

Study on LAI Sampling Strategy and Product Validation over Non-uniform Surface

Lingling Ma, Xiaohua Zhu, Yongguang Zhao

Academy of Opto-Electronics (AOE) Chinese Academy of Sciences (CAS)

2014-1-28

- Currently, using in-situ measurements to evaluate remotely sensed products is still a basic approach for validation.
- In order to represent the global information, ALL of the field measurements within the remotely sensed large scale pixel should be collected, which is impossible in practice.

Large scale pixel

In-situ point measurements

Introduction

sample unit

Considering the cost of field measurement, we always try to choose the fewest sampling points to represent the global measurement.

(2)Simple random SS

The SS based on classification takes a weighted average of sampling results of different types, however the result is still not satisfactory over non-uniform surface.

(3)Prior knowledge-based SS

Introduction

As a tool linking field measurements and remote sensing image, the design of sampling strategy should aim at reducing the gap between up-scaling local measurements and ideal global measurement of large pixel, i.e., scaling bias

Scaling bias is deduced by the spatial heterogeneity and model non-linearity

$$LAI(\bar{p}) - \overline{LAI}(p) = \frac{1}{2}kV$$
$$k = \frac{\partial^2 LAI}{\partial p^2}$$
$$V = \frac{1}{A} \int (p(x, y) - \bar{p})^2 dA$$

However, how to parameterize the scaling bias when distributed local measurements are not complete? 5

Sampling strategy based on correlation index

Computational Geometry Model (CGM) (Raffy,1994) is such a tool to upscale distributed point samples to large scale pixel.

The difference between lower and upper boundaries are maximum error due to scaling change, so CGM can reduce scaling bias:

$$\Re(\overline{p}) = \frac{1}{2} [F \overline{p} + F^{\wedge}(\overline{p})]$$

 Sampling strategy based on correlation index

Based on CGM, the Correlation Index (CI) is proposed to describe how well a specific field measurement represent the whole large scale pixel.

CI closer to 1, indicating the better representation

During field campaign, the value of correlation index close to 1 should be chosen as the sample unit. Sampling strategy based on correlation index

Once SS is determined, validation strategy could be correspondently generated, which will be effective on a certain site.

Introduction of AOE Cal&Val Test Site:

- Located near Baotou City, Inner Mongolia, with latitude 40.72oN and longitude 108.65oE, 700km away from Beijing. A flat area of 301 km2, the average elevation is 1270m.
- Established firstly in 2009, aiming to sensor calibration, performances assessment and product validation.

Introduction of AOE Cal&Val Test Site:

The landscape of AOE site is mainly including sand, bare soil, grassland, farmland and water, etc.

Different types of farmland/Grassland

Characteristics of AOE Cal&Val Site:

Traceable, muti-grade validation technique system based on full set of artificial and natural targets

ACADEMY OF OPTO-ELECTRONICS

Experimental Data Set

- The airborne image was acquired by hyperspectral imager with spectral resolution of 5nm(@ 400nm-1030nm). The spatial resolution is 0.7m (@ 3.5km).
- The synchronized data, including leaf area index and vegetation spectrum, were also collected during field campaign.

Retrieval modeling for LAI

- \succ The PROSPECT + SAILH model simulates the canopy reflectance as a function of canopy structure parameters and leaf biochemical parameters;
- \geq Classification image is extracted using MLC method;
- Empirical expressions of different vegetation are established using **PROSAIL H simulation.**

• Correlation index

Traditional SS

- The pixel of airborne data is taken as local measurement point
- A sample unit is composed by 10×10 airborne pixels, in which 10 local measurements are randomly selected.
- Large scale pixel is aggregated from all airborne pixels, i.e. 350m*350m

(50×50 sample units)

The relative errors of different sampling strategies

Based on the empirical expressions, hulls of four types of vegetation are calculated by GCM.

Land cover	(x1:670nm; x2:800nm)	RMSE
maize	$LAI_{1} = -1.249 + 0.064 / x_{1} - \frac{0.001}{x_{1}^{2}} + 6.032 / x_{1}^{3} - 2.919x_{2}$ $+57.038x_{2}^{2} - 181.442x_{2}^{3} + 199.808x_{2}^{4}$	0.963
potato	$LAI_{2} = -3.333 + 0.070 / x_{1} + 26.030x - 0.0004 / x_{1}^{2} - 64.256x_{2}^{2}$ $-0.232x_{2} / x_{1} + 3 \times 10^{-6} / x_{1}^{3} + 51 362x_{2}^{3} + 0.543x_{2}^{2} / x_{1} - 0.001x_{2} / x_{1}^{2}$	0.967
sunflower	$LAI_{3} = -5.066 + 0.119 / x_{1} + 37.997 x_{2} - 0.0003 / x_{1}^{2} - 87.352 x_{2}^{2}$ -0.536x ₂ / x ₁ + 3.7×10 ⁻⁶ / x ₁ ^{3} + 6 368 x_{2}^{3} + 1.057 x_{2}^{2} / x_{1} - 0.001 x_{2} / x_{1}^{2}	0.964
rice	$LAI_{4} = -5.548 + 0.145 / x_{1} - 0.003 / x_{1}^{2} + 2.7 \times 10^{-5} / x_{1}^{3} + 45.159 x_{2}$ -150.642x ₂ ² +174.37	0.941
grassland	$LAI_{5} = -0.527 + 0.024 / x_{1} - 5008 x_{2} + 58.607 x_{2}^{2} - 164.113 x_{2}^{3} + 165.582 x_{2}^{4}$	0.969
Broadleaf	$LAI_{6} = -15.767 + 0.048 / x_{1} - 0.0003 / x_{1}^{2} + 345.422 x_{2} - 3019.417 x_{2}^{2} + 12543.489 x_{2}^{3} - 24730 37 x_{2}^{4} + 18724.402 x_{2}^{5}$	0.974
melon	$LAI_7 = LAI_i$	

correlation index map

Hyperspectral data

ACADEMY OF OPTO-ELECTRONICS

Application

- Using CI map to select different sample units for upscaling, uncertainties are calculated respectively.
- Obviously, CI-based SS efficiently reduces the uncertainty caused by model non-linearity and spatial heterogeneity during LAI validation.

40 80 180 The Optimal SS can be determined considering the cost-effectiveness Summary

- The parameterized model of the correlation index has been preliminarily established, which describes how well a specific field measurement represents the whole large remotely sensed pixel.
- For reducing the scale effect in point-surface transform, a sampling strategy based on the correlation index has been proposed.
- Application performance has been analyzed based on the AOE Cal&Val site, and the results show that the proposed SS has better performance than that of the traditional methods.

- Characteristics of the proposed method:
 - ✓ CI-based SS is suitable for the case that the ground surface feature is relatively stable within a period.
 - ✓ The difference between high-resolution reference sensor and objective sensor will deduce uncertainties.
 - It can also be extended to the routine monitoring of other RS parameters, especially in the situation where permanent automatic field measurement equipment is available.

Future works:

- To improve the establishing process of the correlation index, and carry out sensitivity analysis via simulation data.
- To further verify the method via real satellite data product , and improve the validation supporting ability of AOE site under further SS studies.

