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TROPOMI

general introduction to OMI and TROPOMI

* hyper-spectral imagers make images in multiple spectral bands (3D data

cubes)

three different techniques used to realize a hyperspectral image:

- scanning an image spatially - capturing full spectral data sequentially

- scanning an image spectrally - capturing full spatial information
sequentially

- capturing all the spectral and spatial information at once.

Nno scanning mirrors cross track

scanning in flight direction

wide field of regard

* 2D detectors needed (CCD/CMOS)

 typically higher straylight levels than scanners like GOME, SCIAMACHY
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«Solar backscatter
«2D field of view

*Push broom

[

I

*Wide cross flight IFOV
<Narrow along flight IFOV

2D grating spectrometer

2D detector
eHigh data-rate
eHigh stray light




the OMI Instrument

2-dimensional CCD
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the OMI program
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TROPOMI

OMI onground calibration issues

* Wrong assumptions in calibration approach
* N0 2 axis turn / tilt cradle available for thermal vacuum chamber

* onground calibration partly under ambient conditions, limited
measurements at operational temperature 265 K (CCD and OBM)

* nadir BSDF measurements in TVC at operational temperature

* radiance swath dependence in ambient - with higher noise and
darkcurrent

* diffuser BRDF also in ambient - with higher noise and darkcurrent

* measurements poorly executed resulted in unphysical algorithms in
calibration and LO1b processing

* poor communication between teams in the end lead to mismatch
between LO1b processor and Calibration Key Data
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OMI inflight calibration method
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TROPOMI

OMI inflight calibration monitoring

* inflight calibration measurements scheduled at regular intervals
* measurements processed by LO1b processor

» calibration products moved to KNMI database

» additional automatic analysis in TMCF

» updated OPF send to processing site at NASA

« calibration measurements include Sun, WLS and LED

*» monitored features are Darkcurrent, RTS, Pixel Quality, PRNU, non-
linearity, gain and degradation

 also visualized is thermal behavior, engineering parameters and
LO1b quality statistics.

http://www.knmi.nl/omi/research/calibration/instrument status v3/index.html
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OMI inflight thermal behavior
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OMI

Inflight calibration LED monitoring
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OMI inflight calibration WLS monitoring
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TROPOMI

OMI inflight solar measurements
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Signal /Reference for Solar Calibration, ICID 8, Quartz Volume Diffusor, BF 8, UV1 Channsl

*QVD - daily
*ALU1 — weekly
*ALU2 — monthly

sremember onground ambient
calibration

*QVD recalibrated after one year
inflight

eassuming no degradation in first
year

«difficult to compare OMI diffusers

uvil uv2 VIS
QVD path 0.955 0.973 0.980
ALU1 path 0.977 0.984 0.983
ALUZ2 path 0.980 0.985 0.984
optical -2.0 % -1.5 % -1.6 %
QVvD -2.5 % -1.2 % -0.4 %0
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OMI spectrometer degradation
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OMI inflight spectral stability
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eincreased
darkcurrent

*RTS
ereduced QE?
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OMI WLS stability

flux UY channel flux VIS channel
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TROPOMI

OMI achievements

e OMI successfully demonstrates the use of 2-D detectors for nadir-viewing
solar backscatter spectrometers.

e The optical degradation is the lowest of UV instruments launched.

e The wide angle telescope, the polarization scrambler and the QVD solar
diffuser were all successful.

e Measurement of the instrument spectral response (slit) function was
successfully performed and has preference over gas cell measurements.

- Effects of detector degradation (RTS effects) should be decreased by
frequently updating dark current maps and lowering the detector
temperature.

= Solar irradiance measurements and other calibration measurements _
should have a SNR much higher than the radiance data to avoid stripes in
the data products

OMI
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TROPOMI

OMI lessons learned

» use identical diffusers

* improve heater control for thermal stability

» Stabilize OBM thermally

* row anomaly attributed to MLI rupture

* room temperature calibration + delta = bad idea
* radiation damage to CCD's must be reckoned with
» trend monitoring and OPF updates using TMCF

* close interaction between operations, calibration and L2 scientists
» decontamination in early commissioning phase

* instrument heated during launch

* WLS not stable — long term — short term
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TROPOMI
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TROPOMI

= oMl TROPOMI

the TROPOMI instrument )
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Wavelength 300

GOME SCIAMACHY

detector UV UVIS NIR SWIR
type CCD CCD =) CMOS
detector columns 1024 1024 1024 1024
detector rows 1024 1024 1024 256
band 1 2 3 4 B 6 7 8
detector binning factor 16 4 4 4 4 4 1 1
spatial pixels 72 260 260 260 260 260 256 256
spatial sampling [km] 7 % 28 227 7r7 7%7 ZART, 7x7 ZIR7 N7
spectral pixels 385 385 470 470 512 512 512 512
spectral range [nm] 270 - 300 300 - 320 300 - 400 400 - 500 675 - 725 725 -775 2305 -2345 2345-2385
spectral resolution [nm] 1.0 0.5 0.55 0.55 0.5 0.5 0.25 0.25
spectral sampling [nm] 0.065 0.065 0.2 0.2 0.1 0.1 0.1 0.1
minimum signal to noise 100 100 -1000 1500 1500 S00 100 - S00 100 100
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TROPOMI

Lessons learned incorporated in TROPOMI (1)

* better heater control
« OBM thermal stabilized
* N0 MLI in front of primary mirror field of view [row anomaly]

* close interaction between operations, LO1b, OCAL, ICAL calibration
and L2 people

* CCD used in NIMO to prevent RTS due to radiation damage
* no ALU diffusers, 2 identical QVD diffusers

« WLS and LED in calibration unit [alternative for WLS]

* LED’s for all detectors [better short term stability]

» Laser diodes for ISRF monitoring in SWIR [ice layer]

» operations baseline seasonal independent and optimized for trend
monitoring

« aluminum platform [water vapour]
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TROPOMI

Lessons learned incorporated in TROPOMI (2)

sverification of onground calibration

svalidation of accuracy of calibration vs requirements

*tools to monitor the calibration process

scalibration rehearsal

formal error propagation

*CKD errors not taken into account

*L01b data processor not used during OGC

flight representative conditions

scalibration definition by Pl institute, execution under industry
responsibility

*One-team approach to I01b / onground calibration and inflight
calibration

«2 axis turn — tilt cradle in vacuum facility

*No vacuum breaks during calibration [only 1]
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TROPOMI

TROPOMI calibration approach

sclosed loop employment of LO1b data processor

«formal error propagation

sinclude calibration errors in accuracy (signal, variance, noise)
serror propagation including CKD accuracy

*L01b algorithms and calibration algorithms developed together
sOone-team approach

sinstall calibration board

sclosed loop testing (end to end) for systematic and random errors
sverify calibration progress

svalidate CKD accuracy
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TROPOMI

Integral calibration, validation and verification

*Plan calibration in order of LO1b reverse model order
*Preprocess calibration data with LO1b production processor
sCorrect all steps before the current step

sInclude error propagation of noise and variance including the error
in the calibration key data used

«Calculate the next key data

*Verify this key data with a separate test data set
*Use key data for postprocessing

*Check for systematic errors

*Check for error compliance

*Next step
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calibration validation
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TROPOMI

TROPOMI calibration validation

» first validate LO1b reverse model software implementation (SValP)

» then validate consistency between LO1lb processor and real
measurements made with instrument (on data)

* then validate noise and uncertainties against SRD requirements
using error budgeting and propagation in LO1b. (on data)

 also validate onground zenith sky measurements
* inflight validation of geolocation and solar irradiance
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OMI issues we try to

avoid (nonlinearity)
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gain ratio
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TROPOMI

TROPOMI challenges - conclusion

* Many lessons learned have been dealt with, but....

» challenging straylight performance

» complex but versatile electronics UVN

* novel SWIR detector and module

*no QM / EM -> LO1b reverse model difficult to define

» agile software approach needed to allow for late changes

» extensive planning and preparation for calibration needed

* large software effort

» onground calibration software must be developed beforehand

» 2 axis turn/tilt cradle available, but no translate function, very good
knowledge of attitude needed.

* vacuum breaks unavoidable
* tight schedule
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TROPOMI

Flight direction
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INSTRUMENT
e Row anomaly behaviour changes on short-term as well as long-term
timescales.

e Row anomaly is automatically monitored on a daily basis using L1b data.

e Using monitoring results, a Look-up Table is maintained which defines
the ground pixels that need to be flagged for the row anomaly.

e About 40 % of the ground pixels is now impacted by the row anomaly.



