 along_angle = nominal along-scan location of detector 
 bandoff_along = along-scan band center offset (indexed by band) 
 BAND  = band number (1.8) 
 odd_det_off  = odd detector offset from band center (indexed by band) 

The individual detector offsets from their ideal locations are stored in the Calibration 
Parameter File in the form of detector delays, which incorporate both sample timing 
offsets and detector along-scan positioning errors.  These sub-pixel corrections are 
applied during the image resampling process. 

Similarly, the across-scan angles are separated into the nominal detector location 
component, used for line-of-sight construction and projection, and the sub-pixel detector 
placement corrections unique to each detector, applied during resampling.  The nominal 
detector location is computed as: 
 
 cross_angle = bandoff_cross[BAND] + ((ndets[BAND]+1)/2 – N)*IFOV[BAND] 
 
where: 
 
 cross_angle = nominal across-scan location of detector N 
 bandoff_cross = across-scan band center offset (indexed by band) 
 BAND = band number (1.8) 
 Ndets = number of detectors in band (indexed by band) 
 N = detector number (1.ndets) 
 IFOV = detector angular field of view (indexed by band) 

Using these nominal detector locations in the line-of-sight projection computations makes 
it possible to project rigorously the first and last detectors in each band and to interpolate 
the image space-to-ground space transformation for the interior detectors.  This reduces 
the computational load in Level 1 processing, where the unique sub-pixel detector 
placement corrections are applied by the resampling algorithm.  To project an individual 
detector-to-ground space precisely, the sub-pixel along-scan and across-scan corrections 
are added to the nominal detector location. 

3.1.5.1.2  Scan Mirror Model 

The ETM+ scan mirror rotates about the sensor X-axis, providing nearly linear motion in 
the along-scan direction in both the forward and reverse motions.  The scan mirror’s 
departure from linear motion is characterized pre-launch using a set of fifth-order 
polynomials, which model the repeatable acceleration and deceleration deviations from 
linearity for forward and reverse scans.  This fifth-order polynomial is then adjusted for 
high-frequency roll jitter components using ADS data from the PCD.  Fifth-order mirror 
polynomials are also used to model the across-scan mirror deviation for forward and 
reverse scans.  Thus, a total of four fifth-order polynomials characterize the scan mirror’s 
repeatable deviation from nominal linear scanning:  (1) along-scan deviation for forward 
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scans, (2) across-scan deviation for forward scans, (3) along-scan deviation for reverse 
scans, and (4) across-scan deviation for reverse scans.  This set of four polynomials 
constitutes the nonlinear portion of the scan mirror profile.   

The ETM+ instrument contains two sets of Scan Mirror Electronics (SME) used to control 
the mirror motion.  Either SME can be used to drive the mirror in either operational mode: 
Scan Angle Monitor (SAM) mode or Bumper mode.  For each mode, each set of SMEs 
exhibits a characteristic set of mirror profile polynomials, as well as scan start and scan 
stop mirror angles.  This leads to a total of four sets of mirror profile polynomials:  (1) 
SME1 SAM mode, (2) SME2 SAM mode, (3) SME1 Bumper mode, and (4) SME2 
Bumper mode.  The appropriate mirror profile coefficients and scan start/stop angles 
must be selected for a particular data set based on the SME and mode settings in the 
PCD. 

Within each scan, the scan mirror assembly measures the deviation from the nominal 
time of scan from scan start to mid-scan (first half scan error) and from mid-scan to scan 
stop (second half scan error) and records this information in the scan line data minor 
frames for the following scan.  These scan time errors are measured as departures from 
nominal, in counts, with each count being 0.18845 microseconds.   

The first-half and second-half scan errors are used to correct the nominal scan profile by 
adjusting the fifth-order, along-scan polynomial to compensate for the actual mid-scan 
and end-of-scan times.  This correction is applied by rescaling the polynomial coefficients 
to the actual scan time and by computing correction coefficients, which are added to the 
linear and quadratic terms in the fifth-order polynomial.  The calculation procedure is 
given in 3.1.5.3.3. 

3.1.5.1.3  Scan Line Corrector Mirror Model  

The Scan Line Corrector (SLC) mirror rotates the ETM+ line of sight about the sensor Y-
axis to compensate for the spacecraft’s along-track motion during the scanning interval.  
Although the IAS algorithms support fifth-order correction polynomials for the SLC profile, 
in practice, no significant SLC non-linearity has been observed for Landsats 4, 5, and 6. 
Refer to 3.1.5.3.4 for more information on the Scan Line Corrector mirror model. 

3.1.5.2   Landsat 7 Platform Model 

3.1.5.2.1  Sensor Pointing (Attitude and Jitter) Model 

Sensor line-of-sight vectors constructed using the ETM+ instrument model must be 
related to object (ground) space by determining the orientation and position of the sensor 
coordinate system with respect to object space (ECI coordinates) as a function of time.  
The sensor orientation is determined using the sensor pointing model, which includes the 
effects of sensor-to-spacecraft (navigation reference base) alignment, spacecraft attitude 
as determined by the on-board computer using the inertial measurement unit gyros and 
star sightings, and the high-frequency attitude variations (jitter) measured by the angular 
displacement assembly.  The inputs to this model are the attitude quaternions, gyro drift 
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estimates, raw gyro outputs, and ADS outputs contained in the Payload Correction Data, 
as well as the sensor alignment matrix measured pre-launch and updated in flight by the 
Image Assessment System using the sensor alignment calibration algorithm described in 
3.1.5.4.1. 

The Landsat 7 attitude control system generates estimates of the spacecraft attitude 
every PCD major frame (4.096 seconds).  These estimates are provided in the form of 
attitude quaternions, which describe the orientation of the spacecraft navigation reference 
system with respect to the ECI (J2000) coordinate system.  These estimates are derived 
from the IMU gyro data combined with periodic star transit observations from the Celestial 
Sensor Assembly.  As a byproduct of the integration of the gyro and star tracker 
observations, the ACS also computes estimates of gyro drift rates.  A gyro drift rate 
estimate is also included in each PCD major frame, but changes only after a star sighting. 

The raw outputs from each of the three gyro axes are recorded in the PCD every 64 
milliseconds.  In Landsats 4, 5, and 6, there was a 28-millisecond delay between the gyro 
sampling time and the PCD major frame start time (i.e., gyro sampling was indexed from 
PCD start time 28 milliseconds).  From Reference 1, it appears that this offset does not 
apply to Landsat 7.  The 15.625-Hertz (Hz) gyro sampling rate is not sufficient to capture 
the high-frequency spacecraft angular dynamic displacement (jitter).  This sampling 
frequency captures attitude variations up to the Nyquist frequency of 7.8125 Hz, but 
aliases the higher frequencies to the extent that the gyros respond to these higher 
frequencies.  This response is expressed in the IMU transfer functions.  For Landsats 4 
and 5, the transfer functions for each IMU axis were taken to be the same. 

The high-frequency jitter information is measured by the angular displacement sensors 
(ADS), which are sampled at 2-millisecond intervals and are sensitive to frequency 
components between approximately 2 and 125 Hz.  Like the gyros, the ADS samples are 
offset from the PCD major frame start time.  Unlike the gyros, the ADS axes are sampled 
at different times.  The ADS samples begin at the PCD major frame time plus 375 
microseconds for the X axis, plus 875 microseconds for the Y axis, and plus 1,375 
microseconds for the Z axis. The 500-Hz ADS sampling frequency could capture jitter 
frequencies up to 250 Hz, but the output of the ADS is band-limited to the maximum 
expected frequency of 125 Hz by a pre-sampling filter.  Historically, the three ADS axes 
have had different transfer functions.  For Landsats 4 and 5, the ADS transfer functions 
were not separated from the pre-sampling filter, but were provided as a net response.  
For Landsat 6, the pre-sampling filter transfer function was provided separately. 

The gyro and ADS transfer functions are used to blend the gyro/attitude and ADS/jitter 
data in the frequency region where their pass bands overlap from 2 to 7 Hz.  The IAS 
uses the classical approach defined by Sehn and Miller (
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Reference 10) to construct the crossover filters used to combine the gyro and ADS data.  
This is described in more detail in 3.1.5.3.3. 

3.1.5.2.2  Platform Position and Velocity 

The spacecraft state vectors contained in the Payload Correction Data (PCD) stream 
provide position and velocity information in the Earth-Centered Inertial of epoch J2000 
coordinate system every PCD major frame (unlike earlier Landsats, which only provided 
new state vectors every other major frame).  These state vectors are interpolated on-
board using the uplinked predicted ephemeris and may contain significant errors.  Gross 
blunders (i.e., transmission errors) are detected and removed during PCD pre-processing.  
The systematic errors that accumulate in the predicted ephemeris are estimated and 
removed as part of the precision correction algorithm described in 3.1.5.3.8. 

3.1.5.3   Level 1 Processing Algorithms 

The diagrams that follow describe the high-level processing flows for the IAS Level 1 
processing algorithms.  Figure 3-9 describes the process of initializing and creating the 
Landsat 7 geometry model.  Figure 3-10 shows the process of creating a Geometric 
Correction Grid and the application of that grid in the resampling process.  Figure 3-11 
describes the process of refining the Landsat 7 geometry model with ground control, 
resulting in a precision geometry model.  Figure 3-12 again describes the creation of a 
Geometric Correction Grid (this time precision) and resampling with terrain correction. 

Detailed algorithms for each of the main process boxes in these diagrams are given in the 
sections that follow. 
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Figure 3-9.  Model Initialization 
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Figure 3-10.  Rectification and Resampling 
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Figure 3-11.  Precision Correction Solution 
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Figure 3-12.  Precision/Terrain Correction 
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3.1.5.3.1  PCD Processing 

The Payload Correction Data (PCD) contain information on the state of the satellite and 
sensor.  The PCD information is transmitted in both the In-Phase (I) and Quadrature (Q) 
channels of the wide-band data.  The two PCD data streams are converted to engineering 
units and stored in Hierarchical Data Format (HDF) format for the Level 0R product.  The 
I channel is used as the default PCD for processing.  The PCD is recorded for the entire 
sub-interval or full interval.  The PCD information required for geometric processing 
includes the ephemeris, the spacecraft attitude, the gyro data, the gyro drift rate data, the 
ADS data, the SME flag, the gyro unit flag, and the spacecraft clock corrections.  The 
ephemeris and spacecraft attitude are updated every major frame; the gyro data are 
updated 64 times per axis in a major frame; and the ADS is updated 2,048 times per axis 
in a major frame.  A PCD cycle includes four PCD major frames.  Housekeeping values 
are also included in the PCD. 

3.1.5.3.1.1 Validate Ephemeris Data  

The PCD is transmitted in both the I and Q channels of telemetry data.  Under normal 
conditions, the I and Q channels are identical.  Therefore, a comparison between the 
ephemeris values contained in the I and Q channels is used as a validation test.  Any 
differences are flagged and reported in the processing history file.  The I channel is 
assumed to be correct, unless the other validation checks determine it to be in error. 

The semi-major axis, inclination, and angular momentum of the Landsat 7 orbit, 
calculated from the ephemeris data, should not deviate substantially from their nominal 
values.  A second validation test compares these values to their nominal values, and any 
large deviations are flagged.  If a large deviation is detected, the Q channel's values are 
checked.  If the Q channel values are correct, they are used instead of the I channel 
values.  Any ephemeris points that do not pass the I and Q channel tests are not used in 
the interpolation routine.  The average of and the standard deviation from the nominal 
value for the semi-major axis, inclination, and angular momentum for the scene to be 
processed are saved for trending.  The equations to calculate the satellite's semi-major 
axis, inclination, and angular momentum are as follows: 

Angular momentum = | R x V | 

where R is the satellite's position vector, and V is the satellite's velocity vector. 

       Inclination = acos(|H dot k| / |H|)   

where H = R x V, and k is the unit vector in the z-direction. 

       Semi-major axis = –μ / (2.0 * E)            
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where E = |V|2 / 2.0 – μ / |R| and μ = G * M (G is the Earth's gravity constant and M is the 
mass of  the Earth). 

3.1.5.3.1.2 Validate Spacecraft Attitude Data 

The on-board computer (OBC) calculates a flight segment attitude estimate every 512 
milliseconds.  The OBC generates one of eight sets of spacecraft attitude data in the 
telemetry every 4.096 seconds.  The attitude information is generated in the form of Euler 
parameters that specify the vehicle attitude relative to the Earth-centered inertial frame 
(J2000).  The spacecraft's attitude is calculated using star crossings, gyro data, and ADS 
data.  Care must be taken when using the spacecraft's attitude data, because star 
crossing updates may cause discontinuities.  The IAS converts the Euler parameters to 
roll, pitch, and yaw, which are then used in the model. 

The I and Q channel values are compared, and any differences are flagged.  The 
spacecraft's attitude data should not deviate greatly from the calculated value that was 
found using a linear interpolation of the values around the value to be checked.  The 
linear interpolated value is used to validate the spacecraft's attitude.  Any large deviations 
are flagged.  If a large deviation is detected, the Q channel is validated.  If the Q channel 
value passes the validation test, it is used instead of the I channel's value.  If the attitude 
data in both the I and Q channels have large deviations, the interpolated value is used.  
The Euler parameters should satisfy the following equation: 

EPA1
2 + EPA2

2 + EPA3
2 + EPA4

2 = 1 +/– ε 

where EPA1, EPA2, EPA3, and EPA4 are the Euler parameters that have been converted 
by the Landsat 7 Processing System (LPS).  The ε is some very small error term due to 
system noise. 

The I channel values are validated using the above equation, and any deviation is 
flagged.  If a deviation occurs, the Q channel values are checked.  If both channels fail 
the validation test, the interpolated value for each of the Euler parameters is used. 

The averages and standard deviations of the Euler parameters and the deviation from the 
equation above are stored for trending. 

3.1.5.3.1.3 Validate Gyro Data  

The I and Q channel values are compared, and any differences are flagged.  The gyro 
data should not deviate greatly from the calculated value.  This calculated value is found 
using a forward and backward differencing of the values around the value in question.   
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The steps include: 
 
1. Checking the current gyro value against a tolerance 
2. Doing a forward prediction for each point using the two previous points and 

comparing this predicted value against the observed value 
3. Doing a backward prediction for each point using the next two points and 

comparing this predicted value against the observed value 

Any point that passes (1) and either (2) or (3) is a good point.  If a deviation is detected in 
the I channel, the Q channel is checked.  If the Q channel passes the validation test, it is 
used in the processing.  If both the I and Q channel values fail, the value in question is 
flagged as an outlier.  After all values are checked, the flagged values are replaced.  
Linear interpolation is used to replace all outliers.  The first valid points before and after 
the outlier are found.  These two values are then used to interpolate all outliers that lie in 
between.  Care must be taken to account for counter resets in this check.  The register 
resets after (223 – 1) positive and –223 negative. 

3.1.5.3.1.4 Validate Gyro Drift Data  

The I and Q channel values are compared, and any deviations are flagged.  The values 
for each major frame are compared.  Any changes in the I channel are compared to the 
values in the Q channel to determine if changes have occurred in the Q channel.  If both 
channels display the same change, and the change is determined to be within an 
acceptable level, then it is assumed that a star sighting has occurred.  The PCD major 
frame that displays the change is flagged, and the magnitude of the change is saved for 
trending. 

3.1.5.3.1.5 Validate ADS Data  

The I and Q channel values are compared, and any differences are flagged.  The ADS 
data should not deviate greatly from the calculated value that was found using a linear 
interpolation of the values around the value in question.  Any large deviations from the 
calculated value are flagged.  If a large deviation is detected, the Q channel value is 
checked using the same interpolation method.  If the Q channel's value passes the 
validation test, the Q channel's value replaces the I channel's value.  If both channels fail 
the test, the value in question is corrected using the interpolated value. 

The linear interpolation test has been verified using an empirical test of Landsat 5 data.  
The results showed that the difference between linear predicted and actual ADS data 
points are typically within 10 counts.  For a test scene over Iowa, after five actual outliers 
that had deviations of several thousand counts were removed, the maximum deviations in 
roll, pitch, and yaw were 12, 11, and 11 counts, respectively. 

3.1.5.3.1.6 Validate Spacecraft Time Correction  

The I and Q channel values are compared, and any differences are flagged.  The number 
of occurrences are saved for trending.  The Mission Operations center attempts to 
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maintain the on-board spacecraft clock to 145 milliseconds.  A validation test calculates 
the correction of the clock, and this value should not exceed the 145-millisecond value.  If 
the absolute value of the clock correction is much greater than 145 milliseconds, the Q 
channel values are checked.  If the Q channel clock correction values are less than 145 
milliseconds, the Q channel’s values are used.  If both the I and Q channel values are 
greater than 145 milliseconds, then the clock coefficients are set to zero.  

The clock correction is: 
 

dt = spacecraft time – clock update time 
ClockCorrectionI = TimeCoef1I + TimeCoef2I * dt + 0.5 * TimeCoef3I * dt2 

3.1.5.3.1.7 Validate and Save Instrument On-Time 

The I and Q channel values for the instrument on-time are compared.  Any differences 
are flagged, and the values are saved.  The difference between the instrument on-time 
and the start of the first major frame is saved for trending and analysis.  

3.1.5.3.1.8 Correct PCD Spacecraft Time  

The clock correction is added to the major frame times. 

3.1.5.3.1.9 Other Geometric PCD Parameter Validations  

Other PCD geometric processing parameters, such as the SME mode and gyro unit flags, 
are validated by comparing the I and Q channel values.  Any differences are flagged and 
reported.  The I channel is used as the default value. 

3.1.5.3.2  MSCD Processing 

For Landsat 7, the Mirror Scan Correction Data (MSCD) are contained in the HDF 
formatted Level 0R product.  The counted line length, scan direction, First Half Scan Error 
(FHSERR), and Second Half Scan Error (SHSERR) are associated with the previous 
scan.  The scan start time, however, is for the current scan.  Due to the association of the 
counted line length, scan direction, FHSERR, and SHSERR with the previous scan, the 
number of MSCD records must be one more than the number of scans.  The MSCD for 
the output product is subsetted to match the imagery when the L0R product is generated. 
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The values from the MSCD required for ETM+ processing are:  
 
• FHSERR  
• SHSERR 
• Scan Direction 
• Scan Start Time 
• Counted line length 

3.1.5.3.2.1 Validate Scan Direction  

The I and Q channels are checked for consistency, and any differences are flagged and 
reported in the processing history file.  The IAS assumes that the I channel has the 
correct value. 

The flag for scan direction is 1 or 0.  The scan direction is for the previous scan.  The 
validation test checks the first scan direction flag and the direction flags thereafter.  Any 
errors in the direction flags are corrected using the first valid direction flag as a reference.  
The errors are flagged and reported in the processing history file and are saved for 
trending analysis. 

3.1.5.3.2.2 Validate FHSERR and SHSERR  

The MSCD is transmitted in both the I and Q channels of the telemetry data.  Under 
normal conditions, the I and Q channels are identical.  Therefore, a comparison of the 
FHSERR and SHSERR values contained in the I and Q channels is used as one of the 
validation tests.  Any differences detected are flagged and reported in the processing 
history file.  The I channel is assumed to be correct, unless the other validation check 
determines it to be in error. 

The FHSERR and SHSERR values should not deviate greatly from their nominal values.  
After the nominal values for the FHSERR and SHSERR have been characterized, the 
FHSERR and SHSERR are checked for deviations from their nominal values.  Large 
deviations are flagged, and the average difference and its standard deviation are saved 
for trending.  If a large deviation is detected, the Q channel is validated.  If the Q channel 
passes the validation check, the Q channel value is used in processing. 

3.1.5.3.2.3 Validate Scan Start Time  

The I and Q channels are checked for consistency, and any differences are flagged and 
reported in the processing history file.  The IAS assumes that the I channel has the 
correct value. 

The difference in time between the start of scan times should not vary greatly from the 
nominal value.  The start of scan time is validated by comparing the difference in time 
between scans.  Any large variation from nominal is flagged, and the Q channel is 
checked for its difference between start times.  If the Q channel values pass the validation 
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check, it will be used during processing.  Otherwise, the scan start time is corrected using 
the nominal value.  The average difference and the standard deviation between the scans 
times for the scene being processed are saved for trending. 

3.1.5.3.2.4 Validate Counted Line Length  

The I and Q channel values are compared, and any differences are flagged and reported 
in the processing history file.  The IAS assumes that the I channel has the correct value. 

The counted line length is the number of minor frames sampled from the start-of-scan to 
the end-of-scan mark.  The counted line length should be the same as the truncated 
calculated line length, which is found using the FHSERR, SHSERR, and DWELLTIME (as 
well as the conversion of counts to seconds).  The counted line length should not deviate 
greatly from its nominal value.  The validation algorithm for the counted line length checks 
the deviation of the counted line length from its nominal value and its deviation from the 
truncated calculated line length.  Large deviations from the nominal counted line length 
and any deviation from the calculated line length are flagged.  If a large deviation is 
detected, the Q channel counted line length is compared to the calculated line length, and 
if it passes, the Q channel is used in the processing.  The average counted line length 
and standard deviation of the counted line length are saved for trending.  

The first-half scan time, the second-half scan time, and the total scan time are calculated 
using the following equations.  

For each forward scan: 
 

first_half_time = Tfhf – FHSERR * Tunit 
second_half_time = Tshf – SHSERR * Tunit 
total_scan_time = first_half_time + second_half_time 

 
For each reverse scan: 
 

first_half_time = Tfhr – FHSERR * Tunit  
second_half_time = Tshr – SHSERR * Tunit 
total_scan_time = first_half_time + second_half_time 

 
The line length is calculated using: 
 

calculated_line_length = total_scan_time / DWELLTIME 
 
where: 
 

Tfhf = the forward nominal first half scan time  
Tshf = the forward nominal second half scan time  
Tfhr = the reverse nominal first half scan time  
Tshr = the reverse nominal second half scan time  
Tunit = the conversion factor from counts to time 
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3.1.5.3.2.5 Correct Spacecraft Time in the MSCD  

The correction value for the spacecraft time is found in the process PCD module.  This 
value must be added to the MSCD start-of-scan times.  

3.1.5.3.3  Platform/Sensor Model Creation 

The platform/sensor model creation algorithm reads the telemetry data from the PCD and 
the MSCD.  These data are converted to a form that is usable by the geometric model.  
The gyro and ADS data are combined and converted to the common Navigational 
Reference Base system to create a time-ordered table of attitude information.  The 
ephemeris data are converted to the Earth-Centered, Earth-Fixed (ECEF) coordinate 
system and fit with a polynomial that is a function of time.  The mirror scan fifth-order 
polynomial is corrected for each scan's variation in velocity.  

3.1.5.3.3.1 Calculate Satellite State Vector  

For each valid ephemeris data point, the following coordinate transformation is used to 
convert the satellite position and velocity from the inertial system (J2000.0 system for 
Landsat 7; true-of-date system for Landsats 4 and 5) to the Earth Fixed system:  

 
• Transform the J2000.0 system to the mean-of-date system through the precession 

matrix (Landsat 7 only).  
• Transform the mean-of-date system to the true-of-date system through the 

nutation matrix (Landsat 7 only). 
• Transform the true-of-date system to the Earth Fixed system through the Earth 

rotation and polar-motion matrix.  The Earth Orientation Parameters (UT1-UTC, xp, 
yp) are passed in from the Calibration Parameter File.  

Two sets of polynomial coefficients are generated, one for the orbit position and velocity 
in the Earth Fixed system and the other for the orbit position and velocity in the inertial 
system (J2000.0 for Landsat 7; true-of-date system for Landsat 5).  The methods for 
generating the coefficients for the two sets are the same: solving the Vandermonde 
equation system using an algorithm given in Reference 6.  The order of the polynomial is 
automatically chosen as the number of valid ephemeris data points in the scene; i.e., an 
even-determined fit with no redundancy.   

The polynomial in the Earth Fixed system is used to interpolate the orbit position and 
velocity at each (grid point) sensor time for the purpose of constructing a look vector and 
intersecting the Earth model in the Earth Fixed system.  The polynomial in the inertial 
system is used to interpolate the orbit position and velocity at each gyro data point time 
for the purpose of correcting the portion of gyro observation caused by satellite motion.  

3.1.5.3.3.2 Process Gyro Data 

The Inertial Measurement Unit (IMU), which houses the gyroscopic units, is sampled 
every 64 milliseconds for each of the three axes.  The sampled values are referred to as 
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the gyro data.  This results in 64 samples per axis per PCD major frame or 256 samples 
per axis per PCD cycle.  The gyro data register reset if a positive count occurs when the 
register's value is a positive 223 – 1 or if a negative count occurs when the register's value 
is a negative 223.  The time of the gyro data samples is referenced from the start of a PCD 
cycle by the following equation: 
 
  Gyro_data_sample_time = 64N milliseconds        
 
where:  

 
N = 0 ... 255 

The OBC calculates the gyro drift rates for each of the axes, using the results of star 
sightings.  The results of the OBC gyro drift calculations are in the attitude control system 
(ACS) system.  The gyro drift parameters are updated asynchronously at a rate of up to 
once per minute.  When a gyro drift value changes, the value is updated at the PCD time 
code for the cycle minus 8.192 seconds. 

3.1.5.3.3.3 Processing Summary 

High-level flow of gyro processing is as follows: 
 

1. The register resets are accounted for. 
2. For each axis, the first gyro value is subtracted from the rest. 
3. The gyro data are rotated to the ACS system. 
4. The orbital drift components are removed. 
5. The gyro, gyro drift, and quaternion data are combined. 
6. The data from step 5 are rotated to the ADS system. 
7. The data from step 6 are filtered using the G-filter. 
8. The data from step 7 are synchronized with the ADS data. 
9. The ADS data are synchronized. 
10. The data from step 8 are combined  with the ADS data. 
11. The combined data are filtered using the F-filter. 
12. The combined data are rotated to the ACS system. 

For more detail on step 5, see 3.1.5.3.3.11, Smoothing Low Frequency Information. 

For more detail on steps 6, 8, 9, 10, 11, and 12, see 3.1.5.3.3.12, Combining Low- and 
High-Frequency Attitude Information. 

3.1.5.3.3.4 Processing Gyro Data to a Common (ADS) Reference System 

Processing of the gyro data to a common ADS reference system is as follows: 

1. Since the LPS converts the gyro data counts to arc-seconds, the register reset 
correction must be accomplished using arc-seconds as the units.  Thus, a positive 
reset occurs at 511705.027 arc-seconds, and a negative reset occurs at –
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511705.088 arc-seconds.  After a reset is detected, the values following the reset 
are offset by the appropriate reset value. 

2. Due to the gyro data measuring changes in attitude, the first value for each of the 
axes, which corresponds with the spacecraft’s attitude values, is subtracted from 
the rest of the values. 

3. Each axis of the gyro data is rotated to the ACS reference system using a pre-
launch-derived transformation matrix.  This is accomplished using the following: 

 
Define A as the rotation matrix due to roll. Define B as the rotation matrix 
due to pitch, and define C as the rotation matrix due to a yaw.  Then the 
Perturbation matrix P is defined as: 

 
P = CBA 

 
Use the Transformation matrix from the gyro axes to the ACS [IMU2ACS] 
and its inverse to find the P matrix in the ACS reference system or P': 

 

   P' = [IMU2ACS] P [IMU2ACS]–1   =  
a b c
d e f
g h i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 
Then the transformed roll (r') is: 

 
r' = –tan–1( h / i)      

 
where h and i are elements of P' 

  
Then the transformed pitch (p') is: 

 
   p' = sin–1(g)           
 

where g is an element of P' 
 

and the transformed yaw (y') is: 
 

y' = –tan–1( d / a)     
 

where d and a are elements of P' 
 

4. The drift of the gyro data due to the orbital motion is removed using the polynomial 
for the ephemeris data in the inertial system derived in the Calculate Satellite State 
Vector subroutine. 
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5. The gyro, gyro drift, and quaternion data are combined into one data stream 
(details of step 5 can be found in 3.1.5.3.3.11, Smoothing Low-frequency Attitude 
Information). 

6. Each axis of the gyro data is transformed to the ADS reference system.  This is   
accomplished by combining the ACS-to-ETM+ transformation matrix and the 
ETM+-to-ADS transformation matrix.  The ACS-to-ETM+ transformation matrix is 
the inverse of the ETM+-to-ACS matrix.  The ETM+-to-ACS matrix is first 
determined pre-launch and is updated after launch.  Its values are contained in the 
Calibration Parameter File.  The ETM+-to-ADS matrix is determined pre-launch, 
and its members are contained in the Calibration Parameter File. 

The transformation from the ACS system to the ADS is accomplished using the 
following: 

 
Define A as the rotation matrix due to roll. Define B as the rotation matrix 
due to pitch, and define C as the rotation matrix due to a yaw.  Then the 
Perturbation matrix P is defined as: 

 
              P = CBA 
 

Combine the Transformation matrix from the ACS to the ETM+ T and the 
transformation matrix from the ETM+ to the ADS system R.  Calculate the 
combined matrix S inverse.  Then use S and its inverse to find the P matrix 
in the ADS reference system or P': 

 
S = RT 

    P' = SPS–1   = 
a b c
d e f
g h i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Then the transformed roll (r') is: 
 

r' = –tan–1(h / i)        
 
where h and i are elements of P’ 

 
Then the transformed pitch (p') is: 

 
p' = sin–1(g )            

where g is an element of P’ 
 

Then the transformed yaw (y') is: 
 

y' = –tan–1(d / a)       
 
where d and a are elements of P’ 

 

7. Apply the G-filter (refer to 3.1.5.3.3.11).  Steps 7, 8, 9, 10, and 11 are shown in 
more detail in 3.1.5.3.3.12, Attitude Processing. 

8. Calculate the inverse of step 7:    
 
P’’ = S–1P’S 

3.1.5.3.3.5 Spacecraft Attitude Processing 

The OBC calculates a flight segment attitude estimate every 512 milliseconds.  The OBC 
outputs one of the eight sets of data in the telemetry every 4.096 seconds or once a PCD 
major frame.  The attitude is output in the form of Euler parameters that specify the 
vehicle's attitude relative to the Earth-Centered Inertial (ECI) reference frame.  The Euler 
parameters (EPA1, EPA2, EPA3, and EPA4) are components of the reference quaternion, 
as propagated from the gyro data, which defines the spacecraft's attitude. Components 
1–3 define the Eigen axis of the rotation in ECI coordinates, and the fourth component 
defines the rotation about the Eigen axis.   

Each PCD cycle includes four attitude estimates.  The time associated with the attitude 
data contained within the PCD can be derived from the time code contained in words 96–
102 of the first PCD major frame in the cycle.  The derivation for Landsat 7 (see 
Reference 1, pages 3−29) is as follows: 
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PCD Major Frame                     Time Computation 
      
      0    PCD time code − 8.192 seconds 
      1    PCD time code − 4.096 seconds 
      2    PCD time code 
      3    PCD time code + 4.096 seconds 

3.1.5.3.3.6 Processing 

The PCD attitude quaternions define the attitude of the spacecraft at a reference time.  
This attitude measurement reflects the gyro information up to that point.  The IAS 
determines the spacecraft low-frequency attitude by processing the gyro, gyro drift, and 
quaternions into one data stream by using a Kalman filter/smoother.  This integrates 
attitude measurements from all time into a single best estimate of the attitude over an 
entire interval.  The average associated with this data stream serves as the scene 
reference attitude state.  The average is removed from the data stream.  This data stream 
is then combined with the ADS information to get the change in state of the attitude from 
this reference state.  To accomplish this, the Euler parameters need to be converted to 
ACS roll, pitch, and yaw values. 

The direction cosines (transformation) matrix from the ACS reference axis to the ECI 
reference system (ACS2ECI) is defined as: 
 
ACS2ECI = 
 

EPA1
2 - EPA2

2 - EPA3
2 + EPA4

2   2(EPA1EPA2 - EPA3EPA4)   2(EPA1EPA3 + EPA2EPA4)

2(EPA1EPA2 + EPA3EPA4)   - EPA1
2 + EPA2

2 - EPA3
2 + EPA4

2   2(EPA2EPA3 - EPA1EPA4)

2(EPA1EPA3 - EPA2EPA4)   2(EPA2EPA3 + EPA1EPA4)   - EPA1
2 - EPA2

2 + EPA3
2 + EPA4

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

 
The ACS2ECI transformation matrix can also be defined as the product of the inverse of 
the spacecraft's attitude perturbation matrix P and the transformation matrix from 
the orbital reference system to the ECI reference system (ORB2ECI). 
 
          ACS2ECI  =  [ORB2ECI][P –1] 
 
The orbital reference system to ECI matrix must be defined at the same time as the 
spacecraft's attitude matrix.  The ORB2ECI matrix is constructed of the negative 
of the spacecraft's position vector divided by its magnitude (z-direction vector),  
the cross of the z-direction vector with the spacecraft's velocity vector 
divided by its magnitude (y-direction vector), and the cross of the y-direction  
vector with the z-direction vector divided by its magnitude (x-direction vector).  The 
resulting ORB2ECI matrix is: 
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ORB2ECI = 
X Y Z
X Y Z
X Y Z

x x x

y y y

z z z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 

 
where: 
  

Zx is the x component of the z-direction vector  
Zy is the y component of the z-direction vector 
Zz is the z component of the z-direction vector  
Xx is the x component of the x-direction vector  
Xy is the y component of the x-direction vector 
Xz is the z component of the x-direction vector 
Yx is the x component of the y-direction vector 
Yy is the y component of the y-direction vector 
Yz is the z component of the y-direction vector 

 
The roll, pitch, and yaw values are contained in the P–1 matrix, thus: 
 

P–1 = [ORB2ECI] –1[ACS2ECI] =  
a b c
d e f
g h i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 
Then the spacecraft roll (r) is: 
 
        r = tan–1(h / i)          
 
where h and i are elements of P–1 
 
Then the spacecraft pitch (p) is: 
 

p = –sin–1 (g)             
 
where g is an element of P–1 
 
Then the spacecraft yaw (y) is: 
 

y = tan–1(d / a)          
 
where d and a are elements of P–1 

3.1.5.3.3.7 Converting ADS to Common Reference System 

The Attitude Displacement Sensor Assembly (ADSA) consists of three nominally 
orthogonal ADS sensors.  The ADSA is mounted on the ETM+ telescope.  A digital 
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sample count of 0 is the maximum positive angular displacement, and a digital count of 
4,095 is the maximum negative angular displacement.  The Least Significant Bit (LSB) of 
each count is 250 / 211  microradians.  The nominal zero angular displacement output of 
the ADSA is 2,048 counts.  Each axis of the ADSA is sampled every 2 milliseconds, 
resulting 8,192 samples of each axis in a PCD cycle.  The axes are sampled sequentially, 
as given below: 
 

ADSA AXIS                         Sampling Times 
 

Roll    PCD Time Code  +  (2N + 3/8) milliseconds 
     Pitch    PCD Time Code  +  (2N + 7/8) milliseconds 

Yaw    PCD Time Code  +  (2N + 11/8) milliseconds 
 
where: 
 

N = 0,1,2,...,8191 for the given axis  
 

Each axis of the ADSA has a nominal 2.0- to 125.0-Hz bandwidth.  The transfer function-
to-rotational motion is measured pre-launch and is supplied in the Calibration Parameter 
File.  The nominal relative alignment matrix between the ADS and the ETM+ Sensor is 
determined pre-launch and is also supplied in the Calibration Parameter File. 

3.1.5.3.3.8 Processing 

The first three steps are summarized here.  Refer to 3.1.5.3.3.12, Combining Low- and 
High-Frequency Attitude Information, for more information.  Each of the samples for each 
axis is transformed to rotational motion using the transfer function. 

1. Synchronize the ADS data. 

2. Combine the ADS data with the smoothed, low-frequency attitude data. 

3. Rotate data to the ACS system.  Due to the ADSA being mounted on the ETM+ 
telescope, the transformation to the ACS reference system requires the ADSA 
measurements to be transformed to the ETM+ reference system and then 
transformed through the ETM+ sensor to the ACS alignment matrix.  Since the 
ETM+-to-ACS reference system matrix is determined after launch, this 
transformation must be a 2-step process. 

Define the transformation matrix from the ADSA-to-ETM+ sensor as ADS2ETM   
and the transformation matrix from the ETM+-to-ACS as ETM2ACS.  Then the 
transformation matrix between the ADSA and the ACS (ADS2ACS) is: 

 
             ADS2ACS = [ETM2ACS][ADS2ETM]  
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To transform the axis of the ADSA, the perturbation matrix P must first be 
calculated.  To accomplish this, define matrix A as the rotation matrix due to roll, 
matrix  B as the rotation matrix due to pitch, and a matrix C as the rotation matrix 
due to yaw.  Thus, the perturbation matrix is: 

 
            P = CBA 

 
Then using the transformation matrix ADS2ACS and its inverse, the perturbation   
matrix in the ACS reference P' is found: 

  P' = [ADS2ACS]P[ADS2ACS]–1  =  
a b c
d e f
g h i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

                                                                  

  
     Then the transformed roll (r') is: 
 

r' = –tan–1(h / i)        
 

where h and i are elements of P' 
 
     Then the transformed pitch (p') is: 
 

p' = sin–1(g )            
 

where g is an element of P' 
 
     Then the transformed yaw (y') is: 
 

y' = –tan–1(d / a)       
 

where d and a are elements of P' 
 

3.1.5.3.3.9 Calculate Scan Mirror Correction  

The scan mirror (as introduced in 3.1.5.1.2) is modeled using a linear motion with a fifth-
order polynomial correction.  A fifth-order polynomial is determined during the ground 
testing of the instrument; this along with an adjustment due to high-frequency roll jitter 
components combine to give an overall fifth-order polynomial correction.  Along with the 
high-frequency jitter component, in-orbit perturbations within the satellite cause the scan 
mirror velocity to change from scan to scan.  

The scan mirror has sensors attached to it that measure the mirror position at the start of 
scan, mid-scan, and end of scan. The data from these sensors are output in the form of 
counts, which are the deviation from nominal scan mirror position in time.  For example, 
the scan mirror crossed the mid-scan detector so many counts ahead (or behind) of the 
nominal time. The unit of the counts is 16/84.9037e-6 seconds or 0.18849 microseconds.  
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In the IAS model of the scan mirror motion, the mirror starts at a positive angle (A sm) and 
becomes more negative as a function of time, until it reaches A me, where A sm is the 
angle from the start of scan to the mid-scan position, and A me is the angle of the mirror 
from mid-scan to end of scan.  This sign convention is used to place the scan mirror 
motion in the spacecraft coordinate system.  This convention is different from the 
convention used in References 1 and 2.  

Remaining in the true time domain for the forward and reverse scan direction, a positive 
result from the polynomial corresponds to the mirror being ahead of its linear location, and 
a negative result corresponds to the mirror being behind its linear location.  However, 
whether the results are added to or subtracted from the linear portion depends on the 
slope of the linear motion.  For example, using the IAS sign conventions, adding a 
positive polynomial value to the forward scan direction causes the scan mirror to be 
behind its linear location.  Thus, for the forward scan direction, a positive polynomial value 
must be subtracted from the linear location or the sign of each of the coefficients must be 
changed.  The latter was chosen.  For a reverse scan, a positive polynomial value added 
to the linear location corresponds to the mirror being ahead of it linear location.  Thus, 
adding the polynomial value is correct.  The MSCD values of scan direction, counted line 
length, first-half scan error, and second-half scan error are for the previous scan.  
 
Define:   
 

bj = 0, 5   The forward scan polynomial coefficients for the SME mode  
dj = 0,5   The reverse scan polynomial coefficients for the SME mode  
Asmf   The forward start to middle angle for the SME mode  
Amef   The forward middle to end angle for the SME mode  
Asmr   The reverse start to middle angle for the SME mode  
Amer   The reverse middle to end angle for the SME mode  
Tfhf   The forward nominal first-half scan time  
Tshf   The forward nominal second-half scan time  
Tfhr   The reverse nominal first-half scan time  
Tshr  The reverse nominal second-half scan time  
Tn   The nominal scan time  
Tunit   The conversion factor from counts to time 
mprofilei,j  The corrected mirror polynomial for each scan 

 
Compute the actual scan time—find true first-half time (Tfh), true second-half time (Tsh), 
and total scan time (ts):  

 
For a forward scan:  
 

Tfh = Tfhf – FHSERRi * Tunit (The first-half scan time) 
Tsh = Tshf – SHSERRi * Tunit (The second-half scan time) 
ts = Tfh + Tsh   (The total scan time) 

 
For a reverse scan:  
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Tfh = Tfhr – FHSERRi * Tunit (The first-half scan time) 
Tsh = Tshr – SHSERRi * Tunit (The second-half scan time) 
ts = Tfh + Tsh   (The total scan time) 

 
Calculate the correction to the linear model needed to make the mid-scan angle equal to 
the observed value (zero) at time Tfh (see Figure 3-13). 
   

For a forward scan:  Af = −(AmefTfhf  +  AsmfTshf) / ts 
 

For a reverse scan: Ar = −(AmerTfhr  +  AsmrTshr) / ts 
 

 

Figure 3-13.  Scan Mirror Profile Deviations 

Rescale the fifth-order polynomial coefficients to account for the difference between the 
actual and nominal scan time:  
 

For a forward scan: bj = bj * (Tn / ts) j    
 

where: j = 0 to 5 
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For a reverse scan: dj = dj * (Tn / ts)j     
 
where: j = 0 to 5 

 
Calculate the amplitude component of the correction quadratic (B f) due to the polynomial 
location of the mirror to the linear location.  This is done by evaluating the rescaled fifth-
order polynomial at time Tfh (f(b,Tfh) in Figure 3-13). 
 

For a forward scan:  
 

Bf = b0 + (b1 * Tfhf ) + (b2 * Tfhf 2) + (b3 * Tfhf 3) + (b4 * Tfhf 4) + (b5 * Tfhf 5) 
 

For a reverse scan (a [–] sign is applied to the d coefficients): 
 

Br = d0 + (d1 * Tfhr) + (d2 * Tfhr 2) + (d3 * Tfhr 3) + (d4 * Tfhr 4) + (d5 * Tfhr 5) 
 
The net correction to the mirror profile at the mid-scan time (Tfh) is (Df and Dr):  
 

For a forward scan:  Df = Af – Bf 
 

For a reverse scan:  Dr = Ar – Br 
 
Using the constraints a(0) = a(ts) = 0.0 and a(tsh) = D, the coefficients of the quadratic are: 
 

For a forward scan: a2 = –Df / (Tfhf * Tshf) 
 

For a reverse scan: a2 = –Dr / (Tshr * Tfhr) 
 

For both scan directions:  a1 = –ts * a2  
    a0 = 0.0 

3.1.5.3.3.10 Integration of Roll Jitter into the Scan Mirror Model 
The high-frequency roll attitude components (jitter) must be considered together with the 
scan mirror profile, since the scan mirror is not rigidly attached to the instrument structure 
in the along-scan direction, but instead is driven by a flex pivot.  This acts as a 
mechanical buffer that does not transmit the high-frequency along-scan jitter directly to 
the mirror. Therefore, the roll jitter terms have two effects: the ETM+ instrument rotates 
relative to the orbital coordinate system, and the scan mirror rotates relative to the ETM+ 
instrument (in the opposite direction).  Effectively, the scan mirror does not “see” the high-
frequency roll jitter.  The roll rotation of the ETM+ instrument (i.e., the focal planes) 
independent of the scan mirror causes the effective line of sight to be deflected in the 
opposite direction from that caused by a rigid rotation of the entire focal plane/scan mirror 
assembly (see Reference 35). This is depicted in  
Figure 3-14. 
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The scan mirror angle relative to the rest of the ETM+, and to the orbital coordinate 
system, is known at the three points where it is measured by the scan angle monitor 
(SAM): scan start, mid-scan, and scan end.  The line of sight at these three times is 
based on the known mirror angles at beginning, middle, and end of scan, modified by the 
high-frequency roll at the corresponding times, so the combined mirror/roll jitter model 
must match these known angles at these three times. This is accomplished by modifying 
the scan mirror profile for each scan to include the scan start, mid-scan, and scan end 
high-frequency roll effects.  This is implemented as a roll jitter correction to the scan 
mirror polynomial, $( )θ t .  The differential jitter relative to this profile is then  θ θt t− 2 $( ) , 
where θt  is the measured roll jitter and $( )θ t  is doubled to account for the fact that a scan 
mirror rotation of $( )θ t  leads to a line-of-sight deflection of 2 $( )θ t .   
As described above and depicted in  
Figure 3-14, this differential jitter leads to a deflection of the line of sight in the opposite 
direction, or − −[ $( )]θ θt t2 . So, the net deflection of the line of sight relative to the orbital 
coordinate system is − +θ θt t2 $( ) . This deflection is implemented by inverting the sign on 
the roll jitter component ( )θt  and including the scan mirror profile adjustment ( $( ))θ t  in the 
mirror model.  All that remains is to determine what the scan mirror profile adjustment 
should be. 

As noted above, the net line-of-sight deflection must account for the roll angles at scan 
start ( )θs , mid-scan ( )θm , and scan end ( )θe .  If the mirror profile adjustment is 
constructed so that it is equal to the measured roll jitter at scan start, mid-scan, and scan 
end (i.e., it modifies the mirror profile to include roll jitter effects at those three points), 
then the net line-of-sight deflection at T=0, T=tfh, and T=Ts is: 
  

θ θ θ θnet t t t= − + =2   
 

where t = s, m, or e for scan start, mid-scan, and scan end. 
 
This is the desired result, so the mirror correction term, $( )θ t , must be constructed so that: 
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Figure 3-14.  Effect of Roll Jitter on Line-of-Sight Direction 
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This can be accomplished using a correction quadratic similar to that used to perform the 
mid-scan correction.  The coefficients of this polynomial are shown to be: 
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This makes the net mirror profile: 
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where the bi are the nominal mirror profile coefficients normalized for actual scan time; 
the ai are the mid-scan correction quadratic coefficients computed from the first-half and 
second-half scan errors; and the ci are the roll jitter correction quadratic coefficients 
defined above.  Inverting the sign on the measured roll jitter data and using this modified 
mirror profile creates the desired net line-of-sight deflection. 

3.1.5.3.3.11 Smoothing Low-Frequency Attitude Information 

In the IAS release 1 model, the quaternion and gyro drift observations from the PCD 
major frame immediately preceding the scene were used as a reference point.  All 
subsequent attitude data for the scene were referenced from this point.  Therefore, if a 
stellar observation occurred later in the scene, this change in the reference frame was not 
be reflected in the model.  This change can be thought of as an update in the reference 
frame of the system.  The update could produce a discontinuity in the attitude data 
stream.  To incorporate all of the stellar observation information in the PCD quaternion 
samples, a Kalman filter is used as a post-processing filter of the attitude data stream.   

The Kalman filter is implemented in a forward-predictor, backward-smoother 
configuration.  Under this scenario, the filtering serves as a forward-recursive sweep, 
while the smoothing serves as a backward sweep.  The backward-smoother processing 
propagates the stellar observations, represented by the quaternion data, backward in time 
to provide a best estimate of the spacecraft attitude given data from all times in the sub-
interval.  The smoothed data stream is a new attitude data stream representing the 
combined gyro, quaternion, and drift data.  This smoothed data set represents the low-
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frequency attitude information of the satellite.  The data is then combined with the ADS 
information to produce the overall attitude of the sensor/satellite. 

The rest of this section contains three parts.  The first is a brief description of the filtering 
and smoothing equations.  The reader is encouraged to pursue the references given later 
in the text for further details on the subject.  The second portion involves calculating the 
equations that are specific to this application.  The final portion explains the details of 
running the process with actual data. 

The discrete Kalman filter assumes a random process modeled as follows: 
 

[ ] [ ] [ ] [ ]X X qK K K K+ = +1 φ  
 
where: 

 
[X]K = (n x 1) is the state vector at time tK 
[φ]K = (n x n) is the state transition matrix relating XK to XK+1 
[q]K = (n x 1) is the process noise, white, uncorrelated, with covariance Q 

 
Measurements of the process are modeled as: 
 

[ ] [ ] [ ] [ ]KKKK vXHZ +=  
 
where: 
  

[Z]K = (m x 1) is the measurement vector at time tk 
[H]K = (m x n) is the observation matrix relating the state vector at tk to the 
measurement vector 
[v]K = (m x 1) is the measurement error, white, uncorrelated, with covariance R 

 
The first step involves using the Kalman filter as a forward prediction process.  The 
Kalman filtering equations (all equations refer to the discrete domain) are as follows: 
 
 (Superscript P refers to prediction.) 

 
Given an initial state vector and covariance matrix [X]P0 and [P]P0: 

   
for k=1, …, N (number of data points) 
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Filter data: 
  

 
[ ] [ ] [ ] [ ] [ ] [ ]X X K Z H XK K

p
K K K K

p= + −( )  
 
 [ ] [ ] [ ] [ ] [ ]P I K H PK K K K

p= −( )  
 

Predict: 
 

 [ ] [ ]KK
p
K XX φ=+1][  

  
 [ ] [ ] [ ] [ ] K

T
KKK

p
K QPP ][1 +=+ φφ  

 
where:  

  
[I] is the identity matrix 

 [K] is the Kalman Gain matrix 
[P] is the state error covariance matrix 
[Q] = E[qq]  
[R] = E[vv] 

 
The second step involves using the filtered and predicted data to produce a smoothed 
data set.  Let: 
 
 [X]PK = estimate of [X] given measurements through tK–1 
  
 [P]PK = error covariance associated with estimate [X]K 
 
 [X]K = filtered estimate through tK 
 
 [P]K = state error covariance associated with filtered estimate at tK  
 
 Using the definitions above, the new notation is: 
 
 [X]K|K–1 = [X]PK 
 
 [P]K|K–1 = [P]PK 
 
 [X]K|K = [X]K 
 
 [P]K|K =  [P]K 
 
 Smooth data for K=N–1, N–2, .., 0: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( ) 1−
+= K

T
K

P
KK

T
K

P
KK RHPHHPK
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 [ ] [ ] [ ] [ ] [ ]X X A X XK N K K K K N K K| | | |( )= + −+ +1 1  
 
 [ ] [ ] [ ] [ ]A P PK K K K K

T
K K=

+ +
−

| , |φ
1 1

1  
 
 [ ] [ ] [ ] [ ] [ ] [ ]P P A P P AK N K K K K N K K K

T
| | | |( )= + −+ +1 1  

For more information on the Kalman filter and smoothing data, see References 23 and 
34. 

The rest of this document focuses on the how the matrix equations specific to the attitude 
processing were obtained and some of the processing flow issues. 

The system for the continuous time case is first described, then the corresponding 
discrete time case is solved for.  The equations for the continuous case are: 
 

 
where:  
 

X = the state vector 
F = the state matrix 
Y = the output response vector 
C = the matrix relating state to measurement 
w = the vector of white noise processes 
F, G, C may be time-varying matrices 

 
The state matrix for the attitude processing contains three states: attitude, gyro rate, and 
gyro drift.  The state transition matrix is: 
 

 
where: 
 

X1 = attitude 
X2 = gyro rate 
X3 = gyro drift 
w  = process noise (white) 
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The above model states that the gyro rate is the time derivative of the attitude, and the 
time derivatives of the gyro rate and drift are independent white noise processes. 
 
The output response vector has the following form: 
 

 
where r = measurement noise (white) 
 
The above observation matrix states that there are three kinds of measurements involved 
in the process: 
 

1. Quaternion observations, which measure the attitude 
2. Gyro/gyro rate observations, which measure the attitude rate biased by the gyro 

drift 
3. Gyro drift observations, which measure the bias in the gyro measurements 

The gyro measurements have no absolute origin; therefore, they only have meaning 
relative to each other.  By differencing the gyro samples and dividing by the sampling 
rate, they can be converted to attitude rate measurements. The quaternions are then 
used as the reference.  After the gyro samples are converted into rates, the drift can be 
directly applied, since it is measured in units of radians per unit of time. The 
measurements then used by the process, as measured by the satellite, are quaternions, 
gyro rate, and gyro drift. 

The matrix [F] does not contain any time-varying elements and is small enough so that 
the direct method can be used to determine the discrete transition matrix.   The equation 
takes the following form: 
 

 
where: 
 

L–1 = inverse Laplace transform 
[I] = identity matrix 
[]–1 = matrix inversion 
dt = sampling interval 
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This results in the following: 

 

Substituting dt for t in the above matrix results in the discrete state transition matrix. 

The discrete process noise matrix can also be solved directly.  The discrete process noise 
is found from the following equation: 
 

   
Note that w2 and w3 are uncorrelated and that σ is the variance of the associated white 
noise process: 

 

 
 
Solving the double integral for the above matrix results in the discrete process noise 
matrix: 
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The observation matrix relating the state vector to the output/measurement vector is the 
same for the continuous and discrete cases: 
 

[H] = [C] 
 
Under this system model, each axis can be processed independently.  The attitude of the 
satellite is contained in the first state of the state vector.  The gyro and quaternion data for 
Landsat 7 are not sampled at the same instance in time or at the same rate.  This needs 
to be accounted for prior to and during processing.  The data also have to be in a 
common coordinate system.  The drift is measured in the attitude control system (ACS).   
The quaternions are given as Euler parameters and can be converted to the ACS (ATBD, 
3.1.5.3.3, Satellite Attitude Processing).  The gyro data are measured in the inertial 
measurement unit (IMU) axis and can be converted to the ACS (ATBD, 3.1.5.3.3, 
Processing Gyro Data).  The system therefore works in the ACS.  The output is also in 
the ACS.  The time offset is accounted for by looking at the sampling times associated 
with each data source. 
 
 Gyro samples: 
 
  PCD time code + 0.064N seconds N = 0, 1, 2, …, 255 
  

Attitude: 
 

  PCD  
         Major Frame 

0 PCD time code – 8.192 seconds 
1 PCD time code – 4.096 seconds 
2 PCD time code + 0.0 seconds 
3 PCD time code + 4.096 seconds 

Drift: 
 
           PCD 
      Major Frame 

0 PCD time code – 8.192 seconds 
 

At the first PCD cycle, PCD major frame 0, the gyro data correspond to the quaternion 
value of the first PCD cycle, PCD major frame 2.  This is the initial/start condition for the 
filtering.  The gyro drift value is zero until the data stream reaches a point with valid drift 
data. The initial covariance error matrix, [P], is set equal to the process noise matrix.  This 
value may need to be changed after some test runs with different data sets.  Due to the 
fact that the gyro, attitude, and drift data have different sampling rates, there are three 
different observation matrices: one when only the gyro is present, a second when both 
the gyro and quaternions are present, and a third when all three measurements are 
available.   

When only the gyro is available, the observation matrix is: 
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When both the gyro and quaternions are available, the observation matrix is: 
 

 
 
When the gyro, quaternion, and gyro drift measurements are available, the observation 
matrix is: 
 

 

Although it states that “gyro measurements are available,” it is actually the gyro rate with 
which the system is working at this point. 

The state transition matrix is the same for all cases.   

The final step is to determine the values associated with the measurement noise matrices 
and the standard deviations associated with the process noise matrix.  The measurement 
error for the gyro corresponds to the increment associated with one gyro count, 0.061 
arc-seconds.  The measurement error for the gyro rate is found by dividing 0.061 arc-
seconds by the sampling rate of the gyro, 0.064 seconds.  The measurement error used 
for the quaternion corresponds to the error associated with the Celestial Sensor Assembly 
and is 4.2 arc-seconds (see Reference 35).  The measurement error for the drift and the 
standard deviations for the process noise were determined by trial and error.  The criteria 
for choosing values for trial, however, fell under the following premises:   

 
• The drift values were considered much less reliable than either the gyro or the 

quaternion values.   
• The measurement error for the quaternion was larger than the gyro (rate) 

measurement error, which allowed the quaternions to act as a very low frequency 
reference and the gyro (rate) to represent the higher frequency reference. This 
maintained the scan-to-scan consistency needed for processing. The attitude 
processing should not affect the scan-to-scan accuracy to any measurable degree. 
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• The measurements for the gyro (rate) were assumed to carry more weight than the 
model, while the opposite was assumed for the drift.  The values were chosen 
such that more consideration was given to the model for the drift, while more 
consideration was given to the measurements for the gyro (rate). 

Through trial and error, this led to a value of 50.0 arc-seconds for the drift measurement, 
a standard deviation of 0.1 for the process noise associated with the gyro rate, and a 
standard deviation for 0.00001 for the process noise associated with the drift.  These 
values were determined from data associated with the Landsat 4 satellite; therefore, the 
values may need to change slightly to reflect Landsat 7.  These values were used to 
process 100 consecutive major frames of Landsat 4 attitude data.  Processing the 
quaternion, gyro, and drift produced a change of less than 1 meter in the difference 
between adjacent gyro samples.  This provides proof that the effect on between-scan 
alignment is negligible. 

After all the data are processed, filtered, and smoothed, the new attitude data can be 
used by the G and F filters, along with the ADS information, to get the overall satellite 
attitude.  To be consistent with the previous way of processing, however, the output from 
the filtering and smoothing should have the first value kept as a frame of reference and 
subtracted from all other values. 

3.1.5.3.3.12 Combining Low- and High-Frequency Attitude Information 

Much of the premise for the design of the attitude data processing algorithm comes from 
Landsat Thematic Mapper Attitude Data Processing by G. J. Sehn and S. F. Miller 
(Reference 10).  References 38, 39, and 40 are also good sources on the subject.  

The following symbols are used throughout this section:  
 

FFT Fast Fourier Transform with a complex component of –1 on the 
exponent associated with the forward transform (1 for the reverse)  

Hg Frequency response of the gyro sensor  
P Frequency response of the ADS pre-filter  
Ha Frequency response of the ADS sensor  
PHa Frequency response of the ADS sensor combined with pre-filter  
G(f) Frequency response of the G filter  
F(f) Frequency response of the F filter  
|function| Magnitude response of function  
j  The imaginary part of a complex number  
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The gyro has the following transfer function for Landsats 4 and 5:  
 

Hg = ak * (1.0 + K * s) / (1.0 + tau * s) * [(s / wn)2 + (2.0 * zeta * s) / wn + 1.0]   
 
where ak, K, tau, wn, and zeta are measured constants and  
 

s = 2j * PI * freq.   
 
The ADS and pre-filter combined have the following transfer function for  
Landsats 4 and 5:  
 

Hads  =  (A5 * s5 + A4 * s4 + A3 * s3) / 
              (s6 + B5 * s5 + B4 * s4 + B3 * s3 + B2 * s2 + B1*s + B0) 

 
where A5, A4, A3, B5, B4, B3, B2, B1, and B0 are measured constants and  
 

s = 2j * PI * freq. 
 

The Landsat 4 and 5 satellites have two sensors to measure satellite attitude 
perturbations. One of the sensors measures low-end frequencies, while the other 
measures high-end frequencies. They are called the gyro and attitude displacement 
sensor (ADS), respectively.  The gyro is sampled every 64 milliseconds, and the ADS is 
sampled every 2 milliseconds. The samples taken from these two systems cannot simply 
be added together to get the overall satellite attitude perturbations due to a discontinuity 
between the transition regions of the responses of the two systems and the sensor phase 
shift properties. 
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A plot of the frequency responses of the two systems is shown in Figure 3-15. 

 

 

Figure 3-15. Magnitude Response of Gyro and ADS 
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The magnitude of the sum |Hg + PHa| is shown in Figure 3-16. 
 
 

 

 

Figure 3-16. Magnitude Response of Gyro Plus ADS 
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The magnitude of the sum |Hg| + |PHa| is shown in Figure 3-17.  
 
 

 

Figure 3-17. Magnitude Response of Gyro + Magnitude Response of ADS 

These figures help to explain the discontinuity between the system responses.  

To combine these two signals, along with the quaternions and gyro drift values, a network 
is used that unites the traditional Sehn and Miller approach with the Kalman filtering that 
was explained in 3.1.5.3.3.11, Smoothing Low-Frequency Attitude Information. 
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Figure 3-18. Attitude Processing Network 

This algorithm and the steps needed to implement a workable system are listed below. A 
diagram of the algorithm steps is shown in Figure 3-18. 

1. Account for the register resets. 

2. For each axis, subtract the first gyro value from the rest. 

3. Rotate the gyro data to the ACS. 

4. Remove the orbital drift component. (Details of steps 1–4 can be found in 
3.1.5.3.3, Process Gyro Data.) 

5. Smooth the gyro, gyro drift, and quaternion. (Details of step 5 can be found in 
3.1.5.3.3.11, Smoothing Low-Frequency Attitude Information.) 

6. Rotate the data from step 5 to the ADS system. (Details of step 6 can be found in 
3.1.5.3.3, Process Gyro Data.) 
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7. Filter the data from step 6. This is done with a filter traditionally called the pre-
summing G filter, or simply the G filter. This filter helps to eliminate any frequencies 
above a predetermined cutoff, while also providing an adequate transition for 
combining the gyro and ADS. The gyro data are not pre-filtered as the ADS data 
are. The G filter serves this purpose. The requirements for the G filter are to 
provide unity gain at low frequencies and to allow the ADS system to provide gain 
at high frequencies. 

 
      The G filter takes on the following values in the frequency domain:  
 

Define: F1 = 2.0 
   F2 = 7.8125 
   freq = current frequency 
 

F1 is the chosen frequency where Hads reaches –1.0 dB, while F2 is the chosen 
Nyquist frequency associated with sampling of the gyro data.  

 
If freq is less than F1, then:  

 
Vk = 1 

 
If freq is greater than F1, but less than F2, then: 

 
   a = (F2 – freq) * (F2 – freq); 
   b = (freq – F1) * (freq – F1); 
   Vk = (a * |Hpdf| + b * |PHa|) / (a + b) 

 
(This is just an interpolation over the cross-over region of the two systems.) 

 
If freq is greater than F2, then: 

 
  Vk = PHa 
  G(freq) = 0.0 

 
Solve for the G filter by looking at the response of the attitude processing system 
before the F filter is applied (see Reference 10).  

 
|GHg + PHa| = Vk 

 
      Write the equation as:  
 

(GHg + PHa) * conjugate{(GHg + PHa)} = Vk * Vk 
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Multiplying this out and noting that G is real so that G = conjugate{G}, the equation 
becomes:  

 
G2|Hg|2 + 2GRe{ Hg conjugate{PHa} } + |PHa|2 – Vk2  = 0 

 
Use the quadratic equation to solve for G. Choose a solution for the minimum 
magnitude. This solution produces the following equations for the G filter: 

 
Hc = conjugate{PHa} 
Gpa = Hg * Hc 

 
a = |Hg| * |Hg| 
b = 2.0 * Gpa.re 
c = |PHa| * |PHa| – Vk * Vk 

       
Re{G} = (–b – (b * b – 4.0 * a * c)1/2) / (2.0 * a) 
Im{G} = 0.0 

 
Due to the fact that the gyro data are not pre-filtered, aliasing may be associated 
with the measured signal. Apply the G filter in the spatial domain to try to remove 
some of the aliasing at frequencies above 2 Hz and to provide a smooth transition 
between the gyro and ADS transition region. Use the above definition of the G filter 
in the frequency domain to achieve a spatial domain filter:  

 
Define: Filter size = N 

   Padded filter size = M 
 

This assumes that values for the filter are stored in an array. If speaking in the 
frequency domain, then the buffer location 0 in the array is the DC term, and 
location N/2 is the Nyquist frequency.  

a. Determine an appropriate size for the G filter. Sehn and Miller state that 
a G filter of length 31 guarantees less than 1% filter approximation error. 
Since the G filter is determined in the frequency domain, it makes sense 
to choose a value as close to a power of 2 as possible, since this is what 
the FFT routine needs. If a routine is used that does not need a power of 
2, then this should not be an issue. The IAS uses a value of 63. 

b. Find the nearest power of 2 larger than the associated filter size N. Zero 
pad the data to this length (this makes the data size M).  

c. Step through the number of chosen values (filter length padded to a 
power of 2), calculating the frequency response of the filter; the 
equations are provided above. This is calculated at frequency 
increments that are dependent on the gyro sampling rate and the 
number of samples from step 2.  In practice, only one half plus one of 
the filter size needs to be calculated due to step 7d. 
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d. Ensure that the G filter is real in the spatial domain. The Fourier 
Transform must be the symmetrical complex conjugate with respect to 
the origin or, in this case, the Nyquist frequency. Reference 6 provides 
an explanation of the Fast Fourier Transform (FFT) and some of its 
properties, which further explains this process. 

e. Calculate the inverse FFT of the results from step 7d.  

f. Adjust the data so that they are of the original desired filter length N. 
They should be symmetrical about the center of the filter.  

g. Apply the filter coefficients calculated in step 7f to the gyro data. When 
the filter coefficients are applied to the ends of the gyro data, the data 
are mirrored about their end points. 

8. Synchronize (up sample) the data from step 7, so that they agree with the 2-
millisecond sampling rate of the ADS data. The prototype uses a series of filters 
that allows better control over the response of the overall interpolation (final 
sampling rate). A further understanding and explanation of this process can be 
found in Reference 33. The filtering coefficients used in the IAS are as follows:  

 
Number Scale h0 h1 h2 h3 h4

Filter 1 1.0 1.0 0.0 0.0 0.0 0.0
Filter 2 2.0 1.0 0.0 0.0 0.0 0.0
Filter 3 16.0 9.0 –1.0 0.0 0.0 0.0
Filter 4 32.0 19.0 –3.0 0.0 0.0 0.0
Filter 5 256.0 150.0 –25.0 3.0 0.0 0.0
Filter 6 346.0 208.0 –44.0 9.0 0.0 0.0
Filter 7 512.0 302.0 –53.0 7.0 0.0 0.0
Filter 8 802.0 490.0 –116.0 33.0 –6.0 0.0
Filter 9 8,192.0 5,042.0 –1,277.0 429.0 –116.0 18.0

 
These numbers are reflected around the point of interest (the point to be 
interpolated). The filter coefficients are multiplied by the corresponding pixel they 
are associated with, and the sum is then divided by the scale factor. This gives an 
interpolated point. For example, if interpolating a point between n and n+1 with 
filter 4, pix(n) defines gray value at point n.  

 
sum  =  h1 * pix(n–1) + 

        h0 * pix(n) + 
        h0 * pix(n+1) + 
      h1 * pix(n+2) 

 
new pix = sum / scale[4] 

 
The sampling start time, and the time between samples for the smoothed low 
frequency data, is: 
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x, y, x axis    PCD + 64N  N = 0, …, 255 

 
while the ADS is sampled at increments of: 

 
x axis      PCD + 2N + 3/8 msec   
y axis      PCD + 2N + 7/8 msec   
z axis      PCD + 2N + 11/8 msec   

 
where N = 0, …, 8,191 

 
To get the smoothed low frequency data to have a time difference of 0.002 
seconds between samples, the data are interpolated five times with the coefficients 
listed above.  To account for the offsets in the ADS data, interpolation with the 
above coefficients is performed four times.  This allows a time difference between 
samples to be chosen such that every sixteenth sample falls on an even increment 
of 0.002N seconds from a PCD cycle.  Since there are no valid data at N=0, the 
first value for each axis of the time-synchronized ADS is zero.  The offset is 
accounted for by stepping ahead by a set number of data points.   The first valid 
synchronized ADS occurs at 0.002 seconds. 

 
Interpolating four times gives the ADS a time difference of 0.000125 seconds. 

 
x-axis (0.002 – 0.000375) / 0.000125 = 13 samples 
y-axis (0.002 – 0.000875) / 0.000125 = 9 samples 
x-axis (0.002 – 0.001375) / 0.000125 = 5 samples 

 
Every sixteenth sample is then chosen after taking into account the offset.  This 
returns the time difference between samples to 0.002 seconds. 

9. Sum the synchronized data from step 8.  

10. Apply the F filter to the data obtained in step 9. Since the ADS data are pre-filtered, 
and due to the fact that the gyro data have been G filtered, the F filter can be 
applied in the frequency domain (aliased frequencies have been suppressed). Both 
Sehn and Miller and the Earth Observation Satellite Company (EOSAT) determine 
a spatial domain filter for the F filter in much the same way that the G filter was 
determined. This approach applies the F filter in the spatial domain and eliminates 
the need for the data in step 9 to be a power of 2.  
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The F filter takes on the following values in the frequency domain:  
 

F(freq) = 1.0 / [PHa + G(freq)Hg] 

      Use the following steps to apply the F filter.  

a. Calculate the FFT of the data from step 9. If the FFT is used, then the 
number of data elements, when summed, must be a power of 2. 

b. Step through the data from step 10a, calculating the response of the F 
filter given the definition above. It is calculated at frequency increments 
that are dependent on the ADS sampling rate and the number of 
samples from step 10a.  

c. Reflect the complex conjugate of the data from step 10b around the 
Nyquist data point (this is analogous to what was done for the G filter). 
This assures that the inverse FFT of this data set is real.  

d. Multiply the data from steps 10a and 10c.  

e. Calculate the inverse Fourier Transform of the data.  

f. These data are the roll, pitch, and yaw due to attitude perturbations as 
measured from the gyro, gyro drift, quaternions, and ADS of the satellite.  

11.  The combined data are rotated to the ACS.  

(Details of steps 6 and 11 can be found in 3.1.5.3.3.7, Convert ADS to a Common 
Reference System.) 

3.1.5.3.3.13 Attitude Processing Sign Conventions 

The PCD quaternions are used to construct an orientation matrix that rotates the ACS 
axes to ECI, as described on page 39 of the ATBD. This is premultiplied by a matrix that 
rotates ECI-to-orbital coordinates, constructed from the ephemeris data, to create an 
ACS-to-orbital rotation matrix (body-to-orbit). This matrix is mapped to the roll, pitch, and 
yaw perturbation matrix: 
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From the last row and first column of this matrix: 
 
 roll = tan–1(–m32/m33) = –tan–1(m32/m33) 
 
 pitch = sin–1(m31) 
 
 yaw = tan–1(–m21/m11) = –tan–1(m21/m11) 
 

These are the body-to-orbit rotation angles. 

Orbital motion is removed from the gyro data as follows. The ephemeris data are used to 
construct the ECI-to-orbital rotation matrix at the first PCD major frame time (ECI2ORB0). 
At each subsequent gyro point, the ephemeris is interpolated and used to construct the 
instantaneous ECI-to-orbital rotation matrix, which is inverted to form the instantaneous 
orbital-to-ECI rotation matrix (ORBt2ECI). These arrays are multiplied (ECI2ORB0 
ORBt2ECI) to form the rotation from the instantaneous orbital coordinate system to the 
orbital coordinate system at the beginning of the PCD interval (ORBt2ORB0).  

The same logic used above for the quaternions is used to extract roll, pitch, and yaw 
values from this composite matrix, yielding body-to-orbit rotation angles where the “body” 
coordinate system is taken to be the ideal ACS, which is perfectly aligned with the 
instantaneous orbital coordinate system relative to the reference orbital coordinate 
system at PCD start. These “ideal” angles are subtracted from the gyro samples so that 
the gyro data reflect deviations from the ideal orbital coordinate system or body-to-orbit 
rotation angles. These gyro body-to-orbit angles are combined with the body-to-orbit 
angles derived from the quaternions in the Kalman filtering procedure. 

After the quaternion and gyro data are combined, the first filtered attitude sample value is 
subtracted from all of the samples and saved as a zero-frequency (DC) reference. This 
DC reference is sign inverted to form an orbit-to-body rotation reference. The residual 
gyro samples are combined with the ADS data and, in the course of this filtering process, 
are sign inverted so that the blended high-frequency attitude data represent orbit-to-body 
perturbations. The orbit-to-body DC reference and the orbit-to-body high-frequency 
perturbations are added to form the net orbit-to-body rotation, which is used in the 
satellite model. 

3.1.5.3.4   Line-of-Sight Generation and Projection 

The algorithms that follow are used by the geometric correction grid algorithm.  The inputs 
to this algorithm are line, sample, and band.  This algorithm also uses the information that 
was compiled and converted into a usable form in the create model algorithm.  The result 
of this algorithm is the geodetic latitude and longitude for a point on the Earth, or a height 
(h) above the surface, which corresponds to the entered line, sample, and band of the 
input image.  
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3.1.5.3.4.1 Calculate Sample Time  

The scan line number is found by subtracting 1 from the line number, dividing by the 
number of lines per scan for the given band, and then truncating.  

The detector number is found by taking the decimal value remaining from the scan line 
number, before truncating, and multiplying by the number of lines per scan. 
 

N = number of lines per scan 
 

  
detector = N – floor(S*N) 

 
The time into the current scan is found by using the following equations:  
 
For forward scans:  
 

time_in_scan = (sample – 1.0 + bandoffset) * DWELLTIME 
 
For reverse scans  
 

time_in_scan = (scan[*scan_line].counted_line_length – sample + bandoffset) * 
DWELLTIME 

 

For Landsat 7, the bands are aligned using left-justified padding, so the padding must be 
removed from the calculation as a function of band.  The L0R scan line offset (SLO) data 
are used to accomplish this. 

The time from start of image is found using the MSCD start of scan value for the current 
scan minus the MSCD start of scan value for the first scan plus the time in scan.  

3.1.5.3.4.2 Calculate Viewing Angles  

Find the across-scan angle of a detector due to its location within the band (this example 
is for the multi-spectral bands): 
 

detector_angle = (LINES_SCAN / 2.0 – detector + 0.5) * IFOVMS 
 

Find the along-scan fifth-order polynomial correction.  For forward scans, use the time-in-
scan value to determine the correction; for reverse scans, use the total scan time minus 
the time-in-scan value to determine the correction value.  Do the same for the across-
scan fifth-order correction.  

⎥⎦
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⎢⎣
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N
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The polynomial coefficients and scan start and stop angles are provided as measures of 
mirror rotation.  Since the instrument optical axis is reflected off the scan mirror, the effect 
on the line of sight in object space is twice the mirror angle.  The scan mirror model and 
the focal plane geometry must be combined to calculate object space along-scan angles 
in the sensor coordinate system.  The IAS sign convention is defined so that positive scan 
angles are in the direction of the sensor Y axis (as described in 3.1.2).  The along-scan 
angle for band “BAND” is calculated as a function of time “TIME” as follows: 
 

For forward scans: 
 
 s2m = Afsm = start to mid-scan angle 
 s2e = Afsm + Afme = start to end angle 
 along_angle = 2.0 * (s2m – s2e * TIME/Ts + f(b, TIME)) 
                     + bandoff_along[BAND] – odd_det_off[BAND] 
  
where f(b, TIME) is the corrected fifth-order polynomial model. 
 
For reverse scans: 
 
 s2m = Arsm 
 s2e = Arsm + Arme 
 along_angle = 2.0 * (–s2m + s2e * TIME/Ts + r(b, Ts – TIME)) 
                     + bandoff_along[BAND] – odd_det_off[BAND] 

   
where r(b, TIME) is the corrected fifth-order polynomial model. 

The across-scan angle is found using a linear interpolation of the SLC mirror's position, 
which is a function of time in scan.  Also accounted for is the scan mirror's across-scan 
fifth-order correction, the detector angle, and the across-scan focal-plane offset.  

Thus, the model for the SLC angle as a function of time in scan is: 
 

slc_angle = slc_start[SCANDIR] – slc_max[SCANDIR] * TIME/Ts 
 
where: 

 
slc_angle = across-scan pointing angle (positive in the direction of flight) 
slc_start = SLC angle at the beginning of scan (indexed by scan direction) 
SCANDIR = index for scan direction (forward or reverse) 
slc_max = total SLC angle (indexed by scan direction) 
TIME = time in scan 
Ts = total scan time 

The same equation applies for forward and reverse scans, with the appropriate selection 
of the SLC start and SLC total angles.  The sign convention and direction of SLC motion 
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is the same in either case: positive angles are in the direction of flight (toward the sensor 
X axis) with the SLC rotating from a positive to a negative angle in each scan. 

The SLC angle must be combined with the across-scan detector angle and the scan 
mirror across-scan correction polynomial to compute the total across-scan look angle for 
detector N in band “BAND”: 
 
 For forward scans: 
 
  cross_angle = slc_start[FWD] – slc_max[FWD]*TIME/Ts 
                     + 2.0 * f(b, TIME) + bandoff_cross[BAND] 
                     + ((ndets[BAND]+1)/2 – N)*IFOV[BAND] 
 

where f(b, TIME) is the scan mirror across-scan correction polynomial evaluated at 
the time of interest and all other components are as previously defined.   

 
 For reverse scans: 
 
  cross_angle = slc_start[REV] – slc_max[REV]*TIME/Ts 
                     + 2.0 * r(b, TIME) + bandoff_cross[BAND] 
                     + ((ndets[BAND]+1)/2 – N)*IFOV[BAND] 
 

where r(b, TIME) is the scan mirror across-scan correction polynomial evaluated at 
the time of interest.  The only difference between forward and reverse scans is the 
selection of the appropriate SLC parameters, as mentioned above, and the 
application of the scan mirror across-scan correction polynomial. 

3.1.5.3.4.3 Calculate LOS Vector  

This algorithm uses the time in which a pixel was imaged to find the attitude, position, and 
velocity of the spacecraft.  The along- and across-scan angles are used to construct an 
ideal line-of-sight (LOS) vector in sensor space.  This LOS vector is transformed to the 
spacecraft navigation reference base and is then transformed using the attitude 
information to the Orbital Coordinate System (OCS).  The OCS LOS vector is then 
transformed to the Earth-centered coordinate system.  

1. To find the attitude, this algorithm uses the time from first ADS value to the time of 
pixel imaging to look up the ADS and gyro combined attitude in the combined 
attitude table.  This table was constructed in the Process Attitude module.  Added 
to the roll, pitch, and yaw values from the table are the spacecraft's roll, pitch, and 
yaw values (the DC reference values). 

2. The move satellite algorithm uses the time from the reference ephemeris point to 
the time of pixel imaging to interpolate a new, Earth-Centered, Earth-Fixed (ECEF) 
satellite position and velocity.  The polynomials for this interpolation are defined in 
the Create Model module in the calculate satellite state vector algorithm.  
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3. The find LOS algorithm uses the along- and across-scan angles to construct a 
LOS vector in the sensor's coordinate system.  

 
       losx = sin(across_angle) * cos(along_angle) 
 
      losy = sin(along_angle) 
 
       losz = cos(across_angle) * cos(along_angle) 
 

4. The attitude algorithm transforms the LOS vector to the spacecraft's ACS 
coordinate system.  This vector is then transformed using the spacecraft's attitude 
to the OCS, and then the vector is transformed to the ECEF coordinate system.  

 
a. Transform the LOS from the sensor coordinate system to the ACS 

coordinate system:  
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The 3-x-3 transformation matrix from the sensor to the ACS is determined 
pre-launch. As part of the IAS calibration activities, this matrix is periodically 
checked and, if required, updated. The members of this matrix are 
contained in the Calibration Parameter File.  

 
b. Transform the ACS LOS to the OCS using the attitude information:  
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c. Transform the Orbital LOS to the ECEF coordinate system:  

 

   
ECEF
LOS

x
Transformation

Matrix

Orbital
LOS

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

3 3
 

 
The 3-x-3 OCS-to-ECEF transformation matrix is found using the unit 
vectors of the axes for the OCS determined in the ECEF coordinate system. 
The Z axis of the OCS is defined as the negative of the spacecraft's position 
vector. The Y axis of the OCS is the negative of the spacecraft's angular 
momentum vector or (V x R). The X axis is the cross product of the Y axis 
with the Z axis (Y x Z).  
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3.1.5.3.4.4 Intersect LOS Vector with Earth  

This algorithm finds the geocentric location on the ellipsoid of the intersection of the LOS 
vector to the ellipsoid or at a constant elevation for the entire scene above the ellipsoid.  

The satellite's position vector, the LOS vector, and an elevation are the inputs to this 
algorithm and the geocentric location of the intersection is the output in both the Cartesian 
and spherical coordinates.  

This algorithm uses an iterative method to locate the intersection.  The satellite's 
geocentric latitude is used as the initial guess in the process. This latitude is used to find 
the geocentric radius of the ellipsoid plus the elevation at this latitude.  Using the angle 
between the satellite's position vector and the LOS vector, the radius of the Earth, and the 
plane trigonometry's law of cosines, the magnitude of the LOS vector is found.  The 
intersection is the addition of the satellite's position vector and the scaled LOS vector. 
However, this location is based on a slightly incorrect latitude.  Thus, the calculated 
intersection’s geocentric latitude is used as the second guess.  This process is continued 
until the LOS magnitude difference between iterations is small (< 0.01 meter).  

Another approach is to use the reduced latitude in the calculation.  This allows for a direct 
solution for a point on the surface of the ellipsoid.  The solution is as follows: 

Define Rs as the position vector of the satellite, LOS as the line-of-sight vector, and 
Rt as the position vector of the target in question.  The position vector of the target 
using the reduced latitude psi, longitude Lt, and the semi-major a and semi-minor b 
axes is: 

 
Rt = Xti + Ytj + Ztk 

 
         Xt = a * cos (psi) * cos(Lt) 
         Yt = a * cos (psi) * sin(Lt) 
         Zt = b * sin (psi) 

 
The solution requires the following equation to be true: 

 
         Rt = Rs + m * LOS 
 

where m is the magnitude of the final LOS vector.  The current LOS vector has a 
magnitude of 1. 
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As separate components: 
 

      Xt = a * cos (psi) * cos(Lt) = Xs + m * Xlos 
      Yt = a * cos (psi) * sin(Lt) = Ys + m * Ylos 
      Zt = b * sin (psi) = Zs + m * Zlos 

 
A vector Rt' with a magnitude of 1 can be constructed by dividing the Xt and Yt 
components by a and dividing the Zt component by b: 

 
Rt' = Xt'i + Yt'j + Zt'k 

 
      Xt' = Xt / a = cos (psi) * cos (Lt) = Xs / a + m * Xlos / a 
      Yt' = Yt / a = cos (psi) * sin (Lt) = Ys / a + m * Ylos / a 
      Zt' = Zt / b = sin (psi) = Zs / b + m * Zlos / b 

 
or: 
 

      Rt' = Rs' + m * LOS' 
 

Using the law of cosines for a plane: 
 
     |Rt'|2 = m2 * |LOS'|2 + |Rs'|2 – 2 * m * |LOS'| * |Rs'| * cos (w) = 1 

where w is the angle between the satellite's position vector and the line-of-sight 
vector.  Since Rt' is defined to have a magnitude of 1, the only unknown left in the 
equation is m. 

Re-arranging the equation to use the quadratic formula to solve for m results in: 
 
        0 =  m2 * |LOS'|2 – 2 * m * |LOS'| * |Rs'| + |Rs'|2 – 1 
 

and thus, the solution for Rt is: 
 
      Rt = Rs + m * LOS 

The geocentric location is then converted to a geodetic location.   The theory behind this 
routine is found in Reference 20, page 398. 

3.1.5.3.4.5 Speed of Light Correction  

Due to the non-infinite velocity of light, the velocity of a point on the surface of the Earth 
and the velocity of the satellite may cause pixel location errors if not accounted for. The 
speed of light correction due to the Earth's rotation is sub-meter and is currently not 
accounted for.  The speed of light correction due to the satellite's velocity is almost a 
constant for Landsat 7.  The magnitude is about 15 meters in the along-track direction 
and is applied in the model. 
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3.1.5.3.5 Correction Grid Generation 

The ETM+ Geometric Correction Grid defines the piece-wise (gridded) geometric 
transformation of imagery in satellite perspective to corrected imagery in a user-specified 
output projection of user-specified geographic extent. The grid is used by the geometric 
transformation function (the resampler) to rectify the image data to the corrected image 
output space.  

This algorithm assumes that the Landsat satellite model has been initialized using the 
input image’s associated PCD and MSCD files.  It also assumes that the output projection 
system is defined and read from a projection definition file (see Reference 19). This 
algorithm also requires the frame (geographic extent) of the resulting output space image 
and the dimension of each pixel in the output coordinate space. The PCD and MSCD files 
are used by the Landsat satellite model to define the input image's (0R or 1R) geometric 
space.  

Refer to the LAS Geometric Manipulation Overview Document (Reference 18) for more 
information on specific projection parameters for a given projection and for information on 
the Projection Transformation Package, a coordinate transformation subroutine library 
based on the U.S. Geological Survey's General Cartographic Transformation Package 
(GCTP). 

3.1.5.3.5.1 Defining the Frame  

The first step in the gridding process is to determine the geographic extent of the output 
image to be generated by the resampler.  The geographic extent of the output image 
space is referred to as the output space “frame” and is specified in output image 
projection coordinates. Five different methods are used to determine the output frame.  

1. Method 1 

The user defines the upper-left and lower-right corner coordinates of the area of 
interest in geographic (latitude/longitude) coordinates. These coordinates are then 
projected to the output projection coordinate system using the Projection 
Transformation Package. This usually results in a non-rectangular area, so a 
minimum bounding rectangle is found (in terms of minimum and maximum X and Y 
projection coordinates) in the resulting output space. This minimum bounding 
rectangle defines the output space frame. The output image pixel size is then 
applied to the projection space to determine the number of lines and samples in 
the output space.  
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2. Method 2 

The user defines a rectangular area in the output space by specifying upper-left 
and lower-right output space projection coordinates. The output image pixel size is 
then applied to the projection space to determine the number of lines and samples 
in the output space.  

3. Method 3  

The user defines an upper-left output space projection coordinate, the output 
image pixel size, and the number of lines and samples in the output image. The 
coordinate pair must be the minimum X and maximum Y projection coordinates. 
The maximum X and minimum Y coordinates (the other end of the bounding 
rectangle) are then calculated.  

4. Method 4 

The user allows the framing software to project the four corners of the input L0R 
data set to the Earth ellipsoid.  This produces the minimum bounding rectangle that 
contains all of the input image data. 

5. Method 5 

The user specifies a path-oriented Landsat product in either the Space Oblique 
Mercator (SOM) or Universal Transverse Mercator (UTM) projection.  In this case, 
the framing coordinates are not user-specified. The frame is a preset number of 
lines and samples based on the Landsat Worldwide Reference System (WRS) 
scene size and the maximum rotation needed to create a path-oriented product.  
For a pixel size of 30 meters, a rectified image in the SOM or UTM projection is 
approximately 6,440 lines by 6,850 samples in size.  

For diagrams and more information on the framing process, refer to the LAS Geometric 
Manipulation Package Overview Document (Reference 18).  

3.1.5.3.5.2 Path-Oriented Framing and Rotation  

A path-oriented projection is basically a rotation from a typical "map-north" up projection 
that better represents the near polar orbit of the Landsat satellite (nominal inclination 
angle of 98.2 degrees). The path-oriented projection also does a better job of maintaining 
the scan line to the output space line.  

The first step in generating a path-oriented projection is to calculate the center location in 
the output space about which the frame is to be rotated. This is done by computing the 
nominal WRS scene center for the current path and row.  The frame is centered in the 
output projection space at this projection coordinate and is rotated about this point.  
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The procedure for computing the WRS scene center and the associated rotation angle is 
described below  
 
Given: 
 

Parameter Value Source 
Earth Parameters   
Semi-major Axis 6378137.0 m CPF: Earth_Constants:Semi_Major_Axis 
Semi-minor Axis 6356752.314 m CPF: Earth_Constants:Semi_Minor_Axis 
L7 Orbit 
Parameters 

  

Inclination 98.2 degrees CPF: Orbit_Parameters:Inclination_Angle 
L7 WRS 
Parameters 

  

Number of Paths 233 CPF: Orbit_Parameters:WRS_Cycle_Orbits 
Number of Rows 248 CPF: Orbit_Parameters:Scenes_Per_Orbit 
WRS Repeat Cycle 16 days CPF: Orbit_Parameters:WRS_Cycle_Days 
Desc Node Row 60 CPF: Orbit_Parameters:Descending_Node_Row 
Long of 001/060 –64.6 degrees CPF: Orbit_Parameters:Long_Path1_Row60 
Input Parameters   
Path Integer 1–233 User 
Row Float 0 < R < 249 User 

 
Find: 
 

WRS Scene Center Latitude 
WRS Scene Center Longitude 
Scene Heading 

 
Method: 
 

Convert input angles to radians: 
 
 Inclination_Angle = Pi / 180 * Inclination_Angle 
 Long_Path1_Row60 = Pi / 180 * Long_Path1_Row60 

 
Compute the Earth’s angular rotation rate: 
 
 earth_spin_rate = 2 * Pi / (24 * 3600) 
 
The solar rotation rate is used rather than the sidereal rate, as called for in the 
General Electric Landsat D Program Information Release (PIR), which describes 
the Worldwide Reference System, to account for the orbital precession that is 
designed to make the orbit sun synchronous. Thus, the apparent Earth angular 
velocity is the inertial (sidereal) angular velocity plus the precession rate, which, by 
design, is equal to the solar angular rate. 

 
Compute the spacecraft’s angular rotation rate: 
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  SC_Ang_Rate = 2 * Pi * WRS_Cycle_Orbits/(WRS_Cycle_Days * 24 * 3600) 
 

Compute the central travel angle from the descending node: 
 
  Central_Angle = (Row – Descending_Node_Row)/Scenes_Per_Orbit * 2 * Pi 
 

Compute the WRS geocentric latitude: 
 
  WRS_GCLat = asin(–sin(Central_Angle) * sin(Inclination_Angle)) 
 

Compute the longitude of Row 60 for this Path: 
 

  Long_Origin = Long_Path1_Row60 – (Path – 1) * 2 * Pi/WRS_Cycle_Orbits 
 

Compute the WRS longitude: 
 

  Delta_Long = atan2(tan(WRS_GCLat)/tan(Inclination_Angle), 
                                            cos(Central_Angle)/cos(WRS_GCLat)) 
   

WRS_Long = Long_Origin – Delta_Long – Central_Angle * 
                      Earth_Spin_Rate / SC_Ang_Rate 

 
Make sure the longitude is in the range +/– Pi: 
 

  where (WRS_Long > Pi): WRS_Long = WRS_Long – 2*Pi 
 
  where (WRS_Long < –Pi): WRS_Long = WRS_Long + 2*Pi 
 

Compute the scene heading: 
 

  Heading_Angle = atan2(cos(Inclination_Angle)/cos(WRS_GCLat), 
                                                            –cos(Delta_Long)*sin(Inclination_Angle)) 
 

Convert the WRS geocentric latitude to geodetic latitude: 
 
  WRS_Lat = atan(tan(WRS_GCLat) * (Semi_Major_Axis/Semi_Minor_Axis) 
                                                                              * (Semi_Major_Axis/Semi_Minor_Axis)) 
 

Convert angles to degrees: 
 

  WRS_Lat = WRS_Lat * 180 / Pi 
  WRS_Long = WRS_Long * 180 / Pi 
  Heading_Angle = Heading_Angle * 180 / Pi 
 

Round off WRS lat/long to the nearest whole arc-minute: 
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WRS_Lat = round( WRS_Lat*60 ) / 60 

  WRS_Long = round( WRS_Long*60 ) / 60 
 

Return the answers: 
 
 WRS_Lat 
 WRS_Long 
 Heading_Angle 

The WRS  heading angle, from geodetic north, needs to be converted from the WRS 
scene center to a frame orientation angle in map coordinates.  This can be done by first 
converting the WRS scene center latitude/longitude to map projection X1, Y1 and moving 
it to a point slightly north of the WRS scene center.  This is done by adding 1 microradian 
(0.2 seconds) to the WRS scene center latitude and projecting this point to X2, Y2.  Next, 
the azimuth of this line is computed in grid space as the arctangent of the X difference 
(X2–X1) over the Y difference (Y2–Y1).  This is the grid azimuth of geodetic north at the 
WRS scene center.  This angle is added to the geodetic heading to produce the grid 
heading.  A standard framed scene puts the satellite direction of flight at the bottom of the 
scene, so the scene orientation angle is the grid heading +/– 180 degrees.  If the grid 
heading is less than zero, add 180 degrees.   If the grid heading is greater than zero, 
subtract 180 degrees.  This is the scene orientation angle to be used with the WRS scene 
center and the fixed standard scene size to be used in calculating the frame corners. 

The preceding approach does not take into account the skewing of the image data.  
Skewing of the image is due to the Earth’s’ rotation relative to the spacecraft’s absolute 
velocity. 

A delta X and delta Y are calculated from the center of the projection space to the four 
corners of the output frame area using the output pixel size and the number of lines and 
samples in the output space.  
 
For example, calculation of the upper-right delta X and delta Y:  
 

delta_x = (number_samples – center_sample) * pixel_size 
delta_y = (center_line – 1.0) * pixel_size 

 
The deltas and the scene orientation angle are then used to calculate the rotated 
projection coordinate of each corner: 
 

ur_proj_x =  delta_x * cos(angle) + delta_y * sin(angle) + center_proj_x 
ur_proj_y = –delta_x * sin(angle) + delta_y * cos(angle) + center_proj_y 

 

A least squares routine is used to generate a first-order polynomial, which maps output 
image (line, sample) coordinates to rotated output projection coordinates.  
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The output pixel size and projection coordinates are saved in the mapping grid file.  

3.1.5.3.5.3 Gridding the Input Space  

For the process of rectifying the ETM+ satellite imagery to a given projection, a regular 
grid is defined over the input space, one set per scan. This separate, forward mapping is 
necessary to correct properly for gaps between scans and because an inverse satellite 
model cannot be defined. The first and last lines from each scan are represented in the 
gridding of the input. The difference between the last line of a scan (line 16 for TM multi-
spectral bands, line 8 for the thermal band, and line 32 for the PAN band) and the first line 
of the next scan is used to determine the scan gap. These scan gaps are corrected in the 
ETM+ geometric resampling process. Refer to the Landsat 7 Wide Band Data Format 
Book (Reference 1) for more information about the Landsat 7 instrument and scan gaps. 
The grid spacing in the along-scan (sample) direction is 96 pixels—a factor that divides 
into the total number of input image samples and that coincides with the ADS sampling 
rate. (The typical value used for Landsats 4 and 5 was 128 pixels.)  Figure 3-19 illustrates 
the gridding of an input image:  
 

 

 

Figure 3-19. Input Image Gridding Pattern Relating Input to Output Space  

 
The Landsat 7 mapping grids are defined in image (line, sample) coordinates that map 
the input (Level 0) line, sample coordinates to the output projected space line, and 
sample coordinates.  At each grid intersection (input line and sample), the initialized 
Landsat satellite model is called to calculate the geometric latitude and longitude at that 
point. Using the projection definition information as input to the Projection Transformation 
Package, the output projection coordinate is then calculated for each latitude and 
longitude point. From the output projection coordinates, an output line and sample 
location, in the defined output frame, are calculated for each point. For a path-oriented 
product, the polynomial is evaluated at each output projection coordinate.  This mapping 
takes care of both the rotation of the projection space and the scaling from projection 
coordinates to image (line, sample) coordinates. The polynomial (called once for x 
coordinates and once for y coordinates) is of the form:  
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x' = a0 + a1x + a2y 

 
where:    
 

x' is the output line or sample 
x and y are output space projection coordinates 

 
For the other output projections (when there is no rotation between the image coordinate 
system and the projection coordinate system), the output line and samples are calculated 
directly using the following equations:  
 

out_line = (ul_proj_y – proj_y) / pixel_size + 1 
out_samp = (proj_x – ul_proj_x) / pixel_size + 1 

The input line and sample, output line and sample, and projection information are written 
to a grid file. This geometric mapping grid file defines the transformation between the 
satellite image and the specified output projection.  The grid file is used by the resampler 
to rectify geometrically the input image to the user-specified output image frame, 
projection, and pixel size.  

The above process is used to create a grid for each band that is to be processed. The net 
effect is that there is a grid for each band in the grid file. This is necessary because of 
timing offset differences between bands.  

3.1.5.3.6  Resampling 

This section describes the IAS image resampling algorithm. 

3.1.5.3.6.1 Calculate Scan Gap 

This algorithm calculates the scan gap and the sample shift between each grid cell of two 
consecutive scans.  This information is used to create a synthesized or extended image 
that fills any gaps or “missing data” between two scans.  A “scan gap” refers to a line 
offset between consecutive scans that is larger than the nominal scan line spacing, while 
a “misalignment” refers to a sample offset between consecutive scans in the image.  A 
least squares routine is used in this algorithm to calculate mapping coefficients.   The 
algorithm follows: 
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1. Loop through each grid cell, calculating the scan gap and misalignment.  This is 
done using the mapping equations for each grid cell: 

 
      Forward mapping equations: 

 
So = a0 + a1 * Si + a2 * Li + a3 * Si * Li 

        Lo = b0 + b1 * Si + b2 * Li + b3 * Si * Li 
 

where : 
 

  Si is the input sample  
  So is the output sample  
  Li is the input line  
  Lo is the output line  
  a0, a1, a2, a3, b0, b1, b2, b3 are the bilinear mapping coefficients 
 
       Inverse mapping equations: 
 
               Si = c0 + c1 * So + c2 * Lo + c3 * So * Lo 
               Li = d0 + d1 * So + d2 * Lo + d3 * So * Lo 
  

where: 
                 

Si is the input sample 
                So is the output sample 
                Li is the input line 
                Lo is the output line 
                c0, c1, c2, c3, d0, d1, d2, d3 are the bilinear mapping coefficients 

The four corners of each grid cell are used to solve for the mapping coefficients. 

By using the forward and inverse mapping equations for each grid cell of a scan, 
along with the mapping equations for the grid cell of the scan directly below, the 
maximum gap is obtained.  (If scan N cell M is being processed, then it is 
compared with scan N+1 cell M).  This is shown in Figure 3-20. 

Also during this time, the mapping coefficients are calculated (forward and inverse) 
for each grid cell, and the inverse coefficients are stored in the grid structure.  

These values are obtained from the following steps (scan N cell M is used to        
designate one grid cell): 
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a. Loop through each grid cell of each scan, except for the last scan, since this 
scan cannot have a gap.  Repeat steps 2–8 for the number of grid cells. 

b. Create a fictitious "extended" pixel 17E, located directly (one line length) 
below scan N cell M. 

c. Find the output-to-input (inverse coefficients) and input-to-output (forward 
coefficients) mapping coefficients for scan N cell M.   

d. Store the inverse mapping coefficients in the grid structure. 
e. Map pixel 17E to the output space using the forward mapping equations for 

scan N cell M. 
f. Find the output-to-input mapping coefficients for scan N+1 cell M. 
g. Map the output pixel created in step 5 back to the input space using the 

inverse mapping equations for scan N+1 cell M (call this point xg, yg). 
h. Note that the difference between (xg, yg) and sample 1/line 1 of scan N+1 

cell M represents the misalignment and the scan gap for scan N cell M.  See 
Figure 3-20. 

i. Find inverse mapping coefficients for grid cells of last scan and store these 
coefficients in the grid structure. 

2. The maximum scan gap in the image is found.  The maximum scan gap and the 
resampling kernel size determine the size of the intermediate extended image.  
These two parameters determine the number of gap, or extended, lines needed 
(gap_lines). 

A gap of greater than 1/32 of a pixel is considered large enough to add one extra 
line to each scan.  This number represents the pixel increments of the resampling 
kernel.   

The image must also be extended according to the resampling kernel size.  A value of 
kernel size minus one makes it possible to need only one scan of data at a time during 
resampling.  If this were not done, then at the bottom of each scan, the resampling kernel 
would step into the scan directly below.  Due to scan gaps and misalignment, these data 
would need to be resampled to "fit" evenly spaced pixels, the current scan being 
processed.  To avoid a redundancy of this step, it is only done once up front during 
extended image generation.   

See Reference 26 and Reference 27 for more information about the characteristics of a 
scan gap.  Refer to Reference 28, Reference 29, and Reference 18 for more information 
about geometric corrections and transformations. 

3.1.5.3.6.2 Creating the Extended Image 

References 26 and 27 describe scan gap correction.  These documents refer to Landsats 
4 and 5.  These documents also follow the traditional three-pass approach for extending 
the gap and creating an output image.   

Each scan is extended by both the maximum number of lines missing due to the scan gap 
and due to the resampling kernel size.   
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The algorithm is as follows: 

1. Create weight tables.  A set of cubic convolution weights is set up with 1/32 pixel 
increments.  This table is used to resample the data in the sample direction.  The 
weights are set up for a shift of 0.0–1.0 pixels at 1/32 increments.   A set of spline 
weights is set up with 1/32 pixel increments.   This table is used to resample in the 
line direction.  The weights are set up for a shift of 0.0 to the maximum gap 
possible from the system.  A value of 3.0 covers the maximum gap possible in the 
Landsat 5 satellite.  A value of 6.0 is needed for the Landsat 7 satellite to cover the 
PAN band. 

2. Loop through the image, creating extra image data after each grid cell of every 
scan, except for last scan, which does not need to be extended (for the processing 
of scan N cell M). Repeat steps 3–6 for the appropriate number of extended lines 
needed. 

3. Use the grid to calculate misalignment and scan gap for the current grid cell. 

4. Determine data needed. 

a. If the gap is zero, then the lines are extracted only from the scan below and 
resampled to adjust for scan misalignment and detector delays. 

b. If the scan gap is greater than zero, then the first extended line is created 
from the last two lines from scan N and first two lines from scan N+1.  
These lines are used as long as an extended line falls in between their line 
locations.  When the extended line starts to fall into scan N+1, going beyond 
line 1 of scan N+1, then the lines used must be incremented appropriately.  
This can be explained by looking at Figure 3-20.  If x1=1.0, x2=2.0, x3=4.5, 
and x4=5.5 correspond to the line locations of the last two lines in scan N 
and the first two lines in scan N+1, respectively, then extended lines are 
created at 3.0 and 4.0 using these four lines.  In this case, both extended 
lines fall between these four lines.  However, when an extended line is 
created at 5.0, a new set of lines needs to be chosen, such that x1=3.0, 
x2=4.0, x3=5.5, and x4=6.5.  At this point, the first two lines are the 
previously created extended lines, while the other two lines are from scan 
N+1 and correspond to lines 2 and 3.  This pattern then follows with two 
extended lines being used along with two lines from scan N+1 for all other 
lines created. 

c. If the scan gap is less than zero, then the first extended line is created with 
two lines from scan N and scan N+1.  The lines taken correspond to the last 
two from scan N and two from scan N+1, incremented by the appropriate 
offset.  If the scan gap is 0.5, then lines 15 and 16 from scan N are used, 
along with lines 2 and 3 from scan N+1.  After the first extended line is 
created, it is used for further processing and only one new line from scan 
N+1 is needed.  For the example just given, the second iteration would 
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include line 16 from scan N, the extended line created in the previous 
iteration, along with lines 3 and 4 from scan N+1. 

5. The lines taken from scan N are resampled to adjust for detector delays.   The 
data are resampled using cubic convolution for a constant shift across the whole 
line, where the shift is equal to the detector delay of that line.  

6. The lines taken from scan N+1 are resampled to adjust for detector delay and 
misalignment.  The data are resampled using cubic convolution so that they are 
scaled and shifted to account for geometric misalignment and scaling differences 
between the scan N cell M and scan N+1 cell M.  The resampling also takes into 
account detector delays.  The transformation is treated as a linear relationship, 
mapping the lines from scan N+1 so that the samples line up in the sample 
direction.  

 
      This is done through the following relationship: 
 

S1N1 = seg * ns + 1 
                 S2N1 = (seg+1)*ns + 1 
 
                 S1N2 = S1N1 – misalignment[seg]; 
                 S2N2 = S2N1 – misalignment[seg+1]; 
 
                 m = (S2N2 – S1N2) / (S2N1 – S1N1); 
                 b = S1N2 – S1N1 * a1 + delay; 
 
                 new_sample = m * old_sample + b; 
 

where:  
 

S1N1 = first sample from scan N 
                    S2N1 = second sample from scan N 
                    S1N2 = first sample from scan N + 1 
                    S2N2 = second sample from scan N + 1 
                 m and b = mapping coefficients 
                    out_sample = newly mapped sample 
                    in_sample = sample from scan N+1 
                    delay = detector delay for line from scan N+1 
                    seg = current scan cell 
                    misalignment = scan misalignment between two cells 
                    ns = length of a cell  

7. A new line is produced using the four lines created from steps 4 and 5.  This is 
done using a cubic spline, which takes into account the unequal spacing between 
pixels due to the scan gap.  The scan gap is treated as a linear function over the 
scan cell. 
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       This is done through the following relationship: 
 
        m = (gap_at_end – gap_at_start) / ns 
          b = gap_at_start 
                 new_gap = m * sample + b 
 

where: 
 

                    gap_at_start = size of scan gap at the start of grid cell 
                    gap_at_end = size of scan gap at the end of grid cell 
                    m and b = mapping coefficients 
                    ns = length of a cell 

sample = sample position of current resampling step (These values are from 
0 to SAMP_RATE – 1.) 

                    new_gap = gap associated with sample 

           See Figure 3-22 and Figure 3-23.   

3.1.5.3.6.3 Notes on the Cubic Spline 

The cubic spline weights were developed by Fischel (Reference 30) and take on the form 
of (see Figure 3-21): 
 

w1 = (U2/(3*h1*h2*h2))*(2*F–G) 
w2 = (x3–x)/h2– (F/(3*h1*h2*h2*h2))*(2*U2*(h1+h2)+h1*V2) 

                + (G/(3*h1*h2*h2*h2))*(U2*(h1+h2)+2.0*V2*h1) 
         w3 = ((x–x2)/h2)+(F/(3*h2*h2*h2*h3))*(2*U2*h3+V2*(h2+h3)) 
                – (G/(3*h2*h2*h2*h3))*(U2*h3+2*V2*(h2+h3)) 
         w4 = (V2/(3.0*h2*h2*h3))*(2.0*G–F) 
 
where: 
 
         h1 = x2 – x1 
         h2 = x3 – x2 
         h3 = x4 – x3 
         F = (x3–x)*((x3–x)*(x3–x) –h2*h2) 
         G = (x–x2)*((x–x2)*(x–x2) –h2*h2) 
         U2 = h2/(h1+h2) 
         V2 = h2/(h2+h3) 
 

Figure 3-24 shows the spline weights calculated for different size gaps.  At larger gaps, 
the weights show greater variation.  When the PAN band is used for Landsat 7, this could 
cause some anomalies in cases of large, varying grey values between pixels that are 
located in an area with a large scan gap.  
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3.1.5.3.6.4 The Pseudo-Inverse Model 

Due to the fact that there is no inverse model, a method is needed to find which output 
pixel corresponds to which input pixel.  This is done using the inverse mapping 
coefficients for each grid cell.  To do this, it must be determined which grid cell goes with 
which output pixel. A "rough" polynomial is set up that gives an approximate input pixel for 
a given output pixel.  An approximate grid cell location can then be determined from this 
pixel.  After this approximation is performed, the correct grid cell can be found using a trial 
and error process with the inverse mapping coefficients for the grid cells.  

3.1.5.3.6.5 Calculating the “Rough” Polynomial 

A first-order polynomial is used for the "rough" mapping polynomial.  The data used to 
produce this polynomial are taken from the grid input and output pixel locations. The first-
order polynomial is used primarily for speed and computational reasons.  The algorithm is 
as follows: 
 

1. Read input and output lines/samples (not all are needed). 
2. Use a least squares routine to calculate a first-order polynomial. This creates a 

"rough" polynomial: 
 
            Si = a0 + a1 * So + a2 * Lo + a3 * So * Lo 
            Li = b0 + b1 * So + b2 * Lo + b3 * So * Lo 
  

where: 
 
                 Si is the input sample 
                 So is the output sample 
                 Li is the input line 
                 Lo is the output line 
                 a0, a1, a2, a3 are the polynomial mapping coefficients 
                 b0, b1, b2, b3 are the polynomial mapping coefficients 
 

3.1.5.3.6.6 Finding the Corresponding Grid Cell 

The algorithm to determine the corresponding input grid cell for a given output grid cell is 
as follows (If the inverse mapping routine is caught or jumps back and forth between two 
scans, then it is assumed that the output pixel falls in the gap between the two scans.  In 
this case, the scan above the gap is passed back as the appropriate grid cell.): 
 

1. Map the output pixel to the current_input_space_point using the “rough” 
polynomial. 

2. Set the current_grid_cell from the current_input_space_point. 
3. Loop: 
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a. Calculate the new_input_space_point using the inverse polynomial for the 
current_grid_cell. 

b. Calculate the new_grid_cell from the new_input_space_point.  
 

 If the current_grid_cell and the new_grid_cell are the same, the 
correct grid cell has been found; exit loop. Otherwise, copy the 
new_grid_cell to the current_grid_cell. Save the current_grid_cell 
to the history list. 

 If the current_grid_cell is the same as the grid cell from the 
previous iteration, then: 

• If the matching grid cell is from two iterations ago, and the 
intervening grid cell is from the same row, use the last grid 
cell as the correct grid cell. Otherwise, set a flag to indicate 
the output pixel maps to the gap; use the grid cell in the 
cycle from the upper-most row as the correct cell. 

 
4. Exit loop. 

 See Figure 3-25, Figure 3-26, and Figure 3-27. 

3.1.5.3.6.7 The Resampling Process  

The output image is created by using the extended image and the image grid.  Currently, 
a two-dimensional cubic convolution kernel is used for resampling. 

This processing flow may need to be revised if a new weight table is needed due to 
detector delays or to the Modulation Transfer Function (MTF).  This process does not 
contain any precision or terrain processing concerns. 

The algorithm is as follows: 
 
1. Create resampling table weights (see 3.1.5.3.6.12).  
2. Step through the output space (for each pixel).  Repeat steps 3–8 for all output 

pixels. 
3. Use the “rough” polynomial to map an output pixel to input space.  
4. Use the find corresponding grid cell algorithm to determine which input image grid 

cell the output pixel falls in, along with the input pixel location for the corresponding 
output pixel.  

5. Determine and obtain necessary data in the extended image.  
6. Determine correct the resampling weights.  

 
• If cubic convolution or MTF compensation is being used, find the fractional 

portion of the input line/sample to look up the correct set of resampling 
weights. 

• If nearest neighbor resampling is being used, then find the nearest input 
pixel. 
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7. Perform resampling. Multiply each input pixel by the corresponding weight and                  
sum the results. 

8. Store the output pixel. 

See References 12, 27, and 28 for more information about the resampling process. 
 

 

 

Figure 3-20. Extended Pixels and Scan Alignment 
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Figure 3-21. Calculation of Scan Gap 
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Figure 3-22. Scan Misalignment and Gap 

 

Figure 3-23. Extended Scan Lines 
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Figure 3-24. Cubic Spline Weights 

 

Figure 3-25. Inverse Mapping with “Rough” Polynomial 
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Figure 3-26. “Rough” Polynomial – First Iteration 

 

 

Figure 3-27. Results Mapped Back to Input Space 
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Figure 3-28. Nearest Neighbor Resampling 

3.1.5.3.6.8 Nearest Neighbor Resampling 

To perform nearest neighbor resampling, changes to the above algorithm must be made.  
To get the true nearest neighbor, the scan gap is not extended.  This presents two 
scenarios: one case where the pixel falls within a grid cell, and the resampling follows the 
traditional nearest neighbor routine; and a second case where the pixel falls in the scan 
gap area.  In the second scenario, extra work must be performed to determine which pixel 
is really the true nearest neighbor.  The confusion in determining the true nearest 
neighbor lies in the fact that each grid cell defines its own coordinate system.  When a 
pixel falls within the gap, the transformations between both grid cells must be used to 
determine which pixel is truly closest for nearest neighbor resampling.  This is 
demonstrated in Figure 3-28. 

3.1.5.3.6.9 Linear Interpolation Resampling 

Due to the effects of detector delays, the linear interpolation employed is slightly different 
than the classical bilinear approach.  Detector delays are shifts in the sample direction 
with respect to the raw imagery.  When these offsets are taken into account during linear 
interpolation, the sample actually represents the centroid of the polygon, which is made 
up of the four samples that surround the output sample location.  These values are solved 
directly. There is not a table of values representing a set of offsets for linear interpolation 
resampling as there is for cubic convolution resampling.  

3.1.5.3.6.10 Notes on the Correction Grid 

Input lines in the grid must contain the top and bottom lines of a scan (for scan N, lines 1 
and 16 must be contained in the input lines of the grid).  This is made necessary by the 
way the scan gap is calculated.  This algorithm expects the sample spacing between grid 
points to divide evenly the total number of samples in the image.  The pixel locations 
given in the grid refer to the pixel center location.  See 3.1.5.3.5, Correction Grid 
Generation, for more information on the gridding process. 
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3.1.5.3.6.11 Notes on the Least Squares Routine 

This algorithm uses the QR decomposition functions, which are based on information in 
References 6 and 31.   

3.1.5.3.6.12 Detector Delays 

A detector delay represents the virtual distance of each detector from its respective band 
center. It contains the net effect of detector misplacement on the focal plane and the 
effective sampling delays due to electronics and scan angle monitor delays. The manner 
in which they are defined is illustrated in Figure 3-29.  

Since the delays are different for each detector of each band, they cannot be centered in 
the sparse Geometric Correction Grid. Therefore, the detector delay information has been 
incorporated into the weight tables for resampling. The way in which they have been 
applied assumes that the nominal position of the detectors has been used in determining 
the along-scan angle in the forward satellite model (see Figure 3-29). It is the difference 
between the real and ideal detector positions that is applied to the input sample when 
determining the resampling weight table. Following this method, the difference is added to 
the input samples of forward scans and subtracted from reverse scans. To simplify the 
application of detector delays in calculating the resampling weights, the minus sign has 
been included in the definition of the delay correction term for the reverse scan so that it 
can be added regardless of scan direction. Therefore:  
 

new sample = old sample + delay correction 
 
where: 

 
                     |  (delay – nominal): Forward 

delay correction = |   
                     | –  (delay – nominal): Reverse 
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Figure 3-29. Detector Delay Definition 

Detector delays are defined as displacements relative to band center.  

Prior to resampling, a set of weights are determined that incorporate the non-ideal 
locations of the detectors. In Figure 3-30, the ideal line and sample locations are shown 
as dotted lines. When an output (line, sample) pair is mapped to input space, it generally 
falls on a non-integer (line, sample). Typically, the surrounding integer pixels are used to 
generate weights for resampling (i.e., cubic convolution, MTF, bilinear, etc.). To 
incorporate detector delays, it is necessary to determine the weights based on the 
distance from the non-integer (line, sample) in input space to the actual detector location 
(see Figure 3-30).  Weights for the synthetic “detectors” in the extended lines are 
calculated under the assumption that they act as ideally placed detectors. 

The standard cubic convolution uses a four-segment, piece-wise third-order polynomial 
over the range [–2, +2] (see Reference 12). It is defined so that beyond [–2, +2] the 
weights are zero. From Figure 3-30, note that if the detectors were ideally located at S-
1... S+2, then it would be necessary to calculate weights at these four samples only (for 
each of the four lines L-1... L+2). However, since the detectors can be displaced from 
their nominal positions in either the positive or negative direction, it is necessary to 
calculate weights over the range S-2... S+3. For every line, two of these weights are zero, 
but which two weights are zero depends on the magnitude and sign of the displacement 
and the location of the non-integer (line, sample).  
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Figure 3-30. Resampling Weight Determination 

Resampling weights are determined based on the x and y distances between the non-
integer (line, sample) and the real detector locations 

3.1.5.3.7  Precision Correction 

3.1.5.3.7.1 Defining the Precision Correction Problem 

The geometric measurement in the ETM sensor system can be regarded as the look 
vector, lsc, in the spacecraft body-fixed system. This vector is transformed into the  
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Figure 3-31. Definition of Orbit Reference System 

 
Orbit Reference Frame (OB) system (see Reference 2 and Figure 3-31), through the 
spacecraft attitude parameters: 
 

lob  =  TT(ξr, ξp, ξy) lsc        (1.1) 
 
where ξr, ξp, and ξy are roll, pitch, and yaw angles, and T is the transformation matrix, 
which can be expressed as: 
 
       T (ξr, ξp, ξy)  =  R3(ξy)R2(ξp)R1(ξr)  

 

= 
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⎥
⎥
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where the approximation for small angles ξr, ξp, ξy 
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⎥

        (1.2) 

 
where R1, R2, and R3 are the coordinate system transformation matrix for rotation around 
x, y, and z axes, respectively. 
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The vector lob is further transformed into the Earth-fixed (EF) system: 
 

lef = Tf(ref, vef) lob        (1.3) 
 
where Tf is the forward transformation for vectors from the OB system to the EF system, 
as a function of the satellite position ref and velocity vef vectors in the EF system. Note 
that vef should be the "inertial" velocity expressed in the EF system, as described by 
Reference 13. This vector, lef, together with the satellite position vector, ref, is then used to 
intersect the ellipsoid Earth surface to define a point position, Ref, as the target point on 
the Earth. This is the common forward image pixel geolocation calculation. 
 
Mathematically, Ref is a function of lsc, ξr, ξp, ξy, ref, and vef: 
 

Ref   =   F(lsc, ξr, ξp, ξy, ref, vef )       (1.4) 
 

Because of errors in the satellite orbit ephemeris and attitude data, this calculated Ref is 
different from the true location of the image pixel. If we know the true location of a 
landmark pixel, Rcp, from other sources (e.g., base map, survey, etc.), this point can be 
taken as a Ground Control Point (GCP) and used to check the accuracy of the computed 
image pixel location. The precision correction process uses the GCP coordinates to 
estimate the correction to the satellite ephemeris and attitude data, so that with the 
corrected parameters in equation 1.4, the calculated image pixel location, Ref, is close to 
its true location, Rcp, (depending on the GCP positional accuracy). 

To calculate the precision correction, the difference between Ref and Rcp is taken as the 
observable, and the observation equation becomes: 
 

dR  =  Rcp –  F(lsc, ξr, ξp, ξy, ref, vef )       (1.5) 
 
 

according to equation 1.4. However, the actual calculation of Ref is usually not an explicit 
function of the orbit and attitude parameters, especially for the intersecting procedure. 
Therefore, it is inconvenient to linearize equation 1.5 with standard estimation techniques. 
Instead, the calculation of look vector lcp, corresponding to Rcp, in the OB system is much 
more explicit: 
 

( )
l T r v

R r

R r
cp i ef ef

cp ef

cp ef

=
−

−
( , )        (1.6) 

 
where (Rcp – ref) is the line-of-sight vector in the EF system corresponding to Rcp, and 
Ti(ref, vef) is the inverse transformation for the look vector from the EF system to the OB 
system.  If all the satellite attitude and ephemeris parameters are accurate, the lcp from 
equation 1.6 and the lob from equation 1.1 should be equal. Since the measurement lsc is 
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accurate compared to the attitude and ephemeris information, any systematic difference 
between lcp and lob can be attributed to the attitude and orbit errors. Thus, we can use the 
difference between lcp and lob as the observable:  
 

dl  =  lcp – lob  =  Ti(ref, vef)
( )R r

R r
cp ef

cp ef

−

−
 –  T(ξr, ξp, ξy) lsc   (1.7) 

The task of precision modeling is then to calculate the correction to those satellite 
ephemeris and attitude parameters (i.e., ref, vef and ξs), so that the residuals of dl after 
correction are minimized for all selected GCPs.  The orbit correction is modeled as a 
linear function of time for each component in the OB system. Referred to as the short arc 
method, this purely geometric method shifts and rotates the short arc of orbit defined by 
the original ephemeris points to fit the GCP measurements. 

3.1.5.3.7.2 Linearizing the Observation Equations 

In equation 1.7, the calculation of lob can also be carried out through: 
 

lob = Ti(ref, vef)(Ref – ref) / |Ref – ref|      (2.1) 
 
if Ref is more conveniently accessible. Since equation 2.1 is simply the inverse of equation 
1.4 and equation 1.3, the lob calculated from equation 2.1 is the same as the one in 
equation 1.1, except for the possible inclusion of numerical errors.  However, the true 
relationship between lob and the parameters is always equation 1.1.  Equation 2.1 should 
not be confused with this, because Ref in equation 2.1 is not an independent variable but 
a function of equation 1.4.  Therefore, in observation 1.7, information about the attitude 
parameters is contained in lob, and information about orbit parameters comes from lcp . 
 
Since the measurement of lsc is two-dimensional in nature, only two-dimensional 
information is contained in equation 1.7, though three components are involved. If a look 
vector (either lcp or lob) has the three components in the OB system: 
 

l  =  {xl, yl, zl}         (2.2) 
 
the real information in these three components can be summarized in two variables, like 
the original look angle measurements.  
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The following two variables are used: 
 

δ   =  atan (yl / zl)        (2.3)  
 

ψ  =  atan (xl / zl)        (2.4) 
 
so that the three components of equation 1.7 can be reduced to these two equations: 
 

α  =  δcp − δob         (2.5)  
 

β  =  ψcp − ψob         (2.6) 
 
In equations 2.3 and 2.4, the components of xl, yl, zl can be those of the line-of-sight 
vector instead of the unit look vector, so that δcp and ψcp are explicit functions of orbit 
position. In that case, zl is approximately the height of the satellite. 
 
If we define: 
 
 true value = approximate value + correction 
 
and differentiate equations 2.3 and 2.4 with respect to the orbit position (for δcp and ψcp) 
and equation 1.1 with respect to the satellite attitude (for δob and ψob) at their 
corresponding approximate values, then equations 2.5 and 2.6 can be linearized as the 
function of correction parameters: 
 
       α  ≅  (cos2δcp / h) dy − (cosδcp sinδcp / h) dz + dξr    (2.7)  

 
β  ≅  (1.0 / h) dx − dξp + tanδcp dξy      (2.8) 

 

where dx, dy, and dz are the corrections to satellite position vector rob in the OB system, 
and dξs are the corrections to the satellite attitude angle ξs.  Other quantities are 
functions evaluated at the approximate values of ref, vef, and ξs.  

The above linearization is done by directly differentiating equations 2.3 and 2.4, with 
transformation Ti regarded as unaffected by the error in ref and vef. This, however, ignores 
the curvature of the satellite orbit and the Earth, resulting in about 10% error in the 
coefficients of dx, dy, and dz. A more accurate way to evaluate these coefficients is to 
examine the sensitivity terms dψcp/dx, dδcp/dy, and dδcp/dz through the geometry of the 
look vector (see Figure 3-32). 
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Figure 3-32. Look Vector Geometry 

Denote: 
 

R = the radius of the Earth 
 r = the radius of the satellite position 
 h = the altitude of the satellite 
 d = the magnitude of the look vector (from satellite to target) 

δ = the along-scan angle of the look vector 
φ = the Earth-centered angle between the satellite and the target 
γ =  the zenith angle of the look vector at the target 
x, y, z = the coordinates of the satellite position in the OB system 

  
then we have: 
 
       R sin(δ + φ) = r sin δ        (2.9) 
 
Differentiating the equation (holding R and r constant) yields: 
 
       R cos(δ + φ)(dδ + dφ) = r cosδ dδ      (2.10) 
 
Note that δ + φ = γ, and dφ = −dy / r. Then we have: 
 

α  =  dδ = (−b / (r d)) dy       (2.11) 
 
Similarly, for the cross-scan direction, we have: 
 
       β = dψ = (– (r – d cosδ) / (r d cosδ)) dx     (2.12) 
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For the effect of altitude error, we can differentiate equation 2.9 with respect to δ and r 
(holding φ constant and noting dr = –dz), and then we have: 
 
       α = dδ = (sin δ / d) dz       (2.13) 
 
The dx, dy, and dz in equations 2.11, 2.12, and 2.13 are error terms, which are opposite 
in sign from the correction terms. With this in mind, we can replace the correction terms in 
equations 2.7 and 2.8 and rewrite the linearized observation equation as: 
 
       α = (b / (r d)) dy − (sin δ / d) dz + dξr     (2.14)  

 
β = ((r – d cosδ) / (rd cosδ)) dx – dξp + tan δ dξy    ( 2.15) 

 
where: 
 
       b  =  R cosγ  =  sqrt(R2 − (r2sin2δ))      (2.16)  

 
d  =  r cos δ – b        (2.17) 

3.1.5.3.7.3 Weighted Least Squares Solution of the Parameters 

The correction parameters in equations 2.14 and 2.15 can be expanded to include the 
correction to the change rates of the satellite attitude and position by defining: 
 
       dx = dx0 + dxdotdt       and    dξr = dξr0 + dξrdotdt    (3.1) 

If the major random error source in computing α and β is the error in the coordinates of 
the Ground Control Point, then the covariance matrix for the observation equations 2.14 
and 2.15 should be the covariance matrix of Rcp in equation 1.6, mapped through 
equations 1.6, 2.3, and 2.4. 

In the observation equations 2.14 and 2.15, α is related only to parameters dy, dz, and 
dξr, and β is related only to dx, dξp and dξy.  The parameters are uncoupled in the two 
observations. In the simplified case, where observational errors of α and β are 
uncorrelated, the observation equations can be separated into two independent equations 
and solved individually. 

Define the parameter vectors as: 
 
       X1’ = {dξr0, dy0, dz0, dξrdot, dydot, dzdot}     (3.2)  

 
X2’ = {dx0, dξp0, dξy0, dxdot, dξpdot, dξydot}     (3.3) 
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where ' represents the transpose of a vector or matrix.  Then the two observation 
equations can be written as: 
 
       α = h1 X1 + εa         (3.4)  

 
β = h2 X2 + εb         (3.5) 

 
where: 
 
  h1 = {1.0,b/(d r), –sin δ/d, dt, b dt/(d r), –sin δ dt/d}   (3.6)  

 
h2 = {(r – d cosδ)/(r d cosδ), –1.0, tanδ, (r–d cosδ) dt/(r d cosδ),  
       –dt, tanδ dt}        (3.7) 

 
εa and εb are the random errors of α and β, respectively. With all GCPs included, the 
observation equation can be written as: 
 
       A = H1X1 + εA         (3.8) 

 
B = H2X2 +εB         (3.9) 

 
and the parameters can be solved by Weighted Least Squares (WLS) estimation as: 
 
       X1 = (H1’WaH1)–1 (H1’WaA)       (3.10)  

 
X2 = (H2’WbH2)–1 (H2’WbB)       (3.11) 

 

where A and B are the observation vectors, composed of α and β for all GCPs, 
respectively; H1 and H2 are corresponding coefficient matrices with h1 and h2 as rows 
corresponding to each α and β; Wa and Wb are the diagonal weight matrices for A and B, 
respectively, composed of the inverse of the variance of each individual εa and εb. 

One problem with this solution is the nearly linear correlation between parameter dx and 
dξ p in observation equation 3.7. The along-track orbit error and the pitch angle error have 
a very similar effect on β, and the two parameters cannot be separated in the solution 
without additional information. Including both parameters in the observation equations 
results in a near-singular normal equation and therefore an unstable solution of the 
parameters. Similarly, high correlation exists between the cross-track position and the roll 
attitude errors in equation 3.6, and an ill-conditioned normal equation results. 

For the purpose of correcting the image, we do not have to distinguish between orbit 
position correction and attitude correction parameters. Letting either the orbit or attitude 
correction parameters absorb the existing errors corrects the image in a similar manner.  
Therefore, we can choose to estimate either dx and dy or dξp and dξr.  This can be done 
by setting those coefficients in h1 and h2 that correspond to the unwanted parameters to 
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zero.  In practice, the allocation of correction offsets to ephemeris and attitude terms is 
controlled by the selection of a priori weights for the correction parameters. 

3.1.5.3.7.4 Separating Orbit Position and Attitude Errors  

One of challenging tasks in the Landsat 7 Image Assessment System (IAS) is to 
distinguish satellite attitude error from orbit positional error. The purpose of precision 
correction estimation is not only to correct the image, but also to extract information about 
the sensor alignment, which is reflected in the attitude correction parameters. To separate 
the ephemeris error from the attitude error as much as possible, we should first use the 
most precise ephemeris data available and correct systematic errors with available 
models. Second, we should use available a priori information in addition to the 
observation to cure the ill-condition of the normal equation in statistical estimation. 

Let the observation equation be: 
 
       Y = HX + ε 
       Ε[ε] = 0,   Cov[ε] = s2C       (4.1) 
 
and the a priori information of the parameters be: 
 

X = X + εx   
Ε[εx] = 0,  Cov[εx]  = q2Cx       (4.2) 

 
then the normal equation for the Best Linear Unbiased Estimate (BLUE) of X (see 
Reference 14), X^, is: 
 
       ((l/s2)H’WH + (l/q2)Wx)X^ = (l/s2)H’WY + (l/q2)WxX   (4.3) 
 
where W and Wx are weight matrices: 
 

W = C–1;  
Wx = Cx

–1         (4.4) 
 
The covariance matrix of X^ is: 
 
       Cov[X^] = ((l/s2)H’WH + (l/q2)Wx)–1     (4.5) 
 
Usually, however, Cov[ε] and Cov[εx] cannot be exactly known. In the case of ground 
control points, for example, the position error involves many factors like base map error 
and human marking error, etc.  If unknown scale factors s2 and q2 exist, we can still 
obtain the WLS estimate from the normal equation: 
 

(H’WH + Wx)X^ = H’WY + WxX      (4.6) 
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In such a case, the inverse of the normal matrix cannot be taken directly as the Cov[X^]. 
Factors s2 and q2 should be estimated with appropriate variance component estimation 
from the residual of the solution of Equation 4.6. The weighted residual square 
summation can be calculated as: 
 

V’WV = Y’WY – 2 X^’M + X^’ NX^      (4.7)  
 

Vx’WxVx = X’WxX – 2 X^’WxX + X^’WxX^     (4.8) 
 
where: 
 

V = Y – HX^         (4.9)  
 

Vx = X – X^         (4.10)  
 

N = H’WH         (4.11)  
 

M = H’WY         (4.12) 

3.1.5.3.7.5 Estimating Weight Factor for Observation and A Priori Information 

When the factors s2 and q2 are appropriately estimated, the weight matrices W and Wx 
should be correspondingly corrected by factors 1/s2 and 1/q2, respectively, and Equation 
4.6 should be resolved with the new weight matrices. In the new solution, information 
from the observation and the a priori information are appropriately combined and the (H' 
WH + Wx)–1 is the Cov[X^]. 

One of the estimates of s2 and q2 is the Helmert type estimate. For the problem here, the 
equation for the estimate can be derived following Helmert's variance component analysis 
(see Reference 15): 
 

E s2 + D q2 = V’WV        (5.1)  
 

D s2 + G q2 = Vx’WxVx       (5.2) 
 
where: 
 

E = n – 2 tr{Q N} + tr{Q N Q N}      (5.3) 
 

G = m – 2 tr{Q Wx} + tr{Q Wx Q Wx}     (5.4)  
 

D = tr{Q N Q Wx}        (5.5)  
 

Q = (H’ W H + Wx}        (5.6)  
 

n = number of observations  
m = number of parameters 
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Equations 5.1 and 5.2 do not guarantee positive solutions of s2 and q2. In some cases, 
especially for a small s2 and q2, noise can drive the solution negative. Another type of 
estimate, the iterative Maximum Likelihood Estimate (MLH), guarantees positive solution 
(see Reference 16), though the estimates s2 and q2 may not be statistically unbiased. The 
MLH solution is obtained by iteratively solving Equation 4.6 and: 
 

s2 = V’WV / n         (5.7)  
 

q2 = Vx’WxVx / m        (5.8)  
 

W = W / s2         (5.9)  
 

Wx = Wx / q2         (5.10) 

until s2 and q2 converge. 

The weight factor estimates procedure is very sensitive to the presence of blunders in the 
input data and therefore should not be used until the outlier rejection procedure (see 
3.1.5.3.7.7) has been performed. 

3.1.5.3.7.6 Propagating the Parameter Errors into Look Vector Error 

The above solution provides an estimate of the corrections to the ephemeris and attitude 
data, as well as to their covariance matrix. The covariance information can be used as a 
measure of precision for assessing the alignment errors of the sensor system. It can also 
be propagated to any pixel in the scene to evaluate the pixel location error after the 
precision correction. 

Given the sample time and along-scan look angle of a pixel, the coefficients h1 and h2 
can be calculated for α and β according to equations 3.6 and 3.7. The variance of α and β 
are then calculated as: 
 

σα
2 = h1 Cov[X^]h1’        (6.1) 

 
σβ

2 = h2 Cov[X^]h2’        (6.2) 
 

respectively. These are the variance of the pixel location in sample and line directions due 
to the uncertainty of the estimated precision correction parameters. They are in angles, 
but easily can be converted into Instrument Field of View (IFOV), according to the sensor 
system specifications. 

3.1.5.3.7.7 Precision Correction Outlier Detection Algorithm Background 

Outlier detection for the IAS precision correction solutions seeks to identify GCPs that are 
likely to be in error due to miscorrelation. This is done by analyzing the GCP residuals, 
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taking into account the relative importance of the GCP as reflected in the precision 
solution normal equation matrix (see References 36 and 37). 

Definitions: 
 

A = matrix of coefficients (partial derivatives) relating parameters to observations 
θ = parameter vector 
X = observation vector 
V = residual vector 
C = observation covariance matrix 
n = the number of observations 
p = the number of parameters 
A is n x p, θ is p x 1, X and V are n x 1, and C is n x n 

 
Observation equation: 
 

Aθ = X – V 
 

X = Xtrue + E  
 
where E = error vector ~ G(0,C) 

 
Aθtrue = Xtrue  

 
where θtrue is the “true” parameter vector 

 
Aθ = Xtrue + E – V 

 
therefore: 
 

 V = E if θ = θtrue 
 
Minimum variance parameter estimate: 
 

θ’ = [ATC–1A]–1ATC–1X 
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Estimated residual error: 
 

V’ = X – A[ATC–1A]–1ATC–1X 
 
Define projection matrix P: 
 

P = A[ATC–1A]–1ATC–1 

This matrix projects the observation vector into the parameter subspace (the column 
space of A). 

This projection is only orthogonal if C has the special structure described below. 

Substituting: 
 

V’ = X – PX = [I – P]X 
 

[I – P] projects X into the parameter null space. 
 
Looking at the error estimate V’: 
 

V’ = [I – P]X = [I – P][Xtrue + E] = [I – P]Xtrue + [I – P]E 
 

but [I – P]Xtrue = 0, since Xtrue lies entirely within the parameter subspace. 
 
Therefore: 
 

 V’ = [I – P]E = E – PE 

Some comments about V’ and E: 
 
1. For a given precision solution, the elements of E are not random variables; they 

are realizations of random variables. 
2. V’ is an estimate of the actual (realized) error E, which includes an estimation error 

equal to PE. 
3. We cannot exactly recover E from [I – P]–1V’ because [I – P] is singular (it is an n x 

n matrix of rank n–p). 
4. We can attempt to predict how accurate our estimate (V’) of E is likely to be by 

looking at the estimation error R = PE. 
5. Since we want the predicted accuracy to apply in general, we treat R as a random 

vector that is a function of another random vector E. 

Expected value: E[R] = E[P E] = P E[E] = P 0 = 0 

Variance: E[R RT] = E[P E ET PT] = P E[E ET] PT = P C PT 
 
Special structure of observation covariance matrix for IAS precision correction: 



 - 109 - LS-IAS-01 
  Version 1.0 

 

 
C = σ2I 

 
since the observation errors are realizations of independent and identically distributed 
zero mean Gaussian random variables with variance σ2. 
 
Substituting into the equation for P yields: 
 

P = A[(1/σ2)ATIA]–1ATI(1/σ2) = Aσ2[ATA]–1AT(1/σ2) = A[ATA]–1AT 
 
and the equation for the variance of R is: 
 

E[R RT] = σ2 P I PT = σ2 P 
 
noting that PT = P and P P = P 
 
therefore: 
 

 R ~ G(0, σ2 P) 
 
For a particular component of R ri: 
 

E[ri] = 0 
E[ri

2] = σ2 pii 
 
where pii is the ith diagonal component of P. 
 
Looking at the equation for P, we see that: 
 

pii = Ai
T [ATA]–1 Ai 

 
where Ai

T is the ith row of A. 
 
Considering a particular component of the residual error vector V’: 
 

vi = ei – ri 
 
where ei is the corresponding component of the observation error vector, so vi is an 
unbiased estimate of ei with variance σ2 pii. 

3.1.5.3.7.8  Outlier Detection 

If we know what ei is, then we can test it against a probability threshold derived from its 
standard deviation, σ, to determine if it is likely to be an outlier. Instead of ei, however, we 
have vi, which includes the additional error term ri. Including the additional estimation 
error in the threshold computation leads to: 
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σv

2 = σ2 + σ2 pii 
 
where σ2 is the term due to the actual error variance, and σ2 pii is the term due to the 
estimation error variance. 
 
This may seem like cheating, since ei and ri are not independent for a given realization. In 
fact:  
 

E[ vi
2 ] = E[ (ei – ri)2 ] = E[ ei

2 – 2eiri + ri
2 ] and ri = Σj pij ej  

E[ vi
2 ] = σ2 (1 – pii) 

 

It is tempting to use vi / (1 – pii)1/2 for ei in the outlier test (or, equivalently, to test vi against 
a threshold based on σ2 [1 – pii]), but this becomes dangerous as pii approaches 1. The 
factor pii can be interpreted as a measure of the uniqueness of or as the information 
content of the ith observation. As pii approaches 1, the ith observation lies almost entirely 
within the parameter subspace, which implies that it is providing information to the 
solution that the other observations are not. Such “influential” observations can be 
identified from the structure of the coefficient matrix A without reference to the 
observation residuals. Attempting to use 1/(1 – pii)1/2 to rescale the residual vi to better 
approximate ei in a sense punishes this observation for being important. Instead, we view 
pii as a measure of how poor an estimate of the actual error ei, the residual vi, is and 
ignore the fact that vi tends to underestimate ei. We therefore use σv

2 = σ2 (1 + pii), as 
shown above, to construct the outlier detection threshold. 

One remaining problem is that we do not know exactly what σ2 is and must estimate it 
from the observation residuals. This is done by scaling the a priori observation variance 
using the variance of unit weight computed in the precision solution. The fact that we are 
using an estimated variance to establish our outlier detection threshold modifies the 
algorithm in two ways: (1) we compensate for the fact that removing a point as an outlier 
alters the computation of the variance of unit weight by removing one residual and 
reducing the number of degrees of freedom, and (2) we base the detection threshold 
computation on Student’s t-distribution rather than the Gaussian distribution. 

The variance of unit weight is computed as: 
 

var0 = VTC–1V/(n – p) = VTV/σ0
2(n – p) = Σvj

2/σ0
2(n – p) 

 
where:  

 
n = number of observations  
p = number of parameters 

 σ0
2 = the a priori variance 

 
The estimated variance is: 
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var = var0 σ0

2 = Σvj
2/(n – p) 

 
Removing the kth observation makes this: 
 

vark = (Σvj
2 – vk

2)/(n – 1 – p) = (n – p)/(n – p – 1) * (Σvj
2 – vk

2)/(n – p) 
vark = (n – p)/(n – p – 1) * var – vk

2/(n – 1 – p) 
 
To normalize the kth residual, we divide it by the estimated standard deviation σ’ = (var)1/2: 
 

wk = vk / σ’ 
 
We can rescale this normalized residual to reflect the removal of this observation from the 
variance estimate without actually having to compute a new variance: 
 

wk’ = vk / σk’ = wk σ’/σk’ = wk (var/vark)1/2 
var/vark = 1 / [(n – p)/(n – p – 1) – vk

2/var (n – p – 1)] = (n – p – 1)/(n – p – vk
2/var) 

var/vark = (n – p – 1)/(n – p – wk
2) 

 
noting that vk

2/var = wk
2 

 
wk’ = wk [(n – p – 1)/(n – p – wk

2)]1/2 
 
Finally, we include the (1 + pkk) factor discussed above, and our normalized and 
reweighted residual becomes: 
 

wk’ = wk [(n – p – 1)/(1 + pkk)(n – p – wk
2)]1/2 

 
where:   

 
wk = vk / σ’ 

 
This normalized and reweighted residual is compared against a probability threshold 
computed using Student’s t-distribution with (n – p) degrees of freedom. 

3.1.5.3.7.9 Inverse Mapping 

For the precision correction process, the information needed from the systematic ground 
control point includes the satellite position and velocity vectors in Earth-centered inertial 
coordinates, along with the latitude and longitude associated with the point. From the 
reference ground control point, the precision process needs the latitude and longitude, 
along with the height of the control point above the WGS84 ellipsoid. Following are the 
steps involved in the process:  
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1. Use the Geometric Correction Grid to find an input line and sample for an 
associated output line and sample of the systematic Ground Control Point (GCP) 
(see the resampling algorithm description).  

2. Determine the scan time associated with the systematic GCP.   Since the model 
truncates to determine the scan number from the input line, the input line has a 
value of 0.5 added to it so that it can be rounded to the nearest integer line.  

3. Use an interpolating polynomial for satellite position and velocity to get the position 
and velocity vectors for the time associated with the input line and sample of 
systematic GCP.  

4. Call the Projection Transformation Package to convert the projection coordinate of 
the systematic image GCP to latitude and longitude.  

5. Call the Projection Transformation Package to convert the projection coordinate of 
the base image GCP to latitude and longitude. 

 

3.1.5.3.7.10 Precision Ephemeris Update 

The purpose of this algorithm is to update the systematic orbit model with the information 
from the precision correction solution parameters, so that a precision image can be 
generated.  

Given:  
tref = reference time for the precision correction  
xob = orbit position correction in the Orbit System x (along-track) direction  
yob = orbit position correction in the Orbit System y (cross-track) direction  
zob = orbit position correction in the Orbit System z (altitude) direction  
vxob = orbit velocity correction in the Orbit System x (along-track) direction  
vyob = orbit velocity correction in the Orbit System y (cross-track) direction  
vzob = orbit velocity correction in the Orbit System z (altitude) direction  
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For each ephemeris data point, the algorithm takes the following ephemeris information:  
 

teph = time for the ephemeris data point  
x = orbit position in the Earth Fixed system x direction  
y = orbit position in the Earth Fixed system y direction  
z = orbit position in the Earth Fixed system z direction  
vx = orbit velocity in the Earth Fixed system x direction  
vy = orbit velocity in the Earth Fixed system y direction  
vz = orbit velocity in the Earth Fixed system z direction  

 
and performs the following steps:  

 
1. Calculate the orbit position correction in the Orbit system at the time:  

 
dxob = xob + vxob * (teph – tref)  
dyob = yob + vyob * (teph – tref)  
dzob = zob + vzob * (teph – tref)  

 

2. Calculate the transformation matrix from the Orbit system to the Earth Fixed 
system at the time. 

a. Compose the transformation matrix, Teo, from the Earth Fixed system to the 
Orbit system:  

 
Wz, unit vector in negative radial direction, pointing to the Earth’s center  
(X = {x, y, z} and V = {vx, vy, vz}):  

 
Wz = – X / |X| 

 
Wy, unit vector in cross-track direction (– angular momentum): 

 
Wy = Wz cross V / |Wz cross V| 

 
Wx, unit vector in along-track direction: 

 
Wx = Wy cross Wz 
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b. Transpose the Teo matrix to get the transformation from the Orbit System to 
the Earth Fixed system:  

 

3. Calculate the orbit position correction in the Earth Fixed system:  
 
 

4. Calculate the orbit velocity correction in the Earth Fixed system:  
 

 
5. Update the orbit position and velocity in the Earth Fixed system:  

 
x = x + dx 
y = y + dy 
z = z + dz 
vx = vx + dvx 
vy = vy + dvy 
vz = vz + dvz 

 

This algorithm computes the orbit correction for each ephemeris data point in the Earth 
Fixed system and adds them up to yield the new ephemeris data point information.  

3.1.5.3.8  Terrain Correction 

The terrain correction algorithm uses elevation data from a digital elevation model (DEM) 
to generate offsets, which correct for the effect of terrain parallax. These corrections are 
required only in the along-scan (sample) direction.  

To avoid having to call the Projection Transformation Package for every point in the 
output space, the DEM is processed to the same pixel size, projection, and frame as the 
precision image, and its elevations are relative to the WGS84 ellipsoid rather than mean 
sea level or some other vertical datum.  It is also assumed that the precision corrections 
have been applied to the forward model.  The process is as follows:  

 
1. Read the DEM and determine minimum and maximum elevations present in the 

scene.  
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2. Determine the location of nadir in terms of the raw space input sample.   The 
secant method of root finding is used to determine the sample location at which the 
y-component of the line-of-sight (LOS) vector in orbital coordinates goes to zero for 
each scan. It stores them in an array. This segment also stores the latitude and 
magnitude of the satellite position vector (in meters) for the center of the scene. 

3. Using the minimum and maximum elevations found in step 1, determine the 
sample displacement due to terrain for every (off-nadir-sample, elevation) pair. Off-
nadir-samples should range from 0 to 3,600 (or some number that guarantees 
coverage of all possible input samples). Elevation should be in meters and range 
from minimum to maximum in the scene. The algorithm steps elevation in 
increments of 1 meter.  

4. For every line, sample pair in the output image space, the terrain correction 
algorithm needs the corresponding line, sample in the input space (see 3.1.5.3.6). 

5. Given the current output line and sample, the elevation is read from the DEM 
buffer from step 1.  

Given the corresponding input sample, the distance from nadir in pixels is 
determined from the calculation of nadir pixels in step 2.  

off_nadir_pixel = in_sample – nadir_sample 

From the (|off_nadir_pixel|, elevation) pair determined in steps 6 and 7, the value 
of the terrain offset is looked up from the table generated by step 3.  

The next step in terrain correction (applied in the resampler) is to adjust the input 
sample locations by the terrain offset and resample. 

The algorithm assumes that a DEM is available in the same projection, datum, and 
framing as the output space, as defined by the precision corrected grid and that it has 
been resampled to the same pixel size. It also assumes that for every line, sample in 
output space, the corresponding line, sample can be found in input space. The offsets 
due to terrain are applied in the resampler.  

This algorithm was investigated using the 1°x 1° (3 arc-second) Digital Terrain Elevation 
Data Level 1 (DTED-1), available via anonymous file transfer protocol (FTP) from the 
National Center for Earth Resources Observation and Science (EROS). Slightly better 
accuracy could be achieved using higher spatial resolution 7.5 x 7.5 arc-minute (30-
meter) USGS DEM data; vertical accuracy is better than 15-meter Root Mean Square 
Error (RMSE).  

3.1.5.3.8.1 Terrain Correction Algorithm  

The terrain correction algorithm generates a table of terrain-induced sample offsets, 
corresponding to (off-nadir-sample, elevation) pairs, as generated in step 3 above.  The 
method used for determining these terrain corrections comes from Reference 22.  
Following is a summary of that document. A schematic of the geometry is shown in Figure 
3-33.  
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Given distance in pixels of a sample in input space from the nadir pixel location, the 
ground range, S, is given by: 
 

S = pixel_size * off_nadir_pixel 
 
where pixel_size is the nominal pixel size in meters for the given band.  
 
This is associated with an Earth-centered angle, s: 
 

s = S/Re 
 
where Re is the radius of the Earth reference ellipsoid at the scene center latitude. 
 
The magnitude and direction of the line-of-sight vector relative to nadir can be found as: 
 

LOS = sqrt(Re2 + (Re + Alt) 2 – 2*Re(Re + Alt)*cos(s)) 
d = asin(Re*sin(s)/LOS) 

 
where Alt is the altitude of the satellite above the ellipsoid. 
 
Looking at Figure 3-33, elevation h at location S causes the information at the top of the 
hypothetical mountain to be mapped to the location S + dS on the ellipsoid used by the 
forward sensor model. What the terrain correction does is determine the offset dS, so that 
when the time comes to resample, we can grab the information projected on the ellipsoid 
at location S + dS and move it back to the mountaintop at location S. This is done by first 
determining the angular difference between the LOS to a spot on the ellipsoid below the 
terrain feature and the LOS' to the projected location of that feature on the ellipsoid.  
 

dd = atan{(Re+Alt) * sin(d) * (1–(Re+h)/Re) / [(Re+h) * sqrt(1–(Re+Alt)2 * 
                   sin2(d)/Re2) –(Re+Alt)*cos(d)]} 

z'' = asin[(Re+Alt) * sin(d+dd)/Re] 
ds = z'' – s – (d+dd) 
dS = Re * ds 
terrain_offset = dS / pixel_size 
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Figure 3-33. Terrain Correction Geometry 

Then for resampling, rather than getting data from input(sample), the data for the location 
in output space is taken from input (sample + terrain_offset * (sign of off_nadir_pixel)). 

The assumption of a constant satellite altitude above the geoid for one Landsat scene 
was tested with an absolute worst-case scenario.  A terrain feature with an elevation of 
8,850 meters (the height of Mt. Everest) was placed near the equator at the end of a scan 
line.  The orbit was modeled using the highest eccentricity allowed within specifications 
and in the vicinity of the greatest rate of change of orbit radius.  In this case, the 
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maximum error introduced was only ~0.03 panchromatic pixels.  This is approximately the 
same size as the resampling increment, 0.03125 pixels.  In a test case using Landsat 5 
data from an actual test site (path 28, row 30), the error from the altitude assumption for 
an elevation of 500 meters at the end of scan was ~0.001 pixels.  For these reasons, the 
assumption of a constant satellite altitude over a scene is considered valid. 

3.1.5.4  Geometric Calibration Algorithms  

3.1.5.4.1  Sensor Alignment Calibration 

The purpose of this algorithm is to use a sequence of precision correction solutions, 
including both correction parameter estimates and estimated covariance information, to 
estimate the underlying ETM+ instrument to Landsat 7 navigation reference base 
alignment. A Kalman filter implementation is used to isolate the systematic alignment 
trend from the attitude and ephemeris knowledge error, which varies from scene to 
scene. 

This algorithm is one step of the Kalman filter (see Reference 23) for a linear dynamic 
model (constant rate model). It takes one precision correction solution file (generated 
from one scene) and updates the estimate of the alignment state parameters. It appends 
the newest state parameter estimate to the orbit parameter sequence file and attitude 
parameter sequence file, and also appends an innovation sequence file. This algorithm 
does not make a decision on whether the alignment is anomalous or whether it should be 
corrected. This algorithm provides the information (the sequence files) to an analyst who 
makes that decision. 

This algorithm is applied each time a calibration scene is processed through the precision 
correction software to update the alignment estimate. Operationally, the precision 
correction processing includes the use of definitive ephemeris data, obtained from the 
Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), to help separate 
ephemeris position errors from angular alignment and attitude errors. Error propagation 
analyses and simulations run with the algorithm prototype software suggest that it 
requires four or five precision-corrected calibration scenes to drive the alignment 
knowledge from its pre-launch accuracy of approximately 240 arc-seconds per axis (1 
sigma) to the IAS calibrated specification value of 24 arc-seconds per axis. 
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3.1.5.4.1.1 Algorithm Description 

Defining the filter: 

The state vector of this filter is a 12 x 1 vector: 
 
 |roll|     roll attitude angle, in microradians (urad) 
 |pitch|   pitch attitude angle, in urad 
 |yaw|   yaw attitude angle, in urad 
 |x|    along-track orbit position error, in meters 
 |y|   cross-track orbit position error, in meters 
  X = |z|   radial orbit position error, in meters 
 |r_dot|   roll angle rate, in urad/day 
 |p_dot|  pitch angle rate, in urad/day 
 |yaw_dot|  yaw angle rate, in urad/day 
 |vx|   velocity in x, in meters/day 
 |vy|   velocity in y, in meters/day 
 |vz|   velocity in z, in meters/day 

See the precision correction algorithm description for the definition of above parameters, 
but note the units for the rate and velocity terms are different here. In fact, the rate and 
velocity state vector components represent long-term linear trends in the bias data, rather 
than the short-term rate of change errors estimated by the precision correction process. 
The covariance matrix for X is a 12 x 12 matrix P. 

The observation vector for this filter is a 6 x 1 vector: 
 
 |roll|   roll attitude angle, in urad 
 |pitch|   pitch attitude angle, in urad 
  Y = |yaw|   yaw attitude angle, in urad 
 |x|   along-track orbit position error, in meters 
 |y|   cross-track orbit position error, in meters 
      |z|   radial orbit position error, in meters 

The covariance matrix for Y is a 6 x 6 matrix R. The observation is from the precision 
correction solution, but with the velocity and attitude rate parameters discarded. The 
velocity and rate estimated from precision correction are short-term variations in a scene; 
what is to be monitored in the alignment calibration is the long-term drift. 

The precision correction estimates for the attitude bias terms (roll, pitch, and yaw) are 
actually estimates of the combination of long-term alignment error (what we are looking 
for) and short-term alignment and attitude errors. These short-term errors appear to be 
constant, or nearly constant, biases over time intervals of minutes to hours, but 
decorrelate over the time interval between calibration scenes (days). These short-term 
variations thus appear to be random noise superimposed on the alignment bias 
observations taken from each calibration scene. This manifests itself in the calibration 
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scene precision correction results as sequences of attitude bias estimates whose 
dispersion is greater than would be expected based on the a posteriori covariance 
estimates computed in the precision correction process. Any systematic linear trend 
present in the attitude error is indistinguishable from alignment and is incorporated into 
the alignment bias estimated by the Kalman filter. 

The random attitude and dynamic alignment errors are, in effect, an additional 
measurement error vector, added to the estimation error from the precision correction 
solution, in the Kalman filter formulation. The observation covariance matrix R is therefore 
the sum of the a posteriori covariance matrix from the precision correction solution and 
the expected covariance of the “random” attitude and dynamic alignment errors. 
According to the Landsat 7 System Specification (Reference 5), the expected variance of 
the additional random attitude and dynamic alignment errors is less than or equal to the 
sum of the squares of 45 arc-seconds of attitude knowledge error (see Reference 5, 
3.7.1.3.9), 8 arc-seconds of dynamic ETM+ to Navigation Base Reference alignment error 
(see Reference 5, 3.7.1.3.10), and 15 arc-seconds of line of sight to ETM+ reference 
dynamic alignment error (see Reference 5, 3.7.8.1.16.7). This yields a net random 
component of 48 arc-seconds. Since these errors are assumed to be uncorrelated with 
each other, they are added to the diagonal elements of the R matrix, corresponding to the 
alignment biases. 

Although we do not expect to detect any systematic offset in the position bias terms (x, y, 
and z), they are included because of their high correlation with the attitude biases. This is 
reflected in the observation covariance matrix, where significant off-diagonal terms exist 
for x-pitch and y-roll. Any particular precision correction solution resolves the correlation 
between the parameters by allocating the along-track and across-track errors between 
the ephemeris and attitude parameters based on their a priori weights. Thus, some of the 
systematic alignment bias could end up allocated to the ephemeris correction terms. Over 
multiple precision correction solutions, the net ephemeris bias should be very close to 
zero, so we can establish small a priori state variances for the ephemeris bias terms and 
allow the Kalman filter to reallocate systematic trends in the ephemeris corrections back 
to the alignment parameters. In practice, since accurate post-pass ephemeris is available 
for the calibration test scenes, most of the correction is allocated to the attitude terms in 
the precision correction solutions anyway. 

The dynamic model used for this filter is the constant rate (velocity) model: 
 

X F Xk k k-1 k-1t t= ( , )  
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where the state transition matrix is: 
 

 F
I I
0 I

(t t
dt 

k k-1, ) =
⎡

⎣⎢
⎤

⎦⎥
 

 
I is a 6 x 6 identity matrix, and dt = t k – t k–1 is the time difference between epoch t k–1 and 
tk. 
 
The observation equation is:  
 
 Y = H*X + v; 
 
where H = [ I  0 ], and v is the net measurement error with covariance R. 

Process noise can be added with constant covariance matrix Q. Q is diagonal with 12 
components. The process noise is initially assumed to be zero. After several precision 
correction solution sets are available for analysis, the innovation sequence and a 
posteriori state covariance can be assessed to decide whether process noise should be 
added to better model the dynamic behavior observed in the data. 

3.1.5.4.1.1.1 Procedure 

For each run, this algorithm performs the steps described in the following section. 

1. Setup option 

Read in the input option file to define the input and output file names, options, and 
process noise variance. 

2. Initialization 

Read in the previous epoch time tp, state vector Xp, and covariance matrix Pp. For 
a regular run, they are read from the output state file of the previous run. For the 
first run, they are read from an initial observation file, which contains the a priori 
knowledge of the state vector (alignment terms are zero +/– 240 arc-seconds, 
ephemeris terms are zero +/– 1 meter). 

3. Read and preprocess an observation as follows: 

a. Extract the observation data from the precision correction solution 

Read in the current epoch time tc, precision correction observation Z, and 
covariance matrix R. They are read from a solution file output by the 
precision correction algorithm. The precision correction solution file contains 
both bias and rate correction terms, whereas the Kalman filter observation 
uses only the bias components. The terms corresponding to roll, pitch, yaw, 
x, y, and z bias are extracted from the precision correction solution vector 
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and covariance matrix to assemble Y and R, respectively. The additional 
observation noise due to scene-to-scene attitude and dynamic alignment 
error is accounted for by adding the expected error variance (48 arc-
seconds)2 to the diagonal elements of R corresponding to the roll, pitch, and 
yaw bias correction parameters. 

b. Convert the attitude observation to an absolute pointing error observation. 

The precision correction solution contains updates to the alignment 
knowledge from the Calibration Parameter File (CPF) used to process the 
test scene. We want the Kalman filter to model the absolute alignment 
angles so that observations processed with different versions of the CPF 
can be combined. To make this possible, we must construct the composite 
CPF alignment/precision correction angles for input to the Kalman filter. 

The precision correction roll (r), pitch (p), and yaw (y) update values can be 
composed into an alignment correction rotation matrix as follows: 

 

ΔA  =   
cos(p) cos(y)    sin(r) sin(p) cos(y) +  cos(r) sin(y)   - cos(r) sin(p) cos(y) +  sin(r) sin(y)
- cos(p) sin(y)  - sin(r) sin(p) sin(y) +  cos(r) cos(y)    cos(r) sin(p) sin(y) +  sin(r) cos(y)
         sin(p)                        - sin(r) cos(p)                                        cos(r) cos(p)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 
The Calibration Parameter File (CPF) alignment matrix is defined as the rotation 
from the Navigation Base Reference (NBR) coordinate system to the ETM+ sensor 
coordinate system. To convert a look vector constructed in ETM+ sensor 
coordinates (XETM) to the orbital coordinate system (Xorb), where the precision 
correction solution is performed, the following rotations must be performed: 

 
  Xorb = TT

att AT XETM 

 

 where:  
 

Tatt is the attitude rotation matrix, and A is the alignment matrix. 

The transpose of A is used, assuming that A is an orthogonal rotation matrix so 
that its transpose is the same as its inverse. 

The precision correction solution computes updates to the composite Tatt AT 
rotation to best fit the observed ground control. This update takes the following 
form: 

 
  Xorb = ΔA TT

att AT XETM 
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where:   
 

ΔA is the alignment correction matrix defined above 
 

For small rotations, the ΔA and Tatt commute to a good approximation. Using the 
maximum off-nadir attitude pointing of 1,080 arc-seconds (900 arc-seconds 
maximum off-nadir commanded pointing per the Landsat 7 System Specification, 
3.7.1.3.8.2, plus 180 arc-seconds of pointing error per 3.7.1.3.8) and the maximum 
expected alignment error of 720 arc-seconds (ibid., 3.7.1.3.11), the error in 
commuting these rotations is less than 0.01 arc-seconds. This allows the above 
equation to be rewritten as: 

 
  Xorb = TT

att ΔA AT XETM 
 

The composite rotation A’ = ΔA AT captures the net measured alignment offset. We 
extract roll, pitch, and yaw angles from this composite matrix using the following 
equations, where a’ij indicates the element from the ith row and jth column of A’: 

 
  roll’ = tan–1(–a’32/a’33) 
  pitch’ = sin–1(a’31) 
  yaw’ = tan–1(–a’21/a’11) 

These composite angles are inserted into the observation vector Y, replacing the 
precision correction output values.  

4. Propagate Xp and Pp to the current epoch time tc. 

    Calculate: 
 
  dt = tc – tp 
  Xc = F(tc,tp) * Xp 
  Pc = F(tc,tp) * Pp * FT(tc,tp) 
 

Because of the special structure of F, the computation can be simplified if we 
divide the X vector into two blocks: 

 
   |    X1 | 
  X  = | | 
   |    X2 | 
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and P into four sub-matrices: 
 
   |  P11  |  P12  | 
  P   = |  ---- +  ----  | 
   |  P21  |  P22  | 
 

Then: 
 

  Xc1 = Xp1 + dt*Xp2 
  Xc2 = Xp2 
  Pc11 = Pp11 + dt*Pp12 + dt*Pp21 + dt*dt*Pp22 
  Pc12 = Pp12 + dt*Pp22 
  Pc21 = Pp21 + dt*Pp22 
  Pc22 = Pp22 
 

And add the process noise if that option is selected: 
 
  Pc = Pc + Q 
 
5. Calculate the Kalman gain matrix K: 
 
  K = Pc*HT*[H*Pc*HT + R]–1 

 
Because of the structure of H: 

 
  H*Pc*HT = Pc11 
 

and: 
 

    |  Pc11 | 
  Pc*HT = | | 
    |  Pc21 | 
 

which gives the Kalman gain matrix the following structure: 
 
   |    K1 | |   Pc11 | 
  K = | |     = | | * [Pc11 + R]–1 
   |    K2 | |   Pc21 | 

 
6. Update the current state with the filtered innovation to create a new estimate and 

update the new filtered state covariance: 
 
  Xn = Xc + K*(Y – H*Xc) = Xc + K*(Y – Xc1) 
  Pn = Pc – K*H*Pc 
 

which reduces to: 
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    |   K1*Pc11    K1*Pc12 | 
  Pn = Pc  – |   | 
    |   K2*Pc11    K2*Pc12 | 
 

7. Append the orbit elements in Xn to the orbit sequence file. 

8. Append the attitude elements in Xn to the attitude sequence file. 

9. Append the innovation Y – H*Xc to the innovation sequence file. 

10. Write out Xn and Pn to the new state file. 

11. Update the Calibration Parameter File alignment matrix. 

Periodically, the analyst may decide that the alignment knowledge has improved 
sufficiently to justify modifying the Calibration Parameter File. This typically occurs after 
the first five or six calibration scenes have been processed post-launch and then at least 
once every quarter after the initial on-orbit calibration. The update is performed using the 
most current roll, pitch, and yaw correction estimates in the attitude sequence file. 

The current filter estimates of roll (r), pitch (p), and yaw (y) are composed into a net 
alignment correction rotation matrix (as was done for the differential corrections above) as 
follows: 
 

Anet  = 
cos(p) cos(y)    sin(r) sin(p) cos(y) +  cos(r) sin(y)   - cos(r) sin(p) cos(y) +  sin(r) sin(y)
- cos(p) sin(y)  - sin(r) sin(p) sin(y) +  cos(r) cos(y)    cos(r) sin(p) sin(y) +  sin(r) cos(y)
         sin(p)                        - sin(r) cos(p)                                        cos(r) cos(p)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 
The net alignment rotation Anet is the transpose of the new alignment matrix, so the 
updated alignment matrix for the CPF is computed as follows: 
 
 Anew = Anet

T 

Once this update is incorporated into the CPF, subsequent calibration scenes are 
processed with the improved alignment knowledge. Since this alignment knowledge is 
combined with the precision correction observation, as described in 3.1.5.3.7.7, for input 
into the Kalman filter, the filter need not be reset after CPF updates. The state covariance 
also does not need to be reset, since it accurately reflects the confidence of the current 
alignment knowledge.  

After a sufficient number of precision correction results have been collected, an analyst 
may come up with some idea about the process noise by looking at the innovation 
sequence and the output filter covariance. The process noise sigma can be fed back to 
the filter through the input option file. Without the additional process noise, the filter may 
begin to diverge after a certain time (the filtered state covariance begins to grow). Tuning 
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the process noise is a difficult part of Kalman filtering practice, and some experimentation 
is needed to optimize the algorithm. 

3.1.5.4.2 Focal Plane Calibration 

3.1.5.4.2.1 Focal Plane—Band Placement Calibration Algorithm Description 

The objective of this algorithm is to estimate updates to the focal plane locations of the 
eight ETM+ band centers to improve band-to-band registration as specified in Reference 
3. 

Input to this algorithm includes the band-to-band comparison point correlation results from 
the band-to-band characterization algorithm, with outliers detected and removed as 
described in 3.1.5.5.1. They are used in conjunction with the resampling grid file (used to 
produce the Level 1Gs test image) as input to the band-to-band calibration process. 

3.1.5.4.2.2 Algorithm 

The band location parameter vector is of the form: 
 

 X

b
b

b
b

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Δ
Δ

Δ
Δ

1x

1y

8x

8y

...  

 
where:  
  

Δbix =  band offset in the focal plane x (along-scan) direction for band i, in 
          microradians 

 Δbiy =  band offset in the focal plane y (across-scan) direction for band i, in 
                     microradians 
 
The band-to-band characterization test point correlation output data are assembled, point 
by point, to construct a band-to-band calibration measurement vector: 
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 Y

m
m

m
m
m

m
m

m

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

21P1

21L1

21PN

21LN

31P1

81LN

32P1

87LN

...

...

...

 

 
where:  

 
mjiPk = observed offset for point k, in output space pixels, between band j and 
           band i (reference band) = pixeljk – pixelik 

 mjiLk = observed offset for point k, in output space lines, between band j and band 
                     i (reference band) = linejk – lineik 
 
The parameter vector and measurement vector are related by the following observation 
equation: 
 

 
A X X

V Y V

jik

ik ik jk jk

ik ik jk jk

jiPk

jiLk
jik jik jik

... 0 ... ... 0

... 0 ... ... 0

m
m

=

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ + = +

0

0

...

...

dp
dx

dp
dy

dp
dx

dp
dy

dl
dx

dl
dy

dl
dx

dl
dy  

 
Where Vjik is the 2 x 1 vector of measurement residuals for point k, assumed to be zero 
mean Gaussian errors with covariance matrix  Cjik. Typically, the  Cjik would be assumed 
to be the same for all k, so  Cjik = Cji. 
 

 C ji
p
2

l
2 p l

0
=

⎡

⎣
⎢

⎤

⎦
⎥ ≈ ≈

σ
σ

σ σ
0

0 25.  

 
The partial derivatives in the observation coefficient matrix Ajik are computed numerically 
using the resampling grids for bands j and i, from the input grid file, as follows: 
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For band i partials: 
 
If band i is resolution adjusted for correlation with a lower resolution band, adjust 
the measured pixel, line to match the grid: 
 
 If I = 8 (i.e., this band is panchromatic): 
 
  pik = 2*pik – 1 
  lik = 2*lik – 1 
 
 If j = 6 (i.e., the other band is thermal): 
 
  pik = 2*pik – 1 
  lik = 2*lik – 1 
 
Use GRIDi to inverse map the test point pixel, line coordinates pik, lik to input image 
space pixel, line coordinates sik, dik. 
 
Add a small epsilon value, es, to sik. 
 
Use GRIDi to map (sik + es, dik) to output space (pix, lix). 
 
Add a small epsilon value, ed, to dik. 
 
Use GRIDi to map (sik, dik + ed ) to output space (piy, liy). 
 
Compute the partials numerically, dividing by the band IFOV in microradians to 
rescale the partial derivatives from output pixels per input pixel to output pixels per 
microradian: 
 
 dp/dxik = (pix – pi)/es/IFOVi 
 dl/dxik = (lix – li)/es/IFOVi 
 dp/dyik = (piy – pi)/ed/IFOVi 
 dl/dyik = (liy – li)/ed/IFOVi 
 
If band i has been resolution adjusted for correlation with a lower resolution band, 
adjust the partial derivative to match the actual measurements: 
 
 If I = 8 (i.e., this band is panchromatic): 
 
  dp/dxik = (dp/dxik)/2 
  dl/dxik = (dl/dxik)/2 
  dp/dyik = (dp/dyik)/2 
  dl/dyik = (dl/dyik)/2 
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If j = 6 (i.e., the other band is thermal): 
 
  dp/dxik = (dp/dxik)/2 
  dl/dxik = (dl/dxik)/2 
  dp/dyik = (dp/dyik)/2 
  dl/dyik = (dl/dyik)/2 
 
The same procedure is used with the grid file for band j, GRID j, to yield the band j 
partials: dp/dxjk, dl/dxjk, dp/dyjk, and dl/dyjk. In this case, i and j are interchanged in 
the above procedure. 

 
The normal equations can be constructed directly from a sequence of observation 
equations: 
 
 N = Σ Ajik

T Cji
–1 Ajik  summed over all k and all i, j combinations 

 L = Σ Ajik
T Cji

–1 Yjik  summed over all k and all i, j combinations 
 
With only the band difference observations, this system of equations is indeterminate, 
since the solution is insensitive to the addition of constant offsets to the Δb terms. To 
stabilize the solution, we add another observation requiring the band offset for band 8 
(panchromatic) to be zero in each direction. Band 8 is constrained because it is used for 
scan mirror calibration and sensor alignment calibration, making it the geometric 
calibration reference band. This constraint is treated as another observation of the form: 
 

A

Y C

00

00 00
0
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0
2 0 urad

=
⎡

⎣
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⎤

⎦
⎥
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⎥ =

⎡

⎣
⎢

⎤

⎦
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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0
0

0 01
σ

σ
σ .

 

 
After adding this observation to the normal equations, the minimum variance estimate for 
X is: 
 Xest = N–1 L 
 
The measurement residuals for each input point can be calculated as: 
 
 Vjik = Ajik Xest – Yjik 
 

These residuals can be assessed by band pair to determine whether additional 
uncompensated biases exist in particular band combination measurements and to 
evaluate the point matching accuracy of particular band combinations. 

The resulting parameter vector Xest contains the estimates of the eight band offset pairs (x 
and y directions) in microradians. These values can be used to update the band offsets 
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(expressed in microradians) in the Focal Plane Parameters parameter group in the 
Calibration Parameter File, as defined in Reference 24. 

3.1.5.4.3  Scan Mirror Calibration 

The purpose of the Scan Mirror Calibration segment of the Landsat 7 Image Assessment 
System is to check and, if necessary, correct the along-scan and across-scan mirror 
profiles. 

As a preliminary approach to scan mirror calibration, a precision terrain-corrected Landsat 
panchromatic band is matched to a reference image with correlation.  Currently, the best 
candidate for the reference is USGS digital orthophoto quadrangle (DOQ) imagery.  Using 
the precision mapping grid, correlation windows can be selected that lie entirely within 
one scan, thus allowing forward and reverse mirror scans to be separated.   

For each successful correlation between a point in the reference image and a point in the 
Landsat scene, the respective image coordinates (lines, samples) in output space are 
mapped back through the inverse grid into input space (3.1.5.3.6).  After being mapped to 
input space, the effects of terrain are removed from the two samples to locate the (line, 
sample) input space coordinate associated with the measured output space (line, sample) 
(3.1.5.3.8).  The remaining difference between the samples/lines is then taken to be the 
error in the scan mirror profile.  Using the forward model, the time in scan of each sample 
is calculated from the input sample (3.1.5.3.4). 

This correlation and inverse mapping procedure is used to generate a number of mirror 
error data points for several forward and reverse scans, each with an associated time in 
scan.  Outlier rejection is performed by grouping the data points by scan direction and 
scan angle.  Points that deviate from the mean are removed. 

After the data have been filtered for outliers, the data from forward and reverse are fit with 
fifth-order Legendre polynomials, as developed below.  If the error in the mirror profile is 
beyond some predetermined value, the existing mirror coefficients can be updated in the 
Calibration Parameter File.  The error polynomial coefficients are saved for trending. 

3.1.5.4.3.1 Algorithm Development 

The pre-launch mirror profiles are characterized as deviating from linear by a fifth-order 
polynomial: 
 
 b(t) = b0 + b1t + b2t2 + b3t3 + b4t4 + b5t5 0 < t < Tnom (1) 
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This can also be written as an orthogonal fifth-order Legendre polynomial: 
 
 p(x) = a0 + a1x + a2(3/2x2 – 1/2) + a3(5/2x3 – 3/2x) + a4(35/8x4 – 30/8x2 + 3/8) 
        + a5(63/8x5 – 70/8x3 + 15/8x) –1 < x < 1 (2) 
 
where x = 2t/Tnom – 1 
 
To convert back and forth between the mirror coefficients bi and the Legendre coefficients 
ai, we equate the two above polynomials and gather terms of the same order.  This 
leaves us with the transformations: 
 
 b0 = a0 – a1 + a2 – a3 + a4 – a5 
 b1 = (2a1 – 6a2 + 12a3 – 20a4 + 30a5)/Tnom 
 b2 = (6a2 – 30a3 + 90a4 – 210a5)/Tnom

2  (3) 
 b3 = (20a3 – 140a4 + 560a5)/Tnom

3 
 b4 = (70a4 – 630a5)/Tnom

4 
 b5 = (252a5)/Tnom

5 
 
 a5 = (b5Tnom

5)/252 
 a4 = (b4Tnom

4)/70 + (b5Tnom
5)/28 

 a3 = (b3Tnom
3)/20 + (b4Tnom

4)/10 + (b5Tnom
5)5/36  (4) 

 a2 = (b2Tnom
2)/6 +(b3Tnom

3)/4 + (b4Tnom
4)2/7 + (b5Tnom

5)25/84 
 a1 = (b1Tnom)/2 + (b2Tnom

2)/2 + (b3Tnom
3)9/20 + (b4Tnom

4)2/5 + (b5Tnom
5)5/14 

 a0 = b0 + (b1Tnom)/2 + (b2Tnom
2)/3 + (b3Tnom

3)/4 + (b4Tnom
4)/5 + (b5Tnom

5)/6 
 
As shown in the section on scan mirror correction 3.1.5.3.3, the coefficients of the mirror 
scan profile are scaled by the total time of each scan, which is calculated from the first-
half and second-half scan errors: 
 
 bi’ = bi(Tnom/Ts)i   (5) 
 bi’(Ts)i = bi(Tnom)i   (6) 
 
From the transformations in Equation 4, the relationship in Equation 6 leads directly to: 
 
 ai’ = ai   (7) 
 
where ai’ are the coefficients of a polynomial in the form of Equation 2 ,but where the 
auxiliary variable x has been replaced by: 
 
 x' = 2t/Ts –1   (8) 
 
Therefore, using the actual scan time Ts instead of the nominal scan time Tnom to compute 
the auxiliary variable x takes care of the scan time scaling without changing the Legendre 
polynomial coefficients ai . 
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In addition to the fifth-order deviation from a linear profile, as discussed in 3.1.5.3.3 (scan 
mirror correction), an adjustment to the quadratic terms is used to fit the mid-scan error.   
 
The linear portion of the mirror model is: 
 
 L(t) = (amet + asm(Ts – t))/Ts  (9) 
 l(x) = (ame + asm)/2 + x(ame–asm)/2  (10) 
 
where asm and ame are the mirror angles at start and end of scan, respectively.  The 
predicted mirror angle at the time of first-half scan tfh is: 
  
 L(tfh) = (ametfh + asmtsh)/Ts = l(ε)  (11) 
 
where: 
 
 tsh = Ts – tfh        
 ε = 2tfh/Ts – 1 = (tfh–tsh)/Ts  (12) 
 
Thus, as shown in the section on scan mirror correction, the mid-scan correction due to 
deviation from linear (the difference between what the linear model predicts and what is 
observed; i.e., zero) is: 
 
 Af = –(ametfh + asmtsh)/Ts = –l(ε)  (13) 
 
Therefore, the total mid-scan correction, including the mirror profile, is: 
 
 Df = Af – p(ε) = –l(ε)– p(ε)  (14) 
 
Again referring to the section on scan mirror correction, the coefficients for the quadratic 
adjustment to the fifth-order polynomial are: 
 
 Δb0' = 0 
 Δb1' = (DfTs)/(tfhtsh)   (15) 
 Δb2' = –Df/(tfhtsh) 
 
Using the transformations in Equation 4, these corrections can be written in terms of 
Legendre coefficients as: 
 
 Δa0 = Δb0' + (Δb1'Ts)/2 + (Δb2'Ts

2)/3 = (DfTs
2)/(6tfhtsh) 

 Δa1 = (Δb1'Ts)/2 + (Δb2'Ts
2)/2 = 0  (16) 

 Δa2 = (Db2'Ts
2)/6 = – (DfTs

2)/(6tfhtsh) 
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They can be rewritten as: 
 
 Δa0 = (Af – p(ε))Ws = – (l(ε) + p(ε))Ws 
 Δa1 = 0   (17) 
 Δa2 = –(Af – p(ε))Ws = (l(ε) + p(ε))Ws 
 
where: 
 
 Ws = Ts

2/(6tfhtsh) 
 
Adding these to the coefficients in Equation 2, we get: 
 
 p'(x') = a0 + a1x' + a2(3/2x'2 – 1/2) + a3(5/2x'3 – 3/2x')  (18) 
                   + a4(35/8x'4 – 30/8x'2 + 3/8) + a5(63/8x'5 – 70/8x'3 + 15/8x')  
                   + p(ε)Ws(3/2x'2 – 3/2) – AfWs(3/2x’2 – 3/2) 
 
since tfh ≈ tsh ≈ Ts/2 and ε ≈ 0, looking at three special cases gives us: 
 
 p’(ε) = p(ε) +  2/3 p(ε)(3/2ε2 – 3/2) +  2/3 l(ε)(3/2 ε2 – 3/2) ≈ –l(ε) 
 p’(–1) = p(–1)   (19) 
 p’(1) = p(1) 
 
From this we see that the quadratic correction does not change the scan mirror profile at 
the beginning and end of scan, where it is already constrained to be zero, and that any 
mirror profile deviation at mid-scan is suppressed by the correction quadratic.  Therefore, 
any update to the mirror profile should obey the beginning and end of scan constraints: 
 
 Δp(–1) = 0   (20) 
 Δp(1) = 0 
 

Also, any update to the mirror profile at mid-scan is suppressed by the quadratic 
correction, which implies that any errors in the mirror profile at mid-scan can be neither 
measured nor corrected. 

To account for these three special cases in our mirror correction model, we apply three 
constraints to the correction profile Δp(x’) and treat them as additional observations: 
 
 Δp(1) = a0 + a1 + a2 + a3 + a4 + a5 = 0 
 Δp(–1) = a0 – a1 + a2 – a3 + a4 – a5 = 0  (21) 
 Δp(ε) = a0 + a1ε + a2(3/2ε2 – 1/2) + a3(5/2ε3 – 3/2ε)   
          + a4(35/8ε4 – 30/8ε2 + 3/8) + a5(63/8ε5 – 70/8ε3 + 15/8ε) = 0 
 
where the ais are now the corrections to the nominal profile.  These constraints have the 
practical effect of removing the low-order terms a0 , a1, and a2 from the correction model.  
The first two constraints can be reformulated and simplified: 
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 a0 + a2 + a4 = 0   (22) 
 a1 + a3 + a5 = 0 
 
Since the last constraint applies at ε, which is very close to zero, it can be approximated 
by: 
 
 a0 – 1/2a2 + 3/8a4 = 0  (23) 
 
These equations can be rearranged to determine constrained values for the low-order 
coefficients a'0 , a'1 and a'2 from the other three coefficients: 
  
 a'0 = –7/12a4 
 a'1 = –a3 – a5   (24) 
 a'2 = –5/12a4 
 
A fifth-order polynomial that obeys these constraints can be used to model the higher 
order mirror non-linearity, which cannot be removed by the mid-scan correction quadratic.  
The residual quadratic difference between the estimated mirror profile and the 
constrained mirror profile can be computed as: 
 

c0 = a0 – a'0 = a0 + 7/12a4 
c1 = a1 – a'1 = a1 + a3 + a5  
c2 = a2 – a'2 = a2 + 5/12a4  (25) 

 
This residual quadratic contains information about apparent mirror angle deviations at the 
three mirror control points: scan start, mid-scan, and scan end.  It can be used to 
estimate corrections to the mirror scan angle monitor (SAM) angles as follows: 
 

p(x) = c0 + c1 x + c2 (3/2x2 – 1/2) 
 
p(–1) = Δ–1 = c0 – c1 + c2  deviation at scan start 
p(0) = Δ0 = c0 – 1/2c2  deviation at mid-scan 
p(1) = Δ1 = c0 + c1 + c2  deviation at scan end 
 
Delta SAM Angle 1 = Δ0 – Δ-1 = c1 – 3/2c2 
Delta SAM Angle 2 = Δ1 – Δ0 = c1 + 3/2c2  (26) 

 
The measured deviations, converted to mirror angle deviations as a function of time, 
provide observations of the Δp(x’) mirror correction function.  A weighted least squares 
technique is used to fit a Legendre polynomial, like Equation 2, to these mirror angle 
deviations.  The user selects the weight for the observations based on the expected 
reference image and correlation accuracy.  The constraints are then applied to the 
coefficients computed by the weighted least squares procedure, and the residual 
quadratic deviation is computed.  The calculated SAM angle corrections for the forward 
and reverse scan directions are averaged to compute a single correction for each half 
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scan.  This enforces the additional constraint of common SAM angles for both scan 
directions.  In computing the averages, the signs are reversed for the reverse scan 
estimates due to the opposite sign convention used for reverse scan angles: 
 

Delta FWD Angle 1 = Delta REV Angle 2 = 
 [(FWD c1 – 3/2 FWD c2) – (REV c1 + 3/2 REV c2)] / 2 
 

Delta FWD Angle 2 = Delta REV Angle 1 = 
 [(FWD c1 + 3/2 FWD c2) – (REV c1 – 3/2 REV c2)] / 2(27) 

 

The existing mirror polynomial coefficients are converted to Legendre space according to 
the transformations in Equation 4.  If the higher order terms of the determined error 
polynomial are deemed by the operator to be significant and reproducible, then they are 
added to the existing coefficients and transformed back into mirror space according to 
Equation. 3.  Similarly, if the operator considers the computed corrections to the SAM 
angles to be significant and reliable, they are added to the existing mirror angles. 

3.1.5.4.3.2 Inputs 

As input, the mirror calibration algorithm requires a precision corrected grid and a terrain-
corrected image.  It also requires the same digital elevation model that was used in the 
terrain correction algorithm and the terrain correction table it generates.  To calculate the 
time in scan for each sample, it also needs to have the forward sensor model.  Finally, it 
requires a reference image in the same framing as the terrain-corrected image.  The 
current plan is to use DOQ imagery as a reference and the PCD flags that indicate the 
scan mirror electronics (SME) number and scanning mode (Scan Angle Monitor or 
Bumper) to know which mirror profile is applicable. 

3.1.5.4.3.3 Outputs 

The scan mirror calibration algorithm generates a set of fifth-order Legendre polynomial 
coefficients for correction to the along- and across-scan mirror profiles for both forward 
and reverse scans.  If the deviation from the existing profile is deemed significant, then 
the existing higher order mirror coefficients are transformed into Legendre space. The 
deviations are added to them, and then they are converted back into mirror coefficients.  
The lower order terms can be kept for characterization, although (as shown above) they 
cannot be uniquely determined and therefore should not be used for calibration.  In 
addition, all of the data generated by the correlation routines is stored. 

3.1.5.4.3.4 Correlation Testing 

One of the key components of the mirror calibration procedure is the selection of an 
accurate reference image source.  Digital orthophoto quad data are 1-meter resolution, 
panchromatic aerial imagery, which have been terrain corrected and rectified to a 
standard Universal Transverse Mercator (UTM) projection with an accuracy specification 
of 6 meters, 1 σ.  They are available in 7.5 arc-minute quadrangles or 3.75 arc-minute 
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quarter-quads.  To use DOQs as a reference, they need to be downsampled to the same 
resolution as the ETM+ imagery and mosaicked to cover several scans.  In the case of 
Landsat 7, this means downsampling to the level of the panchromatic band. 

Ideally, we would like to mosaic the DOQ tiles at the highest resolution possible to blend 
more effectively the radiometric differences that may be present.  Practically speaking, 
however, the full-resolution DOQs are too large to mosaic more than a few at a time.  For 
example, in one of the potential test sites (Landsat 4/5 path 28, row 30), the quarter-quad 
images are ~7,700 lines by ~6,900 samples, and it takes ~200 of them to completely 
cover the first 20 scans of the Landsat scene (see Figure 3-34).  As a compromise, the 
DOQs may be mosaicked and reduced in resolution in stages. 

For testing purposes, 16 quarter-quads from four full quadrangles were low-pass filtered 
and downsampled to 8-meter pixels.  They were then mosaicked together and reprojected 
to the Space Oblique Mercator (SOM) projection in a Landsat Path-orientation at a factor 
of the final desired pixel size (7.5 meters).  The mosaicked image was then low-pass 
filtered again and downsampled twice more to the final 30-meter pixel size of the test 
image. 
 

 

 

Figure 3-34. DOQ Quarter-quad Images Covering About 20 TM Scans 

Since a precision terrain-corrected image was not available, a section of a Landsat 5 
systematic image was correlated with the assembled DOQ imagery using hand-picked 
points.  The TM image used for the correlation was a synthetic panchromatic image (at 
30-meter pixel size), generated by a linear combination of bands 1, 2, 3, and 4.  Using the 
correlation offsets, a polynomial transformation was generated to remap the TM sub-
scene into the frame and projection of the DOQ.  Another set of features was hand-
picked, and the two images were correlated.  Without any sort of outlier rejection, the 
standard deviation of the correlation was ~0.25 pixels.  Using a regular grid of correlation 
points, the standard deviation was ~0.35 pixels, again without any outlier rejection.  Error 
analysis indicates that a correlation accuracy of 0.25 pixels should be sufficient.  From 
these less-than-ideal tests, it appears as though this goal is achievable, particularly if the 
real panchromatic band of the ETM+ is to be used.   

A consideration to keep in mind is that the DOQ reference images are generally taken in 
mid-spring.  Therefore, it would be best to choose test sites where seasonal variability 
has the least impact. 
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3.1.5.4.3.5 Polynomial Fitting 

To test the ability of the algorithm to determine corrections to the scan mirror coefficients, 
two systematic images were generated, one with the fifth-order mirror correction 
polynomial applied and one without.  This allowed us to back out the original higher order 
coefficients.  The two images were correlated using the first 96 scans.  Each scan was 
broken down into 256 overlapping windows, measuring eight lines by 128 samples in 
output space.  The inverse grid was used to make sure the correlation windows stayed 
within the scans in input space.   

The correlated (line, sample) pairs in the image and reference output space were run 
through the inverse grid to find their corresponding (line, sample) in input space.  In 
practice, it is at this point that the terrain adjustment would be added to the input samples.  
Since neither image had any terrain correction applied, it was not necessary for this test.  
Knowing the input (line, sample) of the image and having initialized the forward model, we 
can get a time-in scan corresponding to each correlation point.  We can also get the 
actual scan time Ts for each scan, which allows us to determine the auxiliary variable x', 
as shown in Equation 8.  The difference between samples/lines in the two TM images (in 
practice, a terrain-corrected ETM+ image and a reference) in input space is assumed to 
be an error that may be correctable by adjusting the coefficients of the scan mirror profile. 

It is this difference as a function of the auxiliary variable x' that we attempt to fit with a 
Legendre polynomial.  In practice, we would apply the constraints in Equation 19, though 
this was not done for this test. 
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Error in Forward Scan for Higher Order Legendre Coefficients
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Figure 3-35. Legendre Differences 

Error in Forward Scan for Higher Order Mirror Coefficients
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Figure 3-36. Difference between Actual Mirror Profiles 
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Figure 3-35 and Figure 3-36 show errors in the higher order terms of the correction 
polynomial in Legendre terms and mirror terms, respectively.  In this test case, we expect 
higher order terms of the polynomial we find to be the same as the actual along-scan 
mirror coefficients used in the base image.  As shown in the figures, the algorithm was 
able to back out the polynomial to better than 1 μrad over most of the scan and better 
than 2 μrad in all locations.  The mirror profile repeatability specification for the Landsat 7 
ETM+ is 1.75 μrad 1σ, so the measurements using 42.5 μrad IFOV TM data are of the 
same order as the random mirror variations. 

3.1.5.5 Geometric Characterization Algorithms 

3.1.5.5.1  Band-to-Band Registration  

The Band-to-Band Registration Assessment segment of the Landsat 7 Image 
Assessment System (IAS) is used to check the registration quality between bands of the 
same image. 

3.1.5.5.1.1 Matching Resolutions  

Due to the difference in pixel size between bands, the higher resolution data needs to be 
reduced so that it matches that of the lower resolution.  The band-to-band 
characterization is then performed at the lower resolution.  The higher resolution imagery 
is reduced using the Gaussian Pyramid approach (see Reference 25).  This approach 
works by low-pass filtering the image data.  The low-pass filtering is accomplished by 
convolving the image with an appropriate kernel or set of weights.  Applying this kernel 
produces an image at a lower resolution than that of the original. The lower resolution 
image can then also be reduced in size.  The process takes on the following form: 
 

f j k w m n f j m k nr
nm

( , ) ( , ) ( , )= + +
=−=−
∑∑ 2 2

2

2

2

2

  

 
 j = 1, …, M/2    
k = 1, …, N/2 

 
where f is the original image data, fr is the reduced sub-sampled image, and w(m, n) are 
the low-pass filter coefficients.  In the following case, the imagery is reduced in size by 
one half in both the line and sample direction.  The low-pass filter coefficients can be 
represented as a set of separable one-dimensional weights and are determined from the 
following representation (see Reference 25): 
 

w(2) = 1/4 – a/2 
w(1) = 1/4 
w(0) = a 
w(–1) = 1/4 
w(–2) = 1/4 – a/2 
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where a  typically takes on a value between 0.3 and 0.6.  More information on this 
technique can be found in Reference 25. 

In the case of Landsat 7 data, this process is used to reduce the 15-meter PAN band to 
the 30-meter multispectral bands and to the 60-meter thermal band.  It is also used to 
reduce the 30-meter multispectral band to the 60-meter thermal band.  In the case of 
Landsat 4 and 5 test data, the 30-meter multispectral band is reduced to the 120-meter 
thermal band. 

3.1.5.5.1.2 Correlation Routine 

Normalized cross-correlation is used to produce a discrete correlation surface for an array 
of points between two bands.  This correlation routine helps to remove any gray-scale 
differences between two images.  This helps to alleviate some of the problems with the 
different radiometric responses between the bands.  The correlation routine uses the 
following formula when correlating between two image windowed subsets f and g, each 
with length and width of M and N, respectively: 
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This peak represents the geometric shift between two windowed data sets and is 
calculated to a subpixel location. 

3.1.5.5.1.3 Peak Finding Method 

A sub-pixel location for the peak is found by using a polynomial fit method. This method 
works by fitting a second-order polynomial around the peak of the discrete correlation 
surface.  The polynomial represents the surface associated with a 3 x 3 area around the 
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data points are found.  From this polynomial, the location of the peak can be solved 
analytically to a sub-pixel location. 

The polynomial equation has the following form: 
 

P x y a a x a y a xy a x a y( , ) = + + + + +0 1 2 3 4
2

5
2  

 
The coefficients of P(x, y) can be found by solving the matrix equation: 
 

[Y] = [X] [a] 
 
where: 
   

[Y] is a 9 x 1 matrix corresponding to the eight correlation points found around, and 
including, the peak   
 
[X] is a 9 x 6 matrix with each row consisting of:  

 
1         xi          yi            xi yi              x2

i           y2
i 

           
where xi and yi are the x and y locations of the corresponding peak i in [Y] 

           
[a] is the polynomial coefficient 

 
The solution of [a] is then: 
 

[a] = ([X]T [X])–1 [X]T [Y] 
 
where T refers to the transpose of a matrix, and –1 refers to the inverse of a matrix. 
 
After the coefficients are solved for, the sub-pixel peak can be found.  The maximum 
correlation peak can be found by taking the partial derivative of P(x, y) with respect to x 
and y: 
 

∂
∂x

P x y a a y a x( , ) = + +1 3 42  

∂
∂y

P x y a a x a y( , ) = + +2 3 52  

 
By setting the partial derivatives to zero and solving for x and y, the sub-pixel peak 
location can be determined.  This leads to the following solution for the x and y offsets: 
 

x offset
a a a a
a a a

_ =
−

−
2

4
1 5 2 3

3
2

4 5
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y offset
a a a a
a a a

_ =
−

−
2

4
2 4 1 3

3
2

4 5
 

3.1.5.5.1.4 Outlier Detection 

After computing a number of sub-pixel shifts between two bands, the data are checked for 
outliers.  These outliers are then removed from the data set.   

Two steps are involved in detecting outliers.  The first step involves looking at the 
measured offsets and comparing them with a threshold established by an error budget 
associated with the Landsat 7 satellite and the correlator.  If any measurements are 
greater than this threshold, they are removed as outliers.  If a large percentage of the 
measurements are thrown out at this point, then the satellite is either behaving 
unexpectedly according to specifications or none of the imagery corresponding to where 
the measurement was taken is of good quality, a possibility for this would be a large 
amount of cloud cover.  The second step involves comparing the measured value with the 
bias estimate of all the measurements left after applying the first threshold.   

The first threshold is found from the following: 
 
    μrad = microradians 
 
The known errors associated with the satellite and correlator are: 
 
        Scan mirror repeatability = 3.5 μrad 
        Field angle = 3.6 μrad 
        Jitter = 1.45 μrad (spacecraft) 

Jitter = 0.65 μrad (ETM+) 
        Processing error = 2.84 μrad 
 
This leads to a total error for each band of: 
 

( . ) ( . ) ( . ) ( . ) .35 36 16 2 84 6 02 2 2 2+ + + = μrad  
 

  The total error associated with two bands is then: 
 

radμ5.8)0.6()0.6( 22 =+  

Converting the microradian to pixels results in approximately 0.2 pixels.  (The correlator 
error budget is 0.25 pixel.) 

The total error budget is then: 
 

( . ) ( . ) .0 2 0 25 0 322 2+ = pixels 
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The maximum band alignment error is 0.3 pixel. 

The total measurement error is then: 
 

( . ) ( . ) .0 3 0 32 0 442 2+ = pixels  
 
The threshold is then chosen as three times the total measurement error budget: 
  

3 * 0.44 = 1.32 pixels 

This value, 1.32 pixels, represents the first threshold that is applied to the data.  All 
measurements above this threshold are considered outliers and are removed.   

The second threshold is found by calculating the average or bias and the standard 
deviation for the data set left after applying the first threshold outlier detection.  The 
second threshold is any point that is three standard deviations above the measured bias 
or average.  The data set left after applying the second threshold outlier detection 
represents the valid measurements taken. 

3.1.5.5.1.5 Statistical Measure 

After the outliers have been detected and removed, the resulting data are used to 
calculate a bias or average band offset between two bands.  The standard deviation of 
the data set is also calculated: 
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where:      
 

   avg = average 
       std = standard deviation 
       mi = measured offset 
       N = number of valid measurements 

3.1.5.5.1.6 Test Simulation 

A test simulation was generated to determine the accuracy of the correlation and peak 
finding routines by using an image of path 28, row 30 and resampling it with various 
geometric offsets.  A 16 x 16 truncated sinc (sin[x]/[x]) resampling function was used to 
produce geometric shifts. Correlation windows of 512 x 512 were chosen. Sixteen 
windows were chosen at random for measurement. The various images of geometric 
offsets were then correlated with the original.  This provided an indication of the accuracy 
of the correlator itself.  The results are listed below: 
 

Offset Average Offset Standard Deviation 
0.0 0.0 0.0 
0.1 0.089817 0.003823 
0.2 0.152810 0.001479 
0.3 0.236563 0.002199 
0.4 0.344935 0.002791 
0.5 0.485531 0.006224 
0.6 0.632771 0.008459 
0.7 0.745469 0.008163 
0.8 0.831895 0.006718 
0.9 0.903604 0.004832 

  
This indicates that the correlator works to within one-tenth of a pixel.  This represents an 
ideal situation in that the image is being correlated to itself.  Through work with different 
band combinations, an accuracy of 0.25 pixels can be expected across bands from the 
correlator.  A more thorough explanation of errors associated with correlation can be 
found in Reference 21.  The image-to-image characterization algorithm also performed a 
similar test simulation; this can also be used as a reference on the accuracy of the 
correlator. 

3.1.5.5.1.7 Measured Landsat 4 and 5 Data 

Correlation may be done in such a manner that all bands are referenced either directly or 
indirectly to each other.   The test site that is chosen to perform band-to-band registration 
should have features that are present throughout all bands.   

It was found that desert scenes with little vegetation presented the best scenario.  A 
scene corresponding to path 41, row 36 was chosen as a test site.  Correlation windows 
were chosen at uniform increments throughout the image.  When correlating the 
multispectral bands, an offset of 1,000 lines from the top and bottom and 1,000 samples 
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from the right and left sides of the image was chosen.  Windows were then chosen at 500 
lines and 500 sample increments throughout the image.  The chosen window size was 
256 x 256.  When correlating two bands, one of which was the thermal band, offsets of 
250 lines, 250 samples, increments of 125 lines, 125 samples, and window sizes of 128 x 
128 were chosen.  The following values were then calculated. 

3.1.5.5.1.8 X Offsets 

Offsets in terms of multispectral pixels: 
 

Reference Search Average Standard Deviation 
1 2 0.003244 0.010120 
1 3 0.001516 0.021785 
1 4 –0.025383 0.113919 
1 5 –0.261743 0.061539 
1 7 –0.252938 0.053082 
2 3 –0.000870 0.012164 
2 4 –0.014538 0.134436 
2 5 –0.266884 0.055054 
2 7 –0.249701 0.047483 
3 4 –0.035892 0.079654 
3 5 –0.267662 0.050735 
3 7 –0.250002 0.048614 
4 5 –0.227007 0.083736 
4 7 –0.194449 0.145899 
5 7 0.012561 0.020213 

 
 
Offsets in terms of thermal pixels: 
 

Reference Search Average Standard Deviation 
1 6 –0.786044 0.177695 
2 6 –0.788873 0.164740 
3 6 –0.808790 0.159983 
4 6 –0.758903 0.194022 
5 6 –0.757974 0.108728 
6 7 0.754215 0.165351 

 



 - 146 - LS-IAS-01 
  Version 1.0 

 

3.1.5.5.1.9 Y Offsets 
 
Offsets in terms of multispectral pixels: 
 

Reference Search Average Standard Deviation 
1 2 0.003527 0.009219 
1 3 0.014177 0.019110 
1 4 0.024184 0.060681 
1 5 0.366080 0.062386 
1 7 0.382187 0.051700 
2 3 0.010344 0.011238 
2 4 0.014033 0.075062 
2 5 0.362300 0.047765 
2 7 0.374961 0.044400 
3 4 0.006703 0.067899 
3 5 0.350089 0.034363 
3 7 0.365271 0.036863 
4 5 0.319364 0.073798 
4 7 0.328139 0.097649 
5 7 0.007921 0.014011 

 
Offsets in terms of thermal pixels: 
 

Reference  Search Average  Standard Deviation 
1 6 0.737981 0.177695 
2 6 0.726864 0.197395 
3 6 0.718318 0.169007 
4 6 0.747355 0.191474 
5 6 0.633007 0.095764 
6 7 –0.611179 0.153688 

The measured between-band alignment does not meet the specifications for the Landsat 
7 system.  These data are used by the focal plane band-to-band calibration algorithm to 
relate the parameters back to the focal plane to adjust the focal plane alignment, if 
necessary. 

3.1.5.5.2  Image-to-Image Registration 

The Image-to-Image Assessment segment of the Landsat 7 Image Assessment System 
(IAS) is used to check the registration quality between two images.  The two images are 
assumed to be from the same band and same (path, row), taken at different times, 
processed to the same level—either precision- or terrain-corrected products. 
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3.1.5.5.2.1 Accuracy Requirements 

According to the Landsat 7 IAS Requirements Document, “The IAS shall provide the 
capability to perform image-to-image registration to an accuracy of 0.4 multispectral 
sensor GSD, 0.9p, in the along-track and cross-track directions, provided all inputs are 
within specification.”  The understanding is that this requirement refers to two temporally 
spaced images processed to the same level using the same ground control.  
Furthermore, since the accuracy requirements for systematically processed images are 
on the order of ~250 meters (400 meters, 0.9p), this requirement is assumed applicable 
only to precision- and/or terrain-corrected images. 

As for requirements placed on the image-to-image correlation technique, “The IAS shall 
be capable of digitally correlating common features in the…same bands of separate 
images to an accuracy of 0.1 pixel, 0.9p.”  This is equivalent to requiring that the 
correlation technique be capable of backing out a known offset to within 0.1 pixel, 0.9p 
(~0.06 pixels at one sigma). 

3.1.5.5.2.2 Procedure 

The IAS Image-to-Image Assessment segment provides two options for selecting image-
to-image points.  Correlation points can be generated either by creating a regular grid of 
hundreds of points or by manually selecting 50–100 well distributed “human-recognizable” 
ground control features.  Given that images need to be processed only to the full-
precision and terrain-corrected levels for a small number of test sites, the latter is the 
more likely operational implementation.  Using the grid of points, however, may be useful 
in geometric analysis. 

The normalized cross-correlation technique is defined as: 
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The resulting correlation surface is searched for a peak.  To determine the sub-pixel 
location of the true correlation maximum, a surface is fit to the peak and its neighbors. 
The sub-pixel location of the peak value for the best-fit function is determined analytically 
and stored.  The correlation functions included options for fitting parabolic and Gaussian 
surfaces using a 5 x 5 neighborhood of pixels around the peak.  The correlation function 
was modified to use a 3 x 3 neighborhood as testing showed these results to be more 
accurate and reliable.  This is discussed in greater detail below. 

The verification routine uses the points and offsets determined by the correlation function 
to calculate statistics.  For each correlation point, it reports the line, sample, and total 
errors in the search image relative to the reference.  It also calculates the mean, standard 
deviation, median, range, and RMSE for those errors and determines the number (and 
percentage) of points not meeting user-specified accuracy requirements.  All of these 
values are stored for trending. 

To assist geometric assessment, the statistics compiled by verification routine can be 
plotted.  Useful plots include, but are not limited to, surface plots of line or sample error 
versus line and sample, vector plots showing line and sample errors distributed on the 
image plane, or color-coded residuals overlaid on an image. 

Some outlier detection and rejection is performed within the correlation function.  The 
routine flags and rejects correlation points if they are too near the edge of the data 
window, similar in magnitude to subsidiary peaks, or below a user-specified strength 
threshold.  A flag also rejects points if the diagonal distance between the reference and 
search sub-images is greater than a user-specified value. 

Whether further outlier rejection will be used on the final residuals is yet to be determined, 
since initially, analysis is primarily concerned with determining whether outliers indicate a 
problem in the data or a problem in the system.  An exception flag should be raised if the 
line and sample error mean and standard deviations are in excess of the requirement 
values specified above. 

3.1.5.5.2.3 Inputs 

Image-to-image assessment requires a reference image that has been processed to the 
precision- or terrain-corrected level and a search image processed to the same level with 
the same ground control (and the same DEM in the case of terrain-corrected images).  It 
also requires a set of pre-selected image features or a grid whose locations are refined by 
the correlation function. 

3.1.5.5.2.4 Outputs 

The correlation function generates a file containing the points and offsets that is used by 
the verify routine to compile statistics.  The verify routine generates a report file containing 
information about all points used for correlation, including line, sample, and total errors.  It 
also lists overall statistics, including mean, standard deviation, median, and RMSE for 
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line, sample, and total errors, and the number of points not meeting user-specified error 
thresholds.  The information in the report is used for trending . 

3.1.5.5.2.5 Algorithm Testing 

To test the accuracy and precision of the correlation routine, a base image using band 1 
of a Landsat 5 test scene (path 28, row 30) of northwestern Iowa was generated.  
Artificial shifts in the sample direction were then incorporated into the image in 0.1-pixel 
increments using cubic convolution resampling accurate to 1/32 of a pixel.  Image-to-
image correlation was then performed with artificial offsets ranging from 0.0 to 1.0 pixels, 
using a set of 51 manually picked points.  The resulting plots of the mean and standard 
deviation values are shown in Figure 3-37 and Figure 3-38.   

At an offset of 0.5 pixels, the correlation routine using a 5 x 5 neighborhood about the 
correlation peak became unreliable, giving a bimodal error distribution surrounding the 
true offset.  A possible explanation for this peculiar behavior is that the objects used in the 
correlation are typically linear features, approximately 1 pixel wide (e.g., roads), 
surrounded by relatively uniform backgrounds (e.g., fields).  In these cases, we would not 
expect a parabola to be a good fit beyond 1 pixel to either side of the peak.   
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Figure 3-37. Correlation Errors 
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Figure 3-38. Correlation Standard Deviations 

As an example, consider the case of a bright, 1-pixel-wide road cutting through a 
uniformly dark field.  If this road were displaced to the right by 0.5 pixels, the resultant 
image would have the road represented by 2 pixels of medium brightness surrounded 
again by the dark field.  This situation is shown schematically in Figure 3-39 as a one-
dimensional cross-section.  Figure 3-37 shows the cross-correlation (non-normalized) of 
these two data sets and the resulting parabolas, which occur when trying to fit the data 
with five points using both the left and right maxima as the center point.  The resulting 
peaks of the parabolas in Figure 3-37 occur at 7.27 and 7.73, rather than at 7.5, where 
the true peak should occur.  So while the average value is correct, the standard deviation 
for this case is unacceptable, as are shown in Figure 3-37 and Figure 3-38. 

By inspecting Figure 3-39, it is evident that fitting a parabola using three points, rather 
than five points, results in a peak that occurs at 7.5, regardless of which maxima is taken 
as the center point.  Figure 3-40 shows the three-point method to be more accurate than 
the five-point method.  For these reasons, the correlation routine was modified to use a 3 
x 3 neighborhood around the peak, rather than a 5 x 5 neighborhood.   

By looking at the shape of the cross-correlation data in Figure 3-40, one would expect 
that a Gaussian curve might be a better fit than a parabola, thus giving reduced errors.  
The results of doing so are also shown in Figure 3-37, and indeed, they lead to ~20% 
reduction in error at the peak locations.  The sinusoidal shape of the error curve shown in 
Figure 3-37 is consistent with the theoretical errors determined by Dvornychenko (see 
Reference 21).   
 



 - 151 - LS-IAS-01 
  Version 1.0 

 

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sam ple

B
rig

ht
ne

ss

Original Road Road Shif ted by 0.5 pixel
 

Figure 3-39. Road Cross-Section Example 
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Figure 3-40. Correlation Errors 

3.1.5.5.2.6 Further Investigations 

While it appears as though the accuracy of the modified correlation routine is sufficient to 
meet the requirements, it must be noted that these tests were run under ideal conditions; 
i.e., the same image data (although shifted and aliased by using a cubic convolution 
resampler accurate to 1/32 pixel).  Under real circumstances, where there may be 
significant changes in the scenes from image to image, the standard deviations can be 
expected to increase.   

Normalized cross-correlation is designed to take some image differences into account 
and has been used successfully in projects involving Landsat MSS and TM imagery.  
However, it has not been used to measure the registration accuracy under such stringent 
requirements as in the IAS. 

Further investigations may include widening the reference chips to greater than 64 x 64.  
This should help by having more data available and thus smoothing out the correlation 
surface.  Also, other techniques such as edge or phase correlation may be useful when 
correlating images with differing spectral data (e.g., data from different seasons). 

 

 



 - 153 - LS-IAS-01 
  Version 1.0 

 

3.1.5.5.3  Geodetic Accuracy 

This section describes the algorithm, input data, output data, and proposed usage of the 
output data applied in the Geodetic Characterization Module for the Landsat 7 Image 
Assessment System. 

3.1.5.5.3.1 The Algorithm 

In the system data flow chart, this algorithm immediately follows the precision correction 
solution module.  Thus, this description should be read in context to the description of 
precision correction solution module. The Ground Control Point (GCP) data quality 
requirement applies to the input data of the precision correction solution module and is 
based on the assumption that GCP marking and correlation are done to 0.1 pixel 
accuracy. 

3.1.5.5.3.2 Purpose 

The purpose of this algorithm is to verify the absolute accuracy of the systematic and 
precision products by analyzing the GCP measurement residuals before and after the 
precision correction solution. 

3.1.5.5.3.3 Process 

This algorithm applies standard statistical error analysis on the residual file of the 
precision correction solution. The residual file contains residuals for GCPs before and 
after precision correction. The algorithm takes one input file (the residual file), and 
generates two output files (the record file and the outlier data file). The following steps are 
performed: 

2. Calculate and write to the record file the following three values: 
 
• the total number of GCPs in the residual 
• the mean latitude of all GCPs 
• the mean longitude of all GCPs 

3. Calculate and write to the record file the following five values for the pre-fit 
residuals: 

 
• Mean value of the cross-track residuals 
• Mean value of the along-track residuals 
• RMSE about the mean value for cross-track residuals 
• RMSE about the mean value for along-track residuals 
• Correlation coefficient between along- and cross-track residuals 
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4. Calculate and write to the record file the following five values for the post-fit 
residuals: 

 
• Mean value of the cross-track residuals 
• Mean value of the along-track residuals 
• Standard deviation for cross-track residuals 
• Standard deviation for along-track residuals 
• Correlation coefficient between along- and cross-track residuals 

5. Compare the post-fit residuals with their standard deviations. Mark those GCPs 
with > 2 sigma residual as outliers. 

6. Write to the outlier data file the information for each outlier GCP. 

3.1.5.5.3.4 The Input Data 

This module requires only one input data file, which is the output residual file from the 
Precision Correction Module. This file contains the residual information from iteration 0, 
which is the pre-fit residual, through the final iteration, which is the post-fit residual.   

3.1.5.5.3.5 GCP Data Accuracy Requirement 

The following properties of the GCP measurements are required to produce a meaningful 
precision correction solution and geodetic characterization result: 

 
• The GCP coordinate should be in a system consistent with that of satellite 

ephemeris. WGS84 is preferred; NAD83 in North America is acceptable. 
• The accuracy of the GCP coordinate should be on the level of 3 meters in 

horizontal and 20 meters in elevation to guarantee 0.1 pixel accuracy. 
• A minimum number of 15 valid GCPs is required for reliable characterization 

(6/number of precision correction parameters + 9/reasonable number of degrees of 
freedom). To allow a certain portion of outlier editing, 25 to 50 input GCPs are 
suggested. 

3.1.5.5.3.6 Use of the Output Data 

The outlier information file is used to remove GCPs from both the GCP data file and the 
EPH data file for a precision correction solution (see the algorithm description for the 
precision correction solution module).  A new round of precision correction solution and 
geodetic characterization is performed after the editing. 

The record file is used as a measure of the absolute accuracy of the systematic product 
(pre-fit residual statistics) and precision product (post-fit residual statistics).  

Trending analysis can be done on the parameters provided in the record file. 



 - 155 - LS-IAS-01 
  Version 1.0 

 

Error characterization for checkpoint data (GCPs not used for the precision correction 
solution) is done in a different round after the systematic model is updated with the 
precision correction parameters. 

3.1.5.5.4 Geometric Accuracy 

For the purposes of determining geometric accuracy, three tests are to be performed: 
 
1. A visual inspection of the output image—The image is inspected visually for any 

geometric distortions.  These distortions could include scan misalignment, artifacts 
produced by the resampling process such as ringing, or detector (line-to-line) 
discontinuity. 

2. A plot of the residuals of the ground control points and their corresponding 
locations in the terrain-corrected image—This can be either a vector plot indicating 
the line/sample offsets or an image with the residuals color coded according to 
their magnitude superimposed on a paper product of the image. 

3. A polynomial fit involving the ground control points and their corresponding 
locations in the terrain-corrected output product.   

3.1.5.5.4.1 Polynomial Fit 

A polynomial fit is used to estimate the amount of scaling in x and y, rotation, offset in x 
and y, and non-orthogonality angle associated with a terrain-corrected image.  The 
polynomial takes the form of: 
 

x a b x c y
y d e x f y

o i i

o i i

= + ∗ + ∗
= + ∗ + ∗

 

 
where: 

 
xo = output projection x coordinate (measured) 
yo = output projection y coordinate (measured) 
xi = input projection x coordinate (truth) 
yi = input projection y coordinate (truth) 
a, b, c, d, e, f = transformation coefficients 

 
The polynomial coefficients are determined from a least squares fit of the x and y 
coordinates of features located in the terrain-corrected product and their corresponding x 
and y coordinates for the same feature in the ground control source.  The transformations 
that “correct” xo, yo to xi, yi are given by: 

 
)sin()()cos()( αθθ −−−−= oyoxi yySxxSx
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The error or distortions can then be determined from the polynomial transformation 
coefficients by the following: 
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Sx = scale error in x direction 
Sy = scale error in y direction 
alpha = non-orthogonality angle 
theta = rotation angle 
a = offset in x direction 
d = offset in y direction 
a, b, c, d, e, f = transformation coefficients 

 
The scale error can be converted to pixels by the following: 
 

(Sx–1) * (image pixel size in x) 
(Sy–1) * (image pixel size in y) 
 

Theta can be converted to pixels by the following: 
 
      theta * (size of image diagonal) 
      size of image diagonal = SQRT((image pixel size x)2 + (image pixel size y) 2) 
 
Alpha can be converted to pixels by the following: 
 
      alpha * (maximum pixel size) 
     maximum pixel size = MAX(image pixel size in x, image pixel size in y) 
 

All of these values should be very close to zero, except Sx and Sy, which should be close  
to 1.  If any of them are not zero, or if Sx and Sy are not close to 1, then they represent the 
amount of geometric distortion not corrected for by the system. 

The residuals left after applying the polynomial coefficients to the terrain-corrected x and 
y coordinates represent higher order distortions.  These values should also be very small.   

)cos()()sin()( αθθ −−+−= oyoxi yySxxSy
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This algorithm requires a terrain-corrected image produced from the IAS system, along 
with at least 50 well distributed ground control points.  The PAN band provides the 
highest precision when calculating errors; however any band can be used in the process. 
All points, from both the image and the control source, need to be in the same projection 
with the same datum and pixel size.  The control points and the points taken from the IAS 
terrain-corrected product should be to sub-pixel accuracy.  The absolute accuracy of the 
points picked depends on the method chosen for point matching.   

3.1.6 Variance or Uncertainty Estimates 

The following sections contain error budget analyses for the key Landsat 7 ETM+ 
geometric accuracy requirements. These analyses were used to predict the Level 1Gs 
geodetic accuracy performance and to develop algorithm and support data accuracy 
requirements for the geometric calibration and characterization activities. 

3.1.6.1 Level 1 Processing Accuracy 

The purpose of the Level 1 Processing Accuracy requirement is to produce systematically 
corrected (1Gs) products that are accurate to within 250 meters per coordinate (one 
sigma) at nadir. This is stated in the IAS Element Specification as requirement 3.2.3.4.   

An error budget for 1Gs geodetic accuracy performance can be built up using the 
expected accuracy of the data components that are part of the Landsat 7 ETM+ 
geometric model. These components include spacecraft ephemeris and attitude 
knowledge, spacecraft clock errors, knowledge and stability of the alignment of the ETM+ 
instrument to the Landsat 7 spacecraft, and knowledge and stability of the internal 
geometry of the ETM+ instrument.  Accuracy bounds for most of these data elements are 
specified in the Landsat 7 System Specification.  Allocations for ground processing and 
test point mensuration are included in the total geodetic accuracy error budget. 

Errors in each of the geometric model data components were assumed to be independent 
zero mean random variables in the geodetic accuracy analysis.  The relevant accuracy 
values were extracted from the Landsat 7 System Specification, converted to 1 sigma 
values, if necessary, and mapped to position errors in meters on the ground.   For along-
track and across-track angular error values, this mapping was done by multiplying the 
angular error (in radians) by the nominal Landsat 7 above-ground height of 705 
kilometers.  The spacecraft clock error was converted to ground meters by multiplying the 
time error by a conservative estimate of the nominal Landsat 7 orbital velocity of 7.5 
kilometers per second. 

Two cases are considered in the geodetic accuracy error budget: (1) the expected 
accuracy at launch based on the pre-launch knowledge of the alignment between the 
Landsat 7 navigation base reference coordinate system and the ETM+ optical axis and 
(2) the expected accuracy in routine operations after the IAS has calibrated the 
instrument to spacecraft alignment.  The 250-meter accuracy specification applies to both 
the along-track and across-track directions, but the presence of the spacecraft clock error 
makes the along-track direction the critical case.  The at-launch, along-track accuracy 
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analysis is presented in Table 3-1.  The columns in the table contain the following 
information: 

 
• Column 1 identifies the data element error source. 
• Column 2 shows the error contribution mapped to ground meters at nadir (1 

sigma). 
• Column 3 shows the error contribution in the units in which it is specified (1 sigma). 
• Column 4 identifies the specification units. 
• Column 5 shows the original source of the specified value since some are Root-

Sum-Square (RSS) combinations of lower level components 
• Column 6 shows where the error source was allocated at the system level (e.g., to 

the spacecraft, instrument, or ground system).
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Source Meters  

1 σ 
Spec     
1 σ 

Units Comments Segment 

Vehicle Attitude 154 45.0 arc-sec 45.0 arc-sec (1 σ) (R, P, Y) Satellite 
      
Scan Mirror 
Repeatability 

3 0.72 arc-sec 1.75 microradians * 2 (1 σ) ETM+ 

      
Field Angle 3 0.78 arc-sec RSS of:  
      0.18 arc-sec (1 σ) calibration IAS 
      0.76 arc-sec (1 σ) stability (0.2 

  pan) 
ETM+ 

      
Alignment Knowledge 58 17.0 arc-sec RSS of:  
  (R, P, Y) - stability      8.0 arc-sec (1 σ) ETM+ to NBR Satellite 
      15.0 arc-sec (1 σ) LOS to ETM+ ETM+ 
      
Alignment Uncertainty 846 247.4 arc-sec RSS of:  
  (R, P, Y) - calibration      720.0 arc-sec (3 σ) pre-launch Satellite 
      60.0 arc-sec (1 σ) pre-launch ETM+ 
      
Ephemeris (I, C, R) 133 133.33 meter 400 m (3 σ) from sum of:  
      375 m (3 σ) predict FDF 
      20 m (3 σ) interpolation Satellite 
      
Jitter (R, P, Y) 2 0.44 arc-sec RSS of:  
      0.30 arc-sec (1 σ) low-frequency Satellite 
      0.30 arc-sec (1 σ) high-frequency Satellite 
      0.134 arc-sec (1 σ) high- 

  frequency 
ETM+ 

      
Timing (along-track) 38 5 msec 15 msec (3 σ) random error Satellite 
      
Mensuration 15 15 meter 0.5 pixels (1 σ) User 
      
Processing Error 2 2 meter Model budget IAS 
      
RSS Estimate 873     
      
RSS Margin -     
      
Specification 250     

Table 3-1. At-Launch 1Gs Geodetic Error Budget 

As Table 3-1 demonstrates, the 250-meter geodetic accuracy requirement is not expected 
to be met based on the at-launch knowledge of the ETM+ instrument to Landsat 7 
spacecraft alignment. 
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The Landsat 7 System Specification requires the IAS to estimate the on-orbit alignment to 
an accuracy of 24 arc-seconds (as compared to the pre-launch accuracy of about 248 
arc-seconds).  This improvement in alignment knowledge accuracy allows the geodetic 
accuracy budget to meet the 250-meter specification with a significant margin.  Table 3-2 
updates the along-track accuracy analysis with the post-calibration alignment knowledge 
accuracy.  The table column definitions are the same as for Table 3-1. 
 

Source Meters  
1 σ 

Spec     
1 σ 

Units Comments Segment 

Vehicle Attitude 154 45.0 arc-sec 45.0 arc-sec (1 σ) (R, P, Y) Satellite 
      
Scan Mirror 
Repeatability 

3 0.72 arc-sec 1.75 microradians * 2 (1 σ) ETM+ 

      
Field Angle 3 0.78 arc-sec RSS of:  
      0.18 arc-sec (1 σ) calibration IAS 
      0.76 arc-sec (1 σ) stability (0.2 

  pan) 
ETM+ 

      
Alignment Knowledge 58 17.0 arc-sec RSS of:  
  (R, P, Y) - stability      8.0 arc-sec (1 σ) ETM+ to NBR Satellite 
      15.0 arc-sec (1 σ) LOS to ETM+ ETM+ 
      
Alignment Uncertainty 82 24.0 arc-sec 24.0 arc-sec (1 σ) (R, P, Y) IAS 
  (R, P, Y) - calibration      
      
Ephemeris (I, C, R) 133 133.33 meter 400 m (3 σ) from sum of:  
      375 m (3 σ) predict FDF 
      20 m (3 σ) interpolation Satellite 
      
Jitter (R, P, Y) 2 0.44 arc-sec RSS of:  
      0.30 arc-sec (1 σ) low-frequency Satellite 
      0.30 arc-sec (1 σ) high-frequency Satellite 
      0.134 arc-sec (1 σ) high- 

  frequency 
ETM+ 

      
Timing (along-track) 38 5 msec 15 msec (3 σ) random error Satellite 
      
Mensuration 15 15 meter 0.5 pixels (1 σ) User 
      
Processing Error 2 2 meter Model budget IAS 
      
RSS Estimate 231     
      
RSS Margin 97     
      
Specification 250     

Table 3-2. 1Gs Geodetic Error Budget after Alignment Calibration 
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3.1.6.2 Geometric Calibration Accuracy 

The development of the three IAS geometric calibration algorithms included estimation 
error analyses to ensure that the relevant geometric parameters could be estimated with 
sufficient accuracy to justify updating the pre-launch knowledge in post-launch releases of 
the Calibration Parameter File.  The results of these analyses are presented in the 
following sections. 

3.1.6.2.1 Sensor Alignment Calibration Accuracy 

As noted above, the IAS is required to calibrate the ETM+ instrument to Landsat 7 
spacecraft alignment knowledge to an accuracy of 24 arc-seconds to achieve a 1Gs 
product geodetic accuracy of 250 meters.  This is stated in the IAS Element Specification 
as requirement 3.2.3.12.  The IAS sensor alignment algorithm uses the results of a series 
of precision correction solutions to extract the systematic alignment bias from the random 
scene-to-scene attitude error, as described above.  The goal of the sensor alignment 
error analysis is to determine the number of calibration scenes required to achieve the 24 
arc-second alignment knowledge accuracy as a function of the accuracy of the supporting 
definitive ephemeris and ground control data. 

The precision correction solution model is used to perform an error propagation analysis 
to predict the accuracy of the pointing error (alignment plus attitude) estimates produced 
by a single precision correction solution.  This analysis is based on the assumption that all 
inputs are accurate to their pre-launch specification values and that 14 well distributed 
ground control points are successfully measured with an accuracy of 15 meters (ground 
position error plus image mensuration error) for each point.   

The input accuracy assumptions and the resulting pointing error accuracy estimates are 
summarized in Table 3-3. 
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Input 1 σ Error Rationale 
Along-Track Position 63 meters RSS of 50-meter estimate of FDF definitive ephemeris 

accuracy and 38-meter spacecraft clock error 
Across-Track Position 50 meters Estimate of FDF definitive ephemeris accuracy 
Radial Position 50 meters Estimate of FDF definitive ephemeris accuracy 
Roll 252 arc-sec RSS of 247 arc-sec pre-launch alignment knowledge 

error, 17 arc-sec alignment stability error, and 45 arc-
sec attitude knowledge error 

Pitch 252 arc-sec RSS of 247 arc-sec pre-launch alignment knowledge 
error, 17 arc-sec alignment stability error, and 45 arc-
sec attitude knowledge error 

Yaw 252 arc-sec RSS of 247 arc-sec pre-launch alignment knowledge 
error, 17 arc-sec alignment stability error, and 45 arc-
sec attitude knowledge error 

Ground Control 15 meters RSS of 12-meter position error (1:50,000-scale map 
source) and 7.5-meter (0.5 panchromatic pixel) image 
mensuration error 

   
Roll Estimate 13.1 arc-sec A posteriori error estimate 
Pitch Estimate 16.6 arc-sec A posteriori error estimate 
Yaw Estimate 16.7 arc-sec A posteriori error estimate 

Table 3-3. Pointing Error Estimate Accuracy Analysis—Inputs and Results 

The roll estimate accuracy is somewhat better than the pitch and yaw estimates, primarily 
because the across-track roll must be separated from the across-track position error, 
while both the pitch and yaw must be separated from the along-track position error, which 
is less accurate due to the spacecraft clock error. 

The roll, pitch, and yaw pointing error estimates generated by the precision correction 
process represent the combined effect of static alignment error, attitude error, and 
dynamic alignment error, which can be expressed as: 
 
 pointing error observation = attitude + static alignment + dynamic alignment 
 
It is the static alignment error that we seek to calibrate. Rearranging the previous 
equation yields: 
 
 static alignment = pointing error observation – attitude – dynamic alignment 
 
The attitude and dynamic alignment errors are assumed to be zero mean, so the best 
estimate of the static alignment error is the observed pointing error estimated by the 
precision correction solution. The variance of the static alignment estimate is the sum of 
the variance of the three terms on the right side: 
 
 σ2

alignment = σ2
observation + (45)2 + (17)2 
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where:  
 

45 arc-seconds = expected attitude standard deviation 
17 arc-seconds = expected dynamic alignment standard deviation 

 
Table 3-4 summarizes the resulting standard deviations for the three alignment error 
components. 
 

Component Standard Deviation (Single Estimate) 
Roll 49.9 arc-seconds 
Pitch 50.9 arc-seconds 
Yaw 50.9 arc-seconds 

Table 3-4. Alignment Estimate Accuracy 

As multiple test scene results become available, the observed pointing errors are 
combined using a Kalman filter, as described above. To a first approximation, the effect 
on the resulting alignment estimate is to improve the accuracy as the square root of the 
number of test scenes processed. The resulting improvement in alignment knowledge 
accuracy as a function of the number of calibration scenes processed is shown in Figure 
3-41. 

The figure suggests that the 24 arc-second alignment accuracy requirement can be met 
after five calibration scenes have been processed. The accuracy estimates based on this 
relatively simple model of the alignment estimation process have been confirmed by 
processing simulated data (with known alignment biases introduced) through the 
precision correction and sensor alignment prototype software and analyzing the results. 
These tests have shown that the alignment knowledge can be expected to reach the 24 
arc-second accuracy threshold after five or six calibration test scenes have been 
processed. 

3.1.6.2.2 Scan Mirror Calibration Accuracy 

Although there is no formally specified accuracy requirement for the scan mirror 
calibration process, an accuracy threshold of 1.75 microradians (in mirror space) has 
been selected as the goal for mirror profile estimation accuracy. This value corresponds 
to the scan mirror repeatability specification called out in the Landsat 7 System 
Specification in 3.7.8.1.17.4. Determining the scan mirror profile to this accuracy keeps 
the systematic mirror profile knowledge within the random variation of the scan mirror 
motion. 

Error propagation analysis (based on a set of relatively conservative assumptions 
regarding the accuracy of the input data) was used to determine the number of ETM+ 
scans and the number of test points per scan that must be correlated with a DOQ 
reference image to achieve a 1.75-microradian estimation accuracy. The input data and 
image-to-image correlation accuracy assumptions are presented in Table 3-5.  
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Source 1 σ error Rationale 
DOQ Reference Image 8.5 urad Corresponds to 6-meter DOQ accuracy 

spec. 
ETM+ 1Gt Image 21.25 urad Corresponds to 1 panchromatic pixel 
Correlation Error 10.625 urad Corresponds to 0.5 panchromatic pixel 
Net Observation Error 25.23 urad RSS of DOQ, 1Gt, and correlation errors 
Obs Error - Mirror Space 12.62 urad One half the object space value above 
   
A priori Coefficient Error 42.5 urad Corresponds to 1 reflective band pixel 
   
Number of Points per Scan 60 Corresponds to 1 per geometric grid cell 

Table 3-5. Scan Mirror Calibration Accuracy Analysis Input Assumptions 

The error propagation analysis assumed a set of test points that were well distributed as a 
function of scan angle to form the normal equations that were used to estimate the mirror 
profile Legendre polynomial coefficients.  The normal equations were then inverted to 
form the predicted a posteriori error covariance matrix from which variance estimates for 
the Legendre coefficients were extracted.  These coefficient variances were then summed 
to compute the net mirror profile uncertainty.  The number of test points used to construct 
the normal equation matrix was then varied until the net mirror profile uncertainty was less 
than 1.75 microradians.   

Two separate cases were investigated:   
 
1. Estimation accuracy for an unconstrained fifth-order polynomial with six unknown 

coefficients   
2. Estimation accuracy for a fifth-order polynomial constrained to meet the beginning 

of scan, end of scan, and mid-scan constraints imposed by the ETM+ mid-scan 
correction process, as described in the scan mirror calibration algorithm section 
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Scenes Roll
1 49.9
2 35.3
3 28.8
4 25.0
5 22.3
6 20.4
7 18.9
8 17.6
9 16.6
10 15.8
11 15.0
12 14.4

Scenes Pitch
1 50.9
2 36.0
3 29.4
4 25.5
5 22.8
6 20.8
7 19.2
8 18.0
9 17.0
10 16.1
11 15.3
12 14.7

Scenes Yaw
1 50.9
2 36.0
3 29.4
4 25.5
5 22.8
6 20.8
7 19.2
8 18.0
9 17.0
10 16.1
11 15.3
12 14.7
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Figure 3-41. Alignment Estimation Accuracy vs. Number of Scenes 

In the unconstrained case, it is necessary to process 40 scans (forward or reverse) to 
achieve the 1.75-microradian accuracy target.  This implies that the DOQ reference 
images must be a full scan wide (cross-track) and at least 80 scans long (along-track).  
Allowing for some loss of data due to cloud cover and poor correlation targets leads to a 
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requirement for 90–100 scans, or about one-quarter of a Landsat Worldwide Reference 
System (WRS) scene. Applying the scan constraints simplifies the estimation problem by 
reducing the number of degrees of freedom in the solution and, consequently, reduces 
the data requirements to 15 forward or reverse scans.  This can be satisfied by a DOQ 
reference image that is a full scan wide and 30 scans long, or about one-eighth of a WRS 
scene. 

Based on this analysis, we conclude that a single scan mirror calibration test site covering 
at least one-quarter of a WRS scene would be sufficient to provide usable results. The 
goal is to provide at least two test sites, each covering a full WRS scene, if possible. As 
noted above, the input data accuracy assumptions are conservative, so using a full scene 
reference image, a more accurate 1Gt product, and a better image-to-image correlation, 
the performance of the algorithm with real Landsat 7 data is expected to exceed the 1.75-
microradian design threshold. 

3.1.6.2.3 Band Placement Calibration Accuracy 

The IAS is required to determine band center field angles to an accuracy of 0.18 arc-
seconds (1 σ per coordinate) per IAS Element Specification requirement 3.2.3.10. The 
band-to-band registration assessment algorithm uses test points that appear in all eight 
ETM+ bands and performs cross-band image correlation to measure any residual sub-
pixel band-to-band offsets. These measurements are then used in the band placement 
calibration algorithm to estimate band center offsets in the ETM+ focal planes, relative to 
band 8 (panchromatic), which is treated as the reference band.  These algorithms are 
described above. 

In the course of developing the band-to-band registration assessment algorithm, it was 
determined that, given a suitable test scene, it is possible to perform cross-band image 
correlation to an accuracy of approximately 0.1 pixel, using pre-selected test points, and 
to an accuracy of approximately 0.25 pixel, using randomly generated test points.  When 
correlating bands of differing resolution (i.e., bands 6 or 8 to any of the others), the 
measurements are performed at the coarser band resolution.  Thus, the 0.1 or 0.25 pixel 
measurement accuracy corresponds to a larger angular uncertainty for band offset 
measurements for band pairs that include band 6.  This makes band 6 the critical case 
that drives the number of band-to-band test points required to meet the 0.18 arc-second 
accuracy specification. 

An error propagation analysis was used to determine the number of test points required to 
achieve a band center location accuracy of 0.18 arc-seconds as a function of the 
expected accuracy of the test point measurements.  This analysis assumed that all test 
points were measured in all band pairs and that the mapping between image pixel 
measurements and focal plane offsets could be approximately modeled as a constant 
scale factor.  The availability of measurements from seven band pair combinations makes 
the band center location solution overdetermined. Therefore, a least squares procedure 
was set up to form a normal equation matrix, which could be used to estimate band 
center offsets from test point measurements.  These normal equations were then inverted 
to compute the predicted a posteriori covariance matrix for the band center estimates.  
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The square roots of the diagonal terms of this matrix were taken to be estimates of the 
band center location standard deviations.  The number and accuracy of the input test 
point measurements were then varied to examine the sensitivity of the band center 
estimate standard deviations to the input data volume and accuracy.   

As expected, the predicted standard deviation for the band 6 location was highest.  Figure 
3-42 shows a plot of the number of test points needed to achieve a predicted standard 
deviation of 0.18 arc-seconds versus the accuracy of the input test point measurements. 

As the figure shows, the accuracy requirement can be met with 20–25 high-quality, hand-
picked test points or with 125–150 automatically generated test points. The accuracy of 
hand-picked points should be more reliable, since the analyst selecting the test points can 
ensure their quality and consistency.  

Based on the relatively small number of test points needed (if they are sufficiently 
accurate), we decided to use approximately 25 analyst-selected test points to perform the 
band-to-band registration assessment and subsequent band placement calibration. The 
error propagation analysis predicts a band center location accuracy of 0.09 arc-seconds 
for bands 1–5 and 7, and 0.15 arc-seconds for band 6. Band 8 is the reference and is 
assumed to be known exactly. This meets the requirement for all bands, if the test point 
measurements are accurate to 0.12 pixels, and for all but the thermal band, if the 
measurements are accurate to 0.19 pixels. 

Test Point 
Accuracy 
(pixels)

Test 
Points 

Needed

0.50 407

0.45 332

0.40 263

0.35 202

0.30 149

0.25 103

0.20 66

0.15 37

0.10 17
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Figure 3-42. Band-to-Band Test Point Number vs. Accuracy 

 

3.1.6.3 Geometric Characterization Accuracy 

Only two of the four geometric characterization algorithms implemented in the Landsat 7 
IAS have quantifiable accuracy requirements. The geometric accuracy assessment is 
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primarily a qualitative evaluation of the internal distortions present in ETM+ images. 
Geodetic accuracy assessment provides a verification of the Level 1Gs product geodetic 
accuracy requirement analyzed above.  Test point mensuration error was included in the 
error budget for Level 1 processing geodetic accuracy to account for the contribution of 
the assessment process.  The band-to-band and image-to-image registration accuracy 
assessments have specific performance requirements (called out in the IAS Element 
Specification), which are analyzed in the following sections. 

3.1.6.3.1 Band-to-Band Registration Accuracy 

The IAS is required to perform band-to-band registration to an accuracy of 0.28 pixels (at 
the ground sample distance of the coarser of the two bands) per coordinate at the 90% 
confidence level.  This requirement is stated in the IAS Element Specification as 
requirement 3.2.3.6.  The error budget for band-to-band registration includes the high-
frequency jitter displacements that can occur in the time interval over which the eight 
ETM+ bands sample the same ground location.  Since the maximum time between band 
samples is approximately 2 milliseconds, which corresponds to the jitter sensor sampling 
period, the band-to-band jitter error is essentially the error in the difference between two 
jitter measurements.  Other components of the band-to-band registration error include 
band field angle errors, processing model errors, and test point mensuration errors. 

Table 3-6 shows the error components combined into an error budget for the band-to-
band registration assessment process. The table columns contain the following 
information: 

 
• Column 1 identifies the data element error source. 
• Column 2 contains the total effect of the error source in units of 30-meter pixels at 

the 90% confidence level (this is equal to the square root of two times the error for 
one band for the errors which are independent for all bands). 

• Column 3 contains the contribution of the error source to a single band in units of 
30-meter pixels at the 90% confidence interval. 

• Column 4 contains the original specified or estimated error source one sigma 
accuracy. 

• Column 5 contains the units of the original error specification. 
• Column 6 provides a brief text explanation of the error estimate source. 
• Column 7 shows where the error source is allocated. 
 

The field angle stability and test point mensuration contributions are relative errors which 
are only counted once. High frequency jitter, field angle knowledge, and processing errors 
apply independently to all bands and are therefore counted twice in the band-to-band 
error budget. 
 
Based on the analysis shown in Table 3-6 the 0.28 pixel (90%) requirement can be met 
but there is little error budget margin. Manually selected test points must be used to 
ensure the highest correlation accuracy since relaxing the correlation accuracy to 0.11 
pixels exceeds the registration budget. 
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Source Both 
Bands 

30-m 
pixels 
(90%) 

Spec 
1 σ 

Units Comments Segment 

High-frequency 
Jitter 

0.079 0.056 0.3 arc-
sec 

0.30 arc-sec (1 σ) Satellite 

       
ETM+ Jitter 
(high-
frequency) 

0.035 0.025 0.134 arc-
sec 

 0.134 arc-sec (1 σ) 
high-frequency 

ETM+ 

       
Field Angle 
Knowledge 

0.048 0.034 0.18 arc-
sec 

 0.18 arc-sec (1 σ) 
calibration 

IAS 

       
Field Angle 
Stability 

0.143 0.143 0.76 arc-
sec 

 0.76 arc-sec (1 σ) 
stability (0.2 pan) 

ETM+ 

       
Processing 
Error 

0.140 0.099 1.8 meter Model budget IAS 

       
Mensuration 0.164 0.164 0.1 pixel Correlation accuracy IAS 
       
RSS Estimate 0.277 (90%)     
       
RSS Margin 0.041 (90%)     
       
Specification 0.280 (90%)     

Table 3-6. Band-to-Band Registration Error Budget 

3.1.6.3.2 Image-To-Image Registration Accuracy 
The IAS has a requirement to perform image-to-image registration to an accuracy of 0.4 
pixels (at the multi-spectral band pixel ground sample distance of 30 meters) per 
coordinate at the 90% confidence level.  This requirement is stated in the IAS Element 
Specification as requirement 3.2.3.8.  The error budget for image-to-image registration 
includes the high frequency components of the overall Landsat 7 ETM+ geometric error 
budget which model the internal geometric variability unique to each image, the expected 
accuracy of the precision correction process which uses image-to-image tie points to 
perform the image registration, and the expected mensuration accuracy for the 
registration assessment test points. 
 
The high frequency internal errors are a subset of the geodetic error budget components 
presented in Table 3-7 and include the jitter, scan mirror variability, and 
modeling/processing errors.  The image-to-image registration correction model accuracy 
is required to be 3.6 meters (1 σ) according to the IAS Element Specification requirement 
3.2.3.9.  The same estimation error covariance propagation model used to analyze the 
sensor alignment estimation accuracy was used to verify this requirement.  In this case, 
the expected accuracy of the PCD ephemeris and attitude data was combined with 20 
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ground control points assumed to be accurate to 10 meters (corresponding to control 
from a 1:24,000-scale map and 0.5 pan pixel identification/mensuration error) to yield 
predicted post-fit ephemeris and attitude accuracy estimates.  These estimates were then 
propagated to ground coordinate accuracy for a range of scan angles and then root-sum-
squared to establish an accuracy estimate for the precision correction in ground space.  
This procedure resulted in an accuracy estimate of 3.5 meters (1 σ) for the precision 
correction process.  The specification value of 3.6 meters was used for the image-to-
image error budget. 
 
The final component of the error budget is the image-to-image test point correlation 
accuracy.  Testing with Landsat 5 data has shown that correlation accuracy of 0.1 pixel is 
achievable for selected targets.  Pre-selected test  points will be used to evaluate the 
image-to-image registration accuracy. 
 
Table 3-7 shows these components combined into an error budget for the image-to-image 
registration assessment process. The table columns contain the following information: 

 
• Column 1 identifies the data element error source. 
• Column 2 contains the total effect of the error source in units of 30-meter pixels at 

the 90% confidence level (this is equal to the square root of two times the error for 
one image for those errors which that contained in both the reference and object 
images). 

• Column 3 contains the contribution of the error source to a single image in units of 
30-meter pixels at the 90% confidence interval. 

• Column 4 contains the original specified or estimated error source one sigma 
accuracy. 

• Column 5 contains the units of the original error specification. 
• Column 6 provides a brief text explanation of the error estimate source. 
• Column 7 shows where the error source is allocated. 
 

The high-frequency errors are independent for the two images and therefore contribute 
twice, whereas the precision correction and mensuration errors apply to the process of 
relating the two images to each other and therefore are counted only once. 
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Source Both 

Images 
30-m 
pixels 
(90%)     

Spec   
1 σ 

Units Comments Segment 

High-frequency 
Jitter 

0.079 0.056 0.3 arc-sec 0.30 arc-sec (1 σ) Satellite 

       
Low-frequency 
Jitter 

0.079 0.056 0.3 arc-sec 0.30 arc-sec (1 σ) Satellite 

       
ETM+ Jitter 
(high-
frequency) 

0.035 0.025 0.134 arc-sec 0.134 arc-sec (1 σ) 
high freq 

ETM+ 

       
Scan Mirror 
Repeatability 

0.191 0.135 0.72 arc-sec 1.75 microradians * 2 
(1 σ) 

ETM+ 

       
Processing 
Error 

0.140 0.099 1.8 meter Model budget IAS 

       
Correction 
Model Error 

0.198 0.198 3.6 meter Estimation error IAS 

       
Mensuration 0.164 0.164 0.1 pixel Correlation accuracy IAS 
       
RSS Estimate 0.318 (90%)     
       
RSS Margin 0.243 (90%)     
       
Specification 0.400 (90%)     

Table 3-7. Image-to-Image Registration Error Budget 

 
Based on the analysis shown in Table 3-7, the 0.4-pixel (90%) requirement can be met, 
but there is little error budget margin.  Pre-selected test points must be used to ensure 
the highest correlation accuracy, since relaxing the correlation accuracy to 0.14 pixels 
exceeds the registration budget.  Similarly, it is necessary to use the precision correction 
process to fit the object image directly to the reference image, rather than fitting both to a 
separate control source, leading to independent correction model errors, which, when 
combined, would exceed the 3.6-meter image-to-image correction model budget.
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Section 4 Constraints, Limitations, Assumptions 

4.1 Atmospheric Refraction Correction  

The atmosphere causes a ray of light to bend toward the satellite as it propagates 
through the atmosphere. The amount of bending depends on the angle of propagation 
and the density of the atmosphere at a given instant. For Landsat 7, the magnitude of 
this effect is less than 1 meter at end of scan. Currently, this effect is not accounted for.  

4.2 Resampling 

Resampling Weight Tables (i.e., for cubic convolution, Modulation Transfer Function 
[MTF], or other resampling kernels) are calculated at 1/32 pixel increments.  These 
weights assume evenly spaced pixels and are used in the sample direction. 

Spline weights (used for resampling over the scan-gap where the pixels are not 
necessarily evenly spaced) are also calculated at 1/32 pixel increments.  These weights 
are applied in the line direction in the area between two scans. The weights are set up 
for a shift of 0.0 to the maximum gap possible from the system.  A value of  3.0 covers 
the maximum gap possible in the Landsat 5 satellite.  A value of  6.0 is needed for the 
Landsat 7 satellite to cover the panchromatic band.  When the panchromatic band is 
used for Landsat 7, it could cause some anomalies in cases of large varying grey values 
between pixels that are located in an area with a large scan gap.  

4.3 Speed of Light Correction  

Due to the non-infinite velocity of light, the velocity of a point on the surface of the Earth 
and the velocity of the satellite cause pixel location errors if not accounted for.  The 
speed of light correction due to the Earth's rotation is sub-meter and is currently not 
accounted for.  
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