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THE USE OF MODELS FOR UNDERSTANDING SAR IMAGES

CJ Oliver
DERA, St Andrews Road. Malvern. Won:s., WR14 3PS. UK.

Tel: 144) 1684 895165: Fax: (44) 1684 894481: E-mail: chris(9lsar.dcra.guv.uk

ABSTRACT

This paper comprises a review of methods for
extracting information trorn SAR images. We begin hy
considering the process of image understanding in the
context of a SAR exploitation application. We show
that information is extracted in terms of combination of
d~ita and world models. These arc then exploited using
optimised estimators hasCd on the distrihuuon Of the
image intensity. We demonstrate the importance of
providing a rigorous theoretical framework for this
process.

INTRODliCTI<>N

Human perception is based llll a sophisticated set lll
internal rules. developed during the early years or our
lives. and is extremely effective at understanding
images. Fm computer-based image understanding it is
necessary tu define an appropriate set of rules to
achieve the same goal. Unfortunately we arc unable to
specify the rules hy which our visual understanding is
achieved and it is necessary to define suitable rules
irorn scratch. These will depend on a variety of models
tl1 describe the properties ul the data and the scene
itself. Initially. the process starts with a particular data
set (or image). This may take a variety or forms lrorn a
single intensity image. tu interferometric. polarirnctric
or multi-temporal data. The choice or the form of input
data must he determined by the final application.
Sensor properties such as polarisauon, wavelength,
resolution and incidence angle all effect the nature or
the image data through the physics or the scattering
and imaging process. Clearly it is unprofitable to
attempt to extract information rm the desired
application if the physical process of imaging docs not
preserve this information. Thus an understanding of the
physics or the scattering mechanism is crucial to the
selection or the original image data.

Assuming that appropriate data is available. the image
understanding process then Iollows the flow diagram
shown in figure I. A particular feature of the data is
selected for study. As shown hy the diagram this is

controlled hy a 'data model '. This encapsulates
properties of the form of the data itself. given some
underlying scattering cross-section. It may have a
physical origin. as in speckle. or depend on
phenomenological properties of the scene. such as
clutter texture. In each case the precise form of the
model will determine the optimum feature or the data
to select in order to extract the desired information.
This provides one input fur determining the form l'l the
image interpretation technique. The other input to the
technique is determined hy a 'world model'. which
encapsulates typical properties of the scene. Ior
example that neighbouring pixels tend to have similar
intensity. When these two models are exploited
correctly. the information they provide should he
optimised for the application. the form of the data and
the scene properties. Once this information is derived it
can he provided to the application. If the information is
inadequate at this stage. it might imply that the original
physical or pncnomcnological description requires
modification. In fact there are many other feedback
paths. nut illustrated. in the process or optimising the
image interpretation technique.

In this paper we discuss the roles of these different
models in a variety of image-understanding functions:
each of which addresses different applications. The
material is largely extracted from a recent hook on the
topic I l I. The reader is referred to this for more detail.
including the theoretical derivations or the different
algorithms and a bibliography of original work in this
area. Many of the algorithms described here have been
implemented in the CAESAR software package [2].

DATA MODELS

The justification fur two or the most important data
models arc visible in the different regions of clutter
identified in figure 2. This figure shows a small region
of high-resolution clutter. We observe man-made
structural features. such as a road. field boundaries, the
edges or wooded areas etc .. which correspond tu the
type or information represented on a map.

0 British Crown Copyright, DERAii 998
Published with the permission of the Controller of Her Britannic Majesty's Stationery Office.

Image Processing Techniques Proceedings of the 2'"1Latino-American Seminar on Radar Remote Sensing held at Santos, Sao
Paulo, Brazil, 11-12 September 1998 (ESA SP-434, October 1998).
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Figure 1: Flow chart showing the iuterrelation «t measurements. data rnodcls and iuronn.uion.

Figure 2: High-resolution image or region or English countryside showing different types or natural clutter.

The region ut field identified shows little sign of
underlying cross-section fluctuation. Coherent
interference between the many random scatterers
within a resolution cell gives rise to a complex
Gaussian received tie Id. a negative exponential
intensity distribution and a Rayleigh-distributed
amplitude. This characterises the physically-based
'xpeckle model' which underlies nearly all SAR data.
The area or woodland identified in figure 2. on the
other hand. shows evidence ut additional fluctuations
arising lrorn hright returns Imm tree crowns with

associated shadowing behind the trees. This le:1Js [\l ,I

'product model' representation Ior SAR im:1ges in
which an underlying radar cross xection iRCS' 1s

combined with the speckle model during 1m:1ging 1-'I.
These variations in RCS are encapsulated in an 'RCS
model'. Fur many natural clutter scenes. :1 gamma­
distributed noise process provides a suitable form t l1r
the RCS model. When this g.unma-distributcc RCS 1s
combined with speckle during imaging the resultant
intensity or amplitude would he Kvdistributcd 1-'-51.



ll\lA<a·: l'\l>ERSTA'\DIM; l;SIN<; THE
SPECKLE '\lOl>EL

\\ L' n,1v, dL'h'i 1'l ' .1 >eflL'> 1'I imagc-undcrst :111d111g
lL'L'illliLJLIL'>which c'11111t•111l·diucrcnt dal:t 11H1del>with
world IlH'dL·h \\ll1L"l1dL'>L'flrl·1!11'>l' :ispell> 1>l1ile '-L'L'llL'
v hi.h rcl.u,: !1>the rL'LJUirL·d.ipplic.uion. lnitiallv \\L'
I'L'>lrIL'l our :111en111>Il111 the exploitation ol i111:1ge
mtcnxitv. The dl>(l1\\i1111 Will re illuxtr.ncd r\
c'1l[l\ldeflllg llll' ll'>l lllLtge illu-tr.ucd Ill llgllfL' '·
Stfl!L'lllLtl ic.uurc-. :trL' L'k:1rl\ evident. as I> Ille
11rL'\L'il(L' ,,, >[lL'd,IL'. \;1>lL' Ill particular Illl' Jisc'relL'
>L':lllefl'r> in till' iicld :11tllL' r11tt1>111icn 1>!tile 1111:lgL«

Let 11>llrsl :lJJre» the problem 1>!removing 1!1eIl1llsL'­
like elkl'h 1'' 'l1ed,le "' e\idL·nt 111reg11>11>1>lunuor m
RCS. In 11r,kr 11• .tclllL'\L' th i-, WL' 1n1r,1ducc' :1

·L'1.rrcl.ucd 11e1gl1r11urJ1,'11d· world model. which :l»ert'
llLil neighbouring pi\L'h arc vimilar. Tl11s (;ill re
,·x11J,1i1ed111:1 \:1rrel\ 111:tlg11rr1il1m IL':lding l<' lllL'
re>tilh ,J111\\111111!gurL»-l1:11-1d1.F1gure-\i:li >lh>\\> ihc
c1111>eLJL1elll'L'111:q111Jy111g:l J,1L':tlaverage 111Ille d:11:1.
Till> L'11rre>p1>1lLh111:l»llilllllg lh:tl Ille RCS over tl1e
.t\L'Liglllg windov, I> c11Jl>I:1111.Clc.ir!v 1I1i> :ll'llll'\L'>
g111>ddespeckl1ng 111u111!11r111rL'g](lns .u the cxpcn-c '"
:1\L'raging 1>ulstructure. F1gurL» -\ihl and IL'\ make u>e

9

1>I the -r.u l>llL':tl 11r1>perIIe> withi n the w111J1>\\ 1,,
improve the est1111:1lL',,, tllL' centre pixel. Minimum
mean-square error llltering. xhuwn in l!gure -\1h1 lfi.7 ].
minimise-, 1!1eerror ior a measured variance whereas 111
llgure -lie I the mtcn-u y within the window is :t»Ullled
11> he gamlll:t-d1-.1nhu1ed and tl1e corresponding
Maximum a P1>slLT1t>I1!MAPI reconstruction provided
IS.YI. B1>1J1give g1>1>dspeckle srnoothing in unitor m
regiuns and re1:1111structural detail. However. both
show increased noi«: Ill the rcconxtrucuon surrounding
illl:1ge structure. The g:tllllll:t MAP rec. instruct» >11!las
been w1,Icl) and sUCCL'sslully used Im speckle
rL'dUL'li1111in applic.uions where this uncertainty near
edge-. is not :t problem. A different approach 111
despeckl rng 1s 1llustr.ucd 1n iigurc -\(d ). A simulated
anne:tling :tlgilrrtl11ll identifies which -~-pixel
(11nllgur:1111>nwithin :1 _,x_~ window is must probable
I IO[. ThL· fL'c'l'lhlfUL'leJ [11\L'i value 1s then the g.unma
\1AP cxum.uor !11r tl1:11L'1>nllgur:t11u11.Since speckle
reJuc111111over such :t small wi11J11wis very weak. the
pnice» I> iterated many times until the reconstruction
c11nvcrge> 11ntill' gl1>r:tl opumurn. Visually. rile qualit ,
,,! tlgurL· -\id I is much helter than the other results.
gi\ing g1>11Jspeckle reduction in uniform regions
without the noisv rcconstrucnon around structure,
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(aJ (hl

(c) (d )

(e) ( f)

Figure 4: Despeckled reconstructions of the test image in figure 2: (al local averaging: (b l minimum mean-square cm ir:
(cl gamma MAP: (d l simulated annealing. Ratio test applied to (e) gamma MAP and (f) simulated annealing.
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(a) «n

(C)

Figure 5: Segmented reel instructions ul llgurc 2: ia 1 RWSEG, (b) MUM, Icl anneal. Ratio tests of quality l >1
reconstruction: id) RWSEG. IC! MUM and 1n anneal.
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A dcmonstrauon of the quality of these reconstructions
can he obtained by considering the ratio or the original
image tu its reconstruction [11]. Ir the reconstruction
reproduced the underlying RCS precisely. the speckle
model would assen that this ratio should correspond Ill
pure speckle. Any evidence or structure. or a failure tu
retain the correct statistics. would indicate a failure of
the technique tu apply the speckle model correctly. We
illustrate this ratio for the gamma-MAP and simulated
annealing methods in figures 4(cl and (f) respectively.
Buth show considerable residual structure indicating
that the reconstruction techniques arc not recovering
the true RCS.

The 'cartoon moder provides an alternative world
model which asserts that images are made up of
regions of uniform RCS. The rule ur the reconstruction
is Ill identify the edges of these regions and their
strength. Nute that this imposes a stronger constraint
than the correlated neighbourhood model. The result of
applying an edge-detection and region-growing
algorithm (RWSEG) is illustrated in Figure 5(a) [121.
This provides an adaptive test fur the presence of edges
within windows of increasing size. Strung edges can he
detected with small windows so that high resolution is
preserved. As the window size increases more sensitive
edge detection is possible hut the resolution is
degraded. The results are structurally reasonable.
Indeed. if we perform the quality test using the ratio Pl
the original image tu its reconstruction. it is clear that
the result in figure 5(h) conforms much more closely Ill
the speckle model than the previous dcspeckling
techniques. However. there is still much evidence of
dist union around scene structure. An alternati vc
algori Ihm. Merge Using Moments (MUM l [13]. yields
the results shown in figure 5(c ). This approach tests
whether regions or pixels should he merged with their
neigh hours on the basis of the statistics. It is capable of
operating on single pixel regions with single-look SAR
images. Figure 5(d) shows a considerable improvement
in reconstruction quality compared with 5(h). The final
example. illustrated in figure 5(e), is a consequence of
applying a simulated annealing algorithm Ill determine
which configuration of a specified number of regions
provides the optimum reconstruction. given the speckle
and cartoon models. An additional constraint on the
curvature of region edges is also introduced 114].
Figure 5( f) reveals that this reconstruction is closest Ill
corresponding to the models. This achieved. however.
at the expense of increased processing time.

IMAGE UNDERSTANDING USING THE
TEXTURE MODEL

Earlier we demonstrated that the RCS of natural clutter
is often consistent with a gamma-distributed noise

prl'CCss. This will only he observed. Pl course. it the
resolution of the sensor is adequate t'' preserve this
image texture. which limits the range Pl sensor syslL'!lb
Ill which such an approach is tcasihle. In tigurc 6 we
show a typical SAREX image uf pan ,11 the T:1p:t1'''
rain forest. obtained with the o-look CCRS Cvhand
SAR with a resolution Pl about om and an incidence
angle l'f 65:. The Santarcm-Cuiaba highway run' trom
lllp right tu bottom len. The land on the lei! o l this
highway is predominantly primary forest while that ll'
the right is a mixture of primary forest. rcgcncr.n ing
regions and clearings. The human observer is able tl'
classify at least into iorcst/not Iorest c.ncgories on the
hasis of the texture in the image. Clearings have vcrv
little texture. corresponding merely [(16-l,ipk speckle.
WhCrCaSprimary forest has fluctuations corresponding
to an order parameter value pf about I.

In order tl1 provide an auiom.uic technique tl1 exploit
the texture it is essential tu determine 1I1ciorrn ,,1 tl1c
distribution. derive the corresponding optimum texture
measure and then exploit rigorous methods which
preserve the information while determining the glPhal
optimum. Fur multi-look SAR the clutter would he
expected ll' he approximately gamma-distributed 'illL'C
the speckle fluctuations arc largely averaged out. The
Maximum Likelihood texture measure is then the
normalised log of the intensity defined hy
L' =In/ - In/ . where the bars denote illL':tl :t\CL1gcs
over a window [14J. The corresponding value J,1r
figure 6. Jeri ved over a I6x 16 window i' shown rn
figure 7!a 1.Regions lil uniform texture in the clearing,
have smaller values of the texture measure than
primary forest regions. However, there is still
considerable variation cameo by the speckle. This L':!ll
he reduced following the same techniques that were
developed rm intensity images. In tact U can he
approximated by a gamma distribution l'I order 0.5.
Figure 7(h) then shows the result l1I segmenting this
texture estimator.

< ince the statistical uncertainty in the definition ,11the
texture measure is reduced. it is possible Ill assign :1
threshold Ill the data. corresponding to an order
parameter of about 3.0, Ill classify the image into rorcst
and nut forest regions. The boundary between these
regions is overlaid on the original image in tigurc ~­
Clearly there is reasonable consistency between tl1is
classification and that provided hy a human interpreter.
The cftecti veness of the method can only he 4ua111itied.
however, by comparison with the classiticauons
yielJeJ by other sensors and ground truth
measurements.
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(a) (h)

Figure 7: (a) Normalised lug texture and lhl annealed texture ior figure 6.

CONCLUSIONS

This presentation has been concerned with the
introduction ul image interpretation tools based on the
rigorous exploitarion of a variety lil data and world
models. The results show promise Im both intensity
and texture scgrncntauon and texture classification.
Note that the discussion has been centred on high­
resolution systems. The texture measure in particular
cannot he applied ii' the same way tll low resolution
data. It is essential in any study of the use of image­
interpretation techniques tu keep the final application
firmly in mind. It might well he that totally different
methods, using different sensors and depending on
different image properties, could he preferable Ior a
particular application. The user must identify the
correct tool tor his application.
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Analysing multitemporal SAR images
SHAUNQUEGAN1

T!IUY LI~TOAN2

1Sheffield Centre for Earth Observation Science
University of Sheffield, Sheffield S3 7RH, UK

S.Quegan@sheffield.ac.uk
2 Centre d'Etudes Spatiales de la Biosphere

18 avenue Belin, 31055 Toulouse, CEDEX France
thuy.letoan@cnes.cesbio.fr

Abstract. Applications of multitemporal SAR
data in many cases require accurate estimates
of the backscattering coefficient at each time.
Herc we describe how multitemporal and
spatial filtering can be combined in a
processing chain to greatly improve the
radiometric accuracy of the data and how the
general methods can be simplified in the case
of ERS data. The results will be illustrated
using ERS-2 images in the
exploiting change detection
applications.

context of
for forest

Keywords:
filtering.

Change detection. Image

Introduction

A major advantage of satellite SAR is its ability to
acquire precisely calibrated Images "hi ch arc
unaffected bv cloud. This means that time series of
accurate measurements arc available for environmental
monitoring and applications. Although interferometric
coherence and phase difference can be measured under
certain time interval and baseline conditions. changes
in the backscattering coefficient 111aybe more useful for
operational applications. since these arc routinely
;l\ ailablc under almost all conditions for a satellite
SAR. For mapping purposes. this requires making use
of the differing temporal signatures of different land
coyer types. Important examples arc found in forestry
and agriculture. Forestry exploits the 10\Y temporal
change of forests compared to other cover types (Grover
el al .. 1998~ Le Toan et al .. I995). By contrast. rice
mapping relics on the high temporal change associated
with wetland rice (le Toan ct al.. 1997). In more
general agriculture. temporal signatures hav c been used
to separate different crop types (for several examples.
sec Wooding el al.. l<J<J-1-)

l-10\\C\"CLexploiting such time series requires a
processing chain which can first produce registered.

calibrated images. then reduce the radiometric
uncertainty in the measurements by temporal and
spatial filtering and finally use the time sequence of
backscattering coefficients to make decisions. for
example about the type of land cover. Our main
concern in this paper is the filtering step in the
processing chain. whose purpose is to provide a best

estimate of CT 0 at each pixel and at each time. given a
multitcmporal sequence of registered Images.
Multitemporal filtering is an example of a more general
class of problems where several images of the same
scene arc av ailablc (for example. at different
frequencies and polarisations) and we wish to combine
them in some optimal way to recover the information
they contain at each pixel. In Section 2. after displaying
the general solution to this problem. we will describe
how it becomes modified in the case of ERS 15 day
repeat PR! images from vegetated regions. to provide a
particularly simple and effective algorithm.

The apparent simplicity of the algorithm is.
however. complicated by the fact that it relies on local
properties of the individual images m the
multitcmporal sequence. These must be estimated from
the data. which introduces a spatial dimension into the
algorithm and requires adaptive methods if spatial
resolution is not to be severely degraded. These
methods. and their effects on the statistics of the
filtered image. arc described in Section J.

Filtering may be used to improve the visual
appearance of an image. but it is often also used as a
precursor to a decision step such as classification. In
this case. the radiometric properties of the classes \\C
wish to separate provide constraints on the accuracy

\\ ith which CT u must be estimated. In forest

classification. the i111pr0\cmcnt in the estimates of CT ri
provided by multitcmporal filtering is often insufficient
to meet the required accuracy. Accuracy is here thought
of in terms of classification error. which in simple
thresholding schemes is dependent on the overlap in
the probability density functions (PDFs) of the different

Image Processing Techniques l'rocceding« ofthe 2'"1 l.atino-Amcricon Seminar on Rudur Remote Sensing held at Santos, Sao
Paulo. Brazil, l 1-1] St'J!ll!111her/ 1)1)8(ESA Sl'-43-L October 1998).
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classes being considered. This overlap depends on the
differences between the backscattering coefficients of
the cover types we wish to discriminate and the width
of the PDFs. A convenient measure of the width is
given by the equivalent number of looks (ENL), which
is defined by

mean
ENL= (1)

vanance
In this expression, the statistical quantities are

appropriate to an ideal, uniform (untextured) target in
which the only sources of fluctuation come from
speckle, after whatever filtering operations have been
applied to produce the final data. Increasing the ENL is
equivalent to decreasing the width of the PDF. We
assume that the ENL of the original data is known (for
ERS PRI data, ENL = 3).

The ENL of the PRI data is inadequate for most
classification purposes but can be greatly improved by
multitemporal filtering, up to a limit imposed by the
number of independent images available. Spatial
filtering may then be necessary if successful
classification relies on further increases in the ENL.
There are many algorithms available to perform this
task, but in Section 4 we will explain how the
properties of ERS data from the 35 day repeat cycle
suggest that a simple approach is most suitable when
our interest is in vegetated targets. Section 5 provides a
brief summary and our conclusions.

2 Multitemporal filtering
The problem of combining several images from

the same scene in order to provide optimal reduction of
speckle has been addressed by a number of authors
(Oliver and Quegan, 1998: Bruniquel and Lopes, 1997;
Novak et al., 1993). If only intensity data are available,
as in our case, the general linear solution for producing
a single image with minimal normalised variance is
given in Oliver and Quegan (1998) as a weighted sum

M

J(x,y) =LA; (x,y) I, (x,y), (2a)
i=l

where Ii , i= 1,..., Al. is the intensity value at position
(x, y) in channel i out ofM (registered) channels. The
weighting coefficients are defined by the relation

A oc c1-1 a c2b)

where A1 = (A1. .... AAJ),

a' = (crP .o M) = ((11), ,(!M)) and C1 is
the covariance matrix of the intensity data

In these expressions and subsequently we omit the
positional coordinates (x, y).

In this solution a single image is produced in
which the speckle has been minimised, but in fact the
image it produces is essentially featureless, unless there
are strong variations in the local correlation structure.
A more useful approach is to form M images of the
form

M

Jk=_LAJi k=l, ....,M (4a)
i=l

under the condition that Jk is unbiased, so that

(Jk) = (!k), and Jk has minimum variance. This
problem has the solution

A' = o c;1cr
k k c-1(J. l(J

(4b)

where Ak is the kth row of the coefficient matrix A.
Notice that this simply normalises the core speckle­
reduced image (equation (2)) and multiplies it by the
local mean value of intensity in each of the Al images.
Hence it retains the optimising property of (2) while
inputting structure into the M speckle-reduced images.
The explicit scheme for calculating the Ak given by
(4) also has an implicit form given in Bruniquel and
Lopes (1997).

This treatment is designed for the general case
where the set of images may be correlated, but becomes
much simpler when correlation can be neglected. In
this case, C1 reduces to a diagonal matrix in which

C1(i,j) = a;8,1 (5)

where 8 i; is the Kronecker delta, and the speckle

reduction scheme becomes
M I

Ji=~.L-1
M J=1 o J

Here the core speckle reducing filter (equivalent to (2))
is given by the summation; the scaling appropriate to
each temporal image is provided by the CJ , outside the
summation. In principle, the operation described by (6)
should provide filtered images with ENL = M x L.
Measured values are reported in Section 3.2.

i = 1, ,M (6)

2.1 Comparison with ERS data
The expression given in (6) appears to be the most

appropriate for ERS data from the 35 day repeat cycle
over vegetated areas, since the residual correlation over
this period is likely to be negligible. This is because, at
C band, the primary scatterers are leaves, twigs and
small branches. Over a month, this population of



scatterers is unlikely to remain stable enough to
maintain coherence. As a test of this. we show in
Figure 1 the histogram of correlation coefficients for
registered ERS images of West Harling (an area of
forest and farmland) on 5/5/92 and 22/9/92, using a
window size of 5 x 5 pixels in calculating the
correlation. Although the histogram is centred on 0,
large values of the correlation coefficient occur. These
values can be attributed to two factors. The first arises
from sampling statistics. Calculations of the correlation
coefficient between completely uncorrelated pairs of
simulated images gave rise to fairly wide histograms,
suggesting that much of the correlation indicated in
Figure 1 is simply a sampling effect. The second is that
in the ERS image there are objects, such as buildings.
which would be expected to give high correlation.
These make up a fairly small proportion of the scene,
but contribute significantly to the tails of the histogram.

If we accept the arguments above, then it is not
only inefficient to use the general expression (4) to
filter the data. but this is in fact the wrong method to
use, since it involves estimating a covariance matrix of
intensity, with spurious non-zero values in the off­
diagonal components associated with sampling. These
non-zero values pass into the solution scheme and
introduce error. For this reason, the simplified scheme
given by (6) is more correct. It is also very easy to
implement, involving no matrix operations, just
weighting by the estimated mean local backscattering
coefficients in the ~\Jimages.

If we were using data from the Tandem missions.
the full scheme described by (4) would be more
appropriate, but the sampling problems described above
would still occur. The only way around them appears to
be to use sampling windows sufficiently large to reduce
the tails of the sampling distribution.

Figure 1 Correlation coefficients between
ERS-1 images of West Harling on 5/5/92
and 22/9/92. estimated over a 5x5 window.
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3 Spatial adaptivity

One of the potential advantages in using
multitemporal filtering is that it appears to provide
speckle reduction while preserving spatial resolution.
However, it is important to observe that equation (6)
requires local estimates of d' in each image. This
involves using a window surrounding the pixel at the
(x, y) position of interest, so that the multitemporal
filtering includes spatial averaging. In order to prevent
an associated loss of resolution, it is necessary to use an
estimation scheme which is spatially adaptive. This is
based on the approach in Lopes et al. (1993).

The filter adapts to local structure by first using
the local coefficient of variation (CV) to test whether
the region within the processing window is uniform
and responding with various geometric detectors if this
is found not to be the case. Within the window, the CV
is estimated by cr I µ.where the unbiased estimates of

the the mean, µ . and standard deviation, a . of the
intensity arc given by

µ =-1 i.1;
N 1=1

(7)

and

(j=
N-1

1=1 (8)

Herc 11....N are the intensity values of the N pixels within
the window. The theoretical distribution of the estimate
cr I µ is unknown but found be to distributed around
I vL where L is the number of looks in the image. By
adding a small value, 15, determined by a chosen
confidence interval, to JI IL, the central pixel in the
window is considered to belong to a homogeneous class

if cr I µ < 1 I .fi +8 (note that this is one-sided).
otherwise to a heterogeneous class. A filter which is
trying to estimate the local value of a 0 can be made
adaptive by the following algorithm (Lopes et al.
1993):

(I) If cr I µ < I I .fi +8 . area is homogeneous.
average over the whole window.

(2) If cr I µ > 1I.fi+8 . area is heterogeneous:

(21) Then apply structure (line and edge)
detection

(2 2) If no structure detected. apply point
detection.

(2 3) If neither structure nor point is found. the
area is textured.
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Appropriate detectors are needed to perform the
structure and point detections in steps (2.1) and (2.2).
These are all developed from the ratio PDF for SAR
images (Touzi et al, 1988).
3.1 The ratio PDF

Assume we have two uniform regions, containing
N1 and N2 pixels respectively. whose true intensity ratio
is R = CY1I CY2, where CY1 and CY2 are the mean intensities
of the two regions. If.41, A;>, ... AN, and B1, B2, .. ., BN2

are the two sets of pixel intensity values then the
maximum likelihood estimate, P . of R is given by the
ratio of the average intensities:

A A
r =-=

B
(9)

Ratio detection should be independent of whether we
A B

choose -= or -= as the test ratio. so following TouziB A .
et al (1988). we define a normalized ratio measure

1',~min[~,~J (10)

which can never exceed the value 1. The conditional
PDF of P, givenR. is (Lopes et al. 1993)

p(i\IR)= ( 1
) : (z+H) (11)

B N]L, N2L ·IN

with

where L is the number of looks, and B is the Beta
function:

B(z, w)= r(z)r(w)
r(z+w)

Defining the contrast ratio of two homogeneous areas
by C= max[R, 1R]. we note that

p(1:v IR)= p(1:v 11I R) = p(1:v IC).
The ratio PDF in (11) can be easily developed into

PDFs of edge. line and point ratios by selecting the
appropriate geometry in the processing window and

modifying the values of N1 and N2 accordingly. The
false alarm probability (the probability that '~vis less
than some threshold when the two regions in fact have
the same backscattering coefficient) can then be
calculated for each of these PDFs, and is given by
rrf ptr., I l)drN , where rr is the detection threshold.
0

since the PDF for a uniform region simply sets C = 1.
The edge and line detectors are made independent

of orientation by testing for edges and lines in several
different directions. For a square window, horizontal,
vertical and two diagonal orientations are used. The
minimum values of the edge ratio, re, and the line ratio,
ri. calculated over all tested directions are used. as they
provide the strongest evidence for an edge or line.
These ratios are compared with the chosen thresholds
for edge and line detections. rEmax and rLmax. If re :::;
rEmax· an edge is detected, and if rt. :::;rrmw.·, a line is
detected. The thresholds arc all uniquely associated
with the required false alarm using (10).

The intensity point ratio detector, r., uses the ratio
of the average intensity in a point target region (a cross
shape representing the point spread function of the
imaging system) and the averaged intensity from the
rest of the window. We then test whether the observed
ratio of the average intensity of the point region and
the pixels in the rest of the region is likely to have
arisen purely from speckle, again using a threshold
based on a fixed false alarm probability.

If. as a result of these tests, any feature or point is
found. the filter estimates the mean intensity by
averaging pixels only in the detected edge. line or point
regions to which the central pixel belongs. This helps
to preserve resolution and prevent blurring of features.
Full details can be found in Lopes et al. (1993).

3.2 Examples of multitemporal adaptive filtering
In Figure 2 we illustrate the multitemporal

filtering concepts introduced in Sections 2 and 3.1.
Figure 2(a) shows a single ERS image from a sequence
of 11 images available for the West Harling. UK.
testsite in 1997. Figure 2(b) is the 'featureless' result of
the optimal speckle reducing operation resulting from
equation (2), after combining all the images. but
without correcting for the local intensity. The presence
of features in the image indicates failures in the spatial
adaptivity when the filter window used for estimating
the local intensity straddles an edge. Figure 2(c) shows
the filtered image corresponding to Figure 2(a) after
correction for the local intensity. Although a significant
improvement on Figure 2(a). this image is still not very
useful for feature detection. A marked further
improvement in interpretability is provided when \\ c



combine images as multitemporal overlays. as in Figure
2(d), where the temporally filtered images for 23/5/97.
5/9/97 and 14/3/97 are overlaid as red. green and blue
respectively. Here we have used the spatially adaptive
estimates of local mean intensity.

An important issue for their subsequent use is the
ENL of the filtered images. In principle. if the A/ L­
look images are uncorrelated. the operation described
by (6) should provide filtered images with ENL = .\! x
L. Hence. the eleven 3-look ERS-2 images used to form
Figure 2(b. c) should give rise to 33-look data after
filtering. Measured values are of the order 22. This

(a)

(c)
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deviation from the ideal value can be explained by the
errors in estimating the local intensity in (6): if this
estimate is not accurate. the filter is no longer optimal
and the ENL will decrease. Larger errors are likely
when spatial adaptivity causes averaging over fewer
pixels. Hence. the ENL is likely to vary spatially within
the filtered image.

(b)

(d)

Figure 2 (a) ERS-2 dB image of West Harling on 23/5/97
(b) Featureless core (dB) image using 1997 ERS-2 data of West Harling

(c) Temporal filtered image corresponding to 2(a)
(d) Overlay of temporal filtered images

(23/5/97 in red. 5/9/97 in green and 14/J/97 in blue)
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4. Spatial filtering
For many purposes, the level of speckle filtering

achievable by temporal filtering alone will be
insufficient for the success of subsequent operations,
such as classification. For example, probability of error
is strongly dependent on ENL and acceptable false
alarm rates often require large ENL (Oliver and
Quegan, 1998: Rignot and van Zyl, 1997). In order to
increase the ENL, spatial filtering is required after the
temporal filtering. In the same way that consideration
of the properties of the ERS 35 day repeat data led us to
a particularly simple form of the multitemporal filter,
we now use further arguments about these properties to
derive the appropriate form of the spatial filter.

The essence of the spatial filtering approach lies in
the formulation of the reconstruction problem; this is
discussed at length in Oliver and Quegan (1998). For
our purposes, we consider two approaches: local
averaging (box filter) and local maximum a posteriori
filtering with a gamma distributed prior (GMAP; Lopes
et al., 1993).

Local filtering makes assumptions about the
statistical distribution of the backscattering coefficients
of the population contained within the processing
window. For averaging it is assumed uniform, while for
GMAP it is assumed to be gamma distributed, so that
the data are textured. In combination with speckle,
these two models lead to the observed data being either
gamma or K distributed, respectively. In addition, the
GMAP filter makes use of the order parameter (ENL)
of the speckle distribution and in its simple form
assumes that this is the same everywhere. Both filters
assume that the pixels within the filter window are
uncorrelated.

Most of the assumptions of GMAP are violated at
the spatial resolution and incidence angle of ERS PRI
data. In most cases, there is little or no evidence for
measurable texture in forest or agricultural areas,
particularly at the scale of typical processing windows.
(An important exception can occur in regions of
medium scale topographic variation. Recent work has
shown that for such regions in tropical forest, marked
texture in the deforested areas provides good
discrimination from the untouched forest. However,
this is not the general situation.) Since GMAP is
specifically designed for gamma distributed texture,

this suggests it is not the appropriate filter to use. In
addition, after temporal filtering, the data are spatially
correlated (both because of point spread function effects
in the original data and as a consequence of overlaps in
the windows used to estimate local parameters at
different pixels). This adversely affects GMAP's
estimate of the order of the underlying gamma
distribution. Finally, sampling errors cause the
equivalent number of looks to vary within the
temporally filtered image, as discussed in Section 3.2.

Both the latter effects also have an impact on the
box filter. It is readily shown that for independent
pixels drawn from the same gamma distribution, the
box filter provides the maximum likelihood estimate of
cr 0 . However, this is no longer true in the presence of
either spatial correlation or variation in the ENL. The
box filter nonetheless still provides a very simple
unbiased estimate of cr 0 under the assumption that its
underlying distribution is uniform, rather than textured.
There seems no reason from observations on the ERS
PRI data to assume anything else in either forest
regions or agricultural fields.

The discussion of spatial adaptivity in Section 3
was concerned with providing estimates of an image
parameter using spatial averages in the presence of
image structure. Although discussed in the context of
temporal filtering, this is obviously equally applicable
to spatial filtering and uses exactly the same methods.
The only difference in the case of these two filters is in
their response to the presence of texture; for GMAP
the output will then be given by the filter developed by
Lopes et al. (1993) while the box filter will treat this as
a statistical fluctuation and average across the whole
window.

Figure 3(a) shows the effects of spatial filtering of
the image shown as Figure 2(c) using the box filter,
while Figure 3(b) and (c) show the overlay of the three
spatially filtered images making up Figure 2(d), using
the box and GMAP filters respectively.



(a)

(b)

(c)

Figure 3 (a) The image in Figure 2(c) spatially filtered by a 3x3 box filter
(b) Overlay of the images in Figure 2(d) spatially filtered by a 3x3 box filter

(c) As in (b), but using GMAP

It can be seen that the GMAP filter leads to images
which appear sharper. probably because this filter docs
less averaging near edges. In effect. while box filtering
can respond to edges only through the adaptivity of its
processing window. GMAP gets a second chance
through the statistical model it uses for the data. (This
is a by-product. not a design feature of the filter. which
as we have noted uses what is probably an
inappropriate model for the ERS data.) The crisper
aspect of the GMAP filtered data is related to the fact
that it has done insufficient smoothing to produce good
classification results in many circumstances. so that a
further filtering step is required (Le Toan et al.. 1995.
1997).

As with temporal filtering. the appropriate
window size needs to be selected for use in either of

these filters. but the problem is different. For the
temporal filtering. the windows need to be big enough
to allow accurate estimates of the local value of o 11 in
each image in the temporal sequence. In this case. the
temporal filter will be close to its optimal performance
and will yield an ENL near to its ideal value of.\JL (see
Section 3). No further improvement in the ENL is
possible using temporal filtering. For the spatial filter.
bigger windows lead to continued improvements in
ENL until the window size exceeds the scale length of
the homogeneous land unit in the image (and assuming
that the spatial adaptivity performs adequately). Hence
the choice of window size is determined by the nature
of the subsequent classification step and the ENL
necessary to provide successful separation of the
different classes.



24

Figure 4. Forest/non-forest map of the Kuayagang area in Sumatra,
derived from two ERS-1 images acquired on 1112/93and 5/8/94.

Note that the GMAP filter has been successfully
used in several studies involving post filtering
classification ofERS data (Le Toan et al., 1995, 1997).
An example is shown in Figure 4, which is a
forest/non-forest map of the Kuayagang area in
Sumatra. derived from two ERS-1 images acquired on
1/12/93 and 5/8/94. Green is assigned to pixels with
temporal change less than 1 dB. corresponding to
forest. whereas the grey colour shows non-forest areas
with higher temporal change between the wet and dry
seasons. The different grey tones represent the
backscatter intensity of the dry season data, used as an
indicator of oil palm plantations (bright grey), rubber
plantations (medium grey) and bare or agricultural
fields (dark grey). Here the discrimination based on
change was aided by the large backscatter variation and
the large dimension of the non-forest areas in the two
images.

In this example, GMAP has been followed by a
second spatial filtering step to remove excess variability
in its output. Similar smoothing has been necessary in
other applications of GMAP. either involving simple
box averaging after filtering or post-classification
cleaning. This suggests that the filtering step has not
met its aim of providing a sufficiently accurate estimate
of cr 0 . Indeed, the assumption of an underlying
gamma distribution for the backscattering coefficient
will lead to unacceptably high numbers of large pixel
values in the output if it is incorrect. Attempts to use

GMAP for tropical forest classification without
subsequent operations on the filtered data did not prove
successful, as the direct output from the filter was too
noisy (Grover et al., 1998).
5 Conclusions

Multitemporal SAR data can be exploited to take
advantage of information carried by changes in
backscattering coefficient, which are relevant in many
applications. Having multitemporal data available also
allows us to improve the radiometric quality of the
images by means of multitemporal filtering techniques.
In the general case, the optimal speckle-reducing filter
makes use of the correlation between images from
different dates. However. for ERS data in the 35 day
repeat cycle. the correlation between different dates
over vegetated targets is normally very low. This leads
to a particularly simple and easily implemented form of
the temporal filter. Although in principle this preserves
resolution. it requires local estimates of the
backscattering coefficient. which both reduces the
degree of filtering and leads to unwanted spatial
blurring. In order to combat the latter. the estimates
need to be made within locally adaptive windows. In
many cases, the degree of smoothing afforded by
temporal filtering alone is insufficient to support
successful post-filtering operations such as
classification, and spatial filtering is also necessary.
The appropriate type of filtering depends on the correct
model for the data of interest. The resolution and
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incidence angle of ERS mean that texture is only
weakly present. if at all. at the scale of typical
processing windows. This allows a rather simple
approach to spatial filtering to be used. which again is
much aided by being made adaptive.
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ABSTRACT

In the field of processing and analysis of Synthetic
Aperture Radar (SAR) images, the returned signal can
be modelled as the product of the inherent speckle noise
and the terrain backscatter. For amplitude SAR images,
the data can be titted with several distributions
depending, among other considerations, on the degree
of homogeneity of the areas under study. In zones where
the backscatter can be considered homogeneous (crops,
pastures, etc.) the I" ' distribution is a good model for
the returned signal. The XA distribution gives a good fit
for homogeneous areas as well as for heterogeneous
areas (forest on flat terrain) but there are numerical
problems caused by the presence of Bessel functions.
When the area under study is extremely heterogeneous
(cities, forest on undulated terrain) the r11' distribution
and the X;\ distribution fail to fit these data. In this case,
the ~;A0distribution behaves very well. Taking also into
account that this last distribution fits equally well
homogeneous and heterogeneous areas, and that its use
is more computational and theoretically tractable, it is
desirable to substitute the ~;A0 distribution for the XA
distribution. In this work the feasibility of this
substitution is studied. To this end, a correspondence
between the parameters or both distributions is proposed
in order to approximate, in some sense, the XA
distribution by the '.!A0distribution. The minimisation of
a distance between both densities will be considered,
and the goodness or fit of between XA distributed data
by the ~;;\0 distribution model will be measured, using
the z2 adherence test in a Monte Carlo experience.
Keywords: statistical models, ~JA0 distribution, XA
distribution, SAR.

INTRODUCTION

In the field of Synthetic Aperture Radar (SAR) image
processing, the multiplicative model is widely used.
Within it, the return is modelled as the product of the
speckle noise and the terrain backscatter. SAR
amplitude data can be titted by several distributions
depending, among other factors, on the degree of
homogeneity of the areas under study. In this work,
unless otherwise stated, linear detection (ampl itude)
data will be used.
For zones where the backscatter can be considered
homogeneous, like crops and pastures, the r11'

distribution is a good model for the returned data. The
XAdistribution models data coming from homogeneous
zones (with certain restrictions due to numerical
problems arising from the use of Bessel functions) as
well as data coming from heterogeneous zones, like
forest on flat relief. The r11' however, docs not fit
heterogeneous data appropriately.
When the area under study is extremely heterogeneous ,
as it is the case for urban areas or forest over undulated
relief, the r11' distribution as well as the XA
distribution do not model the data adequately. In this
case the 9A0 distribution behaves remarkably well.
Taking into account that this distribution models very
well data from heterogeneous and homogeneous areas
too, and that its use is more computationally and
theoretically tractable, it is advisable to substitute the
SA0distribution for the XAdistribution.
In this work, the feasibility of this substitution is
studied. To this end, a correspondence between the
parameters of both distributions will be considered in
order to approximate, in some sense, the SA0

distribution to the X.\ distribution. This study is made
up of two parts:

Image Processing Techniques Proceedings of the 2'"1 l.atino-Americon Seminar 011 Radar Remote Sensing held at Santos, Sao
Paulo, Bra: ii. 11-12 September 1998 (ESJ\ SP-434. October 1998).
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• Minimisation in L2 of the distance between the
respective densities, in order to obtain a
correspondence between distributions.

• The goodness of fit of the 9A0 distribution to XA
distributed data will be measured using the x' test
in a Monte Carlo experiment.

MAIN PROPERTIES OF THE XA AND THE 9A0

DISTRIBUTIONS

The 9A0(cxc, y, n) and the XA(exK,li.,n) distributions we
will use are characterised by the following densities

2n'T(n - ex0 )z 2"-1

fc;(Z)= ()r( V_ ')"-""y"f n -ex0 AY +nz:
where -a0, y,fl, z> 0, and

f (z) = 4(JJ;7z}c" z"-"K'1K (2z.Ji:;i)
K f(n)f(exK) n-aK

(I)

(2)

where exK, Ii.,fl, z > 0 and K" is the modified Bessel
function of the third kind and order parameter v .
There are not many computational implementations of
this Bessel function (see Gordon et al.(1995)), for a
recent algorithm). On the other hand, the only special
function in the gAOdistribution is the I' function, for
which there are many reliable implementations.
This is the first computational argument in favour of the
9A0 distribution and against the XA distribution. The
second computational argument is aimed in the same
direction and requires the definition of the cumulative
distribution functions for both distributions.
Let the random variables V and W be 9A0(exG,y,n)
and XA (exK,/i.,n) respectively. The cumulative
distribution function of the first one is given by

P (v ) n:' r(fl-ex(j) ,,,r < v = v- .
- y" r(n)r(-ex(j)
( II ' I·H ln,n -ex0 ,fl+ I;-yv- ) (3)

where H is the hypergeometric function. This function
is easy to evaluate using the Snedecor' s '.J distribution,
as can be seen in the appendix of this work.
In order to write the cumulative distribution function of
the second random variable it is necessary to impose
restrictions on the variation domain of its parameters.
Originally, the parametric space of the XA(exK,li.,n)
distribution is ~/but, to be able to write its cumulative
distribution function in a recursive form, it is necessary
to restrict the variation of ex0 or the variation of n to
the integers. For the second case ( n integer), this
function is given by

2 2-a-11

Pr(Wsw)=I+ ( ) ( \g(v,k,z) (4)
fexKI!l

where z = 2w&,, k = 2n - I,v =ex - fl and the
function g(v,k,z) is given by the following recursive
formula
-z''1K,)zJ.
(k-1)(2v + k-I)g(v,k-2,z)-

fork= I

fork :2 2
-z'-'K,jz) (k-I)z'+'-1K/z),

More details of this recursive solution for the
accumulated distribution function of XA distributed
variables can be found in Yanasse et al.(1995).
From the considerations above on the accumulated
distribution functions for 9A0 and XA distributions we
can deduce the following advantages of the first one
over the second one: it is easier to implement, it uses
reliable and immediately obtainable implementations,
and it does not impose restrictions on the original
parameter space.
The importance of the availability of reliable
implementations of the accumulated distribution
function arises from the need of carrying out goodness
of fit tests and from the use of these functions in
estimators based on order statistics.
To the stated advantages in the areas of modelling and
computational tractability, additional advantages in the
fields of inference which favour even more the use of
the gA0 distribution instead of the XA distribution, can
be added.
For the estimation of the homogeneity parameter of both
distributions using the maximum likelihood method, the
estimator of exK is difficult to calculate due to the
presence of the derivative of the Bessel function of the
third kind with respect to the order parameter. The
maximum likelihood estimator of <Xe entails the use of
the digamma function, which has been widely studied
and implemented. These estimators are the solutions of
the following equations:
Let us consider the sample z., .. ., z, of independent
observations. The maximum likelihood estimator of the
exK , knowing n and Ii. is

, a ( ) k ,
k\fl(&K)-'L-,-logK"c" 2z,5z =-log.Ii.+ °Llogz,

•=D dexK 2 •=O

analogously, for the maximum likelihood estimator of
ex0 knowing fl and y is:

\fl(fl -a0 )- \f/(-a(j )=-logy +I_ 'i:,1og(y + nz,2)
k =O

where \fl is the digamma function and k is the sample
size.

MINIMISATION OF THE DISTANCE BETWEEN
THE 9A0 AND THE XADISTRIBUTIONS

In this section, a method by which a 9A0 distribution
approximates a XA distribution, under the constraint that
both must have a mean value equal to one, is described.



In other words, given the sets of 9A
0 and X A

distributions with mean value equal to one, a
correspondence of elements of the first one to elements
of the second one , trough a numerical minimisation of
an also numerical integration, will be sought. This
correspondence will then be established by parameter
pairs (sec Figure 1).
In this figure, the set '.l(,d11) (9A0(11) respectively) is
formed by all the X.,. (9A0, resp.) distributions with /1

looks and mean value equal to one. These distributions
have only one free parameter: the homogeneity
parameter ex, ( ex0 resp.), because the scale parameter
A. ( y resp.) must be chosen as a function of the number
of looks and the homogeneity parameter, in order to
guarantee the constraint of unitary mean.
The objective of this work is to approximate the '.KA
distribution by the 9A0 distribution. To do this, it is
necessary to previously define the approximation
criterion. Let us consider then, the set of all the
distributions that admit a density and call it '.D. To
establish the notion of proximity between distributions
in '.D we will use a distance we will denote
d: '.Dx'.D---'t[O,oo ), through the relation

Where f, and i. are the densities that characterise the
'.D1 and the '.D2 distributions respectively. This metric
has been already used in a similar context in Joughin et
al. (1993).
Due to reasons that will be explained later, only those
distributions XA(ex,,A.,11) and SA0(ex0,y,11) with mean
equal tu one will be studied. In this way, when the
number or looks /1 and the homogeneity parameter exK'
are known, the scale parameter A. is given by:

A.=_!__[r(exK'+112)r(11+112)
1

(5)
/Iii r(ex K r0/ )

Analogously, the 9A0 distributions (with the same
number or looks II) will be indexed only by their
respective homogeneity parameter ex0 because its scale
parameter is given by:

[
r(-ex0)r(11) )'y=11

r(-ex0-112)r(11+112)
(6)

We want to find the value of ex0 that minimises the
distance

., 4
d = J-;::;r1l2(A.11Y"' ..'I' z"' ·..-1K (2- r:::-)ii rv1; or:» ~"I/A.ti -

11'' y-""f(11-exJz'..-1 I'dz
r( )( ')"«.-ex0 y+11z· ·

where the values A=A(ex,,11) and y=y(ex0,11) are the
ones that make the mean value equal to one. Then, the

(7)
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value of ex0 < 0 that minimises numerically that
integral will be sought.
Although ex, varies over all the positive real numbers,
for the purposes of this study the search will be done
within the interval [4,12]. Very small values of exK'
( 0 < ex, < 4 for instance) correspond to data from
extremely heterogeneous areas, which are not well
modelled by the XA but by the SA 0 distribution., as can
be seen in Frery et al.( 1997); then, for these data, it is
not necessary to have an approximation. For values of
ex, larger than l5, the observed data can be modelled
by the r112 distribution, (see Frery et al.( 1997), Yanasse
et al. (l 995) and Yanasse et al.(1993)), which is also a
particular case of the 9A0 distribution. So, the only
region in which it is necessary to approximate the XA
distribution by the 9A0 distribution is the one that
corresponds to values of ex, within the interval [4,12].
For these values of ex, , the corresponding values of ex0
obtained as a result of the minimisation of the integral in
formula (7), are shown in the following tables.

II= 1

exK' ex" A. y

4. -4.3 2.95 4.15
5. -5.3 3.73 5.42
6. -6.3 4.52 6.09
7. -7.3 5.30 7.96
8. -8.3 6.09 9.23
9. -9.3 6.87 10.50
10. -10.3 7.66 11.78

II= 2
exJC ex" A. y

4. -4.4 3.32 3.68
5. -5.4 4.20 4.81
6. -6.4 5.08 5.94
7. -7.4 5.96 7.07
8. -8.3 6.85 8.21
9. -9.3 7.73 9.34
10. -10.3 8.61 10.47

II =4
ex K' ex A. y

(,

4. -2.9 3.53 3.45
5. -5.5 4.46 4.53
6. -6.4 5.40 5.59
7. -7.4 6.34 6.65
8. -8.4 7.28 7.72
9. -9.4 8.22 8.78
10. - l0.4 9.16 9.84
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Figure 2 shows the densities of some of the XA and 9A0

distributions for a fixed value of aK and its
corresponding value of ac. In it, it can be noticed that
for aK = 4 and ac = -4.3, with n = 1, the difference
between both distributions is very small.
Figure 3 shows the values of the integral (7) for exK =4

and for a K = 8 as a function of -exc E [4,1O], the
minimum is reached for ac; = -4.3 and exc = -8.3.

GOODNESS OF FIT OF '.KA DISTRIBUTED DATA
USING THE 9A0 DISTRIBUTION

To measure the goodness of the fit of XA distributed
data Using the 9AO distribution, We will USe the X2

adherence test in a Monte Carlo experiment.

X2 TEST

To test if the simulated XA (exK ),,fl) distributed data
can be fitted by the 9A0(exc,y,n) distribution, the
Pearson's x2 statistic will be used:

, ~ (h - mp )2x- = L., ' '
•=O mp,

(8)

where m is total number of KA distributed data, h, is
the number of data in each interval, k is the number of
intervals, P,=F(z,)-F(z,_1), where F is the
cumulative distribution function and the interval i is
given by [z,_1,z,].

Let zA be a sample of size m of XA(exK,A.(exK,11),11)
distributed data, with A.(exK, 11) as defined in (5). From
this sample exc, the homogeneity parameter of the
9A0(ac,y(exc,n),n), is estimated using the maximum
likelihood estimator considering y(exc, 11) as defined
in (6).
If the random variable Z is 9A0(exc,y,n) distributed,
then its cumulative distribution function is given by:

n"-1f(n-a)z2" ,
F2 (z)= () ( \ H(11,n-a;11+l;-11z-jy) (9).\ y 'T II r -ex

where H is the hypergeornetric
evaluated using

r; (z)= Y,,,_,"l-rex z ' J

function and can be

(I 0)

where Y is the cumulative distribution function of a
Snedecor distributed random variable.

MONTE CARLO EXPERIMENT
A Monte Carlo experience was carried out generating
XA (aK ,A.,n) distributed data which were fitted with a

9A
0 distri bution. The values of the parameters exK and

exc were estimated by the maximum likelihood method
and by the \/2 order moment estimator method (see
Mejail et al. ( 1998)). The goodness of fit was evaluated
using the p-value of the X' test.
For a number R of replications, the following steps
were performed:
• For each exK E [4,12] XA distributed samples were

generated.
• For each of these XA distributed samples the

roughness parameter ac and the parameter y of
the 9 A

0 distribution were estimated.
• The goodness of fit was evaluated using the p -

value of the X' test.
The XA distributed samples were generated for values
of a, E [4,12] with number of replications R = 100,
1000 and 10000, sample sizes T = 1000 and 10000 and
significance level 0.01.
As a particular case, the figures for exK = 4 are shown
in the following table, where for each value of number
of replications R and each sample size T , the mean
value of the estimated exc, the mean square error mse

and the rejection percentage t;iu1 are presented.
exK =4, 11=1 %

R T ac mse rll.Ul

100 10000 -4.50 0.13 11.0
1000 1000 -4.78 1.80 1.5
1000 10000 -4.53 0.14 10.0

10000 1000 -4.79 2.08 1.3
10000 10000 -4.52 0. 13 12.0

This shows that there is no reason to suppose that the
XA and 9A0 distributions are different at the proposed
significance level.
The next table shows the values corresponding to the
mean value of the estimated a0 with exK E [5,1OJ and
fl= 1.

R = 1000 . T = 10000 , /1 = I

«. «: mse
rU.Ol

5. -5.53 0.25 3.4
6. -6.55 0.50 2.2
7. -7.61 0.95 1.0
8. -8.73 1.93 I. I
9. -9.69 2.448 1.3
IO. -10.83 4.61 0.7
1I. - I I.98 6.80 0.7

In figures 4 and 5, the histograms of the estimated a0
for a sample size T = 10000 and number of replications
R = 10000, generated with exK = 4 and exK =8
respectively. Notice that, in each case, the
corresponding exc that minimise integral (7) are -4.3
and -8.3 respectively.
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Figure 2: Densities of XA and 9A0 distributions for
exK = 4 and ex0 = -4.3 , with n = 1.
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Figure 3: Distance between both distributions as a
function of ex0 for ex K = 4 and for ex K = 8 .
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ABSTRACT

Finding the maximum likelihood estimators for some
distributional parameters of intensity data in Synthetic
Aperture Radar (SAR) images is a very difficult
optimisation problem due to, among other reason, the
presence of several local maxima in the objective
function, the analytical intractability or the expressions
involved and numerical instabilities. A possible
approach to this problem is the use of stochastic
optimisation techniques. such as simulated annealing
and genetic algorithms, that do not get trapped into local
maxima hills and, thus, make it possible to deal with
very general distributions. This work shows the results
of such approach in real situations, with images
obtained from urban areas.
Keywords: Remote Sensing, SAR images,
multiplicative model. parameter estimation, stochastic
optimisation.

INTRODUCTION

Statistical tools have long been used lo tackle some
problems related to images. The stochastic nature of
these objects. and the excellent results frequently
obtained with this statistical approach, stimulated the
development of a vast bulk of methods and techniques.
Most of these tools arc based either on quite mild
hypothesis (for instance, histogram equalisation that
assumes no distribution at all) or on the Gaussian
distribution (Wiener tilter. usual maximum likelihood
classification etc.),
Statistical modelling and parameter estimation arc very
important issues in the problem or processing and
analysis of SAR images. These parameters can be
associated to types of targets and, therefore, they can be
used as important features for image classification.

The Gaussian distribution is so frequently used because,
among other reasons, there are many techniques
associated to this hypothesis. This distribution has been
used for two centuries, and its properties are well known
and many computational methods are available to deal
with it. Synthetic Aperture Radar (SAR) images can be
successfully modelled by a class of distributions that do
not belong to the Gaussian distribution.
When SAR images arc used, instead of optical data, the
exception becomes the rule: the Gaussian hypothesis is
seldom confirmed. This is mainly due to the coherent
nature of the illumination, and the consequences of this
departure range from poor results, when classical tools
arc applied, to the need of studying and proposing new
methods for SAR image processing and analysis.
Therefore, parameter estimation is a problem to be
carefully addressed.
Among the several estimators available, the maximum
likelihood ones arc those with the "best" theoretical
characteristics. like asymptotic convergence to
normality, asymptotic consistency and efficiency, etc.
Therefore. it would be desirable to estimate the
parameters of distributions of SAR images data with
those estimators. Nevertheless, the complexity of the
models for such images usually yields to intractable
problems. both from an analytical or numerical view
point (Frcry et al, 1997). To deal with that situation, the
USC of a stochastic optimisation technique, that
combines genetic algorithms and simulated annealing
into a single evolutionary strategy, is proposed in this
work.
In next sections the general problem of maximum
likelihood estimation is posed; data models for
distributions of SAR images arc recalled, and the
problem of maximum likelihood estimation for the
particular distributions that model SAR images data is
also discussed. Then, an overview of stochastic
optimisation is given, with a short description of
simulated annealing. genetic algorithms and the hybrid

Image Processing Techniques l'roceedings of the 2'"1/.1111110-.-l111ertrn11Se111111ar011Radar Remote Sensing held at Santos, Sao
l'uulo, Brazil, 11-12 September /<)1)8 (ESJ\ Sl'-434. October 1998)
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genetic annealing algorithm. The results of the last
section are then applied to the design of an algorithm
aiming at solving the aforementioned estimation
problem. Experimental results are finally shown, along
with the conclusions.

MAXIMUM LIKELIHOOD ESTIMATION
PROBLEM

Given the data set x = {x,t of N independent
samples of a random variable and the probability
distribution F,, with density I, under the vector of real
parameters p = (P,, ... , P,,,), the maximum likelihood
estimator for the vector of parameters p under the data
set x and the distribution F,, is (if it exists) the vector

p such that V (p) = Il,:,I,(x.) is maximum. Since the
logarithmic function is a strictly increasing function, the
maximisation of this function is equivalent to the

problem of finding maxi>I.,:,I,(x,).
For some particular distributions, e. g. Gaussian, the
maximum likelihood estimation problem has simple
analytical and well known solutions. But if the
modelling distribution is more complex, analytical
solutions may not be feasible. When faced to this
situation, the analyst has to choose between using other
estimation technique (the substitution method, for
instance) and looking for optimisation tools. This is the
case for the models presented in this work, and the use
of a numerical method to find the estimator vector p is
presented.

MODELS AND INFERENCE FOR SAR IMAGES

Data from SAR images can be modelled as the product
of two independent random components: one due to the
terrain backscatter and one due to the speckle noise. The
usual model for n looks intensity speckle is a Gamma
distribution, denoted as Y, - T(n, n), with density given
by

/l 11I; (y) = f(l1) y,,-i exp(-ny), y,11 > 0

The number of looks, namely n , can be assumed
known beforehand. A possible model for the
distribution of the intensity backscatter return is the
inverse generalised Gaussian. denoted as
X, - N(a,y,A) with density

(A-jy)"n ( r )r. (x)= 11-:: x" exp ---Ax x>O
' 2K,, C2v-1Y) x

where K" is the modified Bessel Function of the third
kind, and parameters space

!
y > 0, ). 2 0, '.t: a : 0,
y > 0, ). > 0, it a - 0,
y 2 0, ). > 0, if a > 0.

The intensity return corresponds to the product of the
aforementioned backscatter and speckle z/ = x I . YI

results in a distribution denoted as G1 (a, y,A,n) with
density

z>O

The above distribution has several limit cases of
interest, depending on the parameters, which are
presented and discussed in Frery et al. ( 1997). The
particular case that will be here discussed in that
corresponding to the situation -a,y > 0, A= 0, that

yields to a distribution known as c;' (a,y, 11)' whose
density is given by

fz (z) = n"f(n -a)z"-'
' yT(n)r(-a)(y +nz)"-"

Solving the maximum likelihood problem for the data
set (z,,. .. , z,) and the distribution characterised by the
density given above consists of maximising the
following equation with respect to both variables a and
?i,:

n"f(n-a)
C(a.A)= Nlog ,, +(n-1) L,logz, +(a-11) _L,(y+nz,J

Y f(n)f(-a) 1<iSN is.s.v
This maximisation is the problem addressed in the next
sections.

STOCHASTIC OPTIMISATION

Optimisation is the search for parameters or solutions
for a given problem that minimise or maximise a certain
function or functional, conditioned or not to a set of
restrictions.
There is a restricted class of optimisation problems with
a simple analytical solution, that can be found by usual
methods of calculus (Apostol, l967a; Apostol, l967b).
Nevertheless such approach is not feasible in most of
the optimisation problems of real interest due to, among
other reasons, the computational complexity aspects as
well as the lacking of closed analytical expressions for
the involved functions.
On the other hand, Nature is every time dealing (quite
successfully) with optimisation problems of extreme
complexity. Two examples are the evolution of species
and the annealing of molten metals. In the former
example living beings, mankind for instance, are
exposed to natural competition and to the influence of
the environment. Those best adapted survive to keep on
fighting, wile the weaker are eliminated of the evolutive
competition.
The annealing of molten metals is strongly connected to
an amazing optimisation problem, stated as the Second



Law of Thermodynamics: closed systems evolve so that
its entropy raises (Hill, 1960). Each atom of a system
behaves in order that this condition is satisfied. In a
molten metal. numbers of the order of 10'1 atoms. in
random motion, build into a single crystal, among the
almost uncountable possible arrangements, in obedience
to the Second Law.
Besides being natural phenomena. the two above
examples have in common the presence of random
elements. The crossover and mutation of species are
affected by so many different and fuzzy parameters that
a single deterministic analysis of this problems becomes
impossible and useless. In the state transition of metals,
the success of Statistical Thermodynamics over the
Laplaciun deterministic approach clearly shows that
such problem cannot be properly coped without the aid
of an stochastic approach. Thus, in the solution of these
two formidable optimisation problems, Nature deals
with or uses randomness. That is the basis for the study
of stochastic optimisation. Without loss of generality,
will we consider in the next sections only minimisation
problems.

SIMULA TED ANNEALING ALGORITHMS
The fundamental ideas of simulated annealing
algorithms were first introduced by Metropolis et al
( 1953 ), as a method to determine physical and chemical
properties of a set of atoms in transition to thermal
equilibrium. In this seminal work this technique did not
used any cooling schedule, a central issue in annealing
algorithms, since this cooling idea had no connection
with the problem under analysis. The use of the
Metropolis method in the search for the solution for
more generic optimisation problems is due to
Kirkpatrick et al (1983), where the concept of cooling
schedule was also introduced. Gernan and Gernan
(1984) were the first to state an lower bound to the
temperature decay rate that guarantees the convergence
of the algorithm to a global minimum or maximum
point. A basic simulated annealing algorithm is
described in the next scheme.

2

3
4

Generate initial state x,
Generate noise with temperature T: r,
Generate candidate to new state c = x1 + t,
Test the acceptance of candidate:
4.1 If candidate is accepted then X1+1 = c
4.2 Else x,T1 = x,
Decrease T
Goto step 2

5
6

THE METROPOLIS ALGORITHM
Let S be a closed system. and X be the set of possible
states in S . Consider also x. x -! E X , with associated
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internal energies, or cost functions, E(x,) and E(x,.,).

Finally, define llE(x,) = E(x,) - E(x,.,).
The Transition Acceptance Probability (TAP) between
the states x, and x,., is defined as

. -{exp(-6.E(x,J/(kT(I))) if6.E(x,)<0
P1(x .x , J -' ,. 1 else

where T(t) is the current temperature of the process
and k is a positive constant. This probability benefits
transitions from states with larger costs to states with
smaller associated costs. Next result shows another (less
intuitive) advantage of using this TAP.
Theorem 1: if all states in a system with transitions
ruled by the TAP can visited at any temperature T > 0,
the set of states distribution converges to a Boltzmann­
Gibbs distribution, i.e ..

n P exp(-E(x)/(kT))
irn,~~ r(x, = x) = I,exp(-E(x)/(kT))

x

THE STATE VISITING PROCESS
Nothing was said about the rules of visiting of states so
far. This issue and the concept of cooling schedule are
the fundamental differences between the Metropolis
Algorithm and simulated annealing. In the former, a
state x, -! is randomly selected "around" the previous
state x, with uniform distribution among its
neighbours. In a simulated annealing algorithm the
selection of a new state is done by a temperature
dependent distribution. The time variation of the
temperature is the called "cooling schedule". Expressing
the temperature as a monotonic decreasing function of
time, i.e, the probability density of the distribution
probability that selects states in an annealing algorithm
denoted g, (-), must satisfy the relation g, (-) --H)(-) as
t ....•co ,

A formal approach to realisations of g1 can be found in
Mendonca ( 1997). For the purposes of this work, it is
enough to consider that g1 depends only on the distance

llx, = llx," - x II between the current and visited states,
i.e., g1 (x1,1, x) = g1 (llx,), and on the result stated in
the following Theorem.
Theorem 2: A sufficient and necessary condition for
the convergence of an annealing algorithm is that
L- g1(/lx1)=00.

'·/11

This theorem is a landmark in the theory of simulated
annealing, since if establishes an analytical tool in the
design of algorithms with assured convergence.

THEN-FAST SIMULATED ANNEALING
ALGORITHM

The algorithm introduced in Gernan and Geman (l 984)
could not be directly used due to its slow convergence
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speed. This problem was overcame in Szu and Hartley
(1987), with the development of the Fast Simulated
Annealing Algorithm (FSA), and further improvement
was obtained in Mendonca ( 1997) and Mendonca and
Caloba ( 1997), with the n -Fast Simulated Annealing
Algorithm ( n -FSA), whose main results are highlighted
in the following. Consider

I P ~ generate initial population
2 while the stopping criteria is not satisfied

2.1 (an,a")~ crossover(a,c(,P)

2.2 P ~ substitution_criterion_l (a", a'", P)
2.3 b' ~ mutation (b)
2.4 P ~ substitution_criterion_2 ib', P)

3 endwhile

• A random variable, corresponding to the state
visiting distribution probability nR =(I+ R)" -1,
where R is the norm of a D -dimensional Cauchy
distributed random vector in polar co-ordinates;

• The cooling schedule for convergence
T,•.R (t) =T(O) /(I+ t)"

Theorem 3: Let a be the desired probability of a
transition between states at a distance L apart at t = 0.
Then the initial temperature for the cooling schedule
must be T(O)=L/((l+tan(p;,'(l-a)))"-1), where

p; = f Dr((l+D)/2)1(-Fn°(l+D)/2)sen"-1d8, in

order to guarantee convergence.

THE BASIC GENETIC ALGORITHM
The basic structure of a genetic algorithms is presented
in the next scheme. The first step of the algorithm is the
generation of a population of feasible solutions to the
optimisation problem. This population must have great
diversity and must be as uniformly distributed over the
space of search as possible. Then, while the stopping
criteria is not satisfied, i.e., while a "good" solution is
not found among the individuals of the population, the
crossover and mutation operators are executed.
The crossover corresponds to a binary operation
between two selected individuals, yielding to an
offspring or pair of offspring. This operator is usually
designed so that the offspring has as many common
good characteristics to its parents as possible. This
results in an heuristic local search procedure, since the
solution found by crossover may not be too apart from
its parents.
Then the offspring (or offspring) is added to the original
population and from this new set of individuals, one (or
two) are removed, keeping the size of the initial
population. The substitution criteria must be coherent
with the evolution of the population.

The mutation is an unary operation that corresponds to
the adding of a random perturbation in a selected
indi victual, producing a mutant. Again, the mutant
individual is added to the population, and a consistent
substitution criteria is used to keep its size. The
substitution criteria for mutation does not have to be the
same as the one for the crossover. This loop goes on
until the stopping criteria is fulfilled.
There are some doubts related to the validity of the
genetic operator of mutation. Some serious researchers
believe that the use of this operator may degenerate the
algorithm to a random exhaustive (Tanomaru, 1995).
Let us now consider this question from a different point
of view.

GENETIC OR ANNEALING'l
Several works in simulated annealing stress the
advantages of this algorithm over genetic algorithms,
and vice-versa. It is evident that certain algorithms are
better suited to particular problems than others, and this
contributes to this discussions (Wolpert and Macready,
1995).
Some claimed advantages of genetic algorithms over
simulated annealing are their flexibility and ease of
parallel implementations. Annealing, on the other hand,
has stronger analytical fundaments, resulting in a better
understanding and control of the algorithm; it also has a
convergence proof. In general, genetic algorithms have
a greater adaptability to combinatorial problems, while
continuous or piecewise continuous cost functions are
better handled by annealing algorithms.

METROPOLIS IN GENETIC ALGORITHMS
Due to the difficulty in modelling the evolution of
species, there are few analytical tools involved in the
study and development of genetic algorithms. In
opposition, the simulated annealing algorithms are
based in Statistical Thermodynamics and, therefore,
supported by strong mathematical arguments.
If the state transition probability, i.e. the probability of
substitution of an old individual by a new one, is given
by the TAP, and if the visited state, or individual
generation, is such that all states can always be visited,
the state distribution will converge to a Boltzmann­
Gibbs distribution (Theorem 1).
The point now is how to ensure that all states can
always be visited. The crossover genetic operator is
designed in such way that the common characteristics of
its parents are preserved and, thus, it is not suitable to
yield to populational diversity. However, the mutation
operator can be easily projected to guarantee the variety
in the generation of individuals. So applying TAP as a
substitution criteria between the original and the mutant
individuals for the mutation operator results in a
Boltzmann-Gibbs distribution for the population, and in
the convergence of the Genetic-Metropolis Algorithm.



ANNEALING IN GENETIC ALGORITHMS
Now it is possible to introduce a cooling schedule into
the Genetic-Metropolis Algorithm, resulting in a full
Genetic-Annealing Algorithm. To obtain that it is
enough to generate the mutant by the addition of a
perturbation under a probability distribution with the
distribution presented in Section 0, and an appropriate
cooling schedule. Details can be found in Mendonca
( 1997) and Mendonca and in Mendonca and Culoba
(1997).

PARAMETER ESTIMATION FOR THE G~
DISTRIBUTION

The Ilcxi bi Iity and power of the Genetic Annealing
Algorithm moti vated its use in the problem of
parameters estimation of the c;' distribution.
Forthcoming sections will present particular aspect» of
the implementation or the algorithms. and the
simulation results for real data.
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IMPLEMENTATION OF THE ALGORITHM
The Genetic Annealing Algorithm starts with the
generation of a population of individuals. In Frery et al
( 1997) parameter estimation is performed by the
moments method. In this manner, the population of
cs ti mat ors around this previous estimator can be
generated, obtaining with a good chance that the
solution found for the maximisation of the
aforementioned likelihood equation has a greater
likelihood than that of the estimator found by the
mo men ts method.
In all the tested situations, a initial population of l 00
individuals (or estimators) was large enough to find a
good solution with less than 1000 generations, and all
images were sub sampled to a matrix of size 20x 20.
Fm technical details about the images. shown in the
next Figure. the reader is referred to Frcry ct al ( 1997).

REPRESENTATION OI· THE PU PU LA TION
The actual representation of parameters was
(Mendonca, 1997). due tu its simplicity and to the
continuous nature of the problem. The population was
the generated as a 100X 41rntrix. following the
scheme bellow:

Cl. y Prob. Li"elihuud
Selection

Entrv for ind. OU . . . .
Entrv for ind. 0 I . . . .

... ... ...
Entry for ind. 9o . . . .
Entry for ind. 99 . . . .
The likelihood column corresponds tu the value of the
log-likelihood function evaluated at the parameters in
the corresponding line. The matrix is then sorted from
the best to the worst individual. It is important to

observe that. due to the limited machine precision. the
lined values of this column may equal infinity. and the
corrcxpondcnt degenerated individuals must be
discarded from the population. This results in an
effective population of size N, with a few less
individuals than previously designed. Nevertheless, the
number of degenerated individuals must be small, since
the estimator found b;. the moments method is an
excellent starting point.
The column Probability of Selection is tilled with a
positive parameter proportional to the difference
bet ween the correspondent value in the likelihood
column plus a threshold. chosen here as I, and the
likelihood of the wurst (ur last. since they are already
sorted) individual. The column is then normalised so
that it sums to I. This procedure. shown in detail in the
following equation, generates a number that will be
used as a probability of selection for individuals in the
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crossover and mutation operators, selecting with
greater probability those in di viduals with a better
adaptation. Denoting the likelihood as e and a certain
threshold as d :

l(i)-f(N -l)+dProb. Selection (i) =--,._-,·---------L ,=/(j) - N({(N -1)-d)

CROSSOVER OPERA TOR
The first step in the application of the crossover
operator is the selection of a pair of individuals,
henceforth named r, and r1 (for relatives). The
column with the assigned probabilities is used in this
task. First, a random number x in the interval [O,l] is

generated. Given the set of probabilities {p1}~=~;, the
index i of the selected individual is
i='°N-1u(x-p), where u is the unitary step

~j=U J

function. This procedure is repeated until a pair of
different individuals is selected.
The crossover itself is done by convex combination of
the parents, and the offspring is generated as shown

(

A A ) P, ca,,,r,,)+ P1 ca,,, r,,)
aolhpring ' y orb.prin~ =

P, + P1
where a ,y. and p are the parameters a, y and ther, 11 I

probability of selection of the relative i .
The log-likelihood of the offspring is evaluated, and
compared to the log-likelihood of its relatives. If it is
greater than any one of them, the offspring replaces the
relative with smaller adaptation. Then, the probabilities
of selection are re-evaluated, and the mutation operator
is again applied.

MUTATION OPERATOR
Analogously to the crossover operator, the probabilities
of selection are used to choose an individual m that
will mutate. The mutation itself is processed in a quite
similar way as in the crossover, from an individual i
and a perturbation j : (a,,,'Y,,,) =(a,, Y,) +ca I' y J).
The log-likelihood of the mutant is evaluated, and a
selection between the original individual and the
mutant is done, under the rule given in Theorem I.
An important detail is that this operation is not used
when the selected candidate to mutation is the best
individual. Such procedure is necessary since, on the
contrary to a simple annealing algorithm, there are no
guarantees that the same individual will be obtained in
the next generation, so it must ensured that the best
individual is not lost by mutation.

EXPERIMENT AL RES ULTS
This section presents comparisons between the genetic
annealing algorithm and the moments method (MO for
short), presented in Frery et al ( 1997). All images were

sub-sampled to 20 x 20 , which is an immediate
advantage of the proposed method over the moments,
since the last need samples of sizes as large as 100000.
The next Table summarises the results of the first and
second experiments. Next figure shows the fit of the
estimated densities over the image histogram.It is
evident that in both cases the log-likelihood obtained
by the optimisation procedure is higher than that
attained by the moments method. This yields to a better
representation of the data, a quite desirable feature for
processing and analysis algorithms.
It is important to note that the log-likelihood in the
tables is evaluated for the whole images data set,
although the ML estimator is evaluated only for a small
sub-sampled set of the image data, while the moments
method uses all the available data.

CONCLUSIONS

This work presented a novel approach to the problem
of maximum likelihood estimation for some SAR
image data distributions, based on a fusion of genetic
algorithms and simulated annealing. The results
obtained arc superior, in the log-likelihood sense, to
those obtained by the moments method. The method
itself is more general and robust, and allows the use of
smaller samples than the moments technique.
The next step of this work will be the use of this
method in the estimation of parameter of the cl
distribution. Parallel implementations will also be
considered.
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ABSTRACT

This paper obtains an expression for the second-order
bias of the maximum likelihood estimates of the
parameters in the covariance matrix of the polarimctric
SAR observation vectors. which arc assumed to follow
a complex normal distribution. The second-order biases
are very simple functions of the parameters. and,
consequently. the second-order bias corrected estimates
arc very easy to compute. In particular, we discuss the
performance of the corrected estimate of the absolute
value of the complex correlation coefficient, which is a
crucial parameter in the practical study of polarirnctric
SAR data
Keywords: Bias correction, complex correlation
coefficient, complex normal distribution, maximum
likelihood. polarimetric SAR

INTRODUCTION

The synthetic aperture radar - SAR- is an important
conquest of the modern remote sensing technology.
Through this kind of radar. important characteristics of
the target returns can be studied. such as phase
difference information, intensity ratio of different
polarisations, etc. Applications include geology,
oceanography, environmental sciences, planing for the
use of the land, among others.
Data captured by this sort of radar arc very rich in
information and increasingly sophisticated techniques
have been employed to extract this information.
As many other sciences working in the field of remote
sensing, statistics has been an increasingly powerful tool
in the hands of specialists in the area. This area of
knowledge has served to model the in formation
acquiring process and, in particular, to help the
interpretation and classification of data through specific
techniques.

In this work, we depart from a commonly accepted
hypothesis about the statistical properties of targets: the
normality hypothesis for homogeneous areas. From this
hypothesis, we consider the maximum likelihood
estimation of a very important parameter, the complex
correlation coefficient between two elements of the
polarisation vector. Then, we calculate a bias-corrected
estimator of the absolute value of this complex
correlation coefficient.
The rest of this paper is structured as follows: Section 2
sets up a complex normal model for the polarimetric
data we arc working with. in Section 3 we obtain the
second-order bias of the MLE (maximum likelihood
estimate) of the covariance parameters in this model,
and, finally, in Section 4, the main conclusions are
summarised.

A MODEL FOR POLARIMETRIC DAT A

A polarimetric radar is a type of radar which works in
all possible polarisations. In other words. it emits and
recei vcs signals in parallel polarisation (HH, VV) or

crossed polarisation (HV, VH) and data captured by its
sensors form the complete polarimetric matrix, defined
as follows:

(

S1111

s., (I)

where S,
1
is the signal that is emitted in polarisation k

and rccei vcd in polarisation j , where k , j E {H, V} .
Each clement of this matrix is modelled as a complex

random variable, i.e., S,
1
= X 11 + iY,

1,
where i= ~.

In general it is assumed that Cov(S11, S,1) = 0, and this

hypothesis has been used for the calibration of radar
sensors.
This work is restricted to monostatic SAR, where the
signal is emitted and received with the same antenna

Image Processing Techniques l'rocccdinv» ofth« 2'"1 l.anno-Amcricun Seminar on Radar Re111ol<'Sensing held at Santos, Sao
Paulo, Brazil, I l-12 September /998 (FSJ\ Sl'-434. October 1998)
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configuration. In this case, the matrix presented in
eq. ( 1) is somewhat redundant. Since for this kind of
sensors it holds that S uv = SvH, it is possible to use a
more compact scattering matrix of the form

[

sl
s,
s,

(2)

where, for the sake of simplicity, the following notation
is used SHH =SI, s; =S, and SHI' =S).
Following Lee at al., 1994 let us admit that the
polarimetric vector presented in eq. (2) can be modelled
as a complex normal random vector. A complex random
vector U is said to be complex normal if its real and
imaginary parts, denoted by X and Y respectively,
have bivariate normal joint distribution. In other words,
(X, Y) - N 2 (µ ,C) where µ and C are,
respectively, the vector of means and the covariance
matrix. Therefore, the density of U is given by
(Wooding, 1956).

J; (u) =--1-exp(-u'C1u) (3)
n:" IC I

where u · is the transpose complex conjugate of u .
In this work a special case of the complex normal
distribution is studied, one that is relevant for
polarimetric SAR data modelling. This model, which
consists of a restriction in the structure of the covariance
matrix (Goodman, 1963; Lee et al., 1994) is defined by
the conditions below. Let S, = X, +iY, be any
complex component of the vector given in eq. (2), then
i) E(X,)=E(Y,)=0,\ik;
ii) E(X}) = E(Y/ ), \ik;
iii) E(X,Y,) =0,\ik -:f. j
iv) E(X,X,)=E(Y,Y),\ik,j;
v) E(X,Y) = -E(Y, X ), \ik, j.
Under the aforementioned restrictions, it is said that the
complex random vector defined in (2) obeys a circular
complex normal distribution.
For purposes of inference, we remind that data will be
always available in one of the following formats:
intensity pair, intensity-phase pair, phase difference or
intensity ratio. In any of these formats, we can only
recover information on two of the three components of
the random vector defined in (2). For this reason, we
can assume that our observations are two-dimensional
complex random vectors, constituting a subset of (2).
Our main goal is to obtain, from these two dimensional
observations, the MLE of the relevant parameters in the
above model, together with their second-order bias
correction, as explained in the next section.

SECOND ORDER BIAS CORRECTION

It is well known that MLEs are, in general, biased
estimators of the true parameter values. This bias can be
ignored in many practical situations, since it is typically
of order 0(11-1), while the asymptotic standard
deviation of the estimator has order O(n-112) , where /1

is the sample size. However, for small values of n, or,
more generally, when there is little information, bias can
constitute a problem and correction efforts are worthy.
Let e be the MLE of the parameter e . It can be proved
that, under very mild conditions, it holds that

E(e) =e +see)+ oin= >

where B(8) is of order 0(11-1) and it is called "the

second order bias" of e . It can be shown that the bias of
if = e - B(e) has order 0(11-2) • Therefore, the

estimator e constitutes a bias correction of e.
We want to derive the second-order bias of the MLEs of
the parameters in the covariance structure of the vector
presented in (2), where these MLEs have to be obtained
from observing a two dimensional sub-vector of (2). In
particular, we are interested in obtaining a corrected
estimate for the absolute value IP, I of the complex
correlation coefficient. This quantity measures the
degree of linear relationship between two complex
random variables, i.e., if A and B are two complex
random variables with zero mean, then IP, I= 1 if and
only if there is a complex constant z such that B = zA .
Following Lee et al. (1994 ), this complex correlation
coefficient IP, I between any pair of elements S, and
S

1
of the polarimetric vector is defined as

ES s:
'

1 =Ip le'"(4)
~EIS, 12EIS,12 c

Since IP, I is directly involved in the densities of the
models used for multilook amplitude and intensity SAR
data, this is the quantity to be addressed here.
Let S be a two-dimensional sub-vector of U , say
S1 =(S,,S1) where SJ!=XJ! +iY1,, for p=k,j and
j, k = 1,2,3. In this case the complex covariance matrix
associated to S is defined as

[
ES S ES S' lE(SS')= '.' ' I

ES s: ES s
J k J I

(5)

Since any complex number can be represented as a two­
dimensional vector, we can consider a four-dimensional
real covariance matrix corresponding to (5).
Let CJ2 =ES s: =EIS 12• Applying restriction (ii) of/! /J fl p

Section 2, we obtain

CJ2 =EX2 +EY2 =2EX2 =?EX2 =CJ:, (7)
,, JJ fJ /) J! 2



The off-diagonal terms in (5) can be written as
ES,S' =E(X +iY )(X -iY)=/\ J /.: I.. J J

E(X1X) +Y1Y))+iE(Y1X) -X1Y))(8)

and, from restrictions (iv) and (v) in the last section, we
get

ES1s; = 2EX, X) -i2EX ,X) (9)
Also, it can be readily seen from equation (4) that

ES1s: =IP, I (cos(8)+isen(8))a1a1(9)
and, equating real and imaginary parts in (8) and (9), we
get

EX X - 1 P, Icos(8 )a a
k ) - k )

2
and

-Ip lsen(8)a1a
EX Y - ' ) (10)

k ) 2
Let's consider the four-dimensional real random vector
Z , containing the real and imaginary parts of the
components of S. Hence, we have

x,
Y,z =IX
I

y
I

and the covariance matrix of Z is given by
EX/ EX1Y1 EX1Xi EX1YJ

T I
EY1X1 EY/ EY1X. EY1YL: = EZZ = ) J (11)
EX X EX Y EX2 EX Y) /.. ) /.. J J J

EY X1 EY Y, EY X EY2
) . J " ) J J

Applying restrictions (i) to (v) of Section 2 and the
results in (6) and (I 0), we arrive at

a} Olp, lcos(8)a,aj-lp, lsen(8)a1aj

I=_!_JO a}lp lsen(8)a,a1lp, lcos(8)a,aj

2 Ip, Icos(8)a,aj IP, lsen(8)a,a1 a: 0

-IP, lsen(8)a,a1 Ip lcos(e)a,a1 0 a:

The quantities in ( 12) are unknown and will, in practice,
be estimated. Let o' =(a, ,a) P, 1,8) be the vector of
the parameters in ( 12). Then, the total log-likelihood for
this vector of unknown parameters, given the /1

observable data z, .... ,Z: is

!(a)=-~{ 4n log(27r) + n logl:LI+ ~ ;:,/L:-1;:,,}
and the maximum likelihood estimates are obtained by
solving a system of four equations:
I,z,1I:-1I:):-1 z, = n tr(L:-'L:1 ); k = 1,... ,4(13)

where L k is a matrix representing the derivative of the
covariance matrix with respect tu the kth clement of (J
and tr stands for the trace of the matrix. The equations
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in (13) are, in general, non-linear, but can be solved by
Fisher's scoring method or any iterative re-weighted
least squares.
We proceed to the calculation of the second-order bias
of the parameters. From Cordeiro and Vasconcellos
(1997), the vector B( CJ) containing the respective
second-order biases of the components of the parameter
vectors can be calculated as

B(a) = (V1 I-' VJ'V1 I' ~(13)
- -

where
1~ = --Wvec[(V1 I:-1 V)-1]
n

w = (vecc~:11 ), vecCL 12 ),. •• 'vec(L43 ), vec(L44 ))
V = (vec(I1),. • .,vec(I4))
I=I@I

2)

with I k i being the second derivative of the covariance

matrix with respect tu the k -th and j -th components of
the vector CJ , for k , j = 1,... ,4, ® is the Kronecker
product and vec is the vec operator, which transforms a
matrix into a vector by stacking the columns of the
matrix one underneath the other.
After some manipulations, we obtain

Bl(a)=r-~,-~, (I-Ip, 12)2,0}14)
811 8n 411 I o, I

where each element of the vector B is the second-order
bias of the corresponding clement of the vector a .
We define the corrected estimate of the absolute value
of the complex correlation coefficient as:

Ip l=IP. 1-B(I P, I)~
(1-1 A n'Ip- l=Ip' 1-1 p' I( P, ) ~

' . . 411 IP, 12

(l-1 A I')2
Ip l=lfj 1(1-( P, )) (16)

c ' 411 l P, 12

On the graphs below, we present the value of the
corrected MLE against the uncorrected one, for the
sample sizes /1 = 40, 60, 100, 500. It can be observed
that:
• IP, l"'IP, I when /1 is large (as expected)
• the bias of the estimator is always positive
• the second-order bias correction leads to a

reasonable estimator only if the maximum
likelihood estimator 1s greater than
.r;+J -/;;(after this value, the corrected
estimator becomes negative).

Also, we observe that the second-order bias correction
can be an important tool to calibrate the image system,
when we have little information in our sample or when
the sample size is small.
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By the results obtained through simulation, three
situations have been noticed:
1. when IP, I ~ 0.3 the uncorrected ML estimator is

the best choice;
2. when IP, I> 0.8 the corrected and uncorrected

estimators are alike;
3. in the remaining situations the corrected ML

estimator is the best choice.

CONCLUSIONS

We have calculated the second-order bias of the MLE of
the complex correlation coefficient, assuming data has a
complex normal distribution. From this second-order
bias, we obtained a new estimator, corrected up to the
second order. This correction is important, since, for
small sample sizes, the bias correction can bring our
estimates towards the true parameter value. However,
the corrected estimator has some deficiencies. The bias
of the estimator was proven to be positive and,
therefore, the uncorrected estimator always
overestimates the true value of the module of the
complex correlation coefficient. This evidence points
towards the hypothesis that those small values reported
in the literature may be due to mere bias, instead of
being a symptom of system malfunctioning. Corrected
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hypothesis tests are being developed to help lighten this
issue.
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Abstract

Usually it is adopted for processing and analysis of
images SAR, the multiplicative model
z(m,n) = x(m,n)l(m,n)' where z are the observations,

X is the backscatter process and Y the noise speckle.
In Frost et al [2] (mentioned by Sant' Anna [7]) a model
AR-20 is suggested for the process X. Because the
noise speckle is not cleaned totally, the robust methods
are the most appropriate alternative to estimate this
model's parameters. The purpose of this paper is to
present a proposal of robust estimation in the AR-20
contaminated model: The RA estimators. They conform
the bidimensional version of the estimators based on the
residual covariances for the ARMA unidimensional
models, introduced by Bustos and Yohai [1].

Keywords: Robustness

1. Models for Images and Robustness

Among the models of mayor importance in the
treatment and processing of images are very important
the ARMA-20 models and particularly the AR-20
ones; in these models, it is very common to assume that
the intensity matrix of the image has got a multivariate
gaussiana distribution; however it is well known that in
many applications the gaussiana supposition is not the
appropriate one. As a result it comes out a difficult
hypothesis to hold. A very much realistic supposition
consists of considering the presence of a contaminated
gaussiano noise.

Unfortunately the least square estimators and maximum
likelihood estimators are very sensitive when the
gaussian supposition is not fulfilled. So the development
of robust techniques and the proposal a new robust
estimators are very important for the estimation of the
parameters in models for images. Kashyap and Eom [5]

present the M robust estimator in a model AR-20,
which is contaminated by two different processor of
outliers. These estimators are very highly superior to the
classic estimators.The proposal of RA estimators make
up a robust estimation alternative in the AR-20
contaminated model. The basic idea to build the RA
estimators consists of showing the usual least square
estimators so that they involve the so-called residual
covariances and finally the least square estimators are
strengthened by making this covariances robust.

2. AR-2D Model

Before referring to this model it will be necessary to
present some concepts:

First we will call Z the set of integer numbers and we
will call C the set of complex numbers. So Z 2 tells us
the set of all the pairs (m, n) the integers numbers, and

C2 will show the set of all pairs (z,w) of complex
numbers. Let S is a configuration of pixels so that
X (s) with s ES represent a random variable such as
color, intensity of energy, light or grey level, etc. in the
pixel or s place. Considering that S = Z2, the result
is that (X(s):s Es) is a random process. Thus, when
this process is performed, an image is obtained. If the
random variables X (s) are independent, and
E(X(s)) = E(X(S) for all s,s ES, we obtain the

so-called white noise. Let X = (X( S): S ES) a week

stationary random process (i.e. E(!X(s)l2) is a finite

number for all s ES, E(X(s)) = E(X(s) for all
s,s ES, and the autocovariance function of X
process depends only on the difference of its
arguments), E(X(s )) = O\fs ES and let
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e = (&(S ): S ES) a white noise process (Whittle, [8]).

So we say that x = (X(s):s Es) is a process

AR(P,c) if:

X(m,n)- Ia(k,l)X(m-k,n-l) = c(m,n)
(k,i)eT

Where T is a finite subset of S and

P(z, w) = 1- Ia(k,l)zkw'
(k,i)eT

is a polinomic function with real coefficients, which is

not annulled in the set {(z,w) EC2:lzl = lwl= 1},
and T is contained in positive quadrant of the plan.
(Guyon, [3]).

The modelling of images using AR-2D models very
often used. They not only have a good performance for
modelling images but besides they have a structure
much more simple than other models for images. That's
why the efficient methods of estimation of its
parameters are so important to develop.

3. The Least Square Estimators In The AR-2D
Model

Let X an AR ( P, e )model with zero mean observed
a window strongly causal W , where:

P(z, w) = 1- Ia(k,l)zkw'
(k,i)eT

and T = {(k, l) ES:O s k , l s L} being L a natural

number. Then:

a=

a(O,L)
a(l, L)

a(0,1)
a(I.1)
a(2,1)

a(0,2)1
a(l,O)
a(2,0)

a(L,O) a(L,1) a(L,L)

is the matrix of parameters to be estimated in the
referred model AR (P, e) .

Let B(k,i) the operator which lets X(m,n) "goes

back" k units in the first coordinate and l units in the
second one; i.e.:

B(kJl(x(m, n)) = X(m - k, n - l)
\f (k, /) ES, \f (m, n) ES. The least square estimator

a of a ' minimizes the expression:

(3.1)

where W ~ T is a subset of window W. Precisely:

and r( k J) (a) is the residual in the pixel or place

s = (k,l). It is defined by (3.2):

The estimator a observes a good behaviour supposing
that for all s ES, c(s) has a normal distribution; but
it is not robust in the sense that it is badly affected by
the presence of observations that move slightly away
from the normal hypothesis.

In the next section a robust estimator will be proposed
to estimate the parameters in the AR-2D model
contaminated by innovation outliers. This distortion
appears when the process & has a normal distribution
contaminated given by:

where 0 < 5 < 0.5, N( 0, 0'2) represents the normal

distribution with mean zero and variance 0'2 and G is
an unknown arbitrary distribution with dispersion
r2 ;::: 0'2 . Finally, the process & has distribution

N( 0, 0'2) with probability (1 - o) and has

distribution G with probability 5. The random
variables e( k, l) are considered outliers when they
respond to G distribution.



4. RA Robust Estimators in the AR-2D Models
contaminated by Innovation Outliers

Let X the AR ( P, & ) model of the previous section
distorted by the presence of innovation outliers and
observed in the window strongly causal W. Let the
least square estimator a of a ' which is obtained by
minimizing in equation 3.1. Differentiating this
expression we obtained the following equations:

v- (a)(a-(k,1)(afa) J- O~ (k,!) al.. -(k,i)EW"'T (1,;)

V(i,J) ET. An auxiliary calculus let us demonstrate

(4.1)

that:

( a-(k,1)(a)/ .. J = -P-1(B)r(k-1,i-1)(a)Im(,,;) (4.2)

V(i,J) ET, V(k,l) E W ~ T; where:

P-1(z, w) = Ip(s,t)zswr
(s,t)ES

and so:

p-l(B) = Ip(s,t)B(s,1)
(s,t)ES

(4.3)

Then, we can write:

Ir(k,1)(a)( Ip(s,t)r(H-s,1-;-i)(a)l = O (4.4)(k,i)EW"'T (s,t)ES ')
V(i,J) ET.

Due to equation 3 .1, the residual in
(k - i - s, l - j - t) is null except over a finite subset

D of S (the exact expression of D depends on
L, (i, j) and the size of the window W ). Thus, we
rewrite equation 4.4 as:

Ir(k,1)(a)( Ip(s,t)r(k-1-s,1-;-i)(a)l = 0 (4.5)(k,i)EW"'1' (s,t)ED ')

V(i,J) ET.
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Interchanging the order of summations, we obtain
equaation (4.6):

I p(s,tl Ir(k-i-sJ-;-i)(a)r(k,1)(a)l = O(s,t)ED \(k,i)EW"'T ')
V(i,J) ET. For each (u, v) ES, we define:

(W ~ T)(u,v) = {(m-u,n-v):(m,n) E(W ~ T)}
So, equation 4.6 is equivalent as equation (4.7):

V(i,J) ET.Now,foreach (u,v) E:S we define a

residual covariance in (u, v) to:

(4.8)

So, according to equations 4.8 and 4.7 becomes to:

Ip(s,t)r (s+i,1+;)(a) = 0 V(i,J) ET (4.9)

As we have said at the end of section 2, the least square
estimators of a will be strengthened by making robust
the residual covariances. For doing this we will replace
equation 4.8 by equation (4.10):

\J(U,V) ES , where 17 is a continual, bounded and

odd function in each variable and a is a robust
estimator of the scale factor of e process. Thus, we
define the RA robust estimator of a , by means of the
following equations:

>p(s,t)p(s+i,1+;)(a)=O
(s/;:D

V(i,J) ET.

(4.11)
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where a is simultaneously calculated by means of the
expression:

A Med(hk,1)(a)j:(k,t) Ew ~ r)
a = ---'---------'--

0.6745

where 0,6745= Med(IXI) and X has distribution

N(0,1).

5. Further Investigations

The AR (1) is unidimentional model is generalized by
AR-20 Models which has a good performance to model
images; besides its structure is very simple. Kashyap
and Eom [4] introduce the M robust estimators for this
contaminated model, and Nasburg and Kashyap [6]
prove the consistency and asymptotic normality of these
estimators. So it is interesting to study the properties of
RA. estimators such as consistency and asymptotic
normality in AR-20 model.

On the other hand, the RA estimators in the ARMA
unidimentional models contain the class of M
estimators, we have already introduced for the AR-20
models, whether contain or not to the class of M
estimators.
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Abstract

\Ve consider a non-symmetric half plane autore­
gressive image, where the image intensity of a point
is a linear combination of the intensititcs of the eight
nearest points located on one quadrant of the coor­
dinate plane, plus a normal white noise innovations
process.

Two types of contaminations arc considered. In­
novation outliers, where a fraction of innovations arc
corrupted wit.h a heavy tailed outlier generation pro­
cess, and additive outliers. where a fraction of obser­
vations arc corrupted.

\Ve develop a GAI-estimator for the robust esti­
mation of parameters of a cont.amincd autoregressive
image model, based cm time series GAl-estimators in­
troduced by Denby S: Martin (1979) applied to the
restoration of radar gern~ratcd images.

"This work was support.od by FONDIX:YT gra11t :\0
1960521

Ordinary least-squares estimators arc asymptoti­
cally efficient wir h a non-cont.amincd gaussian pro­
cess, like the one considered here. ,H-cstirnators
behave better whou innovation outliers are present,
but are verv sensitive to additive outliers. A sim­
ulation study is carried out, which shows that the
G1\f-estimator introduced here has a better perfor­
mance with an additive outlier cont.amincd image
model than i\I-cstimat.ors and ordinary least squares
estimators.
Keywords: GM -est.ima tors, Image Restoration

Robust Estimation, Two- Dimensional Au torcgrcs­
sivc l\Iodels.

1. Introduction
Restoration of an image in t h« presence of noise is
one of the fundamental problems in image process­
ing. Parametric representations of two-dimensional

Image Processing Techniques Proceedings of the r" l.atino-Americon Seminar 011 Hadar Remote Srnsing held at Santos. Sao
Paulo, Brazil. ! I-I 2 September 1998 (ESA Sl'-434, October 1998).
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processes suitable for this problem, have been well
studied. However, in these models, the image in­
tensity array is assumed to be a two-dimensional
Gaussian Process. There are many image restoration
methods based on the Gaussian assumption. For in­
stance, Chellepa and Kashyap (1982) used spatial in­
teraction models to represent image intensity arrays
and restored images obtained with minimum mean
square error criterion. However, when the image is
contamined with outliers, the estimated parameters
obtained from the Gaussian model do not appear to
be appropiate. A more realistic assumption for the
image model is a contaminated Gaussian noise.
The importance of the f-contaminated models has

been legitimated by numerous publications about ap­
plied works in the area of image processing and image
analysis. See for instance Kashyap and Eom (1988).
We develop a restoration method based on a ro­

bust image model in this work. In the proposed
method, the image intensity array is represented by
a causal autoregressive model. A robust parame­
ter estimation algorithm and a data cleaning proce­
dure is applied to restore contaminated images. The
restoration algorithm based on the robust modelling
is tested with several simulated images.

Our contributions are threefold. We first develop
an algorithm for the robust estimation of parameters
of an image model in which the innovations process
is a mixture of a Gaussian and an outlier process.
It is a GJU-estimator. We prow the convergence
and confirm the convergence via simulation. Next
we consider the robust estimation of the parameters
of a model where the image obeying the model is not
available, the corrupting innovations process being a
mixture of a Gaussian process and an outlier process.

We develop an algorithm to recover the param­
eters of the model from a noisy image. The pro­
cedure involves alternate parameter estimation and
data cleaning.
We provide intuitive reasons for the convergence

of the procedure and confirm our intution by sev­
eral simulations. Finally, we use the above results
to restore an image corrupted by different types of
outliers.

2. The additive outlier in nonsymmetric
half-plane autoregressive models
Consider a nonsymmetric half-plane autoregressive
two dimensional model with additive outliers. As­
sume that the image intensity of an image follows
the nonsymmetric half-plane model. Let (i, j) be an
index for the coordinate location, and y(i,j) be the
intensity at the coordinate (i, j).

Let us define a nonsymmetric half-plane (:'\SHP)
model as follows:

!L: = {(i,j): (i =0 andj < 0) or
(i < 0 and j is arbitrary} (2.1)

Let 1l and v be indexes for two-dimensional coordi­
nate locations. One important property of !L is that
if u E !L and v E !L then (u + v) E !L.

And NSHP autoregressive model can be written as

y(H) = L Q"y(u + v) + µ + a(u) (2.2)
vEN1

where a(u) are independent identically distributed
random variables with a symmetric distribution G
with mean zero and scale aa. The density of G will
be denoted by g. The a' s are called innovations. The
neighborhood set N1 is a subset of the nonsyrnmet­
ric half-plane !L. The NSHP autoregressive model
(2.2) can be written in the linear model form

y(u) =QT z(u) + a(u) (2.3)

where QT is a parameter vector and z(u) is a vector
which consists of intensities of pixels in the neigh­
borhood set N1 and unity. The last element of the
vector z(u) is required to represent a constant gray
level in the image.
If

N1 - {(0,-1),(-1,0),(-1,-1),(0,-2),
(-1, -2), (-2, 0),(-2, -1), (-2, -2)}

the :'\SHP autoregressive model (2.2) can be rewrit­
ten as follows:

Y(i, j) =QT Z(i, j) + a(i, j) (2.4)



where

[Z(i, j)JI' [(Y(i,j - 1),Y(i - l,j),
Y(i - l,j - 1), Y(i,j - 2),
Y(i -1,j - 2), Y(i - 2,j),
Y(i - 2,j - 1), Y(i - 2,j - 2), l)]

The model given in (2.cl) is called an eight neighbor
causal autoregressive model, and this model is used
in our simulation study.

Suppose now that the :\SHP autoregressive pro­
cess cannot be perfectly observed because a small
fraction E (in practice we usually have E ::; 0.1) of
observations are distributed by an outlier-generating
process {v( i, j) V (i, j)}, where {v( i, j)} is one or zero,
with P(v(i,j) = 1) = c P(v(i,j) = 0) = 1 - E, and
the variables V(i, j) have arbitrary distribution func­
tion H. Thus the observational model is

1, .. ·, n
l, .. ·,1n

(2.5)
Therefore with probability (1- e) the NSHP autore­
gressive process Y (i, j) itself is observed, and with
probability Ethe observations X(i,j) are corrupted
by an error with distribution H.

It is well known that the LS estimates are asymp­
totically normal and asymptotically efficient when G
is Gaussian and \/(i,j) = 0. However, when the in­
novations density is non-Gaussian (Innovative Out­
liers), the above estimates are no longer efficient and
heavy-tailed innovation distributions can result in
large losses of efficiency.

The latter fact suggests that a good alternative
to the LS estimate can be the J\J -estimate as pro­
posed by Huber (1981) for the .\'SHP autoregres­
sive case (Kashyap and Eom, 1988). However, the
LS estimate and even the Jlf-estimate are extremaly
sensitive to the presence of additive outliers (A.Os).
This fact is reported by Bustos and Yohai (1986)
for one dimensional autoregressive processes. In this
work we present the results of a Monte Carlos simu­
lation which shows that for a two dimensional eight
neighbor causal autoregressive model the LS and M­
estimates are more sensitive to AO-s than in the case
of causal autoregressive with innovative outliers.

x j) = Y(i,j)+v(i,j)\"(i,j)
J
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3. Generalized M-estimates
Consider the parameter estimate in the NSHP au­
toregressive process. In the least squares estimation,
we need to minimize the function

L [X(i,j) - QTZ(i,j)]2 (3.1)
i,j

with respect to Q, where Z (u) is a vector which con­
sists of the observations X(i,j) in the neighbor set
N1.

The idea of a least squares estimation is to mini­
mize the residuals. However, if one observation is an
outlier, then the corresponding residual is very large,
and the least squares estimator is not robust.

Similarly, the class of M-estimators proposed by
Kashyap and Eom (1988) for causal autoregressive
processes, defined by minimizing the function of a
finite sample of observations

Q(Q,O") = _l L [p (X(i,j) - QTZ(i,j)) + ~] o.
mn .. O" 2

l,J

(3.2)
is robust for innovative outliers, when the function p
has bounded influence. But the situation is totally
different when the contamination model is given by
(2.5), that is, when the autoregressive model is dis­
turbed by additive outliers. This suggests introduc­
ing a more general class of robust estimators, known
as G1\1-estimators, which are an extension of the
M-estimators, obtained by assigning a weight func­
tion to the observations of the model. The residuals
X(i,j) - QTZ(i,j) in a :\SHP autoregressive model
contamined with additive outliers may be very large.
The way the GM-estimators reduces this effect is by
introducing smaller weights to larger residuals. A
GM-estimator for the parameters QT and O" of model
(2.5) is the solution to the problem of minimizing the
non-quadratic function defined by

Q(g_, O") = 2= z;jtij
.. 1nn
l,J

[p c\(i,j) ~j~TZ(i,j)) + s] O".

(3.3)



56

where p is a differentiable function, convex, symmet­
ric with respect to the origin, with bounded deriva­
tive, and such that p(O) = 0. The l;j and tij are
the weights corresponding to the respective Z (i, j).
In order to obtain consistency of the scale estimate
at the normal model, we consider (3 = Eq,[X] (see
Huber 1981).
The GM-estimator is obtained by solving the

equations

Q (3.4)
I,)s». [x(X(ij)~i~:Z(i,j))-f3] 0 (3.5)

i.]

where l/!(x) = a~~)' x(x) = x'lj;(x) - p(x) and ¢
is a bounded and continuous function. There are
several proposals for the choice of 'ljJ due to the fact
that the robustness of the procedure and the rate
of convergence of the procedure depend on these
functions: the Huber hard-limiter type, given by
1/JH(x) = sgn(x)·min{lxl,c} and Tuckey's redescend­
ing bisquare function given by

l/!s(x) = { ~[l - [x/a]2]2 [z] ~a
,lxl >a

Typical values for the adjusting constant c in 1/JH
range from 1.5 and 2.0 and for a in 1/Js range from
4.5 and 6.

The principal types of GM-estimators are:
1/J(b Ic )i) Mallows type, where l;j = 1 and tij = b 11/

r
IJ Cr

with biJ = p-1zr(i,j)C-1Z(i,j), where c-1 a
robust estimate of c-1 and c is the a priori
unknown covariance matrix for the NSHP au­
toregressive process, which may be expressed as
C(g.). The construction of c-1 is described by
Martin (1980).

..) S 1/J(b;j/Cr)
u chweppe type. l;1 = tij = b, .] .

IJ Cr

4. Implementation of GM-estimates
Assuming that an estimate of c-1 required to con­
struct the weights tij, is available, then good ap­
proximate solutions of equations (3.4) and (3.5)
can be conveniently obtained by using an iterately­
weighted-least-squares (IWLS) technique similar to
that described by Martin (1980).
It may be shown that the estimating equations

(3.4) and (3.5) have a unique solution when ¢ is
strictly monotone.

The GM-estimation of the NSHP autoregressive
model under regularity conditions preserve the prop­
erties of consistency and asymptotic normality of the
unidimensional autoregressive models. But they also
haw their computation difficulties, because they in­
volve the minimization of a non quadratic function of
multiple parameters. To obtain the GM-estimator of
Q and a we use the algorithm known as IWLS, whose
convergence is established in Huber (1981).

IWLS algorithm
Let X(i,j) be the observations of the contamined
causal autoregressive model defined in (2.5) and let
Q(o) and a(O) be the initial values, E a tolerance value
and weights l;j,t;j, i = l,···,n, j = l,···,m, start­
ing values.

l. Set k = 0.

2. At the k-th iteration of g_(k) obtain the residual

r(kl(i,j) X(i J.) - a(k) Z(i J.) i = l. ··· n
' - ' ' J l '

j = l,···,m

3. Compute the new value of a using
~ - I I {I (0) I (0) II}a - l.483Med r( .. ) - Med r( .. ) .i,J t,J

4. Compute the weights W;1, from r(i,j),l;1 and
t i j for the Mallows or the Schweppe type GM-



estimators.

TV(k) -
l) -

(

(k) ) ( (k) )r(.i...:_I / r(iA,j)
L1<T a

. (k)if r( ....l -/:-0, lij -/:-01.)

. (k)if r( .. 1 = 0, l;j-/:- 0
l .J

. (k)if r( .. ) = lij = t;j = 0
1.)

. (k)if r(ij)-/:- 0, l;j = t;J = 0,
ui(t) = t

. (k)if r( .. ) -/:-0, l;j = t;1 = 0,1.)

Ui is bounded
0

where i 1, n. j 1,m. Define
n·(kl as a diagonal matrix with W;~k) as its
[(n - l)(j + 1) + i - Ij-th diagonal element.

o, Solve 2::[rCkl(i,j) - zT(i,j)z:(k)trvg') =min
ij

for T(k) the solution cri\·enbv- ' b ..,

i.(kJ = [zTw(kJ z]-i zTwckJ . x - g_CkJ

where the rows of zT are the Z(i, j) defined in
(2.4), and X is the vector of observations.

6. Compute the new value of g_,g_(k+i) = g_(k)+
)..i_(k) with 0 < )..< 2. an arbitrary relaxation
constant.

1. Repeat 2 to 6 until the stopping rule:

llg_(k)- Q(k+i) II = l>..z:(k)I < f0- is reached.

5. Applications to Image Restoration
Restoration of an Image in the presence of noise is

one of the fundamental problems in image process­
ing. The image degradation process can be modeled
by the observational model (2.5). We assume that
the observation X (i, j) is corrupted by a contamined
process which contains a small fraction of additive
outliers.

There are many image restoration methods based
on the Gaussian noise assumption. Chellapa and
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Kashyap (1982) used a spatial interaction model to
represent an image intensity array and restored im­
ages with minimum mean square criterion. Geman
and Geman (1984) used the equivalence of Markov
random field and Gibbs distribution and restored im­
ages by a stochastic relaxation method with maxi­
mum a posteriori criterion. \Vu (1985) used a mul­
timensional Kalman filtering approach and nonsym­
metric half plane autoregressive model.

Unfortunately, most image restoration methods
based on the Gaussian assumption are not effective
to impulse noise.
Image restoration is an estimation of original in­

tensity Y(i,j) from the observation X(i,j). For a
small size image, the original image intensity can be
modeled by a causal autoregressive model. If the
original image intensity follows a causal autoregres­
sive model, then the original image intensity can be
easily restored by data cleaning with robust param­
eter estimation. The data cleaning procedures re­
moves outliers at each iteration without degrading
the original signal.
The restoration method based on the robust im­

age model has an advantage over conventional meth­
ods such as median filter or g_-trimmed mean filter.
The robust image model based method does not pro­
duce blurred images after restoration. Conventional
methods, such as median filter or g_-trimmed mean
filter, replace every pixel by its location estimates.
Because these methods are based on the constant in­
tensity assumption, the details of the original image
are significantly blurred.

This procedure is described in the following algo­
rithm.
Restoration Algorithm Based on a Robust
Model

1. Initially, set y(o)(i,j) = X(i,j). Compute the
initial estimate g;_(o),a(o) from the contaminated
observation X (i, j) by the least squares algo­
rithm.

2. Consider the k-th iteration, where y(k) and
g_(k) are available. Obtain the updated estimate
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y(k+1l(-) from y(k)(-) by the following recursive
equation

(k) (. ')r Z,J

f(k) (i, j)

}.'(k)(· ') _ (k)Tz(k)(· ')z,J g z,J

[
(k)(· ')]r i, J ,

1/; (J(k) (J

where 1/; is one of the bounded and continuous
functions as discussed in the GAI-estimation.

3. Restore the image Y (k+ 1l (i, j) using

Y (k+ll(· .) _ (kJz(kl(· .) +'(kl(· .)z,J -Q z,J r z,J

4. Obtain estimators g(k+l) from the cleaned data
y(k+l) by minimizing the function

This can be computed by the IWLS Algorithm.

5. Repeat Steps 2-4 until the diference of estimates
between iteration becomes small.

6. Simulation Study
A simulation study was conducted to observe the

behaviour of the GM-estimator and compare it with
the LS and M estimators.
In each case one hundred 50 x 50 images were gen­

erated using (2.4), with additive contamination gen­
erated by (2.5), with Ha large variance (CJk) normal
distribution. The parameter values were

QT= (-0.12; 0.37; -0.16; 0.25; 0.13; 0.24; 0.40; -0.16)

and CTa = 0.01.
The following cases were simulated:

No contamination
5 % contamination ,
10% contamination,
15% contamination,

CJH = 0.1 and 0.5
CJH = 0.1 and 0.5
CJH = 0.1 and 0.5

Each case was run three times, estimated using
LS, Af and GM, respectively.
The mean square error of the estimated a param­

eters is used as a measure of performance of the es­
timators.
The results are shown in Table 1.

Table 1. Comparison of GM-estimador, M­
estimator and least squares estimator for N SH P
autoregressive model with additive contaminarion.
Number of runs in each case is 100. Image size is
50 x 50.

Outlier Estimator
%of Standard LS M G.Af

outliers Deviation Mean Square Error
0 0 0.0177 0.0184 0.0197
5 0.1 0.1019 0.0474 0.0447
10 0.1 0.1389 0.0760 0.0714
15 0.1 0.1572 0.0985 0.0942
5 0.5 0.2155 0.1051 0.0925
10 0.5 0.2274 0.1357 0.1218
15 0.5 0.2336 0.1555 0.1411

After observing the results of the simulation study,
we conclude that robust estimators have a better per­
formance than the LS-estimator. The GM estimator
is better than the M estimator in all cases, except
when there is no contamination. The improvement
is higher with larger outlier standard deviation.
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Abstract

The multiplicative model can be used to describe SAR
image formation In this context. the effect and nature
of coherent speckling on the spectrum of SAR images is
investigated. A method for estimate the spectrum of the
backscatter image. based on estimates of the spectrum
of the speckled image and noise is dcv eloped.

1 Introduction

Images and signals produced by coherent s~sterns arc
subject to the phenomena of speckle. This kind of noise
appears due to interference phenomena between the in­
cident and reflected signals The result makes visual and
automatic interpretation a difficult task. thought it mav
carry some important information.
Usually. images suffering from speckle noise should not
be treated \\ ith the usual additive-noise derived tools
(Wiener filter. for instance). since speckle corrupts the
signal in the multiplicaux c maimer and in the amplitude
and intensity formats it is non-gaussian 15118J
Other schemes havc been proposed to deal with it. such
multi look processing (incoherent a\ cragc ). or various
types of linear and adaptive filters. These efforts havc
generally been directed tow ard improx cment of the sig­
nal in the image domain.
HO\\CYer. application exist in which the spectrum of the
output is of primary interest [ l ]. but C\en in linear or
adaptive filtering aimed at image improx cmcnt, it would
be useful to have a good estimate of the underlying im­
age spectrum rather than work from a priori assumption
such as is often done
This paper extends one-dimensional results on the prob­
lem of estimating the spectrum for speckled data l~I We
first discuss the effects of speckle in SAR images and
the mathematical Iramcw ork used to explain the siaus-

tical bchax ior of this kind of data. Then we prove that.
as long as the output / is stationary. the power spectral
density of / "ill be a convolution of the power spec­
tral densities of the backscatter X and the speckle Y in
the intensity format. In view of that. we consider three
special cases. These cases are uniform target. white un­
correlated speckle and nearest neighbor correlation.
The last section presents an estimate of the underlying
spectrum based on classical estimates of the return and
noise spectrum. We shall study the performance of that
estimate based on the perfonnancc of the other estimates
im oh ed in making it

2 Notational conventions and
general definitions

The set of real numbers is denoted by R. the set of
natural numbers by N and the set of integers numbers
by Z. The generic points of the two-dimensional set of
integers Z2 arc denoted by (St.82). where St always
represents the horizontal coordinate. and s2 the vertical
coordinate
Random processes "ill be denoted by .Y = {X1,,,,,1 :

(s1.s2) c: Z2}. A common underlying probability space
will be assumed throughout this work U!.A.J>). where
\2 denotes the sample set. A its -r-algcbra. and I' a
probability Therefore. real or complex-valued random
processes arc collections of measurable functions of the
form X1 •1 <: , : \l - R or );"1•1 ., 1 : \1 - C indexed in
z2
Lcts k c: Z and .v c: N. we denote by ..,•1..s the .Y1"

units root

·)-f
.-!1. s = <·xp( Ti).

They have the follow ing properties:
a) .Jo \ -t- ... -+- ~·s 1 .v = 0. since ..,•1,.swith 0 S k S

Image Processing Techniques Proceedings of the 2'"1lanno-Amcrican Se111i11ur011Radar Remote Sensing held at Santos, Sao
Paulo, lsruzi]. //-12 Se11tc111her 1998 (FS/\ Sl'--B4. October 1'1'18)
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.V - 1 arc the roots of the equation :::·\- l = 0.
.,Jk-rN,.\ = w'k,N for all ,. E z and 0 :S k :S .v - 1.
wl~,N =.,.) L\ = .,JN k.N for all 0 :S k :S x - 1.

{
x if Ji= 0

..;po,:\· + ... +..;pis-11,s = 0 if Ji/: 0 for all
0 <» :S X - I. with p E N.
Finally: sff'l. = {(k1.k2) I 0 :S k1.k2 :S Xi} or
{(l1.l2) I 0 :S 11./2 :S ,Y:2}.
set.Zoo = {(i.:k2) I -oo < k1. k2 < +oo}and
set= {(k1.k2.l1.l2) 10 :S »,». :S .Y1.() :S i.i, <
.\'2}.

3 The multiplicative model and
the speckle noise

The multiplicative model has been widely used in the
modeling. processing. and analysis of synthetic aper­
ture radar images. This model states that. under certain
conditions 15118]. the return results from the product be­
tween the speckle noise and the terrain backscatter.
Based upon this model. we assume that the observed
value in each pixel within this kind of images is the out­
come of the product of two independent two-dimensional
random processes: one X modeling the terrain backscat­
ter. and other Y modeling the speckle noise. The former
is many times considered real and positive. while the
latter could be complex (if the considered image is in
the complex format) or positive and real (intensity and
amplitude formats).
Therefore. the observed value is the outcome of the ran­
dom process defined by the product

\:f (s1. s2) E Z2.

where (s1• s2) denotes the spatial position of the pixel.
We will say that the process Z1 is the intensity return
process if / / = IZ I2. and Z.1 is the amplitude return
process if X1 = [Z[.
The complex format has been used as a flexible tool
for the statistical modeling of SAR data. However. in
several cases. complex data are not available or ex­
ists computational limitations imposed by the imaging
system that not allow us to work with them. In order
to that. intensity format and amplitude format are fre­
quently considered in the literature.
In many cases. it is easier to derive the statistical prop­
erties of the intensity data rather than amplitude data.
For instance. the intensity speckle noise modeled as the
sum of independent and exponentially distributed ran­
dom variables has well know distribution. the Gamma
distribution. but this is not the case for amplitude speckle
noise. since the convolution of Rayleigh distributions
has not closed fonn.[9)

In this \\ ork, we "ant to estimate the spectrum of the
backscatter based on the spectrum of the return. in the
intensity format.
Following the description that Frery. Muller, Yanassc
and Sant"Anna (3] realize about the appropriate distri­
butions for this model. complex speckle is assumed to
have a bivariate normal distribution. with independent
identically distributed components having zero mean and
variance I '2. These marginal distributions arc denoted
here as V 0.1/2). therefore

denotes the distribution of a pair.
11-lookintensity speckle results from taking the average
mun independent samples of Y11,1,,21 = lrC-·181,.,21[2
leading. thus. to a Gamma distribution denoted here as
Y11,1.,21 r-;» r(n.n) and characterized by the density

,I}> 0. II > 0.

Several distributions could be used for the backscat­
ter. aiming at the modeling of different types of classes
and their characteristic degrees of homogeneity. For in­
stance. for some sensor parameters (wavelength, angle
of incidence. polarization. ctc.). pasture is more homoge­
neous than forest. which. in tum is more homogeneous
than urban areas.
The basic hypothesis that governs the modeling of ho­
mogeneous regions is that the backscatter is constant.
thought its value is unknown. When the region is non
homogeneous. the backscatter can be modeled for a
more convenient distribution.
The distribution of the intensity return arises from the
product / / = X 1.Y1. For instance. in the homoge­
neous case. we consider X 1 a constant 3'2 and the mul­
tilook intensity speckle X J r~ I'( II.11). then the return
Z1 can be modeled by a Gamma distribution. denoted
by z ti» 1 , 2 1 ~ r(n. 11/ Y·).

4 Periodic processes and discrete
Fourier series

Wewish to derive some properties of the spectrum of a
random process present in an image that has been speck­
led by the multiplicative manner described above. Since
the data arc usually only available in discrete regions. \\C
can restrict our attention to periodic random processes.
which we define below.
A complex two-dimensional random process ){ is said
to be periodic with period of X1 x X.2 when X1 ,1 .s ; > =
X1s1-S1,'2l = X1s1,s2.+N,! for all (81.82) E z'.!.. s·ince
){,.,1 •.,21r1 "1 '"2 '2 for all (s 1. s2) E Z2 is not absoluteI~



summable for any "i . rz. neither the Fourier transform
or the Z -transform uniformly com crgcs for periodic pro­
cesses.
The discrete Fourier series (DFS) is a frequency domain
representation of a periodic process. The sequence of
DFS coefficients of X. whose arc denoted by )(<,1 ,2 ,.

arc determined for the equation

(I)

70 :S s1 :S V1 - l. 0 :S s2 :S V2 - I.
Usuallv. for convenience and bx convention .. Y is de-. .
fined to be periodic with a period of V1 x .\2. that is.

but. for our purposes. it is clearly enough to deal with
equation (I).
Then. the power spectral density. (psd), of the signal
..\."is the periodic sequence with a period of .\1 x \2.
defined bv

S'x(s1.s2) = E(X,',1 s>JX1,1,,21). (2)

70 :S s1 :S V1 - l. 0 :S .s2 :S V2 - L where F(.)
represents the mathematical cxpcctancc.
If we suppose that X is stationary in the wide sense we
have

F(X1',,,,,JX111.1c\)= Rx(s1-t1.s1-t2). Ol

·-;;(s1. s2), (/.1.12) <::::: Z2.\Yhcrc f?x is the autocorrelation
function of .Y.
Expanding the product)( "1)(<1,h)· and using the
stationarity. '' c obtain -

/··(vi v ) - _l - ' I' (.I. I I. -I ).. "\.(8tJ1).'\.U1.t1)1 - y;::y·~ L....-;ct lX r.1- J·A2 :!. X

For a real stationary periodic random process. making
appropriate changes of variable and noting that the peri­
odicity implies that all arithmetic is modulo \ 1 or .\2•
'' c can transform the equation (3) yielding

L(.\'' I S•));'(/1,ic!) = 0
and · -

!'.'(.Y,',1 ,,1)(1,1.,.) = \,\.. >.,<12 llx(k1.k2)x- . -

Then. equation (2) becomes

. l''°'x(s1.s2) = V _\'.,L..., Rx(k1.l•2)..J1.,.1 \,..J1. ·' \2·
I - .<c/2
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5 Effect of speckling
Consider the intensity return process Z1 given by

where X 1 and Y1 arc real periodic independent station­
ary random processes. with the same period V 1 x V2

Let's XI. Y1 and /. 1 the respective DFS of the processes
X1. Y1. and /.1.

Given the relation under the random processes )( 1. Yi
and /. 1. it is not difficult to prove that

s·Lj(s1.82) = L<rt q;x.:;ll.-1 k2))([(i,,lc))x

F(Y' Y ·.. '11.:' 1 t. 1•' 2 1.-2 I I 1 1, ,.• 2 I2))

= 2=.-112 1'.·( .\· :u..,.1.21x11.1 ..1.1.-,) J x

F(Y/<s1 l.1,.•2 i.-,1Y11,, i.:,.,, 1.-,1)·

Thus

S;..:1(s1.s2) =L '->'x1(k1.k2)-"\1(.s1-k1.s2-k2) (-1-)
....·cf:!.

and. as long as X 1 and Y1 arc stationary. the power
spectral density of /.1 will be the convolution of the
pow er spectral density of )( 1 and Y1.
Let us assume that 111 : Z2 - C is the normalized au­
tocorrelation function of the noise process Y1. Then

R; ls1.-'2i F<\1
\ "(1/'()

0{

I IJ I)) )

Notice that. if Y1rJ1'(11.11). it holds that
F(Y1 1 •• ) = 1and1·ur(Y11.,1,,2J) =~·therefore
lli1(s1 .. i:z) = ~(111(.-;1.s2)+1) and

where h is the periodic function defined b~
\ ' ' -{ () if (.-;1 .. 02) ~ (0.0)
!(.,, ..,:z) - I if(s1.,2) = (O.O)
and U :S s1 S \'1• 0 S +: :S V2
Using the relation (5) and the definition of DFS. equa­
tion (-1-) becomes

Sx 1 (s1 •• -;2) + (6)

I~.- L..., '->x1 (k1. k1)a1 (s1 - k,. s: - k2).
II

'-'! 1:2

We will consider three special cases
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5.1 Case l: Uniform target
If the target is uniform. the power spectrum of the in­
tensity backscatter can be modeled by

where 32 is a constant.
Then. the spectrum of the speckled image is given by

Since that equation can be solve to give a i·1in terms
of 8z1• it is possible to determine the speckle process
autocorrelation function when the target is assumed to
be uniform with known 3.
The significance of tins lies in the fact that the speckle
correlation is often produced by the imaging system be­
ing used. and thus. this property of the system can be
studied by deliberate view ing a uniform target.
A similar one-dimension technique has been used in the
analysis of SEASAT-A image spectra [2].

5.2 Case 2: White uncorrelated speckle
In this case. we have ai (B1.s2) = 8(s1.s2). and
Y(s1. 82) = .\1\2. Therefore.

We let S'x1 = s/s2 Lsff'2Sx1 (k1. kz) the average spec­
tral power. then

Sz1(81,s2) = .S'x1(81,s2) + ~Sx1• (7)
11

Therefore. the power spectral density (psd) of the speck­
led signal is proportional to that of the unspeckled signal.
but has added to it a bias proportional to the average psd.
Hence. a psd that is sharply peaked will stand out more
strongly against the bias than will one that is broader.

5.3 Case 3: Nearest Neighbor correlation
We assume that nearest neighbor points are correlated to
some extent. TI1atis. we let

a1 (s1. s2) = b( 81. 82)+ f( b( 81 - 1. s2) + 6(s1+1. s2) +
6(s1. 82 - 1) + 6( 81. s2 + 1))

In order to this. we can prove that the DFS of the nor­
malized autocorrelation function is given by

Putting this equation into equation (6) we obtain

It is important to note that. while uncorrelated speckle
merely added a bias to the spectrum. correlated speckle
add power that is not uniform in wavenumber, thus
changing the shape of the spectrnm.
The question of how the underlying spectrnm is best to
be estimated is taken up in the next section.

6 Estimation of spectrum
To estimate the spectrum Sx r from the speckled spec­
trum Sz 1• it is necessary to invert (6).
Then. defining

(8)
and using the definition of Fourier transform. equation
(6) becomes

Sz1(s1 ..~2) = Sxr(81,82) +
~ Lsct2 §x1 (ki. k1)a1 (k1, k2)w;1k1.\'1 -;», .v.:

Let is now

Then. multiplying both side of the above equation by
exp( 2"'~\1' 1 i) exp( 2"'~:~'·' i) and sununing the result O\"Cr
all (k1 • k2) in the period we obtain

Putting the last equation into equation (8) and solx ing
for Sx 1 • we obtain the desired spectral estimate

This equation is our general result. We consider t\\ o
special cases.

6.1 Case l: White uncorrelated speckle
In this case. a straightforward procedure. using the fact
that a i (s 1. 82) = b (s 1. s2). allow us that
Sx1(s1 ..~2) = ,,\[Sz1(s1.s2)- 12,,Sz1]

where S;c1 = _\1\2 >«ctZ S'zr u; kz).
Thus estimation of the spectrum on the case of uncor­
related speckle is accomplished by substraction of an
appropriate bias.



6.2 Case 2: Nearest Neighbor correlation
Also in this case. a straightforn ard procedure. allow us
that

Therefore. a priori knowledge of the speckle autocorre­
lation function. such as is available through the study
of uniform targets. allow s the underlying image spec­
trum to be estimated. The correction is. however. more
complicated than merely the subtraction of a bias.

7 Conclusions

The technique presented in this paper provides an ex­
act representation of the power spectral density of the
backscatter process. HO\\C\cr. this representation de­
pends strongly on the psd of the speckled process. which
is unknown. Thus. the estimation of the underlying spec­
tn1111is accomplished by the election of an appropriate
estimate for the spectrum of the speckled signal. in the
most of the cases.
We can choose com entional estimates. based on the
Fourier transform. like the periodogram. or the class
of smoothed periodograms. but for small \"1• s~the
resolution of them can be rather poor It exists other
spectral estimation methods based on maximum likeli­
hood or maximum entropy which give higher resolution
than the com entional estimates. However, since the var­
ious methods were developed on the basis of different
assumptions. and since only limited comparisons of the
method's performance arc available. choosing the best
method for a given application problem is a difficult
task
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Abstract
SAR images are generally affected by a multiplicative
noise. called speckle. which degrades the quality of
these images. Using this model we present an
algorithm based on the Maximum a Posteriori (MAP)
criterion to reduce speckle noise of multilook amplitude
data. The speckle in these images is approximately
described by the Square Root of Gamma distribution,
which is used to develop MAP filters using different a
pnori distributions. We also suggest the combined use
of MAP and the k-means clustering algorithm as a
formal way to choose the best window size to update
noisy pixels. We conclude this work by calculating the
coefficient of variation. defined as the ratio of the
standard deviation to mean, of MAP filtered images
and of the original image to measure the reduction of
the speckle in homogeneous areas.
Keywords: Multilook image. MAP estimator, k-means
classifier. speckle noise. filtering.

1. Introduction
Speckle noise is one of the main characteristics
present in images obtained by coherent imagery
systems such as synthetic aperture radar (SAR), lasers.
and ultrasound images. This kind of signal-dependent
noise limits the visual interpretation of these images
because it obscures the scene content. It is
re .omrnended to overcome this difficulty prior to
classification procedures. for example. In such cases.
filtering algorithms used as "a prior" step would
improve the classification performance. In the literature,
classical filters, like Lee (Lee. 1980), Kuan, (Kuan et
al. 1985). Sigma (Lee, 1983 ), Frost (Frost et al., 1982),
Median (Castleman, 1996) amongst others aim to
reduce the noise speckle. The ideal filter must smooth

the noise without eliminating radiometric and textural
information that are fundamental for detail preservation
(Lopes et al., 1988).

It has been experimentally verified in several
works that for SAR images over homogeneous areas.
the standard deviation of the signal is proportional to its
mean Lee ( 1981 ). This fact suggests the use of the
multiplicative model for the speckle and it was used by
Kuan et al. (1987) to propose an adaptive non-linear
pointwise filter that satisfies the MAP criterion for
single look. quadratic detection and Gaussian "a priori"
density.

The variance ratio of the original and noisy image
is used as a measure of local properties by the adaptive
filters to control filter window size (Li, 1988). By
combining the MAP filter and the k-rneans clustering
algorithm over Changle Li's variance ratio (Li, 1988)
it is possible to classify the noisy image in regions of
homogenous statistics. In order to adapt the MAP
filtering to the local statistics. the thresholds on the
\ ariance ratio arc chosen equispaced over the interval
[0.1 J to determine the window sizes for parameter
estimation.

In practical applications the noise is often reduced
by multilook processing, which can be done by
averaging independent samples of several images. With
an increasing number of averaged samples, the Rayleigh
distribution of a signal approximates a Gaussian
distribution (Hagg et al., 1996). Although improving the
signal to noise ratio by -JN , where N is the number of
looks used to generate the image, this technique also
diminishes the spatial resolution.

In this work the speckle distribution over multilook
amplitude data is modelled by a Square Root of Gamma
and we use it in the proposed MAP filter. The statistical
parameters in the filtering algorithm are calculated by
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using a fixed window size (5x5) around each pixel or
choosing a window size according to the degree of
roughness of the non-noisy signal around the pixel. The
clustering of the coefficients of variation determines
the suitable filtering window size in a more formal way
that was proposed by Li( 1988). It will be shown in this
article that this fact leads to a better filtering result.

In section II we present the multiplicative model
for the speckle and derived from this model in section
III the MAP estimator is formulated using the "a priori"
Gaussian. Gamma, Chi-square, Exponential and
Rayleigh densities. There is a brief discussion about the
implementation results in section IV. Section V
summarizes the conclusions and section VI outlines
possibilities for future work.

2. Multiplicative Model and Speckle
Statistics

The model used to describe the speckle is given in terms
of a multiplicative noise given by equation (1), where zA
describes the amplitude SAR noisy image, x is the
original signal and n; is the noise with unitary mean and
standard deviation an. The multiplicative model is a
good model over homogeneous areas because the
standard deviation is proportional to the mean. The
speckle noise and the original image are assumed to be
independent.

=A - x.n A (1)

Equation 2 represents the ~ index which is the
ratio of the standard deviation to the mean used to
measure the strength of the speckle in this kind of image
and N is the number of looks.

a 0.5227

JN (2)JL

The speckle for 1 look amplitude SAR image
obeys a Rayleigh distibution as in equation 3. An N
look intensity speckle image is obtained by averaging
N intensity single look images and is modelled as a
Gamma distribution (equation 3.a). The multilook
amplitude speckle can be obtained by averaging the N
amplitude single look images or by averaging the N
intensity images and then taking the square root (Frery
et al., 1997). The latter follows a Square Root of
Gamma distribution (Lee et al.,1994) as describes the
equation 3.b. The former is described by the
ccnvolution of N Rayleigh distributions and for N=2
there is a closed form for it and as there is no closed
form for the distribution for N~:3 it is costumary to
make an approximation (Yanasse et al., 1995) and
describe it by the Square Root of Gamma distribution.

(3)

where g is the random variable with parameter o.

(3.a)

where r(A.) is a value of the gamma function and g is
the random variable with parameters er and A. For ),=l
the Gamma distribution is identical to the Exponential
distribution. For A.=n/2 (n>O) and cr=l/2 the Gamma
distribution is equivalent to a Chi-square distribution.

N Ng22N 2N-1 --,
/(g)= ,\. (g) ea ,g,N>O

o" r(N)
(3.b)

3. MAP Estimator
The MAP estimator of X is obtained by maximizing the
..a posteriori" probability density function/{xl.z), which
can be related to the "a priori" distribution/(x) through
equation (4). To simplify the notation, the indexes (A)
in the following equations are dropped out. The
conditional distributionjialx) which describes the model
follows a Square Root of Gamma distribution is given
by the equation (5).

/(x[z) = f(z[x)f(x)
f(z) (4)

(4.b)

2NN (x)2N-1 e
f(z Ix)= cr2Nr(N)

Nx2

(J

(5)

where N is the number of looks. This follows from the
multiplicative model (equation 1) since given the signal
x, the conditional probability density of z is a Square
Root of Gamma density with mean value x (the mean
value of n is one).

O'ln 2N 2z2r2(N+l/2)
a [f (z[x)] = -~ + r2(N)x3

(6)

We formulated several MAP filters using different
..a priori" densities. These MAP equations are presented
in the following.

3.1 Given the Gaussian "a priori" density

2I_ x-µ,)
1 -2( C5xef(x) = a- .j2;

x (7)

The Gaussian MAP filter is given by the solution
of the equation (8). This equation was obtained using
the "a priori" knowledge from (7) combined with (6) in
equation (5).
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(8)

The estimators for ~t.,and a/ are obtained by the
foilowing expressions:

7
1+CJ,~

(9)
A 2

R = CJx
7o;

where \I' is the number of pixels in the window around
the filtered pixel and a;~is the noise variance, which is
a constant determined by the number of looks and the
type of detection. The Changle Li 's parameter (R) is the
local ratio of original and noisy image variance. The
set of expressions in equation (9) arose from the
multiplicative model with unitary mean for the speckle
noise.

Before filtering the noisy image, we calculate the
local R (Li "s ratio) parameter for all pixels using 3x3
windows. The one dimensional k-means algorithm over
Li's ratio classifies pixels with similar statistics.
Pixels assigned to the same cluster are filtered with the
same window size for parameter estimation (3x3 or
5x5). The real and positive roots of the MAP equations
whose values are between the mean and the observed
pixel are taken as the filtered pixel values.

3. 2 Given the Gamma ..a priori" density

(I 0)

The MAP estimator is given by the solution of the
equation

x-'r2(N)u, +x2f2(N)(2N-A-+1)-

2.:2f2(N+112) =0
(I I)

s
\ (12)

where the parameters o:, and A are estimated by the
sample mean and the sample variance through the
method of moments. using A }he multiplicative model.
The estimated parameter s; is the variance of the
original signal calculated from the noisy signal through
equation 9.

3.3 Given the Chi-square "a priori" density
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1 1112-le-x/2xf(x) = 21112
T(» / 2)

(13)

where n denotes a Chi-square distribution with n
degrees of freedom.

The MAP equation is given by

x3f2(N)+x212(N)[2+4N-n]-
4z2f2(N + 1/2) = 0

(14)

3.4 Given the Exponential "a priori" density

(15)

The noisy pixel is updated with the solution of the
MAP equation

x3f2 (N)CJ, + x2 r (N)2N -2.:2r2(N+1/2)=0

- 1()=-
\ -

Jlx

( 16)

3.5 Given the Rayleigh ..a priori" density

-x

X 'a'f(x) = -, e: ·
0:-

.\ ( 17)

The MAP estimator is given by the solution of the
equation

4 2 ' ') ') 2x r (N)+x-r-(N)cr,(2N-l)-

2.:2cr:r2(N +112)=0

( 18)

4. Experimental Results
The original image in Figure 1.a is a piece of a
48lx481 pixels image of the National Forest of Tapajos,
Para, Brazil, taken on June, 26, 1993 by the JERS-1
satellite. It is a three looks. amplitude detected image.

The presented filters were applied and their
performance was evaluated in terms of the the speckle
reduction index, fJ , which is the ratio between the
standard deviation and the mean over homogeneous
areas. In Table 1, the estimated fJ indexes in a 41x4 l
pixels piece of the original image with initial
coordinates (51,376) over a forest region are shown.
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The last row are the theoretical and practical values of
fJ indexes over this region.The closeness of the
theoretical and practical j3 coefficients implies that
this forest area can be considered homogeneous. In the
first column are the estimated f3 indexes in the MAP
filtered area without k-means and in the second column
are the f3 indexes in the MAP filtered area with the k­
means algorithm.

MAP FILTER P=cr,iµ, P=cr,iµ,

(without k-m eans) (with k-means)

GAUSSIAN 0.113 0017

GAMMA u 13 7 0019

CHI-SQUARE 0 116 (I 071

EXPONENTIAL 0 100 0.182

RAYLEIGH 0.192 0 162

HOMOGENEOUS 3 LOOKS

REGION THEORETICAL PRACTICAL

(41X-11 PIXELS) 0.2941 0.3029

Table I-Estimated ~indexes

5. Conclusions
The nonlinear, adaptive algorithms based on the MAP
criterion proposed in this paper, besides decreasing
substantially the standard deviation to the mean ratio
improved the discrimination of the predominant classes
(regeneration and forest) as shown by the histograms.
The smoothing of the speckle in the Gaussian, Gamma,
Chi-square, Exponential and Rayleigh MAP filtered
images has been evaluated by the f3 index in Table 1
and from the histograms. The indexes were calculated
over an homogeneous area of forest (41x41 pixels).
Some speckle reduction can be discerned in Figures
2.a, 3.a, 4.a and 5.a which presented the best f3
indexes and in Figures 3.b and 5.b the discrimination of
classes has been improved by the use of the k-means
algorithm. In the Chi-square MAP filtered image
histogram, Figure 9.b, the classes are better
discriminated than for the other distributions. The f3
indexes for the Exponential and Rayleigh MAP filters
were the lowest, and even when using k-means the
classes discrimination is not as evident as in Figures 6.b
and 11.b. Based on these results, the improvement
obtained through the use of the k-means algorithm
become clear. A further result is the use of a formal
criterion based on the one-dimensional k-means
clustering algorithm over Li's ratio (Li, 1988) to choose
the thresholds that determine the window size for
parameter estimation.

6. Further Developments
Future developments will use region growing
techniques to determine windows with adaptive size and
shape (not necessarily square) to estimate the local
parameters of the MAP filters.
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I
I

(La) ORIGii\'AL JERS-1 IMAGE (l.b) ORIGii\AL HISTOGRAM

"I

(2.a) GAUSSIA"i '.\IAP FILTERED
(without k-means)

(2.b) GAl'SSl."""I '.\lAP FILTERED lllSTOGRA:\1
(without k-means)

(J.a) GAUSSIA!'I '.\lAP FILTERED IMAGE
(with k-rneans)

(J.b) GAt:SSIA:\' MAP FILTERED IMAGE lllSTOGRA:Vl
(with k-means)
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---- -----~--

(4.a) GAMMA MAP FILTERED IMAGE
(without k-means)

(4.b) GA'.\ll\IA '.\IAP FILTERED IMAGE HISTOGR.\M
(without k-means)

(5.a) GAMMA MAP FILTERED IMAGE
(with k-means)

(5.b) G.UL\IA I\L.\P FILTERED IMAGE HISTOGRAM
(with k-means)

(6.a) EXPONENTIAL I\L.\P FILTERED IMAGE
(without k-means)

(6.b) EXPO'.\E'.\TIAL .'\L.\PFILTERED IMAGE HISTOGR.\M
(without k-means)
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~i:,,-;

(7.a) EXPONENTIAL 1\L\P FILTERED IMAGE
(with k-means)

(7.b) EXPONENTIAL IVL.\PFILTERED IMAGE HISTOGR~M
(with k-means)

(8.a) CHI-SQUARE MAP FILTERED IMAGE
(without k-means)

(8.b) CIII-SQt:ARE MAP FILTERED 11\IAGE HISTOGRAI\I
(without k-means)

(9.a) CHI-SQUARE 1\IAPFILTERED IMAGE
(with k-means)

(9.b) CHI-SQlJARE :r\L.\PFILTERED 11\IAGEHISTOGR~1\I
(with k-means)
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200 250

(IO.a) RAYLEIGH MAP FILTERED IMAGE
(without k-means)

(10.b) R.\YLEIGH MAP FILTERED IMAGE IDSTOGR~l
(without k-means)

200 250

(11.a) RAYLEIGH MAP FILTERED IMAGE
(with k-means)

(11.b) R.\YLEIGH MAP FILTERED IMAGE IDSTOG~l
(with k-means)
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Abstract. This paper describes the application of the
optimal nonlinear/non-Gaussian filtering theory to the
radar signal processing problem. This approach. made
feasible by a new technique named Particle Filtering,
may cope with nonlinear models as well as non­
Gaussian dynamic and observation noises. The Particle
Filler constructs the conditional probability of the state
variables, with respect to the measurements. through a
random exploration of the state space by particles.
which obey the conditional probability generator. The
application of this new filter to the inverse synthetic
aperture radar (IS.\ R) technique allows the joint
estimation of the path and the image of a maneuvering
target in weak signal to noise ratio situations.

Keywords: Inverse Synthetic Aperture Radar. ISAR.
Radar Imaging. Nonlinear Filtcnng. Particle Filtering.

I. Introduction
Nowadays. the synthetic aperture radar is the main
technique adopted to image moving targets. like
airplanes. with a ground radar. This technique. that
exploits the relative motion between target and radar. is
based on the coherent sum of a sequence of
backscattered radar pulses, each pulse corresponding to
a different angular position (attitude) of the target.

Usually. the image reconstruction of a fixed target
by a moving radar is named synthetic aperture radar
(SAR) while the symmetric case. i.e .. imaging a moving
target with a fixed radar. is called inverse SAR (ISAR).
In both situations. the know ledge of the relative radar­
target motion is essential to the imaging algorithm. In
SAR problems. one normally knows the (nominal)
trajectory of the on board radar and can use external
information (such as an inertial navigation system) or
some auiofocusing technique to motion compensate the
image data (Buckreuss. I ')9 I: Moreira, 1989). Imaging
a moving. non-cooperating target. where the path is u

priori unknown or poorly determined, is a bit more
involved. Specific trajectory estimation algorithms need
to be developed to track maneuvering targets and
compensate the radar signals. Once the trajectory is
estimated, one can phase compensate the returned
pulses and coherently sum them to exploit the imaging
capability of synthetic aperture techniques.

Most of the actual ISAR algorithms utilizes this
approach. i.c.. some kind or data preprocessing is done
tu ensure separability between tracking and imaging
problems. The main difficulty with this approach is the
need or a stable strong scatterer on the target that can be
tracked as a reference point. In a complex target, such a
reference point can disappear during the observation
time or jump abruptly from one strong point to another.

The nev, method proposed in this paper. based on
nonlinear filtering theory, allows simultaneous radar
trucking and imaging or a complex non-cooperating
target. This technique can integrate the extended nature
or the target in the tracking algorithm and needs no
isolated strong scatterer as a reference.

The organization of the parer is as follow. In
section 2. we develop the models for target movement.
t;1rget electromagnetic response and radar measurements
which are needed to state the radar signal processing as
<1 filtering problem. Particle Filtering is introduced in
section 3. Tracking and imaging are then considered in
Section 4 using the models and the algorithm described
in sections 2 and 3. In section 5 we present some
simulation results and the conclusion is drawn in
section 6.

2. Modeling

2.1- The Spatial Target Model

Most imaging algorithm» use (sometimes implicitly) the
so-called "weak scatterer" approximation to represent

Image Processing Techniques Proceedings of the 2"" l.ouno-American Seminar on Rodar Remote Sensing held at Santos, Sao
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the target to be imaged (Chassay, 1983; Borden, 1994).
In this approximation, the target is equivalent to a set of
point-like scatterers and the backscattered electrical
field Esrnt is the superposition of each individual
scatterer response to the incident electrical field.
Interaction among scatterers, multipath, shadow effects
and diffraction are disregarded. Moreover, the
backscatter coefficients CT,are assumed to be isotropic
(invariant for small changes of target attitude during the
considered portion of flight). That is the simplest
geometrical optics model for the backscattering
phenomenon.

With these assumptions, the target can be modeled
by a grid of N elementary scatterers with backscatter
coefficients CTi:

N

T(xJ = L.>i8(x - xi)
'"I

(2.1)

where 80 is the Dirac measure, CTiis a complex constant
and x, is the position of the scatterer. Complex
coefficients CTiindicate local amplitude and phase of the
backscatter field.

More sophisticated models can be envisaged to
take into account scattering perturbation effects, that are
frequency- (f) and target attitude- (8) dependent. In this
paper we shall consider a narrow band signal, and
dependency with respect to 8 along the portion of target
movement may appear as a random drift with suitable
characteristics. Despite these simplifications, the model
accounts for important phenomena found in radar signal
processing, such as glint, and constitutes a basic
approximation for the radar imaging problem.

2.2- Coherent Radar Signal

Consider that the transmitted signal is given by
s(t) = h(t)~He{exp(jw0t+(p0)} (2.2)

where f0= w1/2n: is the carrier frequency, h(t) is the
signal envelope and <p0 is the phase of the transmitted
signal. If the target is modeled by the equation 2.1, the
amplitude of the scattered field can be written as

K
Y(t)= I-,G(8i)h(t-1i)

I R;- (2.3)

CT,exp[jw0(t-1i)+ jtp0]

with Ti= 2R/c the signal delay for the scatterer located
at a distance R; to the radar, G(8J the antenna gain in
the direction 8i and I/Ri2 the free space attenuation of
the signal amplitude. After carrier suppression by
complex demodulation one gets:

I K, 2R, 8 [ .4n: ]Y(t)= . -,. h(t--)CT(Ri, i)exp -J-Ri
R- c A.

I I

(2.4)

with K,= KG(8Jexp(jtpo).
For a rigid target, we can consider an arbitrary

reference point (R0 ,8) and describe the scatterers
distribution in a target coordinate system (figure 2.1 ).
Therefore. a target point i= (x.y) can be represented by

R, = R(x,y) = R0 +x·sin8+y·cos8
under the assumption that target span is much smaller
than R11. That is the plane wave far-field approximation.
For sake of simplicity we don't indicate the time
dependency of R0 and 8.

o

Fig. 2.1- Relation between radar and target coordinate
systems.

Now. equation 2.4 can be rewritten as

I K 2[R0+x.sin8+y.cos8]
Y(t)= -~h(t- )

R~ c
I

CT(x.y) exp(- j :n: [Ro + x.sin8 + y.cos8] )

Moreover, a noise v(t) adds to this returned signal.
With the usual assumptions on the matched input filter
and optimal sampling, this noise can be modeled as a
complex white Gaussian process with zero mean and
variance E(vv*)= R, where v* indicates the transpose
complex conjugate of v.

Note that distance variations among different
scatterers i= (x.y) are mainly important at signal phase
level. with little impact on signal amplitude. We can
therefore simplify the equation above by neglecting
amplitude fluctuation due to the term K/R;2 and
approximate it by K1/R02, where K0= G(811).exp(jtp11). At
this stage K0 appears as a single phase/amplitude
reference. which may be discarded by immersion into
otx.y) when necessary.

(2.5)

Equation 2.5 allows us to retrieve several classical
radar imaging formulations, as tomographic
reconstruction and Fourier transform techniques
(Mensa. 1991). All these techniques suppose an a priori
knowledge of target path, i.e., of R0 and 8 as a function
of time. For non-cooperating targets, trajectory must be
accurately estimated (with relative variations not
exceeding a fraction of wavelength) before image
formation. Next section presents some popular methods



for separate target motion estimation, before we
introduce the joint tracking/imaging procedure.

2.3- Motion Compensation

Synthetic aperture formation depends on a coherent su111
of successive pulses backscattered by an uniform
rotating target. placed at a constant distance of radar.
Therefore, some kind of motion compensation is
necessary if the target trajectory departs from this
simple scheme. Motion compensation is normally
divided into two steps: range bin alignment and phase
compensation.

Range bin misalignment is due to radial motion of
the target. Scatterers travel several range bins during the
observation time. so that signals in a specific bin
correspond to different scatterers. A correction step is
needed to keep the scatterers in their initial range bins.
To cope with the range misalignment problem. most
algorithms use the correlation between adjacent
returned pulses, as is done by the Spatial Domain
Realignment and Frequency Domain Realignment
algorithms proposed in (Chen and Andrews, 1980) or
by the synthetic reference envelope algorithm proposed
in (Delisle and Wu, 1994 ).

Concerning transversal motion. the target induces
two kinds of phase variation: motion of the target center
along radar line-of-sight. and rotation relative to the
target center as \ ic« ed from the radar. 011 ly the target
rotation creates cross-range resolution (differential
Doppler) and a phase compensation algorithm is
required to eliminate the translational motion effect.

Most compensation techniques propose to track a
strong. steady scatterer on the target that can be used as
a reference point for the target path. This reference
point 111ay correspond to an isolated scatterer. Iike a
\\ ing tip. that represents a peak in the signal return. One
can also track the range bin where the normalized
variance of the returned signal amplitude is minimal.
This range bin is supposed to contain a strong scatterer.
called dominant scatterer (Steinbe1·g. 1988). that gi\es cl
reference for the phase compensation

2.3.1- Motion Model

None of the above techniques can be applied at low
signal-to-noise ratio (track before detect). or with no
dominant scatterer. \\ e propose here a global nonlinear
filtering approach to process the radar signals for
simultaneous detection. tracking and 1111ag1ng of
complex targets.

To apply stochastic filtering techniques we need to
model the motion as a d: 11a111ic1«111do111process and ih
measurements by the 1·c1LLir.lhis approach. which 1s
embedded in usual radar tracking in a linear filtering
stage. is considerably more sophisticated in nonlinear
tracking. such as proposed in this paper.

77

Linear algorithms are used for smoothing models
of target motion, with Gaussian assumptions for the
driving process. The Singer model (Singer, 70) is the
simplest of them for the tracking of maneuvering
targets. It is a modified triple integrator system where
the 111otio11 are considered independent in each
Cartesian axis and driven by a correlated Gaussian
acceleration. We use here (figure 2.2) a more realistic
version of this model. where acceleration and speed are
physically limited and maneuvers decisions are
represented by a random point process.

Tt:t rn--o--y+, rn rn-- . ~--1--) . .. ) )

IT]
Fig. 2.2 - Modified Singer model.

The system is driven by the doubly stochastic
process rr1 that adds random jumps to the acceleration to
represent realistic maneuver controls. These maneuvers
follow a Poisson process \I ith mean time Tm between
jumps. Their amplitude is normally distributed with
\ ariance a,/. Actual control is limited by saturation to
take into account physical constraints on target thrust
and maneuvering capabilities.

.3. The Particle Filter

Nonlinear filtering is the natural frame to state global
<estimation problems where a dynamic stochastic
process (here the target motion) is partially observed
(by a nonlinear measuring device - the radar) and
corrupted by an additive stochastic process (the noise).
The difficulty with nonlinear filtering formulation
comes from the infinite dimensional character of the
solution. which can not be derived in closed form.
Approximate solutions based on local linearisation of
s; stern and measuring equations and/or moment
truncation of density probabilit , can not maintain
gu<11«111teedperformance or even stability of the filter.

lhe particle filtering technique (Riga!, 1993:
Nu: er. 1996) 111ay cope with nonlinear models as well
as non-Gaussian dynamic and observation noises. It
recursively constructs the conditional probability
measure dl'(x, y111) of the state variables x., with respect
tu all a\ ailable measurements y111• through a random
exploration of the state space b: entities called particles.
Particles obey the conditional probability generator
\\ hich involves a Bayes correction term based on
measurements. Its main advantage relies 011
probabilistic properties of the procedure. which lead to
glub<tl con\ergcncc.

Particle filtering works in a evolution/correction
basis dictated by the S) stem equations. Each particle
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simulates an admissible trajectory (candidate) of the
state variables followed by a correction step due to
measurements. As the number of particles increases, the
particle filter converges to the optimal state estimator.
Uniform convergence has been shown for one of the
versions of the algorithm in (Del Moral and
Salut, 1995).

3.1- Particle Filter Algorithm
Let the following equations represent a discrete
dynamic system X with Y as a measurement:

lxk+I =f(Xk,k,Tik+I), x, initial condition
(3. I)

Yk =h(Xk,k)+vk

where Tik and vk are independent white noises with
known probability distributions.

Particle filtering approximates the probability
dP(x0) at initial time by a set of N Dirac distributions
and applies the dynamic of the system to this set. In
other words, one "randomly selects N particles" from
the probability distribution dP(x0) to represent it as:

] N .

dP(x0) "" - L8(x0 -x~)
N i=I

(3.2)

where o is the Dirac delta.
Next, each particle i follows the system dynamic

f(x01,0,TI01) with noise samples 1101 generated from its a
priori probability. Time evolution of Dirac point
measures is given by sequential application of this
procedure. Figure 3.1 shows the evolution of a set of
particles. Dot lines represent the trajectory of each
particle.

Fig. 3.1 - A priori exploration.

Next step is to introduce information carried by the
measure y0k. This is done by the term p(ylxJ in the
Bayes's theorem. Information given by measure Yk
"weights" the trajectory of each particle i. The particle
estimation (with N particles) of any measurable function
lp(') of the state X, is given by:

N
'N "" i ilp (Xj ) = L., Pktp(xk ),

1=1

with P~ z~
N

Iz~
J=I

k

and Z ~ = IT p(y 1[x , )
1= I

(3 .3)

Therefore the "weight" Pki corrects the
representation given in figure 3.1, where all particles
had the same weight IIN. The particle estimation of the
conditional probability is showed in the figure 3.2.
Here, dot lines give the trajectories and the arrows'
amplitude represents the weight of each particle.

pl >ltJI t'/0.1J)

Fig. 3.2 - Conditional probability.

3.2- Regularisation Techniques
If the state space is unbounded (as is the case for target
positions), particle trajectories diverge. Furthermore, in
the absence of regularisation, particle weights
degenerate and the law of large numbers is no more
applicable. This second phenomenon is due to the finite
number of particles N used in the algorithm. To cope
with this, some kind of regularisation must be applied.
A possible technique, in the first case, is the forgetting
of old data, frequently used to adapt filter parameters to
unknown system's evolution or poor modeling.

We use here a resampling technique that solves
both difficulties at the same time. The algorithm is
restarted at an instant t using the estimated conditional
probability as an initial distribution. All particles are
redistributed among the states xi' according to the
weight attributed to them. All particles take the same
weight l/N after the redistribution.

Therefore, most probable states, corresponding to
"heavy" particles, give rise to several new particles
while least probable ones are "killed". Redistribution
locates particles where they are needed, in a
probabilistic way.

4. Tracking I Imaging Particle Algorithm
As indicated in section 2.3, synthetic aperture imaging
can be applied if the target trajectory is a priori known.
In this case one can compensate the translation motion
and just keep the rotational motion about a reference



point, that induces differential Doppler, to obtain cross­
range resolution.

Classical imaging techniques usually estimate
target trajectory he/ore' imaging. As target motion/image
estimation from radar measurements is a nonlinear
operation, such a separation approach is not optimal, as
can be noticed in practice when glint is present in radar
data.

Particle filtering can be applied to jointly estimate
motion and image, using optimally the available
information. Glint and other interference effects are
eliminated or greatly reduced by modeling and
processing a multi-scatterer target that take into account
the extended nature of the target.

4.1- Image Formation
As one can see in equation (2.5), measurements Y(t) are
linearly related to backscatter coefficients o'(x.y), for a
given target trajectory. Sampling of Y(t) results into a
data vector where each sample corresponds to a range
bin. with radial resolution c/28 (c - light speed:
B - receiver bandwidth).

Time discretisation gives a nonlinear system of
equations

(4.1)

\I here each Iine of matrix H corresponds to the
amplitude of the scatterers in a range bin and [) is a
diagonal matrix \1 ith phase terms exp[-jcti(x.y)J.
cD(x.y)= (4rrn)R(x.y).

As previously mentioned, this structure of radar
signal allows to compute 0(x.y) as a linear estimation
conditionally to the trajectory R,. Consequently. each
particle i in the algorithm is associated to:

• an estimated trajectory, according to the motion
model of the target:

• a grid of points (x.y), moving with the particle and
representing the target's reflectivity model:

• a linear estimator of the target image 0,(x,y) for the
grid points:

• a probabilistic "weight", given by the Bayes
correction.

4.1.1- Conditional Linear Filter
Consider a grid of points (x.y) whose center follows a
given trajectory R,. Along this trajectory, the radar
imaging reconstruction can be viewed as the solution of
the following filtering problem (Charnon, 1996):

[ CTl+I =CT, CTll :::: N(O. pl))

lY1 = ll1(x.y)D1(c )CT,(x,y)+v1

(-12)

The image CT( x. y) is given by the follow ing
regularized pseudo-inverse:
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(t+I \

CT1+1 = P1+1l~o:H:R-1Y,j
t+l

p I = r.. +' 0'1f R-1H DI+] () ~ - T T 1"
r=U

(4.3)

where A* is the transpose conjugate of A and R=
E(vv*) is the noise covariance matrix. For a uniform
array of N antennas this solution generalizes in a
straightforward way to

(4.4)

I lere time dependence T is not indicated, H1p0

represents the first antenna in the array and R= rl is the
noise covariance. with I the identity matrix. The term
cp," that represents the phase delay to the n-th antenna,
can be written in terms of the phase of first antenna as
¢11 = cp11 - (2rrd0..).11.si118, where cl is the inter-element
spacing in the array and 8 is the direction of signal
arrival.

This result shows that 0 estimation is obtained by
coherent summation of data both in space (sum over N
antennas) and in time (time variation of I I, D and q>).
Phase equalization of data over the array (the term
Y11e-1'1"') just points the antenna diagram to the target.

4.2- Motion Estimation

Motion estimation is accomplished by the particle filter
that uses the image reconstructed by the conditional
filter to calculate the likelihood (or equivalently the
"weight") of each particle trajectory in state space. We
can note that target image and trajectory are jointly
estimated by the filter: a "good" image indicates a
"good" trajectory and conversely, a "good" trajectory
yields an accurate image. The particle algorithm is
schematically described in figure 4.1.
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Fig. 4.1 - The particle algorithm.

5. Simulation Results
We presents in this section simulation results for the
extended target indicated in figure 5.1. It represents the
signal reflected by I0000 elementary scatterers with
unity amplitude and random distributed phases.

10

Figure 5.1- Target model used in simulations
The following parameters was used 111 the

simulation:

a) Radar characteristics

Frequency IO GHz
Pulse Duration 6.7 ns (I m resolution)
Pulse Repetition Interval 0.2 ms

T\\O omni antennas with
Antenna Array spacing d= 50 /j2

(20 mrad beamwidth)
Signal to Noise Ratio CldB
Integration Time 3 s

b) Trajectory characteristics

Parameter Nominal Value Initial Uncertainty

angular position 0 rad ~ - I mrad
distance 10000 m +/- 5 Ill

velocity (angular 250 mis +/- 20 m/s
direction)
velocity (radial -20 m/s +!- Sm!s
direction)

5.1- Radar Imaging with Known Trajectory
For a perfectly known trajectory, we show in the figure
5.2 the resu It of the radar signal processed by the
conditional filter. In the figure 5.2a we see the output
amplitude for each point of the grid (x.y) that represents
the target (note that the number of points in the grid is
much smaller than that of the simulated target). Figure
5.2b shows the same data interpolated for a finer grid.

10
-10

(a)

-!=",

#••
·~·,, -1:

(b)

Figure 5.2- Image results with a known trajectory.
a) Filter output. b) Interpolated image.



5.2- Radar Imaging of a Non-Cooperating Target

When the trajectory and the target backscatter
coefficients 0, arc jointly estimated by the particle filter.
\\e get the image indicated in figure 5.3 below. The
result. if compared \\ ith the images in figure 5.2. is
necessarily less precise but \\C note that the regions or
strong reflectivity are suitably estimated and the target's
general shape is reconstructed.

1 ~.

11_1

;,

- I_

-:-1

-IC'

_J
..:1:=-1 -111

Figure 5.3- Image result with an estimated trajectory.

6. Conclusion
We have developed a new approach to filter radar
Signals and jointl. c-t im.uc the path and the image o l cl
maneuvering target. Ihe proposed filter al km s the
processing of nun Iin car non-Gaussian models for target
dynamics and represents an asymptotic approximation
of the optimal solution for the general nonlinear
filtering problem. Images obtained with this technique
faithfully reconstruct the path and the general shape of
the target. It's wort Im hi le to note that the same
algorithm can be applied for trajectory estimation only
of a complex target. filtering out glint and other
scintillation phenomena. In this case. a coarse grid.
representing just some strong scatterers. can be used in
the target model. us detailed image 1s no lunger
required.

Because particle fihcring makes use of a random
exploration of the state space. computational cost is a
main concern. In fact. each particle needs to calculate
the pseudo-inverse of a huge matrix (associated to the
grid that represents the target) to evaluate the "wcighr"
of its trajectory. As particles evolve in a independent
way, communicating onl; for redistribution and
likelihood normalization. a parallel version or the
algorithm is a current subject of interest to speed up the
image estimation Moreover, we ma; consider adaptive
features. where the gml 1s relined as the trajectory i-,
more precisely estimated.
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Target Recognition using Constructive Neural Networks
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ABSTRACT

This paper presents t he use of Coustrurtivc r\1·11-
ral Networks for Patterns Rccognitiou. The work
presented here is part of the SAP RI project (Svst cm
for Acq uisitiou, Processing and Images Rccoguit ion)
which is being developed for the Brazilian Navv.
The objective of this paper is to investigate the
behavior of Construcr ivc :\cmal Networks in imag«
recognition tasks, speciallv with images from the
SAPRI project. Coust.ruct.ivc Neural Networks differ
from standard networks due to their abilitv to change
their own number of elements. adding or removing
units am! connections. Fo11r constructive algorithms
arc presented in this paper: Cascade Correlation.
Tower. Pyramid and Upstart.

Kcvwords: Pattern R1•cognition. Nemal Networks.

1 Introduction

This work is part of the development of a Svsn-m
for Acquisition, Processing and Recognition of Images
(SAPRI, 1997). This svst cm will be directed to radar
imagos handling, providing the specification of an 1·11-
viroumcnt to help the safc-t.vof navigation and control
of air and sea traffic. The main goal of the SAPHI
project is to develop a image processing system which.
based in advanced computational methods, is ahk- to
support. the handling process and the radar imagt•s
interpretation. The SAPRI project ronsist.s of 4 mod­
ules which include the steps of acq uisi t iou, image pro­
cessing, pattern rccoguit iou and intcrprctatiou.

Although conventional Neural Networks haw
achieved adequate performance in pattern recognition
tasks. this performance is directly in flU<'IH'!'dtu the
choice of the network t opologv. Thero arc four ap­
proaches (Parekh ct al., 1997) to define a N em al Net -

work topology. The Empiric approach consists in test­
iug am! com paring several topologies until a11accept­
able performance is reached. The Genetic approach
ge1l!'raks several variations of networks and combine
the features of those with the best performance, thus
generating new networks with improved performances.
The third approach. known as Pruning, optimizes a
trained network by removing neurons and connections
which are irrelevant. or redundant. Finally, the fourth
approach is the Construct.ivc. In this case, the net­
work starts its training with a minimal topology and,
according to the problem necessity, new neurons and
connect.ion arc inserted. improving the net.work per­
formance.

The work prcsc-ntc-d in this paper aims to support
the pattern rccognit ion module investigating the be­
havior of Coust.rucrivo Neural Networks. These net­
works had adapted t he pcrccpt rou networks to allow
the iurorporat.ion of new elem cuts during the train­
ing phase, Tims, a network with a. minimal topology
is trained and it grows according to the application's
uccx-ssi tv.

Section 2 introdures the concept of target rccog-
11iti011,and Section :3 presents the description of four
training algorithms for Constructive Neural Networks.
Pra«t ind experiments wore done using the data set
provided bv the SAP RI project. These experiments
are p1Ts1•nted in Section 4. Finally in Section 5, the
«onclusions arc presented.

2 Target Recognition as Patterns

Automatic target recognition (ATR) refers to the
1ask of identifying and classifving targets. The cxccu­
t iou of this task dr-ponds on four distinct steps. The
first step is the choice of the method used to capture
the image. or the most appropriate sensor to be used
i11t lH·prob km at issue. The quality of the inform at ion

Image Processing Techniques Proceedings ofthe 2'"1 l.atino-. l111crica11Se111i11ar011Radar Remote Se11si11g held at Santos, Sao
Paulo, Brazil, ! l-/2 September 1998 (ES/\ Sl'-434. October 1998).
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generated by the sensor and its fidelity to the image,
are of great importance to assure the adequate per­
formance of the next steps. The image capture must
be standardized. thus no relevant characteristic of the
problem goes unnoticed.

The second step is the pre-processing and segmen­
tation of the received information. The pre-processing
is necessary to dampen the noise and to eliminate in­
correct information in the image. The goal of segmen­
tation is to separate targets that may be connected to
each other in their capture.

Next step is the Features Extraction and Selection,
where the targets' relevant information is detected.
At the end of these steps, a more compact data set is
obtained. These steps arc necessary to avoid waste of
processing by analyzing unnecessary information.

Finally, the Classification associates each pattern
generated by the previous steps to a class. This phase
is the most important to the system, since an error
can become a major problem in real applications.

In the SAPRI project, vessels' images were cap­
tured from a radar, and organized in four classes. Fig­
ure 1 presents an example of each class.

•
;

Class 1 Class4Class 2 Clus3

Figure 1: Vessels images after the pre-processing.

3 Constructive
(CNN)

Neural Networks

Artificial Neural Networks (ANNs) have achieved
a good performance when applied to patterns clas­
sification. However, the topology of a conventional
ANN, like Multilayer Perceptron (Freeman & Skapura,
1993), must be chosen before the beginning of its train­
ing. There are no rules to determine the network
topology, hence, its choice depends basically on em­
piric knowledge. Therefore, several topologies must be
trained and compared before the choice of a ultimate
topology. This disadvantage of conventional ANN
models becomes more apparent if, after the choice of
the best topology, the patterns set is changed, making
a new choice of the topology necessary to retrain the
network.

Constructive Neural Networks provide an attrac­
tive approach for the gradual construction of Neural
Networks. The network starts with a minimal topol­
ogy consisting of input and output layers only. Each
of these layers has the exact number of neurons neces­
sarv to map the issued problem. During the training
phase, the network changes its topology by inserting
or removing clements, thus avoiding the necessity of
choosing the topology empirically.

The increase of elements in the networks is con­
trolled by the training algorithm used. Four construc­
tive algorithms were analysed in this work. They are
detailed in Sections 3.1, 3.2, 3.3 and 3.4.

3.1 Cascade Correlation

The Cascade Correlation algorithm (Fahlman &
Lebicre. 1991) uses a supervised learning technique
to train ANNs. This algorithm starts with a minimal
network (input and output layers only) and, during its
training, inserts new units, one at a time, creating a
multilayer structure.

The new neuron is connected to the input, output,
and all hidden layer in the network. When the hid­
den unit is inserted, the weights related to its inputs
(connections] arc frozen. This neuron starts to per­
rnancnt.ly act on the network operations, being used
to detect new features in the patterns set.

The unit to be inserted in the network can be se­
lected in a candidates set organized in a layer. This
candidates layer is connected to the input layer and
all hidden layers in the network, but it is not con­
nected to the output layer, since the candidates must
not directly influence the network result. The selec­
tion criteria for a candidate is the correlation between
this candidate's activation with the network output
error. The higher the correlation, the larger the in­
flucncc this candidate will have in the network perfor­
mance. Hence, the weights of the connections between
the candidates and the input and hidden layers must
be changed in such a way to maximize the candidates
correlation. The candidate with the highest correla­
tion value will be included in the network as a new
hidden lavcr, being connected to all layers in the net­
works, as shown i11Figure 2.

Among the advantages of the Cascade Correlation
networks, one can mention its training speed, which
can be flexible depending on the number of new hidden
units inserted. The training of these networks can be
more clearly observed in the Figures 3, 4, and 5, where
a network grows from a minimal topology to a cascade
shaped topology.



Figure 2: Selection of a new unit a.ruoui; a set of ca11-
didatcs.

Figure J: Selection of a !H'\\" 1111itan1011ga sC't uf can­
didates.

Figure ,1: Sekctio11 of a !H'W unit a111onga set of can­
didates.

85

Figure G: Sdectio11 of a !J('W unit among a set of ran­
didatcs.

3.2 Tower

The Tower algorithm (Parekh ct al., 1097) builds
a tower of pcrccpt.ron units, also k11ow11as Threshold
Logic Units (TLUs). Different from the Cascade Cor­
rclatiou algorit lun. which iusr-rt.s 011c unit at a t.inir-,
this algorit lun inserts a layer with a fixed number of
nc-urous.

Tho !JC'W inserted layer ha:; t.h« sarnr: number of
neurons as t l«- output layer, and it is connected to
the input layer and tu the 011tp11t layer. The output
lav.-r hccon1cs a hidden laver. mid the inserted layer
becomes the !JC'W 011tput layer. This procedure is re­
peat c'cl uut ii the classification accuracy is reached or
the 111axi11111rnnumber of layer is reached. The Figures
ti. 7. am! X illustrate' the insertion process.

Figme (j: Initial state of the Tower network.
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Figure 7: Insertion of a new layer, the output layer
becomes a hidden lavor.

Figure 8: Insert.ion of a second lavcr, onrr- again. the
011tp11tlavor lx-corucs a hidden laver.

3.3 Pyramid

The Pvramid algorithm (Parekh et al., 1997) is an
extension of the Tower algoritlun. This algorithm dif­
fers from the Tower oulv in the way the couucct.ious
between the new layer and the network are made. The
inserted layer is conucctcd to the input aIHI output lay­
ers as in the Tower algorithm, but it is also conn.xrcd
to every hidden layer wit hin t hc network. making the
network uni ts tot allv interconnected to each other.
Figure 9 prcsont.s a trained network with two hidden
lavors. Notice that t.he layer Hidden 1 is <"OIJiwct<·dto
the new output lavor, different from t.lu: Tower algo­
rithm.

3.4 Upstart

The Upstart algorithm (Frean, 1990) inserts ncu­
rous in pairs (units X and Y), building' a st met 111T
with the shape of a binarv tree starting from a neuron
from the 011tp11tlayer. Each pair of neurons is insert ed
to correct the error of the unit which it is connected
to. Once trained, the new neurons allow the insertion

of new pairs of neurons, until the network presents
an acceptable error. Figures 10 and 11 ilustratc this
algorithm.

Figure 9: Pvramid network. The arrow idicat.cs the
«onncct ion between the layer Hidden 1 aIHI the 011tp11t
lavcr.

Output

Figure 1(): Initial stall' of the Upstart network with a
single out put m·11ro11.

x

Figure 11: Upstart network after the insertion of the
X and Y units,

At the end of its t ranuug, the rosult ant not work
might bl' too deep. i.c., with a large number of hidden
units. Anot her disadvantage of this algort.ithm is its
limit at ion a siugl« cat<•gorv classification problom.

In order to overcome t.hr-sc disadvantages, anot her
approach was analysed. The new approach (Parekh
<'1 al., 1997) creates a11 equivalent structure, though
all the new neurons arc grouped in a single hidden
lavor. The process of adding new units in this Iavcr
can be detailed like:

1. aft or the mininral network is trained. t.h« out­
put IH'11ro11which has t.hc highest error rate is



selected:

2. depending on whether kind of error is more frc­
qucnt, wrongly on (out.put.e l and desired out­
pnt=O) or wrongly off (outpnt=O and desired out­
put=l), a unit X or Y is created to correct some
of the errors in the selected on tput neuron;

3. the new unit is connected to the input layer and
its weights arc trained separately according tot he
kind of error this unit will correct;

1. the new unit is added to the hidden lavor and
connected to the output layer, so t.hc t raining mav
proceed.

This approach also allows to u:«: the algorit.lnn in
multicatcgorv networks. Figure 12 shows a network
with thr cc prrviouslv inserted neurons in t.hc hidden
lavcr. and Figur« 13 ilust rates the insertion of a new
uni t. represented by the selected neuron.

Fiµ,mc 12: Upstart network with three previously in­
serted neurons.

Figure 13: Insertion of a new nr-uron in t.hc Upstart
network.

4 Experiments

Experiments using the constructive algori t lnns Cas­
cade Correlation and Tower were conducted. Tho ob-
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tained results were corn pared with the results obtained
from a Ml.P network trained with the Backpropaga­
tion algorithm. The data set used were vessel images
provided by t.hc Institute of Research of the Brazilian
Navv (IPqM).

The ship images patterns, provided by the SAPRI
project arc vectors of 1024 clements with hexadecimals
values, These values represent the color intensity level
of a pixel in a capt urod image from the radar.

This data was normalized, i.c., organized in ma­
t.rixcs of order :l2, and the values converted in real
numbers in t 11<'interval [O, l] according to the SNNS
format (Zdl d al., 1995).

The set contains 800 patterns, with 200 represent­
ing each one of t.l«: four classes. The classes arc re­
lated to a spcxifir: vessel, and the separation of ships
in classes was carried out during the image capture.

During the experiment, the 800 patterns were ran­
domly distributed in 1hrce sets, each set divided in
t.rainiug, validation. and test subsets, with propor­
tions of 50%1, 25%, awl 25%, respectively, following
the rules d<'snilH'd in Proben l (Prechelt, 1994). The
benchmark rules d<'snihcd in Probenl specify some
standards in a11 attrmpt to reduce errors in the cxper­
imcut authr-nt.icit.v,

The topologv of the MLP network trained with
t Ii<' Backprnpaga t ion algorithm was fixed in 1024-8-
4 (nnrnlH'r of n.-urons in the input layer, hidden layer
aud on t.pu t, lavr-r, rcsp.xt.i vclv), obtained by cm piri­
cal oxpt-ri rucut.a.t.iou. Tables t. 2 and 3 illustrates tll<'
means of the proport ion of patterns correctly rccog­
nizr-d CYr1) followed liv its rospoctivc standard dcvia­
t ion.

Training
Back Propagation 99. 70 ± 0.32()
Ca;.wadc Correlation 99.GO± 0.32G
Tower 100.00 ± 0.000

Table 1: Traillillg rr-sult s of networks using image pat­
terns from 111<'Brazilian Navy.

Validation
Back Propagat ion 08.:10 ± us1
Cascad<' Corrolat ion %.40 ± 1.140
Tower 95.70 ± 2.G83

Table' 2: Validation results of networks usmg tmagc
patterns from t he- Brazilian Navy.

These rosult s indicate that all algorithms presented
satisfactorv rosult x. All networks achieved good rccog-
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Test
13ack Propagation 98.40 ± l.557
Cascade Correlation 97.40 ± 1.387
Tower 96.90 ± 1.084

Table 3: Test results of networks using image patterns
from the Brazilian Navy.

nition rates and showed a good generalization. The
!VILP network trained with the Backpropagation algo­
rithm presented the best result in the validation and
test sets. However, the topology used was chosen after
several comparisons with other topologies. The main
advantage in using constructive algorithms is the sav­
ing of time and effort in finding a topology that is
adequately efficient in the problem resolution and, at
the same time more compact.

The remain algorithms presented in this paper arc
currently in development and experimentation, thus
no conclusive results arc available. Among the al­
gorithms implemented or in development arc: 13aC'k
Propagariou, Cascade Correlation, Upstart, Tower
and Pyramid. It is intended to implement other c011-
structivc algorithms, such as RI3F-DDA and Tiling
(Parekh ct al., 1997) for future use ill the SAPIU
project.

5 Conclusion

This work presented some models of Constructive
Neural Networks (CNNs) that were used in target
recognition tasks. CNNs improve their performance
by inserting new neurons, lavers or connections, The
insertion of Hew units is in charge of the ronstrur-t.ivo
algorithm used. Among the presented algorithms, the
Cascade Correlation and Upstart inserts one neuron
at a time, whereas the Tower and Pvramid algorithms
insert om' layer with a fixed number of neurons at a
time. In this way, the constructive algorithms attempt
to define the best topology to reduce their error rates
and improve their performance.

Comparing the use' of constructive algorithms to
conventional Neural Networks with fixed topology. a
better functioning of the constructive algorithms can
be observed. Contrary to the empirical approach, the
CNN adjust themselves according to the problem at
hand. This avoids the waste of effort and time in filld­
ing the best topology for each problem.

In order to execute the experiments described ill
Section 4, a Constructive Neural Network Simulator -
Kipu, (Cuadros ct al., 1998) was used. This simula-

tor is being developed in the Institute of Mathematics
and Computer Science (ICMC) of the University of So
Paulo (USP) with the support of CAPES and CNPq.
The figures of Neural Networks shown in this paper
were also capt med from this simulator.
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SIMULTANEOUS GENERATION AND REGISTRATION OF SAR IMAGES

David Fernandes

lnstituto Tecnol6gico de Aeronautica (ITA)
Centro Tecnico Aeroespacial (CTA)

Praca Mal. Eduardo Gomes, 50
12228-900 Sao Jose dos Campos, SP - Brasil
Tel. +55.12.347.5879, FAX: +55.12.347.5878

david@ele. ita.cta. br

Abstract: Registration of SAR images is required for
interferometric processing and multitemporal analysis.
A procedure which allows simultaneous generation and
registration of SAR images from spaccbome sensors is
presented. The procedure is based on the properties of
the chirp scaling algorithm and is used in a
interferometric processor to generate the intcrferogram.
the fringes and the coherence map.

Keywords: synthetic aperture radar. SAR image.
registration of SAR images. SAR interferometry.

1 Introduction
To calculate the interfcrogram. the fringes and the
coherence map of SAR images. the original Single­
Look-Complex (SLC) SAR images must be registered.
The miss registration decreases the correlation of the
images and increases the phase error in the fringes of
the interferogram.

The registration can be done after the generation of
the SLC SAR images or it can be done simultaneously
with the generation of the SLC images. This second
approach results in a time reduction in the registration
process, Fornaro et al. (1994). Fcrnandcs ct al. (1996).

In this work it is shown a process to simultaneously
generate and register two SLC SAR images from
spaccbomc sensors and how this process can be used in
a interferometric processor that can generate
automatically the intcrfcrogram, the fringes and the
coherence map.

2 SAR signal
A sample of a Real Aperture Radar (RAR) or a
Synthetic Aperture Radar (SAR) image is generated by
the backscattering of the transmitted signal within of a
resolution cell. The dimension of a resolution cell is
given by:
-for a RAR:

in range
c T(/ p

(2 l)Im!
2

in azimuth (2.2)

Tp is the transmitted signal pulscwidth. c
0
is the light

speed, Ba is the antenna beamwidth in azimuth and r is
the slant range between the radar antenna and the
resolution cell center.
-for a SAR

c
in range f) =-0 Im! (2.3)r 2 Br

in azimuth f) = v lml (2.4)
a Ba

Br is the transmitted chirp bandwidth given by

Br = y .Tl'. where: y is the chirp rate. v is the relative
velocity between the scatter and the sensor platform.
Ba is the azimuth bandwidth given by: Ba =r :!':
where r a is the azimuth chirp rate and (, is the
illumination time:

22.v
Ya= Xr

rO;
T =a

[Hz/sl (2.5)

[sl (2.6)
v

/_is the carrier frequency wavelength.
The pixel spacing gives the distance between two

consecutive resolution cells. For the RAR or SAR
systems it is given by:

c T
in range d = () s

Im! (2.7)r 2

d =
v

in azimuth [ml (2.8)a prf

T, is the echo signal sample time and pr/ is the Radar
pulse repetition frequency.

Image Processing Techniques Procecdings oftlu: l'"1 l.11/1110-.tmcrican Se111i11uron Radar l?e1110/eSensing held al Santos, Sao
Paulo. Brazil, 11-1 l Seple111her I 998 (ES!\ Sl'-·B·t October 19')8).
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In the horizontal plane the range dimension of a
resolution cell and the range pixel spacing must be
divided by the factor:

J, = sin(a) (2.9)

where a is the incidence angle of the electromagnetic
wave in the scene.

If two images have different values of Ts, v, prf or
a, they have different pixel spacing, and therefore
different scale factors. Consequently, they can not be
registered only with a shift operation. In the
interferometry process, the same scene is observed from
different positions, therefore the images are observed
with different incidence angles a and then even though
they have the same parameter Ts, the images have
different range scales.

For images with different values of Tp, ()0, y, v, 'A

or a, the resolution cells of the two images are different
and the resolution cells can not have a perfect
superposition, therefore two registered pixels show a
statistical decorrelation.

As an example, Figure 2.1 shows a cut in range and
azimuth of two simulated ERS-1 SAR images with
point targets. Image 1: Ts = 52.72 ns (pixel space in
range: 7.9lm) , prf = 1634.55 Hz (pixel spacing in
azimuth: 4.34m) and sensor altitude equal to 800.0 km.
Image 2: 1'.\· = 66.07 ns (pixel spacing in range: 9.9lm),
prf = 1934.55Hz (pixel spacing in azimuth: 3.67m) and
sensor altitude equal to 800.2 km. The baseline between
the SAR sensors is 538.52 m and the baseline
inclination is 21.80°. The images have different scale
factors and therefore the point targets are not registered.

A sample of a Synthetic Aperture Radar image.
str,x), can be represented approximately by:

s(r,x) = Jf hr(r -r',x- x';r').y(r',x').

{ 4.Jf '}dx'd Ixexp --;:r . r
(2.10)

where: rand x arc. respectively, the radial and azimuth
dimensions. rtr, x) is the scene complex reflectivity

at (r,x·). hJ,.;.) is the SAR Point Spread

Function, range dependent. and exp{- ~ r'} is the

phase due the round trip delay between the radar and the
scatters. The complex reflectivity y(r, x) is a function

of the backscattering coefficient C5
0

:

(2.11)
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Figure 2.1: simulated point targets images with different
scale factors.

An ideal point target at tr: x
0
) , can be

represented by a Dirac Function:

0.B
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pixel in range

Amplitude in azimuth ( _ image 1,
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1020 10+0 101;0
pixel in azimuth

y(r,x) = c 5(r - ro,x- xJ (2.12)

where c is a complex constant and 0(.,.) is the Dirac
Function.

In this case. the SAR image is the Point Spread
Function:

(2.13)

If the SAR is ideal, its Point Spread Function is the
Dirac Function:

hr(r,x) = k 5(r,x) (2.14)

where k is a complex constant.
For this function. the SAR image is the complex

reflectivity of the scene:

s(r,x) = k y(r,x)exp{-
4~TL1-} (2.15)



For a SAR sensor, the Punctual Spread Function
can be approached by. Carrara ct al. ( 1995):

hr (r, x) = k sen(;r.x ID J sen(n.r I Dr)
nx l D; nr l D,

(2.16)

3 Range and azimuth scaling
We will suppose that we have two SAR images to be
registered. One of them is the reference image and the
other will be registered with the former. We will also
suppose that the central pixel of both images are
registered and that the scale factor to be applied in
azimuth and range in the second image to be registered
are. respectively, F and F . If the reference image is~ - a r

represented by s ref ( t,t) the second registered image

will be s( r.Fr, t IF~). The relationship between

(t,t) and (r,x) used in Section 2 is given by:

(z, t) = [.3._r, J_xJ
c v

()

We will assume that the second image raw data is
represented by pp( t,t) in the range time (r) and
azimuth time (t) domain.

3.1 Azimuth scaling

We will consider a point target at (t
0,
t
0
) , whose raw

data due the second SAR sensor is represented by:

pp(r,t; r0,tJ = a(t).s(r- 2.R(t;r0,tJI cJ
xexp{- }7r/( t - 2.R(t;r0, tJI cJ2}

x exp{-J4nR(t;r0,tJI A.}
(3.1)

with.

(3.2)

(3.3)

where: a(.) is the antenna azimuth function, s(.) is the
transmitted pulse amplitude. exp~ nyr2} is the range

chirp and exp{- j4nJr; +v~(t-tJ2 /}"}is the

azimuth phase modulation. v 2 is the relative velocity
between the scatter and the second sensor platform and
t 0 = 0 is the scene azimuth center.

The azimuth scaling can be modified multiplying
the raw data pp(r,t; r0,tJ by:

¢0(t;rJ =exp{- Jn(!'~ -1)y" 12} (3.4)
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with the azimuth scaling F given bv:" .
F v1 prf2

a v2 prf,

where. /Jlf1 is the pulse repetition frequency of the

n s)

reference SAR sensor. v1 is the relative velocity
between the scatter and the reference sensor platform,
prf, is the pulse repetition frequency of the SAR
which generated the raw data of the secondary image.
and r a is the azimuth chirp rate:

)

2.v;
Ya - :i r

/L.. 0

(3.6)

After the multiplication:
pp( r.t; r0,tJ.¢0 (t;rJ. the resulting signal has a
new azimuth modulation term with azimuth phase
center at t

0
I F: instead 10 • Femandes et al. (1996):

expt j4nJr02 + f~,v~(t-(,1 F:,)2}

and a new azimuth chirp rate given by:

r amod = ral~~, (3.7)

With this new phase center and after the azimuth
focus we obtain the azimuth scaling in the second SAR
image.

3.2 Range scaling
The Chirp Scaling Algorithm. Raney et al. ( 1994).
provides means to scale the SAR image, Moreira et al.
(1996) and Fernandes ct al. (1996).

The Fast Fourier Transform (FFT) applied in the
azimuth direction of the SAR raw data. pp( t,t) .
transforms the range time - azimuth time domain into
the range time - azimuth Doppler domain.

pP(r,f) = l<F(12 {pp(r,t)} (3 8)

where pP( r, f) is the raw data in the range time (r)
and azimuth Doppler (f) domain.

The range cell migration trajectory in the
pP(r,f) image is given by. Raney ct al. (1994):

R1(f;r) = r + r C,(f) (3.9)

where C, (.f) is the curvature factor:

-1c (f) = --;===c..-- - 'J '2
s (A..f

l- 2.v

(3 .10)
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and v is the relative velocity between the scatter and
sensor platform.

Equation (3.9) shows that the range cell migration

at range r has a curvature given by r C, (f) . This
curvature is range dependent. To transform the range
cell migration trajectory into a range independent
trajectory, the pP( t,/) image is multiplied by the
chirp scaling phase given by, Raney et al. ( 1994):

¢, (r,j;rref) =
exp{- }.Jr.Ks (j ;rref ).Cs(/) [r - Tref(J)f}

(3. 11)

where: rref is the reference range, it will be chosen in

the center of the scene, and Ks (f; rref ) is a function

off with rref as a parameter.

2.rr=-
co

(3.12)

and

(3.13)

After the multiplication:

pP(r,f).¢,(r,f;rref), the resulting image has a

range cell migration trajectory given by:

(3.14)

The equation (3.14) shows that the range cell
migration at range r has a curvature given by
rref Cs (f) .This curvature is range independent.

The property of the chirp scaling phase to equalize
the range cell migration can be extended to provide a
scale in range, Moreira et al. (1996) and Fernandes et al.
(1996).

For a range scaling factor of Fr, it must be choose

for the chirp scaling phase ¢1 ( t;J,rref ) a new

curvature factor (the modified curvature factor) given
by:

Csc1 (/) =Cs(/)+ (1- Fr) 1+ ~: (/)
r

(3 .15)

If the scale factor is one, there is no scaling. This
scaling is given by, Fernandes (1996):

F =T,2.sin(a2)

r Ts, .sinia,)
(3.16)

where a, and a2 are. respectively, the incidence angle
in the center of the scene observed by the reference

SAR sensor and the secondary SAR sensor. T,i and

T,2 are. respectively, the echo signal sample time of the

reference and secondary SAR sensors.
With this new factor. the range cell migration will

be equalized and scaled. The new range cell migration
trajectory will be given by:

Rf (j; r) = rr~f + (r - rref) F~+ rref C,(J)
(3 .17)

In (3.17) we note that the curvature is constant and

given by rref Cs (f) , the range r of (3 .14) becomes

rref + (r - rr~r) Fr. This is equivalent to an expansion

or contraction around the center point rref. For

instance, if r is a set of distances: [10, 20, 30, 40, 5 0, 60,
70, 80] with rref = 50 and F, = 0.9, we will have

the new set of distances around rref = 50: [14, 23, 32,

41, 50, 59, 68, 77].
If we suppose that the central pixel of this image is

registered with the central pixel of another image
(reference image), both images can be registered by the
range focus.

The modified curvature factor introduces in the
chirp scaling algorithm a phase error that can be
compensated, Moreira ct al. (1996), Fernandes et al.
(1996).

3.3 The modified chirp scaling algorithm
The modified version of the chirp scaling algorithm
takes into account the modification introduced in the
previous sections. Another method for the azimuth
scaling and a new configuration for the modified chirp
scaling algorithm (the extended chirp scaling algorithm)
is given by Moreira ct al. (1996 ).

Figure 3.1 shows the point targets of Figure 2.1

registered in range and azimuth by the proposed

modified version of the chirp scaling algorithm.
The chirp scaling and the modified chirp scaling

block diagram are shown respectively in Figure 3.2.a
and 3.2.b. Raney et al. (1994), Fernandes et al. (1996).

4 Interferometric processor
Using the scaling in range and azimuth discussed in the
previous section, it was developed an interferometric
processor. This processor simultaneously generates and
registers two SLC SAR images, calculates the
intcrferograrn, the fringes with flat earth correction and
the coherence map. The processor input arc two sets of
SAR raw data. the satellites orbits, velocities and the
radar and signal parameters.
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Figure 4.1 shows the interferometric processor
general block diagram.

Cl:hm'l:C IrmfuqJan furw;
'.\,~ v.illnt fia

Ea1h

Figure 4.l: input/output of the interferometric processor
As an example, Figure 4.2 shows the interferogram

and the fringes, with flat Earth correction, from two
registered images obtained from the ERS-1 SAR sensor
over Fayoum-Rayan area (35Km in range, 32 Km in
azimuth) near Cairo City.

r
a
n
g
e

Figure 4.2: interferogram and fringes, with flat
earth correction.

The processor selects one image as a reference
image. The reference image is generated and the
secondary image are simultaneously generated and
registered with the former. If the SAR raw data are very
big the processor divide the raw data in a small sets of
data (2kB x 2kB or 4kB x 4kB blocks of data) and
processes each set of data. The Figure 4.3 shows the

block diagram of the interferometric processor for each
set of raw data.

Raw data SAR- I
(reference sensor) Raw data SAR-2

SAR-I and SAR-2·
parameters and orbit.

geometry and
parameters
calculation

Doppler Centroid
estimation

Chirp Scaling
Algorithm

registration error
esumenon

Modified
Chirp Scaling
Algorithm

registration
error control

Registration
error SAR-2 image

Registered with SAR-I image
SAR-I image

Figure 4.3: registration process.

Figure 4.4 shows the calculation of the
interferogram, fringes and coherence map for two
registered SLC SAR images. Mura (1993), Alenn,
(1995).

As an example. Figure 4.5 shows a ERS-1
amplitude image of a pair of images and the coherence
map of these images from Diisscldorf area in Germany.

X SLC image I
Y SLC imagc Z

Conjf.)

I interferograrn

phase
calculation

fringes

coherence
estimation

coherence map

Figure 4.4: interferogram, fringes and coherence
map calculation.



a) amplitude image

b) coherence map
Figure 4.5: a ERS amplitude image and the

coherence map of two ERS-1 images from Dusscldorf
area in Germany, Reigber ( 1997).

5 Conclusions
The proposed procedure combines the SAR images
generation and registration. The integrated processes
reduces the computing time and preserve the image
quality. The developed procedure was used in a
interferometric processor that calculates the
interferogram, the fringes and the coherence map.

The performance of the processor has been tested
by the registration of simulated point targets and by the
interferometric processing of real ERS-1 raw data.

Acknowledgments
The author wish to tanks the lnstitut for
Hochfrequenztechnik (HF) - Deutsches Zentrum for
Luft- und Raumfahrt (DLR) m
Oberpfaffenhofen/Germany. the International Civil

97

Aviation Organizaton (ICAO) Project BRA-95/802
Objective 6-ITA and the Fundacao de Amparo a
Pesquisa do Estado de Sao Paulo (FAPESP) for their
support in this work.

References
Allen. C. Interferometry Svnthetic Aperture Radar.

IEEE Gcosciencc and Remote Sensing Society
Newsletter. Sept.. 1995.pp. 6-13.

Carrara. W.: Goodman. R. S.: Majewski. M. Spotlight
Synthetic Aperture Radar: signal processing
algorithms Artech House. Boston. 1995.

Fernandes. D : Waller. G. Moreira. J. R. Registration of
SAR images using the chirp scaling algorithm.
International Geoscience and Remote Sensing
Symposium (!GARSS '96). Nebrasca, 1996.
Proceedings. pp. 799-801.

Fornaro. G.: Franceschetti. G.: Marzouk. E. S. A new
approach for image registration in interferometric
processing. Proceedings. International
Geoscience and Remote Sensing Symposium
(IG.1RSS"9.J),Seatle. 1998.pp. 1983-1985.

Moreira. A.: Scheiber. R.: Mittcrmayer. J. Extended
Chirp Scaling Algorithm for Air- and spaceborne
SAR data processing Stripmap and ScanSAR.
IF!:±:· Transactions on Geoscience and Remote
Sensing. V. 3-LNo. 5. pp. 1123-1136. September.
1996.

Mura. J. C. Performance and interferometric capabilities
of the INPE/DLR SAR processor. Deutsche
gesellschaft for Ortung und Navigation e. v. 8,
Radarsymposium. sept., I993. pp. 166-171.

Reigber, A. Multitemporale Analyse der Koharenz von
SAR-Dalen. Diplomarbeit. Universitat Konstanz I
Institut for Hochfrequenztechnik (HF) der
Deutsches Zentrum for Luft- und Raumfahrt
(DLR). 1997.

Raney. R. K: Runge. H.: Bamler, R.: Cumming. I. G.:
Wong. F. H. Precision SAR processing using chirp
scaling. lf:"f•}/ Transactions on Geoscience and
Remote Sensing. V 32. No. 4. 1994.pp. 786-799.



99

The use of textural features on the polarimetric SAR image classification·
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Abstract. In this work the potentiality of the textural
information that polarimetric SIR-C data can provide to
discriminate some types of land use is studied. That
information is extracted from the data by using
statistical and distributional measures. The Euclidean
distance is used to select the best set of features for
discriminating classes of interest. Features bands
(textural bands) are built by filtering the images. and
they arc used as channels on ICM classification. The
discriminatory power of the selected features is assessed
by analyzing the classification results. which arc
evaluated using the confusion matrix and the Kappa
coefficient of agreement. The results show that the
textural information. as well as the tonal information
provided by these images arc very important to
discriminate the land use under studv.

1 Introduction
The Brazilian Amazonian Tropical Forest has been the
object of several studies. particularly concerning the
estimation of the extent and rate of gross deforestation.
With an area of about 5 million square kilometers. .i
million of which covered by forest. a total of 517.069
square kilometers were deforested by 1996 (INPE.
1998). The knowledge and understanding of tropical
deforestation process and its consequences arc
important aspects of global change. and they arc
necessary for the Brazilian Government to take actions
for the sustainable use of the natural resources.

Besides the importance of mapping the deforested
areas. the study of secondary succession is also
important due to the impact that these areas have on the
region carbon cycle balance. which might have
consequences on the global clime change and on the
carbon budget. Compared to primary formations. the
secondary forest accumulate biomass more rapidlv and
therefore act as a net sink for atmospheric carbon
(Brown and Lugo. 1990).but this net sink is still poorly
quantified (Schimel. ct al.. 1995).

Many studies that have been done in Brazilian
Amazonian still use LANDSAT-TM data to map and to
monitor the changes in forests. deforested areas and
regenerating forests. However. weather conditions

strongly limit the data availability. The use of radar data
is therefore the only way of overcoming this problem. In
addition to the all weather capability of radar and the
availability of currently systems (ERS, JERS.
RADARSAT. airborne systems. etc). the use of radar
data to monitor deforestation and regeneration is
strongly motivated by the sensitivity of the radar
backscatter to standing biomass (Le Toan et al., 1992:
Ranson ct al.. 1995: Luckman ct al., 1997b: Yanasse et
al.. 1997)

The number of studies in Amazon using radar data
has increased for those reasons. Nevertheless. proper
methods for extracting information from radar images
arc still object of study. and they arc dependent of the
type of application (estimation of above ground
biomass. mapping of deforested areas. identification of
different kind of crops. classification of specific land
use. among others) and the sensor characteristics. as
polarization (HH, HY. VH and VY). band (C, L. X. Ku.
P. etc). angle of illumination. pixel resolution. etc.

The extraction of the information from images is
usually derived from tonal analysis. However. only
tonal information is not sufficient to gather all
information provided by SAR images. Therefore. many
researchers have used textural attributes to extract the
complementary information (sec. for instance. Luckman
ct al., l997a: Sant"Anna ct al.. 1997: Soares. ct al..
1997)

The objective of this paper is to analyze and to
select several texture features (attributes) from radar
images. for the discrimination of some land use classes
(primary forest. different stages of secondary forest.
bare soil and pasture). After a brief description in
Section 2 about the study area and the data used the
methodology is detailed in Section 3. pointing out the
whole process of extraction and selection of features
used for land cover classification. The results arc
presented in Section -t and Section 5 was reserved for
the final conclusions of the work.

• This work was supported hy grants from !'!'(i-7 (0808 95 and 0816 95)_Convenio Fl:\FP (6_696.0473.00 and 6.6.96 0474.00)_

Image Processing Techniques l'rocccding« oftlu: ]"J l.atino-Amcriccnr Se111i11urOil Radar J<e1110/eSensing ltclc! at Santos. Sao
Paulo. Brazil, t i.t : Se1Jte111her /998 (!-:SA Sl'-4J4. October l'J'J8).
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2 Study area and data
The study area is located on Para State, Brazil, in the
Tapaj6s National Forest. Although this Forest is a
reserved area, in the study site there are primary forest
and deforested regions. Some deforested regions were
abandoned and are presently under regeneration.
Besides the importance of mapping these regions,
another reason for choosing the Tapaj6s area is the
availability of different remote sensing data and field
work information. Among these data set, a multi­
temporal LANDSAT!TM images from 1984 to 1995
(except 1994) are available, which were used to build a
regeneration stage map of the area, as described in
details in Sant'Anna et al.(1995).

Several radar data are also available for this area,
such as JERS-1 (L-HHband polarization), RADARSAT
(C-HH band polarization). SAREX (C-HH and C-VV
band polarization), ERS-1 (C-VV band polarization),
and SIR-C (L and C bands, HH and HV polarization).
To reach the objectives of this work. the SIR-C data
were chosen. because they have higher discrimination
potentiality than the other radar sensors due to the
possibility of combining different bands and
polarization. The SIR-C images used in this paper are
part (950 columns by 1-lOOlines) of the images obtained
on October 1994,with approximately 8 nominal looks.

A color composite of the SIR-C images is shown in
Figure la with L-HH. L-HV and C-HH in the red
green and blue channels. respectively. In Figure lb is
depicted the regeneration stage map, where the classes
are represented by colors as following: primary forest
(Forest) in dark green. old regeneration (OldReg -
secondary succession with more than or equal to 8 years
old) in light green, new regeneration (NewReg -
secondary succession with less than 8 years old) in
yellow, recent activities (RccAct - bare soil, pasture and
some agricultural crops) in magenta, clouds and
shadows in black and regions without information in
gray. The light and dark blue areas appearing on Figure
la refer to deforested areas. There arc not many areas of
the OldReg class, and it is very difficult to see them on
Figure la because they have a very similar pattern than
those presented by the Forest class (reddish tone). In
fact. the visual confusion between these two classes is
apparently bigger than the confusion among others
classes. Some most representative areas of the OldReg
class are indicated by white arrows in Figure lb.

3 Methodology
The regeneration map was used as a mask over SIR-C
images, after registering the map to these images. In this
registration process the SAR images were the base
images and the map was the wrapping image, in order to
not modify the SAR data properties. After the map had
been registered its regions (classes) could be associated

with SAR data. To avoid errors such as register
displacements and precise identification of the classes
boundaries, a morphological operator, called erosion.
was applied to the map using a 3x3 window.

The analysis was followed by features extraction.
Two kind of measures denominated statistical
(including first and second order statistical measures)
and distributional (including parameters that
characterize statistical distributions) were used as
features. The former were computed in amplitude and
intensity data and they are represented with subscript A
and I, respectively, while the latter were computed only
in amplitude data.

The statistical measures were defined by: mean (µA
and µ1). mean in dB (1-1<m), standard deviation (er Aand
cr1), coefficient of variation (CV A), autocorrelation for
lags (0.1). (LO) and (1,1), represented by PA(O.l).
PA(LO)and PA(Ll), respectively, and coefficient of
variation for the same lags, represented by CVA (0, I),
CVA (LO) and CVA (LI). The definition of the
coefficient of variation for lag (s, ,sy) is given by:

~y(sx,sy)
CVA(sx.sy)=~---

µA

where y(s,,s,) is the estimated autocovariance for lag

(s,,s,)- with s, and sY representing the distances
between pixels in the two orthogonal directions x and
Y·

The distributional measures are estimated
parameters from distributions that are widely used on
SAR data modeling. The selection of the distributions
was based on a x2 -goodness-of-fit test for the
Gaussian (N), Log-Normal (LN), Weibull (W), Square
Root of Gamma (r112), K-Amplitude (K4) and GO­
Amplitude (G~) distributions. Before doing the
goodness-of-fit test the data were sub-sampled in a 1 to
.i ratio (only one pixel every 2x2 window was used). to
reduce the effect of spatial correlation on test statistics.
The LN. r1

2, KA and G~ were the best distributions
fitted to sample data and their parameters were chosen
as discriminant measures, except the parameter for the
r': 2 which is related to the mean value of the data. and
it is already considered into the statistical measures.
Therefore, the parameters used in the analysis were:
mean and standard deviation of the LN distribution
( µLN and O"LN ), and the a. parameter of the KA and
c: distributions (a K4 and a0A0 ). For details about
these distributions and their parameters' estimators. the
reader is referred to Vieira (1996) and Frery et al.
(1997a).
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Figure 1: Study area: (a) SIR-C color composite L-HV(R). L-HH(G) and C-HH(B) and (b) Regeneration stage map

The estimators of the parameters for the K4 and
c:distributions involve the equivalent number of looks
(N ). The equivalent number of looks for SIR-C images
was estimated from intensity data. using iv = IIC r · 2 for
samples from homogeneous areas (recent activities
class for C bands and old regeneration class for L
bands). The estimated values of f.; for each pair of
band/polarization and their mean arc shown in Table 1.
The mean value was used on the estimation of the aK"

and auAo parameters for all pair of band/polarization.

TABLE 1 - Estimated number of looks and overall
mean. for SIR-C images.
Band/ c c L L Overall

Polariz, HH HV llH HV Mean

N 6 06806 6.28219 6.10203 5.33963 5.94798

The estimation of the sixteen measures (12
statistical and 4 distributional) was conducted for each
class in the four original bands (with a total of sixty-four
features), considering only regions which had the
number of pixels greater than or equal to 100. Table 2
gives the number of regions and the total number of
pixels before and after sub-sampling. The sub-sampling
was used only for the goodness-of-fit test. Parameters

estimation was performed using the whole data sets to
obtain more accurate values.

TABLE 2 - Number of regions and pixels used on the
measures estimation.
Classes Regions Pixels (after Sub-sampling)
RecAct 75 47.689 (8.535)
NewReg 358 177.753 (27.894)
Old Reg 114 55,923 (9.975)
Forest 70 2.217,098 (433,076)

The selection of the features with the highest
discriminatory power for the classes of interest was
based on the Euclidean distance for each pair of classes
(RecAct-Ncwkeg, RecAct-OldReg, RecAct-Forest.
NewReg-OldReg. NewReg-ForesL and OldReg-Forest).
All estimated features were standardized by taking the
values and dividing them by its maximum value. so they
would range from 0 to 1. The influence of outliers on
the estimated features was minimized by trimming them
on 10%.After the selection of the "best" discriminatory
attributes. bands of these attributes were generated by a
filtering process.

These bands of attributes and the original images
were used to perform several classifications. The
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Gaussian Multivariate Maximum Likelihood (ML) and
the Multivariate Iterated Conditional Modes (ICM) were
used as classifiers (Frery ct al.. l 997b and Vieira et al.
1997). The images resulting from the ML classification
were used as one of the input for ICM classifier, which
needs a contextual image to start the classification. The
training and test samples were obtained from areas that
had more than 250 pixels in the eroded regeneration
stage map. The number of pixels utilized on both
samples are presented in Table 3. In order to evaluate
the classifications results. the confusion matrix and the
Kappa coefficient of agreement were computed from
the test samples. To verify the difference between two
Kappa values a Z test was performed (Ma and
Redmond, 1995).

TABLE 3 - Number of pixels for training and test
samples.

Classes Training Test

Rec Act 15.561 6.614

New Reg 58.315 28.553

OldReg 13.880 3.501

Forest 465.294 173.193

4 Results and Discussion
The Euclidean distance was computed for the

trimmed and non-trimmed samples resulting in the same
selected attributes. Therefore the analysis that follows is
based on the non-trimmed samples. According to the
analysis of Euclidean distance five attributes were
selected to discriminate the six pairs of classes (Table
4). From the selected features it can be noted that only
two bands (L-HH and L-HV) and four measures
( µ LN . µA ,aK• and µ 1) were chosen. The C bands do
not seem to carry any information with the measures
used here to discriminate the classes under study, and L­
HV band is the most important band for this purpose.

TABLE 4 - Selected features for discriminating pair of
classes.

Pair of Classes Selected Features

RccAct-NewRcg µ LN (!/iv)

RecAct-OldReg µLN (Ihv)

RccAct-Forcst µ,(lhv)

NcwRcg-OldRcg a;:.4(/hh)

NewReg-Forcst µ1 (/Irv)

OldReg-Forest a1:.1Uhv)

The filtered images with these measures were built
using windows of size 7x7 pixels. except for the a

parameter of K-Amplitude that a window size of l lx l l
pixels was used. However, when building the filtered
image with aKA (lhh) parameter. the estimation of this
parameter presented problems and therefore this
attribute was changed to Cl~. (lhh) . This CT~. measure
was chosen. since it is highly correlated with a1:.• and
both measures seem to carry the same information (see
Sant' Anna et al.. 1997).

Five sets of images were generated and the
ML/ICM classifications were performed for each set.
These sets were:

• Sirc2: includes two original bands (L-HH and L­
HV):

• Sirc4: includes the four original bands (C-HR C­
HY. L-HH and L-HV):

• Sirc5: includes the five bands generated by the
selected attributes:

• Sirc7: includes the L-HH and L-HV original bands
and the five attribute bands: and

• Sirc9: includes the four original bands and the five
attribute bands.

The Sirc2 set includes only the L-HH and L-HV
bands because they are the two bands appearing on the
list of the five best selected features. These five sets
were generated aiming at the comparison of the
influence of the original and attribute bands on the
classification results.

The ICM classifications for the sets described
above are presented in Figures 2 to 6. In these figures
the classes of RectAct New Reg, OldReg and Forest arc
represented by magenta. yellow. light and dark green
colors. respectively. The ML classification results are
not presented here since the ML classification was used
as one of the inputs of ICM classifier and the results of
the latter is usually much better than those obtained with
ML classifier.

The evaluation of the classifications was assessed
from confusion matrices and the Kappa coefficients of
agreement and their sample variances (i and er~).
which are given in Tables 5 to 9. for the
aforementioned classifications.

From the classification of the Sirc2 and Sirc-l sets
(Figures 2 and 3) and from Tables 5 and 6 it can be
noticed that the Forest class is better classified "hen all
the original bands (C-HH. C-HV. L-HH and L-HV) arc
used. instead when only the L bands are used. The
confusion between the Forest class and regeneration
classes is greater on the Sirc2 set than the Sirc-l set. The
addition of C bands improves the classification of Forest
and OldReg classes. by decreasing the misclassification
of Forest pixels as belonging to the regeneration classes.
as well as the misclassification of OldReg pixels as
belonging to the Forest class. The RecAct and NewReg
classes do not suffered many changes on their
classification results by including C bands in the Sirc2



Figure 2: ICM classifications using Sirc2 set.

set. These facts evidence the influence of the C bands
on the discrimination between Forest class and
regeneration classes.

TABLE 5 - Confusion matrix for the Sirc2 set
classification.

Classes\ Rec Act New Reg OldReg Forest
Classif

Rec Act 9l.0 7.6 0.2 1.2
NewReg 12.6 62.9 11.9 12.6
OldReg 8.6 52.3 25.4 13.7
Forest 1.3 22.0 20.7 56.0

i= 0.2515 I 0-~ =1.4016xl0-5

TABLE 6 - Confusion matrix for the Sirc4 set
classification.
Classes\ RecAct NewReg OldReg Forest
Classif
RecAct 90.5 8.2 0.1 1.2
NewReg 12.3 64.6 13.5 9.6
OldReg 8.1 50.1 36.5 5.3
Forest 1.1 9.7 12.3 76.9

i= o.4404 I o-~= 1.7398x10-5
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Figure 3: ICM classifications using Sirc4 set.

The classification results obtained using Sirc4 and
Sirc5 sets (Figures 3 and 4) were used to compare the
discriminatory power carried by textural and tonal
information. It can be noticed that the classification of
the RecAct class is about the same (sec Tables 6 and 7)
when both types of information are used. The textural
information contained in the selected features was
important to improve the classification results of the
Forest class. The results of classification using only
features bands, presented in Table 7, show a significant
decrease (close to 44%) of the OldReg pixels that were
misclassified as NewReg class and a improvement
(about 32%) of the pixels that were correctly classified
as OldReg class. However, the misclassification of the
OldReg pixels as Forest pixels increased when only
features bands were used.

The classification results obtained for Sirc5 and
Sirc7 sets (Tables 7 and 8) are very similar, meaning
that the addition of the original L bands to the feature
bands (SircS) did not improve the classification. This
can be justified by the fact that µ4 (lhv) and µ1(lhv) are
included in the Sirc5 set. and they are features that
gather tonal information. The result of Z test gives no
evidence to reject the hypothesis that the two Kappa
values are different. at a confidence level of 95%. It
might indicate that the tonal information carried by L­
HH band/polarization has no influence on the
classification results.

When comparing the results from the sets that use
only L bands (Sirc2 and SircS), the classification results
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Figure 4: ICM classification using Sirc5 set.

for Sirc5 are better than those obtained for Sirc2, which
means that the features information discriminate better
than only tonal information.

TABLE 7 - Confusion matrix for the Sirc5 set
classification.
Classes\ RecAct NewReg Old.Reg Forest
Classif

1

RecAct 89.5 10.5 0.0 0.0
'NewReg 7.1 50.7 19.5 22.7
OldReg 4.7 28.1 .53.2 14.0
Forest 0.7 4.9 8.3 > ~.l

k=0.4952 I a-; = 2.3988x 10-5

TABLE 8 - Confusion matrix for the Sirc7 set
classification
Classes\ RecAct NewReg OldReg Forest
Classif
RecAct 89,5 10.5 0.0 0.0
NewReg 7.0 52.7 18.3 22.0
OldReg 5.5 28.5 ~~.9< 12.1
Forest 0.6 5.1 8.7 ."85'.f>

k=0.4967 I a-; =2.3355 x 10-5

Figure 5: ICM classification using Sirc7 set.

However, associating the textural information and
the tonal information provided by four original bands
(Sirc9 set) increase the percentage of pixels of the
NewReg and OldReg classes that were correctly
classified (Table 9), by decreasing the misclassification
of pixels from these classes as belonging to the Forest
class.

It can be seen from the classification results of the
five sets that there is not a significant modification on
the classification of the RecAct class. The use of the
features bands or C bands on the classification decreases
the misclassification of Forest pixels as regeneration
classes, but the features bands seem to be better than C
bands for this purpose. The Sirc5, Sirc7 and Sirc9
classifications (Figures 4 to 6) appear cleaner than
those that only use the original bands (Figures 2 and 3).
The areas of OldReg were better classified when the
textural features and C bands are used.

The pixels of OldReg class misclassified as
Newkeg class is the largest error found on the
classifications. It is of about 50% for Sirc2 and Sirc4
images and it is reduced by half for Sirc5, Sirc7 and
Sirc9 images.

Using only the original bands (Sirc2 and Sirc4 sets)
the RecAct was the class with the best classification
(90% of the pixels), followed by Forest (66%), NewReg
(64%) and OldReg (31%). When textural features are
added these percentages values are RecAct (89%),
Forest (86%), OldReg (55%) and NewReg (53%).
These results can be seen as good due to the complexity



Figure 6: ICM classification using Sirc9 set.

of the study area and taking into account that the
classification was done using only radar images.

The Z tests for all pairs of Kappa values were
performed and they can be considered different at 95%
confidence level. except for Sirc5 and Sirc7 sets.
Therefore. the best classification result was obtained
using Sirc9 set.

TABLE 9 - Confusion matrix for the Sirc9 set
classification

Classes\ Rec Act New Reg OldReg Forest
Classif

RecAct 89.3 10.6 0.0 0.1

New Reg 7.0 56.S 18.0 18.2

OldReg 5.5 29.1 58.4 7.0
Forest 0.5 4.2 8.7 86.6

i= o.5328 I a-~=2.2755 x 10-5

5 Conclusions
This work showed a methodology for analysis and
selection of attributes (features) for image classification.
The methodology was applied to SIR-C images aiming
at the discrimination of four types of land use on the
Brazilian Amazonia. From the results it can be
concluded that the SIR-C images have good
discriminatory potential to separate the classes of
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interest. The results presented in this paper encourages
further studies in this field of research.

From the five selected features it could be noted
that the L band has. in general. more information than
the C band to discriminate the classes used in this study.
The L-HV band/polarization seems to be the best data to
discriminate these classes. The selected features include
textural and tonal information features showing that the
both in.formation arc important for SAR image
classification purposes. The ex. parameter of the K­
Amplitude distribution shows gather some important
textural information for discriminating regeneration
classes from the others.

The best results were obtained for the classes of
Recent Activities and Primary Forest. showing that is
possible to map recent deforested areas using SIR-C
data. The worst results of classification were obtained
for New Regeneration and Old Regeneration. The task
of discriminating these two classes is difficult even
when using optical data (LANDSATfTM images. for
instance). The results showed that the Recent Activities
class can be discriminated from the other classes using
only tonal information. but textural attributes are
necessary to discriminate the other classes. The C bands
arc important to discriminate Old Regeneration and
Primary Forest classes. The use of features improves the
classification of the Old Regeneration class by
decreasing the misclassification of pixels from this class
as New Regeneration class. but the confusion between
these two classes arc still large.

The distance measure used (Euclidean distance) to
select the features with highest discriminatory power
docs not consider variations among and within classes.
Thus other measures for selecting features may be used
to improve the results. Other textural attributes (not only
statistical and distributional) or another classification
technique may be used to improve the classification
results.

References
Brown. S.: Lugo. A. Tropical secondary forest.

Journal ofTropical Ecology. 6. pp.1-32. 1990.
Frcry, AC.: Muller. H.J.: Yanassc, C.C.F.: Anna. S.J.S

A model for extremely heterogeneous clutter. I!:J:E
Trans. Geosc. Rem. Sens .. 35(3):1-12. 1997a.

Frery, AC.: Yanassc. C.C.F.: Vieira, P.R.: Sant' Anna.
S.J.S.: Re1m6. C.D. A user-friendly system for
synthetic aperture radar image classification based
on grayscale distributional properties and context.
Simp6sio Brasileiro de Computacao Grafica c
Processamento de Imagcns. 10.. 1997. p. 211-218.
.\'/BGR-lPI 97. Los Alamitos. CA IEEE Computer
Society. l997b.



106

Instituto Nacional de Pesquisas Espaciais (INPE). INPE
atualiza os dados do desflorestamento na
Amazonia, de 1995 a 1997. INPE Noticias. N° 13.
p. 1-2, jan-fev de 1998.

Le Toan. T.: Beaudoin, A: Riom, J.: Guyon, D.
Relating forest biomass to SAR data. IEEE Trans.
Geosc. Rem. Sens., 30:403-4l L 1992.

Luckman. AJ.: Frery, AC.: Yanasse. C.C.F.: Groom.
G.B. Texture in airborne SAR imagery of tropical
forest and its relationship to forest regeneration
stage. International Journal of Remote Sensing, 18
(6): 1333-1349. l 997a.

Luckman. AJ.: Baker.L: Kuplich, T.M.: Yanasse.
C.C.F.: Frery. AC. A study of the relationship
between radar backscatter and regenerating tropical
forest biomass for spaceborne SAR instruments.
Remote Sensing of Environment. 60: 1-13. 1997b.

Ma Z. and Redmond R.L. Tau coefficients for
accuracy assessment of classification of remote
sensing data. Photogrammetric Engineering and
Remote Sensing. 61(4):435--'39, April, 1995.

Ranson. K.J.: Saatchi. S.; Sun. G. Boreal forest
ecosystem characterization with SIR-C/XSAR.
IEEE Transactions on Geoscience and Remote
Sensing, 33 (4): 867-876, July. 1995

Schimel. D.: Enting, I.G.; Heimann, M.: Wigley,
T.M.L.: Raynaud, D.; Alves. D.; Siegenthaler, U.
C02 and the carbon cycle. In: Climate Change
1994,Radiative Forcing of Climate Change and An
Evaluation of the IPCC IS92 Emission Scenarios.
Cambridge University Press, pp.35-7L 1995.

SantAnna, S.J.S.; Yanasse, C.C.F.; Hernandes, P.F.:
Kuplich, T.M.: Dutra, L.V.: Frery, AC.; Santos,
P.P. Secondary forest age mapping in Amazonia
using multi-temporal Landsat/TM imagery. In:
1995 International Geoscience and Remote
Sensing Symposium, Italy. Jul. 10-14, 1995.
Quantitative remote sensing and applications.
Florence, Italy, IEEE, v. L p.323-325.

Sant'Anna. S.J.S.: Yanasse, C.C.F.: Frery. AC. Estudo
comparativo de alguns classificadores utilizando-se
imagens RADARSAT da regiao de Tapajos. In:
Primeras Jornadas Latinoamericanas de Percepcion
Remota por Radar: Tecnicas de Procesamiento de
Imagenes. Buenos Aires. Argentina, dez.-1996,
Workshop Proceedings. ESA, 1997, p. 187-194.
(ESA SP-407).

Soares, JV.; Renno, C.D.; Formaggio, AR.; Yanasse.
C.C.F.; Frery, AC. An investigation of selection
of texture features for crop discrimination using
SAR image. Remote Sensing of Environment, 59
(2): 234-247, 1997.

Vieira. P.R. Desenvolvimento de c/assificadores de
maxima verossimilhanca e ICA1 para imagens
SAR. (MSc in Remote Sensing) - Instituto
Nacionsl de Pesquisas Espaciais. Sao Jose dos
Campos. SP. Brazil, 1996. 251 p. (INPE-6124-
TDI/585).

Vieira, P.R.: Yanasse. C.C.F.; Frery, AC.: Sant' Anna,
S.J.S. Um sistcma de analise e classificacao
estatistica para imagens SAR. In: Primeras
Jornadas Latinoamericanas de Percepcion Remota
por Radar. Buenos Aires. Dez. 1996. Tecnicas de
Processamiento de Imagenes. Paris. ESA 1997. p.
170-185.

Yanasse. C.C.F.: Sant' Anna. S.J.S.: Frerv. AC.:
Renno. C.D.: Soares. J.V.: Luckman. AJ.
Exploratory study of the relationship between
tropical forest regeneration stages and SIR-CL and
C data. Remote Sensing of Environment. 59 (2):
180-190.1997.



107

WINDOW SIZE SELECTION FOR TEXTURE IMAGE GENERATION FROM SAR DATA:

A CASESTUDYFORA BRAZILIANAMAZONTESTSITE

Milton Cezar Ribeiro1.2; Diogenes Salas Alves'; Corina da Costa Freitas 1

Joao Vianei Soares': Fernando Mitsuo 111

1INPE-National Institute for Space Resource
P.O. 515, 12201-097 - Sao Jose dos Campos, SP, Brazil

{milton,dalves,corina,fii}@dpi.inpe.br, {vianei}@ltid.inpe.br

2 Science, Applications and Spatial Technology Foundation - FUNCATE
Av. Brigadeiro Faria Lima, 3305, Martin Cerere
12225-000 - Sao Jose dos Campos, SP. Brazil

Abstract. The goal of this paper is to test several
window sizes for generation of SAR texture images.
Two JERS-1 and one Radarsat images were used. A
total of 69 known targets in Rondonia State, Brazilian
Amazon were used and classified in six cover classes.
Five window sizes - 5x5, 7x7. 9x9. llxll and 15xl5
pixels - were tested. Fourteen texture images were
generated for each window size, resulting in 210 texture
images. For all these images Mahala.nobisdistances we
computed for each paired cover classes. For JERS-1 Ilic
best window sizes were 7x7 and l lxl 1. Regarding the
Radarsat image, the largest window size (15x15) used
appears to be small, denoting that greater window sizes
might be tested. The best discrimination, for JERS-1
images, was between recent deforestation and pasture.
while Radarsat presented best discrimination between
pasture and mature forest. JERS-1 showed to be better
than Radarsat for land cover mapping.
Keywords: SAR, window size, texture measures.
Amazonia

1. Introduction
The tropical rain forest plays an important role in the
biogeochemical, hydrological and climatic cycles. A
large amount of C02 is launched into atmosphere
because of biomass burning. following deforestation
(Schimel et al.. 1995) .

Since Ille70' s. optical remotely sensed data has
been used for monitoring of natural areas. These data
have been used for land cover/land change mapping.
allowing Ilic identification of several cover classes like
crop fields, bare soil. pasture. secondary forest and
mature forest. In some regions. the high cloud cover is a
limitation for using optical data. An example is the last.
mapping or deforestation on the Brazilian Amazon
Basin (INPE, 1998), where the Arnapa State could not.
be mapped due lo the absence of low cloud cover
images.

Synthetic Aperture Radar (SAR) images have
been used as an alternative source of data for land cover
mapping. Luckman et al. (1997) studied the relationship
between backscatter and regenerating forest biomass
and found that these data could provide useful
information for above-ground biomass estimation.
Renno and Soares (1996), using SIR-C/X-SAR for crop
discrimination at. Pernambuco State, Brazil. found that
the classification accuracy assessed by the Kappa
coefficient of agreement reached up to 0.9 when several
texture measures were used. Rignot et al. (1996) used
SIR-C and Landsat TM data for deforestation and
secondary growth mapping in Rondonia/Brazil and
found that. multi-band cross-polarized SAR data were
important for classification. Yanasse et al. (1996) tested
the relationship between regenerating stages and SIR-C
(L-band, C-band, cross-polarized) data, and noticed that
the coefficient of variation for L-HH and L-HV data
presented an inverse relationship with regeneration
stages.

Tonal and textural information have been used
for explore better SAR data. Sant' Anna et al. (1996)
used Ilic Frost. filter. Coefficient of variation and Ilic a
parameter of x-amplitude distribution. They classified a
subset of a Radarsat image using three different.
algorithms: a) maximum likelihood, b) Interacted
Conditional Modes (ICM) and c) region growing
segmentation/Bhattacharya. The authors concluded that,
for mapping bare soil/pasture, secondary forest and
mature forest. Ilic best kappa value were found when
Frost and a parameter filtered images were classified by
ICM algorithms.

From Ilic above. it. is evident that Ilic
importance of using textural measures for SAR
classification. These measures may he obtained using
filtered images with a moving window of a certain size,
However Ilic proper size of the window is dependent on
the used measure, on type of application and on the used
data.

Image Processing Techniques l'rocccd111gs of tlu: ]"J linino-Amcrican Se1111nuron Radar Hc1110/cSensing held at Santos. Sao
1'011/0. Brazil. 11-1 J Se1>1e111hcr I 'J'Jil (LS;\ SP--B-l. October I'!'!8 i
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In this work five window sizes are investigated
and used on the generation of Haralich' s texture images,
from two JERS-1 (L-band, HH) and one Radarsat (C­
hand, HH) data, in order to SAR classification and land
cover mapping.

2. Test site and ground truth
The test site is located at Rondonia State, western
Brazilian Amazon, with central coordinates
S09°30'/W62°50' (Figure 1). The region presents a
slightly undulated terrain, with an average annual
rainfall of about 2,200mm, mean annual temperature of
23,6°C (H.Schimitz, unpublished data), and a dry season
from late April to late August.

After the 70' s decade the settlement of small
farmers began along the BR-364 highway. As a
consequence forest has been clear cut to allow crop
fields and pasture establishment. Deforested land is used
for some years and when soil looses its fertility the areas
are sometimes abandoned, leading to forest regeneration
(Uhl et al., 1988).

Aerial reconnaissance was performed during
the first survey on July/96 and about a hundred aerial
photos at 1:15,000 scale were taken. During
September/96, several targets of interest were visited,
GPS coordinates along the roads were taken, and the
land cover for each target was analyzed. Interviews with
local people have been made, asking about the age of
secondary forest areas and management techniques.

3. Land cover and regeneration stages map
generation

A Regeneration-stage map was built using multi­
temporal series of Landsat images from 1985 to 1996.
These images were registered using the Landsat 1995
image as the reference. The ENVI (Environment for
Visualizing Image) system was used to perform this
task. Target contours were digitized on the screen, over
a subregion of 24x18 km and cover classes were
assigned to each region defined by the contours. The
cover classes of interest were: a) RD: recent
deforestation, b) PA: pasture/bare soil, c) YSF: young
secondary forest (2-4 years), d) ISF: intermediate
secondary forest (5-8 years), e) OSF: old secondary
forest (9-13 years) and 0 MF: mature forest. Aerial
photos and GPS coordinates were also helpful in the
map generation. Figure 2 shows the target contours
superimposed on Landsat TM5 1996 imagery, as well as
their cover classes. Table 1 presents a list of the cover
classes, their number of targets and total area per class.

4. SAR data set
In this work, two JERS-1 (L-band, lffi-polarized) and
one Radarsat (C-band, lffi-polarized) amplitude images
were used. The imaging date were May 28 and July 11,

1996 for JERS-1 images and August 19/1996 for the
Radarsat image. These images presents 12.5m of pixel
spacing, and are on 16 bits format. JERS-1 was
generated by National Space Development Agency of
Japan (NASDA) and Radarsat was generated by
Canadian Center for Remote Sensing (CCRS).

5. Image processing
JERS-1 and Radarsat data were read using ENVI and
PCI systems, respectively. Both images were firstly
converted from 16 to 8 bits to save disk space and to
tum computer processing easier. SAR images were
registered using the Landsat 1995 image as the
reference. As Landsat images presents 30m resolution,
all three SAR images were also converted to this same
resolution, using a linear transformation and nearest
neighbor resampling. A subset image of 800x600 pixels
was selected for each SAR data, containing 69 targets.

6. Texture image generation
For each SAR image fourteen Haralick' s texture images
were generated, based on the Gray Level Co-occurrence
Matrices (GLCM). Soares et al. (1997) presented a
review for the used textures here. Five window sizes
were used: 5x5, 7x7, 9x9, 1lxl1 and 15x15 pixels. It
were generated 14 (textures) x 5 (window sizes) x 3
(SAR image), with a total of 210 texture images. These
210 texture images were normalized to have mean zero
and unitary standard deviation. Table 2 presents a list
with all texture measures and the average value
calculated per cover classes, using July 11/JERS-l data
and the llxl 1 moving window. Results presented on
Table 2 will be discussed on future works. Figure 3
shows some illustrative color composition of texture
images for JERS-1 (July 11) and Radarsat (August 19)
data.

7. Results
The Mabalanobis distances (D2) were computed for all
two-by-two cover classes combination for each window
size and texture measures. The SAS (Statistical Analysis
System) software was used to compute all D2 values.
Small values of D2 denote that two classes are similar,
or can not be discriminated, and large values of D2
mean that the pair of classes are dissimilar or well
discriminated. Figures 4 and 5 show D2 values
obtained for some paired cover classes for JERS-1 data
recorded on May 28 and July 11, respectively, and
Figure 6 presents the same results obtained for Radarsat
data. Paired cover classes with D2 less than 2.0 were not
presented here.

Observing the Mabalanobis distances for the
JERS-1 image collected on May 28 (Figure 4). a
general tendency of 7x7 window to present the best
results can be noticed. Note that windows greater than
7x7 pixels show a decline of their D2 for many of
texture measures and paired cover classes. One could
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Landsat WRS 231!067

Figura I: Site test Location and Landsat TM 5 (WRS 231/067) image.

Figure 2: Target contours superimposed on Landsat TM5 band (19%) image Legend •-RD (Recent Deforestation).
•-PA (Pasture). -YSF (Young Secondary Forest). •-ISF (Intermediate secondary Forest). o-OSF (Old
Secondary Forest). •-MF (Mature Forest)
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Figure 3: Color composition for original and texture SAR images. Legend: Rsat (Radarsat, August 19) ; JE07 (JERS-
1, July 11) ; cont (Contrast); mean (Mean); homo (Local Homogeneity) ; smea (Mean of Sum Vector) ;
vari (Variance); dvar (Variance of Difference Vector): WS (window size)



also verify thal the biggest D2 value was oblained when
comparing RD and PA cover classes.

Figure 5 (JERS-1 for July) shows the same
behavior observed in Figure 4, but in this case the
selected window size was l lxl 1 and not 7x7 pixels.
Possibly it may be related lo changes in vegetation
phenology and associated waler content in forest area
along the dry season of region.

Comparing Figure 4 and Figure 5 for JERS-1
texture images, it can be noticed that, for May, the RD
class was only well discriminated from PA and for July
il can be noticed a good discrimination between RD and
all other cover classes. In fact, when Landsat images for
May and July/1996 were checked, it was observed that
when JERS-1 image was collected on May 28, some
targets appear on clear cul process, with part of their
area still covered by MF class. On July 11, all targets
selected as belonging lo RD class were completely
deforested.

Analyzing D2 values for Radarsat imagery
(Figure 6), one could verify that an ascendant tendency
is showed when larger window sizes arc used.
Unfortunately it is difficull lo say, for our study case,
what is the best window size for Radarsal because no
result for windows greater than 15x15 pixels were
computed. Looking at the D2 values for both JERS-1
and Radarsat images, one could find that RD-PA, PA­
YSF. PA-ISF, PA-OSF and PA-MF are even better
discriminated. In other words. the pasture (PA) class
presents a high level of discrimination and if one has
interest on this particular class both JERS-1 and
Radarsat images could provide good information.

In general terms, U1cJERS-1 image presented
better discrimination between classes when compared to
Radarsat. It is interesting to notice that RD and PA were
poorly discriminated with Radarsat, but they were the
best separable classes in JERS-1 data. Possibly it is
related to the band that each sensor operates, where
Radasat (C-HH) is more sensitive to canopy cover,
while JERS-1 presents good response to vegetation
components such as trunk and steam. For JERS-1 the
remaining ground cover just after the clear cut process
(unburned slash trunks and steams) could contribute
with the best discrimination between RD and PA cover
classes.

Conclusions
For the Radarsat image it was noticed that U1cfive
herein tested window sizes were still small, denoting
that on future studies windows greater than 15xl5 pixels
should be tested. For texture measures classification
purpose, the presented results lead us to choose 7x7 and
l lxll for JERS-1 (May, July) and 15x15 for and
Radarsat images.
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Table 1: Survey fields summary for six studied cover classes

COVER CLASS
#of targets #of Area

pixels (ha)
1) Recent Deforestation (RD) 5 6,448 580.32
2) Pasture or bare soil (PA) 17 12,883 1,159.47
3) Young Secondary Forest (YSF) 11 5,109 459.81
4) Intermediate Secondary Forest (ISF) 9 4,87? 438.48
5) Old Secondary Forest (OSF) 23 12,927 1,163.43
6) Mature Forest (MF) 4 30,557 2,750.13

Total 69 72,796 6,551.64

Table 2: Average texture measures for each cover class, computed using llx 11 window size and the JERS-1
image obtained on July 11, 1996.

Haralick' s Texture Measures COVER CLASSES
RD PA YSF ISF OSF MF

1) Mean (mean) 1.23 -1.33 0.02 0.20 0.26 0.53
2) Variance (vari) 0.70 -1.28 -0.01 0.20 0.12 0.36
3) Energy (ener) 2.25 0.17 -0.03 0.20 -0.02 0.04
4) Correlation (corr) -0.36 0.93 -0.03 -0.04 -0.21 -0.45
5) Entropy (entr) 0.05 0.17 0.20 0.18 0.20 0.19
6) Contrast (cont) 0.78 -1.35 -0.01 0.18 0.16 0.50
7) Homogeneity (homo) 1.63 0.75 -0.02 0.24 -0.09 -0.10
8) Dissimilarity (diss) 0.65 -1.06 0.07 0.20 0.21 0.46
9) Mean of sum vector (smea) 1.13 -1.34 0.03 0.20 0.27 0.53
10) Variance of sum Vector (svar) 0.37 -1.09 0.02 0.19 0.09 0.21
11) Entropy sum vector (sent) 0.14 -0.02 0.18 0.18 0.19 0.20
12) Mean of difference Vector (dmea) 0.65 -1.06 0.07 0.20 0.21 0.46
13) Variance difference Vector (dvar) 0.69 -1.27 0.02 0.20 0.16 0.44
14) Entropy difference Vector (dent) 0.23 -0.12 0.17 0.19 0.20 0.24
RD=Recent Deforestation
ISF=Intermediate Secondary Forest

PA=Pasture or bare soil
OSF = Old Secondary Forest

YSF=Young Secondary Forest
MF = Mature Forest
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SEGMENTATION OF SAR IMAGES USING QUADTREE AND POTTS MODEL
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1 Quadtree Structures
Consider an N x N image d(i,j) defined for 0 < (i,j) < N
and N=2m(m is the number of the tree's levels). The
quadtree of this image is defined as [Schneier (1979)]:

(
·.. ) 1[q(2i.,2;,k-l)+q(21+!,2j,k-l)+q(21,2;+1,k-l)+]

q11k =-
. , 4 q(21+1.2;+1,k-l)

Abstract: This paper presents a contextual classifier
based on quadtree structures and Markov random fields
theory. The initial classification is realized by a
clustering algorithm. then for each level of the tree,
boundary regions are found Pixels of boundary regions
are classified by using a combination of nearest class
mean criterion, Mahalanobis distance criterion and
finally a Markov model. Our scheme is simple to
implement and performs well, giving satisfactory results
for SAR images.

Introduction
The use of synthetic aperture radar (SAR) images
instead of visible range images is becoming more
popular, because of their capacity of imaging even in
case of adverse meteorological conditions.
Unfortunately the poor quality of some SAR images
makes it difficult to extract information and even more
to guarantee a good positioning of the detection. For this
reason, it is necessary to define general parameter
estimation methods which must be robust to
radiometrical variations and to degradations introduced
by speckle.
We propose a semiautomatic scheme of segmentation
which is applied to SAR images. This method consist on
three main steps. The first two steps concern quadtree
structures in order to obtain low resolution estimation of
boundaries. Hierarchical approaches are well adapted to
the processing of high resolution data. The last step
concerns segmentation of boundary regions at high
resolution. The tested data consist on ERS-1 images
with a spatial resolution of 12.5m per pixel.

( )
m=kwhere.n e e s », os 1,; <2 ,

Hence a quadtree is based on 2 x 2 block averaging. The
level just above the base consists of nodes representing
non-overlapping 2 x 2 blocks of pixels in the original
image so that the size of this level is 2m-ix 2m-i.This
process can be repeated until the root node is reached,
its value is the mean gray level of the entire image.
Figure 1.1 shows a SAR image with its gray level
histogram. Figure 1.2(a)-(c) represents level 3 of the
smoothing. Also shown are the histograms, indicating
an increase in class. Quadtrees are useful in image
segmentation because the averaging process reduces the
variance of the signal within a single homogeneous
region. However. the smoothing procedure also
introduces a bias due to merging of data from different
regions [Spann and Wilson (1985)].
In the last stage of the process we will obtain an image
of only one pixel: then the structure has to be truncated
in an optimal level. The election of such level is
important because is from here where the first
classification takes place. The optimal level is selected
subjectively by observing the sequence of the
histograms in the smoothing process.

''.,,·".a.,,1~·\;.~-',_:···;'·y i•..

and

~--- - ----

•

I ~-n:t
Figure 1.1. Image ERS-1 (Precision lmage-PRI, ©ESA)
and its histogram. Size of the scene: 256 x 256 pixels,
pixel resolution: 12.5x 12.5m.

Image Processing Techniques Procceding» ofthe 2'"1 l.atino-American Seminar on Radar Remote Sensing held at Santos, Sao
f'au/o, Brazil, I f-12 September 1998 (ESJ\ Sl'-434. October 1998 ).
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(a) Size:128 x 128pixels

(b) Size:64 x 64 pixels

(c) Size:32 x 32 pixels
Figure l.2(a)-(c). Effects of quadtree smoothing.

For the next stage of processing we consider the level
whose histogram shows a reduction in variance at the
modes associated to homogeneous regions, and where
the bias due to merging of data from different regions is
minimum. For the sequence of Figure 1.2, the selected
level is shown in Figure 1.2(b).

2 Low Resolution Classification
In order to define a local centroid, consider a probability
density p(x). The local centroid defined at each point x
in class space is given by:

w x' p( x + x')dx'
f

µ(x)= x + -ww
f P{x + x')dx'
-w

This equation states that the local centroid at point x is
just the center of mass of the probability distribution
calculated over a window of size 2w and centered on x,
Since the global probability distribution of an image can
not be written as a sum of a set of non-overlapping local
distributions, an iterative scheme can be used [Spann
and Wilson (1988)].
Let h(x) be the histogram value for position x in the
class space. The algorithm works by continually
updating the histogram by moving probability masses to
the position of their local centroid until no change in the
histogram is observed. Hence, if h0(x) is the updated
histogram on the nth iteration, the algorithm proceeds as
follows:

-!,
hn (x} = L hn - l(y)

y E (l(x)
where nn (.) defines the domain of configurations at
iteration n .
ye nn(x) iff

if

n = n + 1 +-+-- no ~ -), ~~ yes ~~ stop

In this case the local centroids are computed within a
window of width 2m+1. While the convergence
properties of the algorithm are hard to determine, it has
been observed in practice [Arellano (1997)] that it
converges in a small number of iterations (typically 5-
15). The number of classes found depends both on the
window size and the histogram of the image. By
applying the centroid algorithm to the image of Figure
1.2(b), we used a window of 30, so then we obtained a



classified image in 3 classes. Figure 2(a)-(g) illustrates
the process.

(a) Iteration 0

(b) Iteration 1

(c) Iteration 2

I l_J__
(d) Iteration 3

(e) Iteration 4

(f) Iteration 5

I I LJ

(g) Iteration 6
Figure 2(a)-(g). Local Centroid Clustering Process.

3 Boundary Estimation
The quadtree smoothing is a means of trading off
resolution in class space with spatial resolution. Hence,
following the clustering procedure at the highest
quadtree level, each boundary node at this level defines
an L x L block of pixels at the lowest quadtree level
(highest spatial resolution) with L= 2\ k being the
quadtree height. The problem now is restoring the full
spatial resolution.
A solution can be found by making an additional
assumption. That is that the classification introduced at
the highest level of the quadtree is valid at lower levels
[Wilson (1985)]. Thus a boundary region is defined;
nodes not in the boundary region are given the same
class as their father; nodes in the boundary region are
classified in such a way that the boundary region width
is reduced by a factor of 2 on each step down the
quadtree. The result is a boundary between pixels at the
lowest level of the tree and thus at full spatial resolution.
A more precise description of the boundary estimation
procedure is as follows. The classification is made at
level k where a classification at level k+1 has already
taken place. Define q(;, 1, k) as the (;,1) th node at level
k and c(q(iJ,k)) as the class of this node. At the
beginning each node is assigned with the class of its

father: c(q(i,J,k))={q(;.;.k+1)).

From this classification, the boundary region Ab(k) is
defined as:
(;,j,k) e Ab(k) ~ ~q(i,J,k )) "'c(q(i' ,j' ,k')),
where (i',J') e N8(;,;) , the 8-neighbor set of (;, 1) .
Once Ab(k) is determined, it is augmented by the set

A 1( k) of nodes which have an 8-neighbor in Ab(k) .
(;,1) e A1(k) ~ (;·,p) e Ab(k), and (i',J') e N8(;,;).

This gives a region of uncertainty defined by the index
set Ac(k)=Ab(k)+A1(k). Since this region of
uncertainty is going to be the boundary between pixels
at the lowest level of the tree, the classification of pixels
of this region should be made with a minimum of errors.
In this paper a combination of three criteria was applied
in order to define high resolution estimations: nearest
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class criterion. Mahalanobis distance and the Potts
model.

3.1 Nearest Class Mean Criterion
This criterion is applied initially to the region of
uncertainty of the image whose size is 64 x 64. This
region is smoothed with a filter whose spatial width
depends on the estimated signal-noise ratio between
regions Pk for level k:

and µ2 are the means found by means of the local
centroid clustering algorithm and * denotes convolution.
Variance is computed by:

2 1 [ 12uk = ( ()) .. I q(i,;,k)-µ(i,J,k) ,
N A~ k (1,;)eA(;(k)

where A~(k) is the set of non-boundary nodes,

µ(i, J,k) is the mean value, q(i, J, k) is the gray level of

pixel (i,J,k), µ(i,J,k)=µ [ (.. k)]' and N(-) is theC q I,),

number of points inside the region (r).

The filter h(i,J,p) of function A2(k) is formed by
convolution using a (3x3) filter.
In the first iteration h1(1,1, p) = A.(p), (;, J) = O,

thenh{i,J,p)= l-A.(p>, -1s(i,J)s1, (i,J);<(o,o).
l 8

The function A.,(p) is a linear function of p. It was fixed
by experimentation, giving maximum smoothing for
p < 2 and no smoothing for p >8 . After smoothing, a
decision in made on all the nodes in the boundary region
using a nearest class criterion. Define i as the number of
classes in the image and s, as the means of the classes.
For each pair of classes a threshold

lµi - µi+ll. .e; i+1= is found. Then a class ~(xJ is
, 2

assigned to the pixels of the region of uncertainty which
are in the interval µi+I ~ p(x) ~ µi,

µs-'x)sµ.+e. 1l P\ 1 1,t+

µi +ei,i+l <p(x)sµi+I

3.2 Mahalanobis Distance Criterion
Once that the nearest class mean criterion is applied, a
second classification is made to those pixels by using
Mahalanobis distance criterion [Devijver (1983)]. After
removal of all resulting isolated nodes, the process is
repeated at level k-1.

3.3 Potts Model
The boundary found at level k-1 (128 x 128) is
projected at level k = 0 (256 x 256), where a new region
of uncertainty is created and classified by a Potts model
[Descombes et al (1996)] based in Markov Random
Fields theory (MRFs). A MRF is a discrete stochastic
process whose global properties are controlled by means
of local properties. They are defined by local
conditional probabilities.
The goal of the segmentation process is associate to
each pixel of the data a label from a finite set. In a
probabilistic framework, this approach consists if
defining a MRF model through clique potentials and
selecting the most likely labeling by a Maximum A
Posteriori (MAP) approach.
Denote by X the image corresponding to the data and by
Y the segmented image. The segmentation process
consists of maximizing the conditional probability
P(YIX) which, from Bayesrule, is proportional to
P(XIY)P(Y). P(Y) is referred as the a priori model
whereas P(XIY) is referred as the data-driven term.
The energy function associated to Potts model is written

u(r)= I po _ .{ l y =r .
c= i,j I J

The f3 coefficient defines the homogeneity properties of
the solution, that is, the greater this term, the more likely
two adjacent pixels will have the same label. In this
study the data-driven term is defined by cost functions
depending on the label / and denotedf 1

. The induced
parameters are directly extracted from the data. The
associated potential, applied to first-order cliques is then

u(x1r)= r. r/(xi)oy=l·
c={1} I I

where x, andYi are the data and label values respectively
in sitey.
The segmentation problem thus consists in minimizing
the global energy:

u(x 1r)+u(r).
In the MAP framework, the minimization process was
performed by a stochastic technique (simulated
annealing) [Geman and Geman (1984)].
Regarding the cooling schedule, the final temperature
lim ~ = 0, is approximated by the geometrical
k->OO
decreasing rule ~+i = T~, where k denotes the kth
transition and Tis the decrease ratio. As it was pointed
out in [Kirkpatrick et al (1983)], in order to estimate the
global minimum of energy functions, T must be close to
1. In this study T = 0.95. Figure 3 shows the final result
of the segmentation.



(b)
Figure 3. (a) Final result of the segmentation,

(b) Original image with boundary line.

4 Conclusions
A scheme for image segmentation has been described,
in which an attempt is made to use spatial information
to overcome the weaknesses of purely statistical
methods. This method consists in three main steps:
quadtree smoothing, centroid clustering and boundary
estimation.
The segmentation process depends on the boundary
shape and downward propagation of errors. The low
resolution classification is statistical but is based on a
local centroid algorithm, which do not requires a priori
information To assure a minimum of errors in the
lowest level and in order to prevent the propagation of
errors, we classify the pixels of the boundary by using
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three differents criteria: the nearest class mean,
Mahalanobis distance and Potts model.
Markov random fields theory offers an opportunity to
overcome signal-to-noise ratio conditions typical of
SAR images. Experimental results have been presented
which bear out theoretical expectations and
demonstrate the power of the method. Some of the
perspectives to continue this study are: a) To apply a
probabilistic relaxation in order to obtain low resolution
segmentations; b) ln the highest level, classifications
can be made by using an binary scheme (Markovian
Ising model). Extensions to texture segmentation are
foreseen.
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ABSTRACT

This paper aims at comparing the performance of two
segmentation algorithms, the MUM (Merge Using
Moments) and RWSEG. from simulated data.
containing regions with differents homogeneity degrees.
for land use aplications. The process for obtaining
simulated images consists of criating a phantom (class
idealized image) which summarizes the main geometric
and topologic characteristics of targets. Then a
statistical modelling of observations from each class
through a particular distribution is proposed. The
performance of the algorithms in study is evaluated
from qualitative and quantitative analysis of the
acquired results. The quantitative analysis is done from
empiric evaluation methods of a segmentation. In order
to reduce the influence of particular images on the
performance assesrnent, a Monte Carlo experience is
performed.
Keywords: SAR segmentation: MUM; RWSEG:
Segmentation evaluation

INTRODUCTION

In the last years there has been an increasing interest in
data obtained from synthetic aperture radar (SAR)
systems and its remote sensing applications. The
importance of these systems derives from its capability
of generating high resolution images regardless the
availability of solar illumination or meteorological
conditions.
The increasing demand as well as current and future
availability of SAR data produce a strong need of
automatic techniques for image processing and analysis.
However, the proposal and implementation of these
techniques are complex tasks. since SAR images
employ coherent radiation and the resulting images are
corrupted by a form of multiplicative signal-dependent
noise known as speckle.

One of the first steps in image analysis consists of
decomposing the input data into a collection of uniform,
continuous and disjoints regions. This process is known
as segmentation. Segmentation is one of the most
critical tasks in the image analysis, and its importance
has boosted the development of a great variety of
algorithms for this purpose. The objective of
segmentation algorithms is to provide an automatic way
to obtain an image decomposition. Nevertheless, such
algorithms can not he applied to all types of images, and
besides that, they depend on the type of application in
mind. Thus, the performance evaluation and the
comparison among such algorithms represent an
important issue.
The evaluation and comparison methods for
segmentation algorithms aim at determining its
limitations, advantages and applications. They can he
divided into two categories: analytical and empirical.
The analytical methods directly examine and assess the
segmentation algorithms themselves by analysing their
principles and properties. whereas the empirical
methods evaluates them indirectly through their results
(Zang, 1996). Several methods have been proposed in
order to evaluate and compare the segmentation
algorithms performance. Some examples found in the
literature concerning this subject are Caves et al. ( 1996).
Delves et al. (1992). Zhang. (1996) and Quegan et al.
(1988).
The purpose of this paper is to compare quantitatively
two distinct segmentation algorithms available in the
software CAESAR (version 2.1): the MUM and the
RWSEG. These algorithms are developed specifically
for SAR data, and they are applied to simulated SAR
images with 3 and 8 looks. These simulated images
contain regions with different homogeneity degrees, in
order to simulate distinct types of targets. This
evaluation is performed employing empirical
discrepancy methods. This work represents one step

Image Processing Techniques Proceedings ofthe 2'"1l.atino-Anu-rican .\elllinur 011Radar Remote .\e11s1ngheld at Santos. Sao
l'a11!0. Brazil, l l-12 Sep/ember 1998 (1-:Si\ SP-434. October l'J'J8).
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towards mastering segmentation techniques for SAR
images.

SAR DATA MODELLING

SAR data posses distinctive statistical properties and its
knowledge is very important for developing processing
techniques and for image understanding. These
properties can be used to discriminate different types of
land by using some particular distributions for data
modelling (Frery et al., 1997).
The multiplicative model has been widely used in the
modelling, processing and analysis of SAR images. This
model assumes that the observed return Z is a random
variable defined as the product between random
variables X and Y, where X models the terrain
backscatter and Y models the speckle noise (Yanasse et
al., 1995). Different distributions for X and Y yield to
different models for the observed data Z.
Different types of region, number of looks (n), and kind
of detection (intensity or amplitude format) can be
associated to different distributions. This information is
shown in Table 1. Regarding to region types, the
homogeneous (agricultural fields, bare soil and pasture
areas, for example), heterogeneous (primary forest, for
example), and the extremely heterogeneous (urban
areas, for example) are considered. Only amplitude
format case is considered (variables with subscript "A"
dente this fact). It is interesting to point out that the
considered homogeneity degrees are dependent of
sensor parameters such as wavelength, angle of
incidence, polarization, etc.
Table 1 shows that backscatter for homogeneous,
heterogeneous, and extremely heterogeneous areas can
be modelled as a Constant, as Square Root of Gamma
distributed, and as Reciprocal of a Square root of
Gamma distributed, respectively. The speckle is
modelled by a Square Root of Gamma distributed
random variable. Thus, the return Zin amplitude case is
modelled by a Square Root of Gamma, a K-Amplitude,
and a G0 -Amplitude distributed random variable for
homogeneous, heterogeneous, and extremely
heterogeneous areas, respectively. For more details
about these distributions, the reader may refer to (Frery
et al., 1997).

THE SEGMENTATION ALGORITHMS

The segmentations algorithms evaluated in this paper
are: the MUM (Cook et al., 1994) and the RWSEG
(White, 1986). These algorithms are implemented in
CAESAR software (version 2.1) and were developed
specifically for SAR data. They produce cartoon
images, i.e., each region in the resulting segmentation is
represented with the mean of the data values in that
region (NASoftware, 1994). A segmentation algorithm
using this cartoon model endeavours to find regions of

constant backscatter by examining the pattern of values
found in the input images. Besides that, both algorithms
produce segmentations based on intensity and assume
the multiplicative model for the image formation. They
also assume that the pixel values in an image are
uncorrelated.

MUM (MERGE USING MOMENTS)
This algorithm starts with a very fine segmentation (it
can be assumed that each pixel is a region, for instance)
and proceeds by comparing neighbouring regions. The
regions that are "significantly different" are left aside,
and those regions that are "similar" are tagged. The
tagged regions are then sorted out and as many as
possible are merged. This process of tagging, sorting
and merging continues on until there are no more
regions to be merged (Cook et al., 1994).
The termination criterion is controlled by the user via
the p parameter (0 < p <18). If the probability that two
neighbouring regions are taken from the same
backscatter exceeds 1o-P then they are merged. Two
other parameters have to be defined: i and l. The first
allows the specification of the format of the input data
(amplitude or intensity) whereas the second allows the
specification of the number of looks of the input image
(NASoftware, 1994).

RWSEG
This algorithm segments an image by successive edge
detecting and region growing. At the end of this
iterative process, a region merging stage is used to
produce the final segmentation. During the iterative
process of edge detection and region growing, detected
edges are used to limit region growing and the resulting
segmentation is used to generate an improved edge map
(White, 1986).
After each iteration, the average contrast of segments is
measured, and iteration continues until the average
contrast decreases. The final stage checks if adjacent
segments are statistically distinct and merges segments
which are not.
There are three parameters that control the algorithm: i,
j and e (NASoftware, 1994). The parameter i allows the
specification of the format of the input data (amplitude
or intensity). The parameter j controls the probability
for region merging and the parameter e controls the
probability for edge detection, which is related to the
probability of false alarms.

QUANTITATIVE MEASURES OVER
SEGMENTATIONS

The quantitative measures used in this paper to evaluate
segmentations produced by MUM and RWSEG are
those reported in Delves et al. (1992), which are helpful
when using empirical discrepancy methods. These
methods take into account the difference between



segmented and reference images and can be used to
assess the performance of the algorithms. The reference
image can be obtained from manual segmentation of the
original image (real or simulated) used as input data.
According to Delves et al. (1992), a first step to evaluate
a segmented image consists of comparing the regions
detected in the segmented image with those in the
reference image. This method is based on a fitting
process of these regions, by matching segmented and
reference images. For each region of the reference
image, there will be one in the segmented image which
is selected to better represent it. This region in the
segmented image is called fitted region. The best fit
between each region of reference image and its fitted
region can be evaluated and measured by criteria of
position, number of pixels, mean intensity, and shape of
fitted regions.
Let the original image and its segmentations (reference
and segmented images) with dimensions xpi.x columns
by ypix lines be matched up and referenced to X-Y
plane. A region in a reference and segmented image is
refered by i and f respectively, and is assumed that N
and M are the numbers of regions of these images
respectively. The notation < g; > and < g1> is used to

denote averages of g over a simple region in the
reference and segmented images and N(i) and N(j)
for the number of pixels in region i and f respectively.
From matching reference and segmented images, two
matrices of N by M elements, denoted Cf and Fit are
constructed with components definided by:

GJ(i,J)= N~~11f ~and
N1uf

. . [xd+yd+ (pd; id )]
Fzt(z,J)= ("Gf i.]

where

xd = l<x;)-(x f >I
xpix

l<Y;>-<Y1>I
yd= . ,

ypix

. 1ui>-<11 >I .id = withIU;)+(I1>I
f = 1,... ,M. The values

IN(i)- N<J)I
pd= IN(i)+N<J)I'

i= 1,... ,N and

< x k > ,< y k > and < I k > represent, respectively,
the abscissas, ordinates and return means in region k.
The Cf matrix describes pairs of regions (iJ) which have
common pixels and gives a relation measure between
the number of intersection pixels and the total number
of pixels for each pair of regions. The values in Fit
matrix represent a fit success measure between regions i
andf taking into account size, shape, position, and data
mean intensity of regions. For each region i in the
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reference image its corresponding fitted region f is taken
to he at the minimum value of Fit (iJ).
Once defined the fitted region for each region of
reference image, the fit success can he evaluated
through quanutauve measures that take into
consideration relative aspects of position, mean
intensity, size, and shape of fitted regions.
• SUCCESS OF POSITION FIT(Fitxy)

F l (xd+ yd)ttxy= -
2

• SUCCESS OF INTENSITY FIT(Fiti)

. . [ lu i > - u1>I ]
F1t1=l- ((l;)+(lf) l

• SUCCESS OF SIZE FIT(Fitn)

Fitn = 1-(N(i)-N(f) l
N(i)+N(j)

• SUCCESS OF SHAPE FIT(Cshape)
N(i nf)

Gshape = (· )N1uf

Note that these measures vary between 0 and I values,
where value equal I represents the best fit.
Thus, for each par of fitted regions there is a value of
Fitxy, Fiti, Fitn and Cshape. For the N regions of the
reference segmentation there is a set of N values for
each success measures. The tested segmentation
(segmented image) can be quantitatively measured
through the mean value of Fitxy, Fiti, Fitn and Cshape
obtained from N regions, or through a single value
denoted by general mean fit, which is obtained by
computing the mean value of these success measures
over the N regions.

OBTAINING SIMULA TED IMAGES

The simulated images used in this paper were generated
using a phantom image. The phantom is an idealized
class image created from interest class observation in
real SAR images, that summarizes the main geometric
and topologic characteristics in these images. However,
these characteristics arc related to the application type
required by the user. The application type determines
the result of manual segmentation which is necessary to
obtain the reference segmentation used when applying
empirical discrepancy methods.
The application type defined in this paper is soil
occupation and use studies. The most frequent regions
in this applications are agricultural fields, bare soil,
pasture areas, urban areas, forests, etc. These regions
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can be described through their homogeneity degree, and
can be classified in homogeneous, heterogeneous, and
extremely heterogeneous (for some sensor parameters).
The next step consists of modelling observations from
each class present in the phantom through a particular
distribution. The spatial correlation between pixels
values is not taken into consideration due to
computational cost. Moreover, the MUM and RWSEG
assume that the pixel values in the image are
uncorrelated. The model proposed (phantom and
statistical data modelling) has three important and
desirable characteristics: representativeness,
controllability and repeatability.
A JERS-1 real image (3 looks amplitude) was used to
attain representativeness in terms of scale, topology and
spatial distribution. A 480x480 pixels subimage, with
the classes of interest, was selected and then its manual
segmentation was performed (see Figure 1-a). To
classify the regions obtained in manual segmentation,
eight distinct classes were defined: three homogeneous
types (light, medium, and dark blue), three
heterogeneous types (yellow, light brown, and dark
brown) and two extremely heterogeneous types (red and
magenta). It is important to point out that the difference
among same homogeneity type class is obtained through
different parameters that characterise the distribution
defined for each class. Each segment present in the
manual segmentation was classified as one of these
class resulting in a classified image (phantom) with 36
segments (Figure 1-b).
The observations from each class were modelled with a
certain distribution, shown in Table2. The µ value
denotes the true mean of the return random variable Z.
After the phantom regions were stochastically modelled,
the 3 and 8 looks simulated images (amplitude format)
were obtained in a number suited for the Monte Carlo
experience. Figure 1 shows the resulting manual
segmentation, the phantom and one resulting 8 look
simulated image.

APPL YING THE SEGMENT ATION ALGORITHMS

The MUM and RWSEG algorithms were applied for the
3 and 8 looks simulated images obtained by simulation.
Each algorithm has specific parameters that must be
selected by the user and they affect the final resulting.
Thus, these specific parameters were selected in order to
obtain a good deal of combinations. and to determine
how the selected parameters affect the final resulting
segmentation. None pre-processing was applied in input
data.
The purpose in this stage is to determine from
qualitative (visual inspection) and quantitative (success
measures) analysis which parameters from each
algorithm give the best 3 and 8 looks simulated image
segmentation and, from these selected parameters,
perform the Monte Carlo experience.

The MUM algorithm was performed using the
parameter i for amplitude data, the parameter /=3 for the
3 looks simulated image and /=8 for the 8 looks
simulated image, and the parameter p with 17 possible
values (I to 17). At the end of this process 34
segmentations were obtained.
The RWSEG algorithm was performed using the
parameter i for amplitude data, the parameter e with
values 1.65, 1.96, 2.33, 2.58, 2.81, 3.09, 3.29, 3.48,
3.72, 3.89, 4.06, 4.27, 4.42, 4.57, 4.77, and 4.91, and the
parameter j with values 0, 2, 4, 6, 8 and 10. The e ( 16
values) andj (6 values) possibles arrangements for each
input data (3 and 8 looks simulated images) resulted in a
total of 192 segmentations.
After qualitative and quantitative analysis of all
obtained segmentations, the best segmentation for each
input data and each algorithm was selected. The best
MUM segmentations were obtained with p=5 for the 3
looks image and p=10 for the 8 looks image. The best
RWSEG segmentations were obtained with e=2.58 and
i= 2 for the 3 looks image and with e=3.29 and j=2 for
the 8 looks image.

MONTE CARLO EXPERIENCE

In order to reduce the influence of a particular image
over the quantitative performance assesment, a Monte
Carlo experience was performed. The Monte Carlo
methodology is based on image replications with the
same statistical properties. After many replication
images, there will be a measures vector set for each
segmentation algorithm, which can be compared
through measure set analysis.
In order to obtain representative results, the replication
number must not be lower than 30. In some reported
experiences in literature concerning this subject (Bustos
and Frery, 1992), thousands of replications are
necessary to obtain acceptable quality levels. However.
due to computational cost required, the methodology
was applied in 30 replications for each input data.
The images were segmented by both algorithms using
the parameters which yielded to the best result for 3 and
8 looks images. Once the segmentations were obtained.
the quantitative success measures were applied for all
the obtained ones.

EXPERIMENT AL RES ULTS

The general means fit obtained for quantitative success
measures applied over the MUM (represented by blue
line) and RWSEG (represented by red line) replication
image segmentations (3 and 8 looks) arc presented in
Figure 2.
The analysis of Figure 2 suggests that, for most of the 3
looks and 8 looks (2/3 of each) replications, the MUM
general mean fit is better than the RWSEG one. Besides
that. the general mean fit obtained for each 8 looks



replication images is better than that obtained for each 3
looks replication images.
In order to summarize the performance for each
algorithm in the Monte Carlo experience through a
single value, the mean and variance of these general
means fit were calculated by computing their obtained
values for all replications of each image set. These
measures were denoted by total mean fit and total
variance fit. The obtained MUM total mean values were
0.82964 and 0,85445 for 3 and 8 looks image set,
respectively. For the RWSEG, 0,820022 and 0,84548
were obtained, for 3 and 8 looks image set, respectively.
The total variances for MUM and RWSEG were
0,000130 and 0,000134 for the 3 looks replications. For
the 8 looks replications, the obtained values were
0,000147 and 0,000127. The comparison between these
total means shows that, for both image sets, the MUM
total mean is better than that of RWSEG at confidence
level of at least 99%.
To compare both algorithms from each success fit

measures, the mean (µ ) and variance (CJ 2
) of each

one was calculated computing the values obtained for
these fit measures for each 3 and 8 looks replication
image. These measures were denoted by global mean fit
and global variance fit. The resulting global mean and
global variance for each fit measure arc shown in Table
3.
From Table 3 values and through Figures 3, 4, 5, and 6,
which show each MUM (represented by blue line) and
RWSEG (represented by red line) fit measures values
obtained for each 3 and 8 looks replication, it is possible
to compare the algorithms from each success fit
measure point of view.
Table 3 analysis shows that, according to position and
shape fit, the global means obtained for MUM are better
than those obtained for RWSEG for both image sets
with confidence level of 999r.. The MUM supremacy in
these cases are shown clearly in Figures 3 and 6
respectively. The size fit global means obtained for both
algorithms arc statistically equal with confidence level
of 95% for both image sets (Figure 5). For the intensity
fit in the 3 looks image set, the RWSEG attained better
global mean than that obtained by MUM, at the 95c;,
level of confidence, but the difference between these
global means is not significant with at the 999r level of
confidence (Figure 4). However. these global means arc
equal for 8 looks image set at the 95% level of
confidence.

CONCLUSIONS

The anaysis of the MUM and RWSEG general means
obtained for each replicated image in Monte Carlo
experience allows to conclude that, for the proposed
image set, the MUM algorithm produces quantitatively
better segmentations than those produced by the
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RWSEG. This result is confirmed when comparing the
total mean obtained for both algorithms.
The MUM is more skillful than RWSEG at producing
segments at the correct position and with the correct
shape. However, both algorithms are equivalent in terms
of size and intensity of the produced segments. Thus,
for the aplication type defined to compare both
algorithms, the MUM is more appropriate to perform
the image segmentations.
The comparison of the quantitative measures and visual
analysis result over the produced segmentations reveals
that even visually different segmentations have very
close quantitative values. However, the quantitative
measures confirm the qualitative analysis results.
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DISTRIB 11 µ 11 a II /3 Jc y f3 A y
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Figure 1 - (a) Manual segmentation, (b) phantom (c) simulated 8 looks image.
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Figure 5 - MUM and RWSEG size fit variation for each 3 and 8 looks replication image.

0.7'.'i

0.7

Shape Fit Variation (Gshape)
(3 looks)

11 D 15 17 19 21 23 25 27 29
Replications

0,75

0.7

t0.65
:3

0.6

11 13 15 17 llJ 21 21 25 27 29

Figure 6 - MUM and RWSEG shape fit variation for each 3 and 8 looks replication image.
Replications



Radar 4
Coordinators: David Fernandes, /TA &

Maurizio Fea, ESA/ESRIN



133
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Abstract. Texture analysis is playing an increasingly
important role in digital image processing techniques to
derive physical information about geologic surfaces and
processes. The use of traditional reconnaissance
mapping tools such as optical remote sensing is severely
constrained in tropical regions by almost permanent
cloud coverage. The use of radar remote sensing is
therefore a preferable means to assess the geology and
structural framework of those areas. This paper
evaluates the potential use of JERS-1 I SAR data to map
a geologically complex region such as the Tapajos
Mineral Province. We employ variogram textural
analysis to automatically identify textural domains that
can be correlated to both Archaean-Proterozoic bedrock
and Quaternary gold-mineralized placers. The
semivariogram classifier proved to be a powerful
feature recognition technique that can be successfully
applied for regional geologic and mineral exploration
studies.

1. Aspectos Gerais
Grande parte da producao de ouro, cassiterita e

diamantes da regiao arnazonica brasileira, venezuelana e
colombiana e oriunda de dep6sitos sedimentares do tipo
placer. Esses dep6sitos possuem ampla distribuicao
areal na superficie terrestre, pois sao formados por
processos superficiais ativos com poder dinamico de
dispersao de seus produtos. Os placers aluvionares
ocorrem geralmente pr6ximos a superficie e, em sua
maioria, de forma inconsolidada, fazendo com que os
custos de pesquisa e exploracao sejam relativamente
reduzidos.

A regiao do Tapajos, situada nos estados do
Amazonas e Para, compreende unidades com idades que
variam desde o Arqueano ate o Cenoz6ico e representa
a mais importante provincia aurifera aluvionar do pais.
Entretanto, o nivel de conhecimento geol6gico
disponivel sobre estes dep6sitos e limitado,
provavelmente devido a pouca en fase dada aos estudos
sobre ambientes supergenicos. Outro fator que impede o
avanco sistematico dos estudos nesta regiao c a
logistica. Problemas tipicos de regioes tropicais. tais
como: a densa cobertura vegetal, a inexistencia de
estradas e acessos, a presenca de estacoes cl irnaticas

bem definidas com periodos chuvosos severos, o
espesso capeamento de solos e o elevado grau de
alteracao internperica das rochas dificultam e encarecem
a realizacao de quaisquer atividades de pesquisa na
regiao.

0 sensoriamento remoto orbital vem sendo
intensamente aplicado ao estudo de recursos naturais.
Os sistemas de sensoriamento remoto imageadores
produzem imagens sin6pticas cobrindo os aspectos
espectrais e texturais da superficie terrestre,
possibilitando desta forma a obtencao de inforrnacoes
sobre a geologia e a geomorfologia das areas
imageadas. Os sistemas imageadores de radar e as
inforrnacoes por eles geradas sac distintas daquelas
adquiridas pelos sistemas sensores convencionais, que
operam na parte optica do espectro eletrornagnetico,
coma o LANOSA T-5 I TM, SPOT I HVR, JERS-1 I
OPS, entre outros. Por se tratar de um sistema ativo, o
radar possui sua pr6pria fonte de energia (iluminacao) e
portanto, opera independentemente da presenca de luz
solar. As radiacoes de microondas emitidas por este
sistema podem ser controladas pela geometria de
aquisicao, 0 que e impossivel para a radiacao solar
utilizada pelos sistemas 6ticos. A faixa das microondas
do espectro eletrornagnetico esta situada em uma janela
de transm issao atrnosferica, o que toma estes sistemas
capazes de operar em condicoes atrnosfericas adversas
(nuvens, precipitacoes pluviometricas, brumas). Outras
caracteristicas dos sistemas de radar incluem: (i) maior
sensibilidade a variacoes de rugosidade superficial
(microtopografia) e da morfologia de superficie
(rnacrotopografia): (ii) maior penetracao na superficie,
especialmente para o JERS-1 I SAR, que apresenta o
maior comprimento de onda (23cm) entre os sistemas de
microondas orbitais em operacao; (iii) sensibilidade a
propriedades eletricas (constante dieletrica dos
materials), relacionadas a umidade e, (iv) possibilidade
de estereoscopia. Essas caracteristicas fazem com que a
utilizacao de sistemas de radar em regioes tropicais seja
altamente benefica. As inforrnacoes observadas nas
imagens SAR estao relacionadas a rugosidade da
superficie (textura ), topografia (estruturas ), condicoes
de um idade e vegetacao.

Este trabalho descreve um metodo para 0

processamento de imagcns de radar direcionado para

Image Processing Techniques l'roccedinvs ofthe 2'"' /.1111no-.·l111crica11Seminar 011Rwlur Remote Sensing held at San10.1-. Sao
!'u11!0, Brazil. 11-12 Se;,1e111her /9'J8 (ESA Sl'-434. October 1998)
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analise e classificacao textural de dominios geologico­
metalogeneticos, atraves de metodos estatisticos de
analise textural por variogramas. A metodologia
aplicada se baseou em tecnicas potencialmente
aplicaveis em atividades de mapeamento geologico e
exploracao mineral em regioes tropicais com intensa
cobertura vegetal, como suporte a trabalhos de pesquisa
basica.

A area de estudo localiza-se no interior da
Provincia Mineral do Tapaj6s (PMT), a oeste da
Reserva Garimpeira do Tapaj6s, na porcao nordeste da
folha Jacareacanga (escala 1:250.000), extremidade
sudoeste do Estado do Para. A mesma contem
aproximadamente 1283 Km2 e esta limitada entre os
paralelos 06°02' e 06°11' de latitude Sul e meridianos
57°14' e 57°37' de longitude Oeste (Figura I).

Os dados utilizados neste trabalho compreendem
(i) imagens de radar JERS-1 I SAR1 (Path 408/Row
311) adquiridas em 22/12/1996, (ii) mapa geologico na
escala de I:250.000 (Pessoa et al. 1977) e (iii) bases
cartograficas do IBGE e DSG nas escalas I:250.000 e
I:100.000. ER Mapper I ER Radar, GSLIB (Deutsch &
Journel, 1992) e USTC (Miranda et al. 1997) foram os
principais programas empregados neste estudo.

2. Aspectos Geologicos
A Provincia Mineral do Tapaj6s esta inserida no

contexto da Plataforma Amazonica (Craton
Amazonico), que atuou como area estavel durante o
desenvolvimento da orogenese Brasiliana, sendo
constituida por um embasamento de rochas magmaticas
e metam6rficas e por uma cobertura sedimentar­
magmatica, Sobre esse embasamento, passaram a se
constituir as coberturas representadas pelas grandes
bacias sedimentares paleozoicas. As coberturas
jurassicas e mais novas transcendem os limites dessas
bacias.

A compartimentacao tectono-estratigrafica regional
da PMT compreende sequencias que vao do Arqueano
ao Faneroz6ico. 0 cenario geologico regional e
composto por: (i) Embasamento Arqueano­
Paleoproterozoico (3, 1 a 1,9 Ga); (ii) Magmatismo
acido a intermediario Mesoproterozoico ( 1,7 a 1,5 Ga);
(iii) Coberturas sedimentares Proterozoicas e
Magmatismo basico Mesoproterozoico ( 1,6 a 1,5 Ga);
(iv) Magmatismo basico Meso/Neoproterozoico ( 1,0
Ga); (v) Coberturas Sedimentares Fanerozoicas (<600
Ma) e (vi) Coberturas sedimentares e lateriticas
Cenozoicas (<65 Ma), (SUDAM-GEOMITEC, 1972,
1976; Pessoa et al. 1977; Bizinella et al. 1980; Faraco et

1 0 JERS-1 I SAR e um sistema de radar de abertura sintetica que
opera na banda L (A - 23,5 cm - 1275 MHz). com polarizacao paralela
HH e angulo de incidencia de 35" 21 '. Os dados SAR foram obtidos
com o nivel de processamento 2.1 - NASDA Standard Process (i.e.
Reamostragem a partir do sistema de projecao UTM). A ilurninacao
do SAR possui direcao de leste para oeste.

al. 1996; Klein et al. 1997, Coutinho et al. 1997, entre
outros).

A geologia da area de estudo, representada na
Figura 2, compreende as litologias pertencentes a Suite
Metarnorfica Cuiu-Cuiu, Suite lntrusiva Parauari, Suite
Intrusiva Maloquinha, Granito Cumaru e os depositos
quaternarios auriferos subrecentes e recentes.

3. Analise Textural por Yariogramas

As imagens de sensoriamento remoto apresentam
propriedades espaciais distintas que se quantificadas
podem ser utilizadas em diversas aplicacoes no estudo
de recursos naturais (e.g., Curlander, 1984; Farr, 1984;
Haralick et al. 1973; Rubin, 1989). A tecnica de analise
textural por variogramas e indicada para a analise de
todos os fenomenos observaveis em imagens de
sensoriamento remoto pois esta se baseia nas
caracteristicas espaciars da populacao amostral,
fundamentada na teoria das variaveis regionalizadas
(Matheron, 1963). Em termos praticos, o variograma e
uma funcao geoestatistica simetrica no espaco, o qua!
possibilita o estudo da dispersao natural das variaves
regionalizadas em funcao de um espaco e direcao
amostral. Uma variacao da funcao semi-variograma
tradicional proposta inicialmente por Matheron (op.
cit.), denominada funcao semi-variograma circular
(Miranda et al., 1997), foi utilizada nos procedimentos
de variografia utilizados (Equacao 1).

onde:

* Y<xO~hJ representa a funcao semi-variograma em um
pixel localizado em Xoe passo radial h.
* DN(Xo+r) representa o valor do nivel de cinza em um
paSSOcom distancia radial r a partir de Xo (raio h, angulo
9).

* µ1i(x0) representa o valor medio de uma vizinhanca
circular de raio H e centro x0.
* H representa o maximo numero de passos (lag
distance) necessario para a descricao do dado.
* n representa o nurnero de pixels da vizinhanca em
uma distancia h radial.

A metodologia utilizada no processamento digital
das imagens de radar consiste basicamente de uma fase
de pre-processamento e outra de processamento,
conforme ilustra o fluxograma da Figura 3. A fase de
pre-processamento dos dados SAR envolve os
procedimentos de correcao radiometrica (ruido speckle)
(Pedroso et al. 1997), correcao geometrica, segrnentacao
por textura e sub-amostragem. Esta etapa precede a
aquela de classificacao textural propriamente dita. A



segrnentacao por textura constitui em uma etapa de
fundamental importancia na caracterizacao
geoestatistica dos dominios texturais investigados.
Nesta fase, os dominios texturais sao analisados
qualitativa e quantitativamente atraves da analise de
variabilidade realizada mediante as rotinas do GSLIB
(Deutsch & Joumel, 1989). A classificacao textural por
variogramas foi empregada na imagem JERS - I I SAR
subamostrada em 25% (592 x 942 pixels), apresentando
celula de resolucao de aproximadamente 50 metros.
Nesta etapa, o semi-variograma medic de uma
determinada classe textural foi obtido a partir de semi­
variogramas omnidirecionais. Estes foram calculados
em tres areas de treinamento localizadas em posicoes
distintas onde esta determinada classe ocorre na
imagem.

Posteriormente, os semi-variogramas
omnidirecionais medios das classes texturais estudadas
foram plotados em um unico grafico, o qual expressa a
assinatura geoestatistica dos dominios texturais
investigados (Figura 5). Desta forma, a analise do
comportamento das curvas nos diferentes passos
possibilita a determinacao dos valores de passos que
melhor distinguem as classes texturais investigadas.
Esta etapa assume um importante papel no processo de
classificacao textural, pois as imagens relativas aos
passos selecionados servirao de dados de entrada para o
metodo de classificacao nao-supervisionada ISOCLASS
(ISODATA) posteriormente utilizado.

A determinacao dos dominios texturais baseia-se
em dados obtidos a partir da analise das imagens de
radar, mapa geol6gico e informacoes de trabalhos de
campo. As classes em questao estao representadas na
Figura 4, sendo Classe 0 I - Area de influencia da Suite
lntrusiva Maloquinha (PMm), representada por uma
textura suavizada e arredondada, tipica de terrenos
graniticos; Classe 02 - Area de influencia da Suite
Metam6rfica Cuiu-Cuiu (Ace), com rugosidade media,
representante do embasamento Arqueano da Provincia;
Classe 03 Area de influencia dos placers
mineralizados em Au (Garimpo de Porto Rico),
evidenciada por uma textura plana (terraces), com as
drenagens bastante dissecadas devido a atividade
antr6pica da explota9ao mineral desenvolvida na regiao;
Classe 04 - Area de influencia do Granito Cumaru
(PMc), marcada por uma textura com rugosidade
grosseira, caracterizada por um relevo mais acidentado
que os adjacentes, representado por areas com areas de
sombras periodicas, delimitando as cristas do relevo
granitico; Classe 05 - Area de influencia dos Aluvioes
Recentes (Qr), representada por uma textura granular
bastante fina e homogenea e Classe 06 - Area de
influencia do Rio Tapaj6s (agua), representada por uma
textura escura (muito baixo valor de ON), consequencia
da reflexao essencialmente especular, tipica da agua.
delimitando as cristas do relevo granitico; Classe 05 -
Area de influencia dos Aluvioes Recentes (Qr),
representada por uma textura granular bastante fina e
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homogenea e Classe 06 - Area de influencia do Rio
Tapaj6s (agua), representada por uma textura escura
(muito baixo valor de ON), consequencia da reflexao
essencialmente especular, tipica da agua.

Na analise variografica, o valor do patamar
depende exclusivamente da variabilidade estatistica do
dado, enquanto que o valor do alcance esta relacionado
a continuidade espacial do mesmo. No entanto, a
assinatura geoestatistica, particular para cada dominio
textural investigado, caracteriza-se nao so pelos valores
de variancia e continuidade da populacao, mas
principalmente pelo comportamento da funcao semi­
variograma nos passos considerados. A analise
pormenorizada do comportamento da funcao semi­
variograma e a deterrninacao dos passos 6timos a
diferenciacao das classes investigadas antecedem os
processos de classificacao textural por variogramas.

0 primeiro passo dos semi-variogramas mostra um
grau de separabilidade bastante incipiente entre as
classes estudadas. Observa-se porem que as classes
representadas em vermelho (Suite lntrusiva
Maloquinha) e em amarelo (Aluvioes Recentes) silo
coincidentes. 0 mesmo acontece entre as classes Suite
Metam6rfica Cuiu-Cuiu (magenta) e Granito Cumaru
(laranja), que apresentam um valor de semi-variancia
bastante semelhante. A titulo de ilustracao, o passo 2
pode ser utilizado na diferenciacao entre as classes I e
3; 2 e 3 e 4 e 5, ao passo que as classes 2 e 4 e 5 e 6
apresentam variancias semelhantes, fazendo com que
este valor de Lag Distance nao seja diagn6stico para a
discrim inacao entre estas ultimas classes. No passo 5,
apenas as classes I e 5 podem ser discriminadas entre si
ou em relacao as classes 2,3,4 e 6 que apresentam
val ores de variancia semelhantes. No passo I0, observa­
se tres familias de classes texturais que podem ser
discriminadas, sendo estas as classes I; 5; 6 e 2,3,4. Os
passos que melhor distinguem os dominios texturais em
investigacao foram entao utilizados como bandas de
entrada para a classificacao nao-supervisionada. Ap6s a
obtencao do produto da classificacao, esta analise
interpretativa dos passos pode tambem auxiliar
vantajosamente as etapas de edicao e atribuicao de cores
as classes estudadas.

E: importante ressaltar que, devido a complexidade
do processo, o resultado final nao apresenta dom inios
texturais compostos de uma unica cor, mas sim de
arranjos de cores. A superposicao da geologia da area
nos mapas tematicos gerados a partir dos processos de
classificacao mostra que os dominios texturais
apresentam um padrao de cornposicao e disposicao de
cores bastante particular.

A Figura 6 corresponde ao mapa tematico obtido
atraves da classificacao textural gerada pelo algoritmo
ISOCLASS. A classificacao produzida a partir dos
canais texturais calculados das imagens JERS-1 I SAR
sub-amostrada e filtrada, pelo algoritmo USTC,
caracterizou as classes texturais de forma eficaz.
Comparando o mapa ternatico da Figura 6 com a
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geologia da area de estudo (Figura 2), observa-se que as
areas de a, b, c, d, e e f (correspondentes as classes aqui
consideradas) apresentam uma boa correlacao com as
unidades litol6gicas e regi5es mineralizadas.

As areas g e h, nao diretamente estudadas neste
trabalho, apresentaram uma assinatura textural
semelhante a observada em c (terracos mineralizados
em ouro ). Tai coincidencia corrobora a eficiencia do
metodo no reconhecimento de feicoes texturais de
interesse, visto que g e h representam depositos
secundarios, do tipo placers auriferos, atualmente em
exploracao (garirnpos Sao Jose e das Tropas,
respectivamente). Partindo desta premissa, i consiste em
uma area interessante para uma verificacao detalhada
visto a sua sernelhanca textural com as areas
mineralizadas supracitadas.

Observa-se ainda na Figura 6 a homogeneidade da
classe 05 (aluvioes recentes), representada em fpela cor
azul. A separacao inequivoca desta classe e importante,
principalmente pelo fato de que estes aluvi5es tambem
hospedam mineralizacoes de ouro.

4. Conclus5es

A analise dos resultados obtidos permite afirmar
que os dominios texturais estudados possuem
assinaturas geoestatisticas particulares (semivariogram
signatures). As etapas de pre-processamento dos dados
SAR sao indispensaveis para o sucesso das etapas
posteriores de classificacao textural por variogramas.
No pre-processamanto, destaca-se aqui a importancia da
(i) supressao do speckle, 0 qua!, se nao atenuado, e
capaz de mascarar as propriedades texturais presentes
nas imagens; e (ii) a subamostragem da cena, que
permite uma caracterizacao variografica aprimorada da
classe textural que se pretende quantificar.

A classificacao textural por variogramas consiste
em um metodo eficaz na caracterizacao espacial das
feicoes geologicas estudadas. As classes texturais 0 I, 03
e 05, representadas respectivamente pela Suite Intrusiva
Maloquinha, Placers Mineralizados e Aluvi5es
Recentes, foram discriminadas satisfatoriamente.

Estudos mais abrangentes do que o aqui reportado
demonstram ainda que 0 metodo de classificacao
textural por variogramas tern uma excelente
aplicabilidade no reconhecimento e caracterizacao de
feicoes relacionadas a recursos naturais.
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ABSTRACT

This paper presents a system for the statistical
classification of multilook polarimctric SAR images.
The methods used are the pointwise Maximum
Likelihood (ML), as initial solution. and the contextual
ICM (/terared Conditional Modes) algorithm. The
multilook SAR data arc modelled from the multivariate
complex Wishart distribution. and the densities for
several important transformations are derived. The
system is user-friendly, since it is based upon interactive
graphic user interfaces. With this approach, the
statistical modelling is hidden to the user. Examples of
classifications of SIR-C/X-SAR images is presented.

INTRODUCTION

The intensification of remote sensing studies in the field
of Synthetic Aperture Radar (SAR) imaging sensors is
leading towards a better understanding of the scattering
mechanisms of terrestrial targets in the microwaves
spectrum. Besides this. it has led to more dependable
applications of SAR imagery and products to geology.
cartography. and other fields of knowledge.
One of the most useful products of digital images is the
result of automatic or semiautomatic data classification.
This product is becoming more and more precise since
the Gaussian hypothesis was weakened, and since better
suited distributions were incorporated into the process
(Nczry et al., 1996: Frery ct al., I997a).
In Vieira ( 1996) this improvement becomes evident: it
is shown that the simultaneous use of proper distribution
for each class, along with contextual information, leads
to better classifications than those obtained either by
Gaussian fitting and/or pointwise classification. On the
other hand, the use of single-band SAR data has its
limitations.

The number of studies and applications involving
polarimctric SAR data is increasing steadily. These data
arc formed by sending and receiving the
electromagnetic signal in both horizontal and vertical
polarisation and, thus. they may carry a larger amount
of information than that available from a single band.
Though there is currently no sensor operating in
different bands and polarisations, studies in this area arc
useful.
Several works arc devoted to the statistical
characterisation of single-look polarirnetric SAR data.
The reader is referred to DeGrandi et al. (1992), Kong.
(1988), Lim ct al. (1989), Quegan and Rhodes (1995),
Yueh et al. (1989), to name a few.
The potential of multi look polarirnctric data, where each
value is the mean over several observations, is notorious
as presented in Lee and Grunes ( 1994) and in Lee et al.
( 1995), for instance. The statistical properties of this
kind of data have not been fully exploited yet. They
have the advantage of exhibiting a speckle noise
reduction as well as data reduction.
A system for rnultilook polarirnctric SAR image
classification was developed. in order to assess the
potential of this kind of data. It is strongly based on the
statistical properties of the data, and it uses a ML
classification as the initial configuration for a contextual
Markovian classification technique: the ICM. presented
in Vieira ( 1996). In this work an extension of this
system is presented. which allows the analysis of
intensity, phase difference, ratio of intensities and
intensity-phase data. These data formats arc derived
from multilook polarimctric SAR imagery, and their
distributional properties arc here recalled. The system if
based on graphic user interfaces, and was developed as
an extension of the ENVI image processing system.

Image Processing Techniques l'roceedings of' the 2'"1 lntmo-Amcric.m Sc111i11ar011Hadar Rcmou: Sensing held at Sa111os.Sao
Paulo. Brazil. 11-12 September /998 (LS;\ Sl'-434. October 1998)
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POLARIMETRIC SAR SYSTEMS

Conventional SAR systems operate in a single
frequency, with a single antenna of fixed polarisation
for both the transmitted and received signals. Either the
intensity or the amplitude of the returned signal is
recorded and, as a consequence, any information carried
in the phase of the complex electromagnetic signal is
lost.
When polarimetric SAR sensors are used, the full
complex signal is recorded and, thus, the return in all
the configurations (HH, HY, VH and VY) are fully
recorded (intensities and relative phases). In order to
accomplish this for every resolution cell the complex
scattering matrix, denoted as

S = ( Svv SVfl : ( l)
Sf/V Sflfl

is measured. Subscripts p, q E {H, V} denote the
transmission and emission components of the signal,
respectively, and elements SP'I are called complex

scattering amplitude. Sarabandi ( 1992) shows that

S = 1s !eilJJr'I = ../(:.lsn [,,i¢;,, (2)
pq pq L pq I

n=I

where N is the number of scatterers of each resolution

element, each having amplitude ls;ql and phase </J;q.
Other ways of representing polarimetric data are the
Stokes matrix, the modified Stokes matrix, the
covariance matrix and the Mueller matrix (Ulaby and
Elachi, 1990).

STATISTICAL PROPERTIES OF POLARIMETRIC
SAR DATA

Data obtained with coherent illumination, as is the case
of SAR data, are corrupted by a signal-dependent noise
called speckle. A usual model for the signal and this
noise is the Multiplicative Model. It states that, under
certain conditions (Tur et al., 1982) the observed value
in every pixel is the outcome of the random variable
Z = XY , where X is the random variable that models
the backscatter and Y is the one that models the speckle
noise, and these last two are independent.
Statistical models for multilook polarimetric data are
derived from the covariance matrix, which exhibits a
complex Wishart distribution (Lee and Grunes, 1992;
Du and Lee, 1996).
Ulaby and Elachy ( 1990) show that, for satellites that
transmit and receive through the same antenna (which is
the usual case), it is possible to suppose that
SflV = SvH . Therefore, the matrix presented in eq. (I)
can be reduced, without loss of information to

(3)

where S;, I~ i< 3 denotes SHH , SHV and Svv in any
convenient order.
When the number of elementary backscatterers (denoted
N in eq. (2)) is very large, it can be assumed that the
vector Z in eq. (3) obeys a multivariate complex
Gaussian distribution (Goodman, 1963). This is true if
the backscatter X is constant, independently of the
imaged area, since the speckle Y is assumed to obey a
multivariate complex Gaussian law.
In this work multilook data are considered and, in order
to derive their distributional properties, vector Z in
eq. (3) will be, thus, considered the k -th single-look
observation and denoted Z(k). A fixed number, 11, of

independent outcomes of Z are averaged to form the 11-

looks covariance matrix, given by (Lee et al., 1995).

z<n>=_!_ iz(k)Z*(k)T (4)
n k=I

where Z* (k)T denotes the transposed conjugate Of

Z(k).
The advantage of working with the covariance matrix,

defined as A= nz(n), is that it exhibits a multivariate
complex Wishart distribution (Srivastava, 1963). Its
density is given by

11n1 l(n-q) [ T(C-1 )]n z exp -n r z
pz,,,,(z)= I 111

K(n,q)C
(5)

where q denotes the dimension of the vector Z,

K(n,q) =Tr l/ (q -l)i2r(n) ···f'(n -q +I), Tr denotes
T

the trace of the matrix, C = E[ZZ' ] , and I" is the
Euler Gamma function (DeGroot, 1968).
Using eq. (5) it is possible to derive the densities for
situations of particular interest, as presented in Lee et al.
( 1995). The following situations were implemented in
the system here considered: a pair of intensities, phase
difference, ratio of intensities and pair intensity-phase.

THE SYSTEM

The system behaves as an extension of the ENVI v. 2.5
(Environment for Visualisation of Images) system, and
it uses its functions and others from IDL (Interactive
Data Language). In this manner, several functions such
as those for data management, processing and analysis
were reused.
Both classifications implemented are supervised and.
thus, require the specification of training sets for
parameter estimation. These sets are informed through
regions of interest, previously defined by the used with



ENVI utilities. The equivalent number of looks (11 in
eqs. (4) and (5)) is also an input parameter; it can be
estimated within the system as presented in Vieira
(1996).
The ICM classification method is a contextual
procedure that, in order to classify every pixel, uses
both the observed value in the corresponding coordinate
and the classification of the surrounding sites. In order
to incorporate this context within a statistical
framework, a Markovian model is incorporated for the
classes. This model is known in the literature as Potts­
Strauss (Frcry et al. l997b; Vieira, 1996; Vieira ct al.
1997).
The system here presented uses an inference technique
called pseudolikelihood, in order to estimate the
required parameters of the Markovian model without
the need of intervention of the user. Details are available
in Vieira ( 1996), Vieira et al. ( 1997) and in Frery ct al.
( l 997b). The current implementation uses any existing
classification as starting point, being the ML the
preferred one.
The following subsections describe the functionality of
the system, in every case for 11 looks intensity data. The
densities and parameter estimators are presented in Lee
ct al. (1994).

ICM INTENSITY BIVARIATE SAR
This option applies the ML and ICM classifications to a
pair of intensity images, either two polarimctric
components or the result of two passages of the same
monospcctral sensor (such as JERS-1, ERS-1, etc.).
After the input of the initial data the interface shown in
Figure 1 is presented. It exhibits the 2-D histogram of
the pair of bands, along with the 2-D estimated density,
both in perspective and in contour plot. The estimated
parameters arc presented at the bottom of the plots.
As every interface presented in this work, that presented
in Figure 1 is fully interactive with the user. The user
can specify the interval the plots will he drawn, any
desirable rotation, the number of levels to he used, etc.
This feature greatly stimulates the interaction of the user
with the data. The input values affect all the sub­
windows, since they arc connected in order to help the
visualisation.
This interface has to he used for every class of interest.
Once this is performed, the ML classification is
performed, and the interface shown in Figure 2 is
presented to the user. The user can interactively choose
the classes for which the estimated densities arc
presented (in perspective and in isolincs). The user can
specify the viewpoint and number of slices. Each class
is associated to a unique colour.
The ML classification is produced, and used as initial
configuration by the ICM algorithm. This iterative
technique stops according to the number of coordinates
whose classification changes from one iteration to the
next (Vieira, 1996).
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Denoting as R1 ,R2 the pair of intensities, their joint
density under the model characterised by eq. (5) is

r ( R, R, )
""'(RR) ' l 11~+!(,n 1 , • exp - ,

. 1-lpJ

p(R,.R,) = 0·1

(H,,H22)--,r(ll)(l-IPl2llPJI

where H 11 = E[R1 ] H 22 = E[R2], I
11_1and

denotes the modified Bessel function of order n - I ,
and

P, E[s,s;] = IP,ie;e
E[isJ JE[lsJ J

The parameter Ip, I can he estimated by

p = E[(R1-= R1 )(R2 - R2)]

~E[(R1 -R1)2]E[(R2 -R2)2]

where R, and R
2

denote the mean of R 1 and R2

respectively.

where 9\ and :3 denote, respectively, real and
imaginary parts.
After the required parameters have been introduced,
Figure 3 is presented, with the histogram of the data, the
fitted density and estimated phase difference
parameters. When every class has been checked with
this interface, Figure 4 is shown. This interface presents
the estimated densities of the phase difference for every
considered class, allowing the visual assessment of their
separability throughout this feature.
The density of the quantity defined above, under the
aforementioned model, is given by

<nl l(n+l/2)(1-lpJ)"/3
fJ'J' (ljl)= r: +2-vn l(n)(I - 132 )11+112

I I -12 ) II( - p, F(n,l;l/2;/32)
2n

where -Jr<ljl5.Jr, /3=lp,lcos(ljl-8), e is the
phase of the complex coefficient of correlation and

F(n,l;l/2;/32)=2F1(n,l;l/2;/32) is the Gaussian
hypcrgcomctric function (Abramowitz and Stcgun,
1964).
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ICM PHASE DIFFERENCE SAR

This option applies the ML and ICM classifications to
IP, the difference between the phases of two complex
images. These images are derived from two components
S; (k) and Sj(k) of single-look images (eq. (2)) in the

following manner:

ICM RATIO OF INTENSITIES

Both the ML and ICM classification are obtained,
derived from the ratio between two multilook intensity
bands, i.e., using data of the form R; / R j •

Analogously to the previous situation, namely for the
classification using phase difference, after the required
inputs the histogram, fitted densities and estimated
parameters are shown for every class. Once the fittings
have been checked for every class, the whole set of
fitted densities is shown.
The density that characterises this data is

,, T"" 2 I
12

)" n-1(nJ T i(n)(l-p, (r+w)w
p (w) = ?

i(n)i(n)[(r+ w)2 -4r IP,l-w](2n+IJ/2

where t = H 11 I H 22 and w = R1 / R2 •

INTENSITY AND PHASE ICM SAR

This option calculates both the ML and ICM
classification, using a multilook intensity image R; and

a phase difference IP. The input data for this processing
are two multilook bands R; and Ri , and the

corresponding multilook complex image R;j"l (see

eq. (6)).
The rest of the process is as presented in previous
sections, namely for classification using a pair of
intensities.
In order to derive the joint density of R1 and IP,
intensity and phase difference data obtained from two
components S; and Si of the scattering matrix,

consider the image

The joint density of B1 and IP is given by

where / F1 is the Confluent hypergeometric function
(Abramowitz and Stegun, 1964).

EXPERIMENT AL RES ULTS

In Correia (1998) applications of all the aforementioned
classifications are presented, aiming at the assessment
of the feasibility of the proposed system and
methodology.
The results here presented are obtained using a space
shuttle SIR-C/X-SAR image, bands L and C, type MLC
(Multi-Look Complex), with 4. 7854018 as its nominal
number of looks. Its pixel spacing is of 12.5x12.5
meters. It was obtained the 14thof April, 1996, over the
region of Petrolina, PE, Brazil, an agricultural area
exhibiting several crops. The image has 407x370 pixels,
and was taken at 09°07' S, 40°18' W.
The classes of interest for this study are river (blue),
caatinga (green), prepared soil (red), soy (magenta),
tillage (cyan) and corn (yellow). Samples of each class
were obtained, of sizes 4949, 5177, 3221, 2609, 635 and
3505, respectively.
Figure 5 shows two colour composites of the original
data. To the right, C-band data is shown with the HH
polarisation in the red channel, the HY in the green and
the VV in the blue. To the left, L-band with the same
colour coding.
The equivalent number of looks (ENL) was estimated as
2.97479. This value is the mean of the ENLs for each
component, as presented in Table I. As expected, this
value is below the nominal number of looks due to,
among other factors, the lack of independence between
individual elements in eq. (3).

TABLE I - ESTIMATED ENLs FOR ALL THE
AVAILABLE BANDS AND POLARISATION,
AND OVERALL MEAN

Band

Polarisation L c
HH 2.6688 2.67133

HV 3.18357 2.97230

vv 3.53396 2.81879
Mean 2.97479

Large samples were collected over homogeneous areas,
in order to be able to apply a decorrelation algorithm.
This method first estimates the autocorrelation function,



in order to define the most suited lags for subsampling
in both horizontal and vertical directions. All samples

passed the X2 goodness of fit test at the 1% level of
significance, revealing no significant departure from the
hypothesised distribution.
All four types of classifications were obtained, and the
best one, for both L and C bands, was obtained when
two intensity images were used. In particular, the pairs
HV-VV and HH-HV were the most successful in bands
L and C, respectively, for either ML or ICM
classifications.
The comparison among classifications was performed
using the coefficient of agreement K, in order to assess
quantitatively the significance of the differences. Using
this criterion, for the considered image it was possible to
conclude that
I. In band L, with intensity pair HV-VV, the ML

(ICM, respectively) classification performed, in
mean, 111.09% (67.22%, resp.) better than the
other classifications.

2. In band C, with the intensity pair HH-HV, the ML
(ICM, resp.) classification performed, in mean,
246.95% (180.04%, resp.) better than the other
classifications.

Table 2 presents the estimated coefficients of agreement
(I() and their sample variances (a:) for the best
classifications obtained using band C and L intensity
pairs, and both ML and ICM algorithms. The sample
sizes used to calculate the values presented in Table 2
are 3844 (river), 3585 (caatinga), 2101 (prepared soil),
2128 (soy), 360 (tillage) and 1946 (corn).
In this way, it can be concluded that, for the current
SIR-C image in intensity pairs:
1. The ICM applied to the L band yields to results

28. 14% better than the ML, both using the HV-VV
components.

2. The ICM applied to the C band yields to results
20.38% better than the ML, both using the HH-HV
components.

TABLE 2 - ESTIMATED COEFRCIENTS OF
AGREEMENT ( K ) AND THEIR SAMPLE

VARIANCE (a; ) FOR ALL THE INTENSITY
PAIRS CLASSIFICATIONS.

Image R a; (x 10-5)

ML/L-HV-VV 0.606424 2.35719

ML/C-HH-HV 0.575344 2.50954

ICM/L-HV-VV 0.777114 1.64955

ICM/C-HH-HV 0.692635 2.10982

Figure 6 shows the best results of the ML classifications
for the L (left) and C (right) bands data, when using two
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intensity images. Figure 7 shows the best results of the
ICM classifications, when using the same bands data.
From these figures and from Table 2 it is possible to
conclude that the ICM classification scheme is superior
to the ML.

CONCLUSIONS

In this paper a system for pointwise and contextual
polarimetric multilook SAR image classification was
presented. It functions as and add-in to the ENVI
system, and it was developed in IDL. The system was
built with the interactivity and user-friendliness in mind.
It is also goal-driven, so users not familiar to it can learn
it easily.
The system proved being efficient for the classification
of a SIR-C/X-SAR image, though the modelling of data
from all the observed classes was restricted, in the sense
that only a model for homogeneous areas was
considered.
According to Landis and Koch ( 1977), the
classifications obtained with this system qualify as
"very good", using the coefficient of agreement K as a
measure of quality.
For the considered data, the use of contextual
information (incorporated through the ICM
classification algorithm) yields to a significant
classification improvement, of the order of 24%. This
improvement is not so dramatic as those obtained for
single band amplitude data (Vieira, 1996), which is a
somewhat expected result due to the larger amount of
information potentially present in polarimetric data sets.
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Fig. 5 - Colour compositions (original data) R-HH, G-HY. B-VV, bands L (I) with training sets and C (r) with test sets.

Fig. 6 - ML classifications of the L (I, using HY and VV components) and C (r, HH and HY components) data sets .
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Abstract. A texture feature extraction method using
autorregressive modeling is presented and used for rain
forest classification. The method was tested using a
JERS-1 (L band) SAR image from "Floresta Nacional
do Tapajos", Para State. Brazil. The identified classes
were Dense Primary Forest and Undulate Primary
Forest. A Landsat TM color composition and field data
from the same area was used as reference. A set of
tiltcred (using inverse autorregressive filters) bands .
.ibtamed from the original SAR image, was used to
lassify a scene composed by typical samples of primary
iorcsts. The results were analyzed using the confusion
.iatrix, and showed a Kappa coefficient of 96.1 %.
·•stead of a Kappa of 36. 1 % using the original channel
I\

lntroduction
: _xturc, as is widely known, is a key feature to use
> \R imagery for digital classification purposes. Several
1; icthods have been presented in the literature with
lunited success. In this text we present a methodology
based on two-dimensional autorregressive modeling for
Lexture feature extraction and classification of primary
forest classes as observed in JERS-1 imagery.

2 Autorregressive Models.
The Autorregressive (AR) models are a particular case
of the Autorregressive and Moving Average models.
(ARMA) which assume time series as being generated
bv a linear filter (figure 2. 1) excited by a white noise.
The input of this filter. called shocks, is a time
sequence of independent random variables. identically
distributed with null average and variance a:. IID(O.
0\

White Noiseta.) ~ I LINEAR I ~ Time Series (Z)
FILTER

Figure 2.1 - Time serie /1 as output of linear filter.
excited by white noise a,

The ARMA filter can be described as a weighted
addition of observation and previous inputs - the so
called difference equation. This addition, with finite or
infinite number of coefficients. will be convergent for

stationary processes. and the filter will be stable. The
ARMA model is described by the equation 2. 1 (Marple.
1988)

p q

z, = L¢1.l1, - I01.a1, +JI
kcl k..oO

(2 la)

or
z;=¢1l;1+ +i/Jp.z;p+a,-{}l.at I- .-Oqat q (2.lb)

where: Z-1 Z1 - µ

The coefficients </J, are the autorregressive parameters
and 0,. the moving average. This is the ARMA(p. q)
model. of order p and q, where O(J = -1. without loss of
generality.

From equations 2. la and 2. lb. the purely
autorregrcssive model (q=O) can be stated as below

p

Z1=L¢1Z1k+a1+µ
k 1

(2 2a)

z; =¢1z;_1 + ...+¢pz; p +a1 (2 2b)

where, again. z*I Z1 - µ

The parameters </J,. in the equations 2.2a and 2.2b. can
be estimated by the Yule-Walker equations. using the
recursive Levinson-Durbin algorithm. as described in
Kay ( 1988). pages 170 and 171.

Extension of the AR model for the two-dimensional
case is straightforward and estimation of model
parameters for the quarter plane support is easily
obtained. (Maple. 1998) Herc an alternative method is
used. where two-dimensional samples of image classes
are transformed into one-dimensional time series by
concatenating segments of line. Then autorregressive
parameters arc estimated for this one dimensional time
series of concatenated segments. The concatenation
operation of line segments generates a mapping that
later will be used to re-map the estimated coefficients
back to the plane. establishing. this way. the two­
dimensional autorregressive model (AR-2D) (Dutra.
1990)

3 Methodology
The methodology for textural feature extraction and
classification is summarized by the following steps

Image Processing Techniques Proceedings of the 2'"1 l.atino-American Seminar 011 Radar Remote Sensing held at Santos, Sao
Paulo, Brazil, I!-/ 2 September I 998 (ES/\ SP-434, October 1998).
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(Soares, 1998):

- Stage I: Autorregressive model estimation.

An AR2D model is fitted for each textural class of
interest (section 2) . In this work rectangular areas were
used for data collection and were also used for training
the classifier in a later stage.

- Stage 2: Definition of Autorregressive Inverse Filters

Parameters that are within confidence levels for the
null hypothesis (Brockwell & Davis, 1987, pages 231-
238) are excluded from the models of each class. This
will define a finite length two-dimensional filter that is
matched to each texture. From equation 2.2 at can be
obtained relative to each estimated texture class filter.
These are called inverse filters because they estimate
the shocks that gave origin to each texture field, as
depicted in figure 2.1.
- Stage 3: Inverse AR Filtering, Whitenning and
Energy
Matched inverse autorregressive filters, relative to each
class, are applied sequentially to the original image.
When a region is filtered by its matched correspondent
filter, the resulting field is expected to yield minimum
energy (eq. 3.2) when compared all other non matched
filters. This field will also be an approximately white
noise field. To measure the whitening of the output of
the inverse filters the following operator, who acts in a
neighborhood of a point of coordinate l=(i,j), is defined:

b = L (xm.-x)(xmn"1-X)+ ± (xm.-x).(xm"l,n-x) (3.1)
1

m,nE1'. #ff' m,nE1'. #fV

where bi. is the whitening coefficient that will substitute
the central pixel of a window W; #W is the cardinality
of the window. bL is the addition of the autocorrelations
of lag 1, and presents values next to zero for white
noise random fields. The energy filter is given by:

FEn(i,j) =
#W

rn.n~W (3.2)

where Xm,n is the value of the pixel in position (m, n)

As a result a set of M bands of filtered images, where
M is equal of number of classes multiplied by three, are
obtained form the original image:
- The raw output of the inverse filters.
- The whitening coefficient calculated from the outputs
of the inverse filters.
-The energy bands. also calculated from the outputs of
the inverse filters.

- Stage 4: Classification of Maximum Likelihood
The set of filtered bands of the original image is then
classified by the Maximum Likelihood classifier with

the same training samples that had generated the AR
parameters (Soares. 1998).

4 Results
To test the method, a mosaic of JERS-1 sub-images
containing representative textures of two types of
forests: dense flat forest and undulated (dissected)
forest was chosen. The mosaic, shown in figure 4.1, is
relative to the National Forest of the Tapaj6s, in the
State of Para. Brazil.

Figure 4. 1 - Mosaic of JERS-1 images with dense flat
forest (right) and undulated forest (left) - National
Forest of the Tapajos, Para, Brazil.

On the mosaic, samples of each class, as in figure 4.2,
have been collected.

Figure 4.2 - Samples of two Classes of Forests.

Applying the maximum likelihood classification (mlc),
in the six band set, the result of figure 4.3 was
produced.

Figure 4.3 - Classification on the set of all the bands



generated in the stage-I.

A confusion matrix for this classification. produced
using test samples. in shown in table 4.1 •

Table 4.1 - Confusion Matrix of the Maximum
Likelihood Classification of all six bands generated in
stage-I.

Classes Non Dense Undulated L:
/Classificat Classified Forest Forest

ion
Non O I 0% o Io<% o I 0% ()

Classified
Dense O I 0% 35655 I 633 In;,, 36288

98%
Undulated 0 /0% 789 I 34691 I 36480

2%, 98%
L: () 36444 36424 72768

Kappa: O"k2 .

0.960917 L05332E-
06

For comparison. the Maximum Likelihood
Classification using only the original channel is
presented in figure 4.4.

Figure 44 - Original JERS-1 Mosaic. with Maximum
Likelihood Classification.

The same test samples used in table 4.1 were used to
calculate the confusion matrix as shown in table 4.2.

Table 4.2 - Confusion Matrix for the Classification
based on the original JERS-1 Mosaic.

Classes Non Flat Undulated L:
/Classificat Classified Forest Forest

ion
Non 0/0% O I 0% 0/0% ()

Classified
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Dense 0 I 0°;(, 30943 I 5345 I 36288
8YX, 15%

Undulated 0 I 0% 17723 I 18757 I 36480
49% 51%

L: () 48666 24102 72768

Kappa '(h-
0.366549 2.6728E-

05

5 Conclusion.
The proposed methodology for texture feature
extraction showed good potential for JERS-1 texture
discrimination. and the authors will continue the
studies. examining the applicability for other types of
textures and sensors.
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Abstract

A couple of supervised classifiers to segment optical
multispectral images and textured radar images have
been developed. In both classifiers, an automated
region-growing algorithm delineates the training sets.
Optimum statistics for defined classes are derived from
the training sets. This algorithm handles three
parameters: an initial pixel seed, a window and a
threshold for each class. A suitable pixel seed is
manually implanted through visual inspection of the
image classes. The optimum value for the window and
the threshold are obtained from spectral or texture
distances. These distances are calculated from
mathematical models of spectral and textural
separabilities. A pixel is incorporated into a region if a
spectral or texture homogeneity criterion is satisfied in
the pixel-centered window for a given threshold. In
this scheme, a region grows as much as possible but
maintains the overlap with other regions in a minimum.
The homogeneity criterion is obtained from the models
of spectral and texture distances. The set of pixels
forming a region represents a statistically valid sample
of a defined class signaled by the initial pixel seed. The
grown regions constitute therefore optimum training
sets for each class. The statistical behavior of these
training sets is used to classify the pixels of the image in
one member of a set of classes. Comparing the
statistical behavior of a sliding window with that of
each class does the classification. The size of this
window is the same as the one employed in the region­
growing algorithm. The centered pixel of the sliding
window is labeled as belonging to a class if its spectral
or texture distance is a minimum to the class. Such
distance is evaluated using the statistical content of the
class and the sliding window as input to the model of
spectral or textural separability. A series of examples,
employing synthetic and natural images, are presented
to show the value of this classifier. The goodness of the
segmentation is evaluated by means of the Kappa
coefficient and a matrix of distances derived from the
mentioned model.

1.- Introduction

•Work supported by project IN102797 ofDGAPA-UNAM

A digital multispectral image, such as that gathered by
satellite sensors, contains spectral, contextual and
textural information related to the scene of interest. For
optical images, the detail of information depends upon a
series of factors, such as: number of spectral bands, size
of the pixel, number of quantization levels, and signal to
noise ratio. For radar images the factors are: pixel size,
polarization, wavelength, geometric aspect, and signal
to noise ratio. A given pixel in the image carries
information of the related instantaneous field of view
(!FOY). A pixel in the image is a numerical
characterization of the average radiometric properties of
the !FOY. Hence, a pixel is a statistical sample of the
average response to the incoming radiation of the !FOY.
In addition, a pixel is embedded in a certain spatial
context. To derive the location and spatial organization
of image objects a segmentation is required. A model
of the scene is constructed by means of a segmentation
of the image. By means of this model, some valuable
aspects of scene behavior may be obtained.

Segmentation is a partition of the image in a number of
regions, each region related to a spatial pattern of the
scene. The regions may be labeled as pertaining to a
certain class of objects, hence generating a
classification. The final product is therefore a thematic
map useful for scene understanding. The first classifiers
labeled the pixels of the image in a class using only its
spectral properties and ignoring the context. This
approach named per-pixel classification, proved to be
limited in nature and applicable only to well spectral
differentiated cases. In the last years, efforts (Gong and
Howarth, 1992; Arai, 1993; Kontos and Rokos, 1996)
have been devoted to context classifiers. In this
approach, a pixel is labeled to a class taking into
account its spectral properties and the context of
location. On the other hand, a texture is a spatial
organization of pixel values; therefore, a texture
classifier must be contextual by nature. A contextual
classifier consistently produces higher classification
accuracies than the per-pixel classifier.

A supervised classifier employs a-priori information of
each determined class; this is usually done by means of
training sets. These training sets are defined through

Image Processing Techniques l'rocecdings oftlu: 2'"1 Lcnino-Amcruan Seminar 011 Hadar lfr1110/1' Sensing held at Santos. Sao
Paulo, Brazil, 11-12 September 1998 (ES!\ SP-434. October 1998)
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closed polygons outlined by some interactive procedure
on the image. In this definition, there is not a clear
criterion to assume that the training sets are valid
statistical samples of the classes. Therefore, as a basic
premise to a classifier, a procedure should be
established to assure that the training sets are
representative samples of the classes. A second premise
is that the classification of a pixel should be performed
by direct comparison between the statistical behavior of
the classes and that of the pixel neighborhood.

In this work, a new contextual classifier is proposed that
determine statistical samples of defined classes as a
result of an automated region-growing algorithm. A
pixel is then classified by comparing the shape of the
density function associated to the pixel neighborhood
and that of the classes. The comparison is done by
means of a measure of similarity between density
functions both: for spectral response and for texture
content. As explained in the next sections, this scheme
of classification is valid for both classifiers described in
the present paper.

2 Contextual Classifier
2.1 Region growing scheme

The contextual classifier uses the training sets
determined by an optimized region-growing algorithm
(Lira and Frulla, 1998). The sets are statistical
representations of defined classes, being these spectral
or textural. This algorithm begins by seeding pixels in
suitable places of the image where the existence of a
class is known. This task is done manually by visual
inspection of the image with the support of ancillary
data such as ground truth. Once the seeds are
determined, one per class, the growing of the class
regions starts. The growing is performed by pixel
aggregation satisfying a homogeneity criterion. The
criterion is evaluated in a window with optimum size.
A pixel is aggregated into the region provided the
difference between the homogeneity value of the seed
centered window and the pixel-centered window does
not exceed a certain threshold. The growing of a region
is terminated when this homogeneity criterion is no
longer satisfied. The homogeneity criterion and the
threshold are both derived from a measure of
separability. The above may be formally established as
follows

Let g(r) be the image and p~ E g, and let Ro= { p~} be

the initial sub-region signaling a class. The pixel p~ is

known as the seed related to Ro. Let R~ be the set of
pixels that do not belong to Ro but having at least a
neighbor with Rounder certain connectivity. Let E(Ro)v
the value of the homogeneity criterion applied to the
neighborhood v of Ro. The set R1 is the region jointly

formed by Ro and the pixels p~1 ER~ for which £(p~1 )v

differs from E( pij )v in less than a threshold £. In other
words, R1 is the following set

The real number £ is known as the parameter of
uniformity. Once R1 is been determined the previous
step is repeated, so in general the region Rmis given by

Rm =[pri :E(p~]),, -E(p~),, ~£] (2)

The homogeneity criterion is always tested against the
original neighbor Ro. The growing of a region continues
until Rk+I = Rk. The above is easily generalized for a
number of initial regions. Thus, the labeling of a tested
pixel is carried out as

Where £(pk1 )'.. is the homogeneity criterion applied to
the tested pixel.

2.2 Estimation of optimum parameters for region
growing

The optimum value for the window v and the threshold
£ are obtained as follows. An odd sized window
neighborhood is assumed for each seeded pixel.
Begining from v = 3, the windows are systematically
incremented in size. Only squared windows are
considered. For multispectral images, the density
function is estimated, for radar images the joint density
function is derived by means of the co-occurrence

matrix. Let ,g~( i) be the density function in a window

of v x v pixels for spectral class a. Let v,' (i,j) be the
joint density function in a window of v x v pixels for
texture class s. These functions are normalized

256 256 256

L,,g~(i)=I and L,L,v,~(i,j)=I (4)
i=I je l i=I

The above is assuming 256 quantization levels in the

image, and ,g: ( i) is a k - dimensional vector where k is
the number of bands. The joint density function

tr•.' (i,j) is obtained by means of the co-occurrence
matrix evaluated in the window v for directions 0°, 45°,
90° and 135° of the Freeman code. The optimum
window size v is estimated when

256L ,g~(i)-,g:~+t (i) ~ 0.03 or
i=I



(5)
256 256LL v,.'(i,j)-8",~1(i,j) s o.os
je l i=l

In this sense, the window size is adjusted according to
class heterogeneity. A smooth class requires a small
window size; a heterogeneous class requires a greater
window size. Equation (5) means the existence of an
optimum window size for each class. The 3% indicated
in equation (5) is derived from heuristic tests.

The third parameter handled in the region-growing
algorithm is a threshold E named the uniformity
parameter. To estimate the value of this parameter Es

for a multispectral image, let dah =L~:'.,(i)-~~h (i),

V a ,,,_b, be the mmrrnurn distance between spectral
class-a and any other spectral class-b. Then, a pixel P is
incorporated into the region class a if

(6a)

and if
0.75CTa < CTp < I .25CTa (6b)

The heterogeneity Ea = CT)µ(/, of the initial optimum
window for class a, and EP = CT/µp, the heterogeneity of
the pixel window might be used as well in (6b). The
quantities µ and CT are the mean and the standard
deviation respectively. The threshold Es is determined
by expression (6a) with the restriction provided by (6b).

The estimate of the threshold E., for a textured radar
image is as follows: a pixel p is incorporated into the
region class s if

CJ' ----Sp <%d
v, r. st

and if (7)

0.75 cr~ < CTf < 1.25 CT~ and 0.75 cr;, < CT~ < 1.25 CT;

Where d,,=Lv,.:(i,j)-v,',(i,j) is the minimum

distance between texture class-s and any other texture
class-t. The threshold £., is determined by expression
(7).

2.3 Rationale of spectral classifier

The basic steps of the spectral classifier are the
following:
i. - The bands selected for classification are loaded into
RAM memory. Decorrelated bands are usually
employed in this step.
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ii. - Pixels are seeded in selected places of each spectral
class defined for segmentation.
iii. - The optimum window and uniformity spectral
parameter values are derived for each defined class
according to equation (5) and (6).
iv. - The optimized region-growing algorithm is applied
to the selected pixels, employing optimum parameters
according to the previous step.
v. - For each region grown, the normalized density
function is obtained. Each region represents a spectral
class and is a valid statistical sample of the spectral
behavior of the class.
vi. - A set of pixel centered neighborhoods formed by
the optimum window sizes of the classes is considered
to classify the pixels of the image. For each pixel
neighborhood, the density function is obtained.
vii. - A pixel Pkl of the multispectral image is classified
according to the following

Pkl ~class k:L~~,(i)-~:~, (i), minirnurn.V vkE µ (8)

Where Pkl is a vector pixel with coordinates (k,l) and µ= {v0, vh, .. Vm} is the set of optimum windows for m
spectral classes.

2.4 Rationale of texture classifier

The rationale for the texture classifier is similar as the
spectral classifier:
i. - The textured image is loaded into RAM memory.
This image is usually a speckle filtered radar image.
ii. - Pixels are seeded in selected places of each texture
class defined for segmentation.
iii. - The optimum window and uniformity texture
parameter values are derived for each defined class
according to equation (5) and (7).
iv. - The optimized region-growing algorithm is applied
to the selected pixels, employing optimum parameters
according to the previous step.
v. - For each region grown, a normalized co-occurrence
matrix is obtained. This is the joint density function of
the class. Each region is considered a statistically valid
sample for the defined texture classes.
vi. - A set of pixel centered neighborhoods formed by
the optimum window sizes of the classes is considered
to classify the pixels of the image. For each pixel
neighborhood the joint density function is obtained
vii. - A pixel Pki of the texture image is classified
according to the following

Pkl ~ class u:L 8"1'.'.(i, j)- 'J,~:(i, j) , minimum, '<1 v" E Tl

(9)

Where Pkl is a pixel with coordinates (k.l) and Tl = {vq,v.,
. . v,..} is the set of optimum windows for w texture
classes.
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3 Results and discussion

Three examples are presented in this work. These
examples are worked out on the grounds of: a). - A set
of 36 synthetic images with well known statistical
parameters for each class. The images in this set are
singled band and contain six classes each. The
dimension of these images is 192 x 256 pixels. The
density function of such classes is Rayleigh-like, with
varying mean and standard deviation. b). - A
multispectral SPOT image for which principal
components were applied. The dimension of this image
is 512 x 512 pixels, with a pixel size of20 x 20 m", and
covering a portion of central Mexico. c). - A speckle
filtered SEASAT radar image, gathered in the L band
with four looks. The dimension of this image is 998 x
998 pixels, with a pixel size of 25 x 25 rrr', and covering
a portion of northern Mexico. The series of images
shown below resumes these results.

From the set of synthetic images, a multiband image of
decorrelated bands was generated

The region growing and the classification are shown in
the following images

In the vertex of the four classes the density function is a
class mixture generating a missclassification of some
pixels. Both, for region growing and for classification.
the window should be entirely contained in the image,
hence the frame in the above two images.

The first two principal components of the SPOT image
are the following:

This two-band image depicts a mountainous range
(center) covered by heavy vegetation. a stream of a river
(lower left), and soil mixed with spare vegetation
(right). On this image, six pixels were seeded signaling
six spectral classes.

The following images show the result of the region
growing and the spectral classification employing the
difference of histogram's mean.



Those pixels whose associated density function have no
intersection with the density function of any class are
left unclassified.

The SEASA T radar image, speckled and filtered are the
following:
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The speckle was filtered by means of a geometric filter
(Lira and Frulla, 1998). On the speckle free image, six
pixels were seeded signaling six texture classes.

The following images show the result of the region
growing and the texture classification
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Four regions are shown as initial textures classes. The
segmentation depicts four classes plus a non-classified
pixels class (medium gray). The non-classified class
includes the border of the image and parts of the image,
this might be a fifht texture class.

4 Conclusions

A new contextual classifier based upon an automated
region-growing algorithm has been developed and
tested. This algorithm provides valid statistical samples
of defined classes as input into a contextual classifier,
both spectral and textural. The classification and
growing of the regions are performed employing
optimum windows for each class. No a-priori
assumptions are made concerning the density functions
of the classes. This is a basic premise since, based on

experimentation, some classes show a gaussian behavior
and some a Rayleigh like. The results are encouraging,
although more research is needed, in particular the
model for spectral and texture distance might be
revised. However the rationale of classification is of
general nature and might be adapted to new models of
texture and spectral separabilities. In the present step of
the research, no attempts have been made to identify the
segmented classes with natural objects in the scene.
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A system for region image classification based on textural measures
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Abstract This work presents a system for region
classification using textural measures. The user can
extract and analyze any kind of textural measures
provide by this system and thus classify a group of
region samples based on a set of selected measures. The
system was developed using IDL and resources from
ENVI, providing a user-friendly environment. An
example of application of this system for a JERS-1
image is presented in this paper.

Keywords: classification, SAR image, texture

1 Introduction

The satellite images are powerful tools to improve the
knowledge of world's natural resources. It is known that
these resources are finite and are already being
expended at a fast rate, which will increase with the
world's rapidly expanding population. In Brazil, several
studies have been done to try understanding the
Amazonian Forest. with a special interest in the study of
secondary succession and its role on the carbon cycle.
For many years, Brazilian Amazon Deforestation
Survey Project (PRODES) has mapped the deforestation
and has estimated the extension and rates of
deforestation. This mapping is based on optical images
from sensor TM/LANDSAT. But the weather
conditions in some regions limit the usefulness of these
images. Non-optical sensors can be used to minimize
this problem; particularly Synthetic Aperture Radar
(SAR) images have been showed to be useful on
helping the solution of weather conditions problem. In
order to extract the information from these images, it is
necessary to develop special tools for processing and
analyzing them

Usually the systems for analyzing images have
used only tonal information in the classification process.
Yanasse et al. (1993) and Yanasse et al. (1997) showed
that tonal average was inadequate to discriminate old
stage of regeneration from primary forest areas using C­
hand SAR data. However, the same authors obtained
improvements in the discrimination between these
classes when the coefficient of variation was used
(Luckman et al., 1997; Yanasse et al., 1993). Texture is
an important characteristic for the analysis of many
types of images, in special, for SAR images.
Unfortunately, there is not a formal approach or precise
definition of textures. Nevertheless, various authors
have tried to quantify it. Methods for textural analysis
have been developed using spatial frequency patterns
(Chen, 1990), first order statistics (Hsu, 1978, Irons and
Petersen, 1981) and second order statistics (Haralick et
al., 1973, Welch et al., 1990). Some textural measures
do not make assumptions about the statistical
distribution of the data and thus they could be taken
from either radar or optical data. Yanasse et al. (1993)
and Frery et al. (1997) studied some statistical
distributions from radar data and concluded that some
parameters of these distributions was related with
textural information and could be used to discriminate
land use classes.

This work presents a system developed at the
National Institute for Space Research (INPE) for region
classification using textural measures. The description
of the system is presented on Section 2. The
classification of a georeferenced JERS-1 image is
presented as an example of the use of the system
(Section 3).

Image Processing Techniques Proceedings of the 2"JLatino-American Seminar on Radar Remote Sensing held at Santos, Sao
Paulo, Brazil, 11-12 September 1998 (ESA SP-434, October 1998).
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2 The system

The system provides a user-friendly environment to
extract and analyze textural measures from images, and
classifies regions based on pre-selected measures. It was
developed using IDL (Interactive Data Language) and
functions from ENVI (Environment for Visualizing
Images) system. The procedures were developed using a
windows system where the user can easily find the
functions of interest (Figure 1).
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Figure 1:Main interface

Initially, the user must select samples from each
class of interest. In fact, each sample is a polygon
formed by one or more pixels from the image. A
"region" is formed by joining samples from the same
class. The regions can be taken by selecting image
subsets drawn by the user (using ENVI's resources) or
from segmented images. A segmented image can be
defined as an image where each area or polygon is
identified by one gray level, different from its
neighbors.

The regions must have some samples in order to
characterize the dispersion of textural measures. A
"layer" is defined as a group of textural measures
extracted from the same image and having the same

neighborhood configuration pattern. In this form, the
system can compare different textural measures from
the same image or the same textural measure from
different images.

2.1 Textural measures

A set of measures implemented in this system can be
split on four groups: first order, distributional,
Haralick's and autocorrelation measures.

The first order measures are calculated without
considering spatial distribution of pixels. Seven of these
measures are included in this system: mean absolute
deviation, skewness, kurtosis, coefficient of variation.
median, entropy and energy.

The distributional measures are parameters of
statistical distributions, some of them specific for radar
data. Eight distributional measures are calculated by this
system: estimated mean, variance and standard
deviation of Normal and Log-Normal distributions; and
estimated ex parameter of the K-lntensity and K­
Amplitude distributions. For an overview about ex
parameter estimators, the interested reader can see
Yanasse et al. (1993), Frery et al. (1997) and Yanasse et
al. (1997) among others.

The Haralick's measures are based on the Gray
Level Co-occurrence Matrix (GLCM). The GLCM
describes probabilities of the co-occurrence of two
specific gray-levels given specific pixel locations in
terms of relative direction and distance. More details
about these measures can be found on Haralick et al.
(1973), Haralick (1979), Unser (1986) and Welch at al.
(1990). Eighteen measures are included in this system:
contrast, entropy, energy, homogeneity, correlation,
dissimilarity, chi-square, cluster shade and cluster
prominence; mean, variance, entropy and energy of the
sum and difference vectors; and contrast of the
difference vector.

In this system, the autocorrelation spatial measures
can be defined from lags -4 to 4, in row and column
directions. Also, the system permits to calculate ratios
between two different autocorrelations.
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Figure 2: Interface for measure analysis.

2.2 Anal~·sisof textural measures

The textural measures have a variable range of values
and thus it is necessarx to standard each one of them.
Thereby the measures arc linearly stretched. ranging
from zero (minimum value) to one (maximum value).
considering all classes of interest. It is important to pay
attention to the presence of outlier values that must be
eliminated before standardization. The user can analyze
each measure and redefine its range in order to discard
outlier values. The interface for making this analysis is
shown in Figure 2. for the particular case of the data
mean. The abscissas refer to the classes of interest. and
the ordinates to the measure values (original on the left
plot and standardized on the right plot).

2.3 Selection of textural measures

It is evident that a large number of measures can be
extracted and become impracticable to use all of them in
the image classification. The decision rule to choose one
or more measures can be based on discriminant factor.
which evaluates the separability between classes. The
discriminant factor adopted in this system is calculated
using the variation within and between two classes and
given by:

where. x(J)i is the i'h sample of class (J). x<O is mean
value of class (J). 11<0 is number of samples of class co.

Thereby there will be one measure with maximum
discriminant factor for each combination of classes. For
example. if there arc ~ classes. there will be until 6
selected measures. The window of the system that
shows the pairs of classes and its selected discriminant
factor is illustrated in Figure 3.

Figure 3: Interface for selection of measures based on
discriminant factor.

After selecting the textural measures. the mean
vector. the covariance matrix and some characteristics
of each class and of standardization process are saved in
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a file (called training file) which will be used on the
classification process.

2.4 Classification

The classification initiates by selecting the training file.
If one of the selected textural measures would not have
been extracted the system will do it before the
classification. Each polygon of each region will be
classified as belonging to the class of interest that
minimizes the Mahalanobis distance.

After classifying all polygons. the system will
build an image, by painting the pixels from each
polygon with the color of the class designed to it. The
visualization as well as the evaluation of the classified
image can be done using ENVI's resources.

3 An example of application on JERS-1 image

The potentiality of system is demonstrated by using a
georeferenced JERS-1 image from 06/26/1993, L band,
HH polarization and amplitude data. The size of this
image is 903 samples per 1980 lines and the pixel
resolution is 30 m. Figure 4a illustrates a piece
(400x400 pixels) of this image. This image surrounds
the Tapaj6s National Forest (FLONA), Para State,
Brazil (54°0l '48" to 55°49'33" WGr, 02°56'37" to
03°23'30" S). The FLONA region has large areas of
tropical forest that have been cleared and converted into
pasture and agricultural fields. Some of these areas were
abandoned, becoming a secondary succession.

Four classes of interest were established in this
work: primary forest (PF), areas without anthropogenic
action; old secondary forest (OSF), areas abandoned for
more than 7 years old; new secondary forest (NSF),
areas abandoned for less than 7 years old; and recent

activities (RA), others land uses, e.g., bare soil, pasture
and agricultural fields.

Samples for each class of interest were chosen
based on a land use map (Figure 4b), built from a
multi-temporal LANDSATffM images from 1984 to
1993. The methodology used for building this map is
describe in Sant'Anna et al. (1995). The number of
collected samples and total number of pixels belonging
to each class are shown in Table 1

Table 1: Information about training samples.

Class of Number of Total number of
interest oolygons pixels
PF 34 267,352
OSF 11 3,561
NSF 20 13,102
RA 22 11,566

All first order measures, all distributional measures
(except a parameter of the K-intensity distribution), all
Haralick's measures (using the 8 nearest neighbors to
calculate the co-occurrence matrix), the autocorrelations
with Lags (LO) and (1,1), and the ratio of these two
autocorrelations (Lag (1,1)/Lag (1,0)) were extracted for
each sample.

Table 2 shows the 3 best measures according to the
discriminant factor for each pair of classes. It can be
observed that the largest discrimination occurred
between PF and OSF classes using Haralick's entropy.
This result is very important because these classes are
not separable when using only mean value (Yanasse et
al., 1993; Yanasse et al., 1997). The PF and RA classes
are also well discriminated, showing a large
discriminant factor value. The smallest discriminant
factor value was found for the pairs OSF/NSF and

Table 2: Discriminant factor for each pair of classes of interest.

PAIR OF CLASSES OF INTEREST•

PF/OSF PF/NSF NSF/RA

Haralick' s entropy

Median 7.09 14.66

Haralick' s correlation 1.12 4.40 1.04

PF/RA OSF/NSF OSF/RA

3311J 2.29

23.44 2.28 1.59

4.14 z• 2.31

1.17

·The marked values indicate the measure selected for pair of class.
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Figure 4: (a) Piece of original JERS-1 image: (b) Regeneration Stage Map: (c) Result of classification based on 3
textural measures (median. IIaralick·s entropy and IIaralick·s correlation): (d) Result of classification based on 2
textural measures (median and Haralicks entropy) performed in 2 parts. Dark green is primary forest (PF). light
green is old secondary forest (OSF), yellow is new secondary forest (NSF) and magenta is recent activities (RA).

NSF/RA. indicating that these classes arc poorly
separable.

The result of the classification using the 3 best
selected measures is shown in Figure 4c. It can be
noted that many polygons of RA were misclassified as
NSF and a large number of little polygons was
classified as OSF when. in fact. should be classified as
NSF.

To improve this result. the selection of measures
and classification was done in 2 steps. In the first one.
PF was joined to OSF and NSF was joined to RA
creating 2 groups. The median was chosen in the
selection process as the best textural measure to
discriminate among these groups. with a discriminant

factor of 10.10. A classification was performed to
separate these 2 groups. In second step. the polygons
from each group were classified on one of the classes
that forms the group using the measure selected for that
pair (Haralick's entropy to PF/OSF and median to
NSF/RA). The result is shown in Figure 4d. A visually
improvement on the classification can be seen. when
comparing the two classified images with the land use
map.

4 Conclusion and further work

This work presented a system for region classification
using textural measures. The system gives to the user
the possibility of extracting and analyzing many types
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and configurations of textural measures. The user may
test the discriminatory power of a measure and study the
variation of this discriminatory power when any
characteristic is changed (polygon size, image type, etc).

The textural information carried on images are very
important to the comprehension of its complexity and
must not be ignored on the classification process. This
importance can be indicated by the results obtained in
this work.

The inclusion of new measures into the system is
possible due to the simple computer language used on
its implementation. Other methods for measure
selection may also be implemented. Finally, the system
can be adapted to permit the use of textural filters. In
other words, this system can be easily upgraded
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ABSTRACT

From SAR point of view. the Delta of Paranas river
(Argentina). a major fresh water wetland. represents a
complex area where the radar backscattered signal has
the influence of the structural properties of the
landscape clements as well as of the dielectric properties
due to the different flooding conditions of the land cover
categories. To understand the different mechanisms that
take place in the interaction between the sensor and the
scene charctcristics and to assist in the extraction of
qualitative information. a mctholodology approach for
pre-processing and processing SAR data (obtained in
different operational modes) is presented. Radarsat/SAR
images were used to illustrate the methods as well as
auxiliary data (Lansat/TM data. thematic maps. field
work) to support the analysis and to validate the
procedures. Even though these procedures were
designed specifically for the purpose of the present
paper, the same framework can be applied to other
environments with similar charctcristics.

1. INTRODUCCION

En la ultima dccada ha habido un esfuerzo sostcnido con
cl fin de colocar en orbita sistemas satelitalcs de
obscrvacion tcrrcstrc con radarcs de apertura sintctica
(SAR!ERS, SAR/JERS. Radarsat). Estos csfucrzos
rcalizados en tan pcqucfio perfodo de tiempo pucdcn
considcrarsc corno un indicador de la importancia de
cstas obscrvacioncs. Por otra partc, las difcrcncias
cxistcntcs cntrc cada sensor. unido al hccho de quc
cxistc una disponibilidad creciente de cstc tipo de
informacion, sugicrc cl dcsarrollo de tccnicas quc
pcrmitan cl aprovcchamiento de las caractcrfsticas
distintivas de cada sistcma y la utilizacion de cstc tipo
de datos individualmcntc o combinados a fin de cstudiar
cl mcdio amhicntc tcrrcstrc.
La zona de cstudio, cl Bajo Delta del Rfo Paranti
(Argentina) constituyc un importantc humcdal situado

muy proximo a la Ciudad de Buenos Aires del cual no
solo cs de gran intercs su estudio y monitorco como
ccosistcrna natural sino tambien corno area productive.
ya quc conticnc grandes plantacioncs de sauce y alamo
11 J. A los fines de! radar. se trata de una zona cornplcja
dondc la serial rctrodispcrsada contienc tanto clcmcntos
cstructuralcs de! paisajc como electricos dcbido a la
prcscncia pcrrnancnte de agua.

Si bicn las irnagcncs SAR han demostrado su utilidad en
aplicacioncs hidrol6gicas. cuando sc trata de cstudiar
vcgctaci6n con difcrcntcs nivcles de inundabilidad, la
litcratura prcscnta rcsultados que, en algunos cases, son
contradictorios dcbido a las difcrcncias en la cstructura
de la vcgctacion y en cl grado de inundabilidad de la
misma y al sistcma utilizado (banda, polarizacion,
angulo de incidencia) [2]. Por consiguicntc, para
Iacilitar la intcrprctacion de las irnagcncs SAR de! Bajo
Delta dcl Rio Parana se plantco un cnfoquc
mctodokigico a fin de comprender, en la serial de radar
rctrodispcrsada. los cfcctos debido a las caractcristicas
dcl sistcma y de su tratamicnto (distorsioncs
radiornctricas y gcornctricas). y los de la informacion
propia dcl objcto de cstudio.

Estc cnfoquc incluyc cl analisis de las corrcccioncs
radiomctricas y gcomctricas aplicadas a las imageries y
la cxtraccion de informacion cuantitativa de la zona de
cstudio. Si bicn algunos de cstos proccdimicntos. como
por cjcmplo. las corrccciones por cfcctos de pcrdidas de
potcncia en rango y por rnodclo de antcna son
transparantcs al usuario ya quc estan incluidas en el
proccsamicnto original de las imageries. otros cfcctos
talcs como posiblcs carnbios en la ganancia de la antcna.
saturucion de la serial y ruido speckle dcbcn scr
corrcgidos por cl usuario para lograr rncjorcs rcsultados.
Adcmas. a fin de llcvar a cabo analisis multitcmporalcs
y/o multi-modo, los datos dcbcn calibrarsc para podcr
rclacionar los valorcs digitalcs de cada pixel con los
corrcspondicntcs val ores de cocficicntc de
backscattering sigma 11011Jihf.

Image Processing Techniques Proceedings of the 2'"1L1ti110-.-l111erica11 Se111i11ar011Radar Remote Sc11si11g held al Santos. Sao
Paulo. Braril. 11-12 September 1998 (ESA SP-434, October 1998)
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Una vez que las imagenes se corrigen por efecto de las
distorsiones radiometricas y geometricas, es posible
aplicar distintos procedimientos de procesamiento
(analisis e interpretaci6n). Sin embargo, cs sabido, que
estas dos ctapas no son completamente independientes,
es decir, determinados procedimientos de pre­
proccsamicnto modifican los datos y esta modificaci6n
en algunos casos puede facilitar la posterior utilizaci6n
de los mismos y en otros casos agrcgar artefactos o
producir una disminuci6n de la resoluci6n y de la
calidad radiornetrica de las irnagenes. Tornado cstos
clementos en consideracion, este trabajo tiene por
objctivos: I) describir y analizar las variables de cntrada
y salida de rutinas basicas de preprocesamicnto
(calibracion, reducci6n de ruido speckle y
geolocalizaci6n) y los efectos principalcs que resultan
de aplicarlas a imageries SAR de! sistema Radarsat
correspondicntes a la zona de estudio, 2) analizar
mediantc cstadfsticas de primer orden. los mccanismos
de interacci6n sensor/escena para estructuras especfficas
de vegctaci6n de! Delta de! Rio Parana y para distintos
modos de observaci6n de! sistema Radarsat. La
metodologfa propuesta se ilustra con irnagenes
Radarsat/SAR adquiridas para distintos angulos de
incidencia y en distintas fechas. Adernas se utilizaron
imagenes Landsat 5ffM de fechas pr6ximas a la de las
imagenes SAR, mapas tematicos pre-existentcs y
muestras de campo, como apoyo para cl analisis de los
resultados y validaci6n de los procedimientos. Las
seccioncs siguientes presentan en primer terrnino los
procedimicntos de pre-procesamiento utilizados y su
analisis, a continuaci6n los procedimientos emplcados
para analizar los mecanismos de intcracci6n entre la
sefial y los elementos estructurales de la escena, para
finalizar con la discusi6n de resultados y conclusiones.

2. MEDICIONES QUE REALIZA EL RADAR

La relacion fundamental entre las caracterfsticas de!
radar. cl objeto y la sefial recibida csta dada por la
ecuaci6n de! radar [3]. En este sentido, la potencia ( P)
que recibc la antena (y que es la magnitud directamcntc
medida por cl sensor) esta relacionada con el coeficiente
de backscattering sigma nought ( (j 0 ). Por otra parte la
teorfa clectromagnetica de la luz cxplica que la
intensidad de una onda electromagnetica ( I ) cs
proporcional al flujo promedio de energfa por unidad de
tiempo (potencia), o sea al valor cuadratico medio de!
campo clcctrico. Entonces la potencia cs proporcional al

cuadrado de la amplitud de la onda (A 2
). Adernas, las

antenas de radar detectan la intensidad de! brillo que los

objetos reflejan en una longitud de onda particular. Por
lo tanto la potencia rccibida cs proporcional al brillo de!

objeto ( ~ 0
), quicn adernas esta relacionado con a 11

y

y 0. Las relaciones radiometricas que vinculan cstas

magnitudes son:

a o

sin(a)
(I J

y 0

tan(a)

donde a es el angulo de incidencia local.

Es muy importantc considerar la difcrencia que existc
A 0 0 0 L . . d Ientre I-' , y y CJ . a primer rnagrutu representa a

observaci6n de] radar en SU forma mas pura. Es dccir

~
11
esta rclacionada con la reflcctividad promedio de

centros dispersores distrihuidos por unidad de area de!
piano de rango ohlicuo y para su calculo no se requicrc
informaci6n accrca de! angulo de incidencia local. La
segunda magnitud, y 0, cs la retlectividad media de

centros dispersores distrihuidos por unidad de area de!
frente de onda incidcntc y tiene la ventaja que mantienc
relativamente constantc la retlectividad en un amplio
rango de angulos de incidcncia en cl caso de superficics
rugosas, pero requicrc de! conocimicnto de! angulo de
incidencia local para SU calculo. La tercera magnitud.
cr 0• describe la rcflectividad promedio de centres
dispersorcs distribuidos por unidad de area en el piano
local de la superficic obscrvada. Se trata de la propicdad
intrfnseca a ser observada y tarnbien para su calculo
requiere de! conocimicnto de! angulo de incidcncia
local. Lo dcscripto sc rcprescnta en la Figura I, don de cI
incremento de area utilizado para normalizar cada
magnitud se representa como un segmento contenido en
el piano. La otra direccion que define dicho incremcnto
correspondc a la dirccci6n de acirnut, que obviamentc cs
la misma para las trcs magnitudes. Desde el punto de
vista geornetrico, en general los contajes de amplitud de
productos estandar multi-vista estan proyectados en la
direccion de rango horizontal. En este caso. las
magnitudes obtcnidas a partir de cstos contajes. dado
que solo involucran operaciones radiornctricas.
quedaran tambicn proycctadas en rango horizontal.

La ecuaci6n (I) indica que el coeficiente de
backscattering o " cs proporcional a la potencia P. y SC

1 I . , d IIo conoce cornunmcntc como a reprcsentacron c CJ

en potencia. La rafz cuadrada de CJ11 es proporcional a
la amplitud A, y esta magnitud se conoce como la
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/ rango lejano

4ano de rango
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pun to rango

subsatelitar cercano

piano de rango
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, r. piano local de
. la superficie

···~--

Figura /: Magnitudes radiometricas mcdida» por el radar v sus dcrivadas. Los segmcntos indican la direccion en el
piano de la figura def incremento de area utilirado para normalirar la magnitud corrcspondiente. (8 es el angulo de

observacion def sensor).

. , d II ,. d II Ad , IIrcprcscntacion c CT en amp true (CT 1 ). crnas CT
sc puede expresar en forma logarftmica. i.c. en dccibcles

(CT 'till ).Esta ultima rcprescntacion cs util pucsto quc

la rctlectividad <lei radar ticnc un rango dinamico quc
pucdc alcanzar varios ordcncs de magnitud en potcncias
de dicz. Sin embargo. cs importantc tcncr en cucnta quc
cada ctapa de prcproccsamiento rcquicrc de una
rcprescntacion cspccifica de CT 11• La rclacion cntrc las
magnitude mcncionadas cs:

(2)

3. CONJ UNTO DE DATOS UTILIZADOS

Estc trabajo sc ha dcsai rollado dentro de] marco de los
proycctos GLOBESAR 2 y se ha contado con irnagcncs
SAR/Radarsat de los modos S l , S6 corrcspondientes al
vcrano dcl afio 1997 y una imagcn SI de invicrno del
mismo afio. En forma adicional a las imageries de radar
sc dispuso de imagcncs Landsat 5-Thcmatic Mapper
Iacilitadas por la Cornision Nacional de Actividades
Espaciales (CONAE) y de fotos acrcas pancromaticas.
Adcmas, sc conto con dates de altura dcl nivcl dcl agua
dcl Puerto de Buenos Aires provenientcs de los rcgistros
dcl Scrvicio de Hidrograffa Naval. Estos fueron
utilizados como indicadorcs dcl cstado de las
condiciones de marca durante la Iccha de la toma de
imagcncs. Tarnhicn sc obtuvicron datos sobrc vicntos
(intcnsidad y dircccion) y cantidad de prccipitacion
caida para las mismas Icchas. Sc utilize) csta informacion
para cvaluar la intlucncia de las condicioncs clirnaticas

sohrc la scfial de radar rctrodispcrsada para cada uno de
los arnbicntcs considcrados y de la imagen en conjunio.

4. CARACTERISTICAS DE LA ZONA DE
ESTUDIO

Los patroncs de paisajc dcl Bajo Delta dcl Rio Parana
csuin dcfinidos por la cocxistcncia de clcmcntos
naturalcs con otros dcri vados de la intcrvcncion del
hombre. Todos estos arnbicntcs son inundablcs en
mayor o mcnor mcdida. Entrc los ambicrucs naturalcs
pucdcn mencionarsc bosqucs correspondicntcs a altos
relatives o medias lomas y. en situacioncs de bajo.
pajonalcs y juncalcs dondc cl sustrnto sc cncucntra
saturado o inundado por prolongados pcriodos de
ticmpo o en forma pcrrnancntc. Aproximadamcntc cl
:'HJCX de la superficie rcprcscntada originalmcntc por
cstos ambicntes csui ocupada en la actualidad por
plantaciones de sauce y alamo las cualcs constituycn la
principal actividad productiva dcl delta. Tcnicndo en
cucnta estas caractcrfsticas, sc dcfinio un esqucma
conceptual de clasificacion propio, basado en rasgos
cstructuralcs y funcionalcs. Estc csqucma, si bicn
particular cs comparable con csquernas claborados para
otros humcdalcs y fuc utilizado satisfactoriamcntc para
la rcalizacion de un mapa tcmatico de uso y cobcrturu a
partir de imagcncs multitcmporales Landsat/TM [ l J.
uiilizado en cste trabajo como mapa de rcfcrcncia. Para
Iacilitar la intcrprctucion y analisis de las imageries de
radar de esta zona, cl csqucrna mcncionado sc sirnplifico
y sc rcdujo a trcs situacioncs estructuralcs: hosquc,
pajonal y juncal, con sus corrcspondicntcs catcgorias
[4J.
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5. PREPROCESAMIENTO, PROCESAMIENTO Y
MANEJO DE DATOS SAR

La Figura 2 resume la linea metodol6gica planteada para
el pre-procesamiento y procesamiento de datos SAR
teniendo en cuenta las caracterfsticas de las imageries
Radarsat, la zona de estudio y los objetivos de cstc
trabajo. Se indica, adernas, la magnitud requerida como
cntrada a cada procedimiento.

5.1. Calibracion

Este tipo de procedimientos dependen del procesador
del sistema satelital considcrado (en este caso para datos
Radarsat) y adernas, a nivel de! usuario, se utilizan
cspecialmente para ajustar posibles cambios temporales
en la ganancia de la antena y en las condiciones de
saturaci6n de la sefial y a fin de convertir los valores de
amplitud de cada pixel (expresados en contajes
digitales) a valores de cocficiente de backscattering ode
brillo [5]. Se trata de un procedimiento necesario para
cstudios multitemporales y/o multiangulo (como en cste
caso). La ecuaci6n utilizada para el sistema Radarsat cs:

(3)

dondc ON son los valorcs de la imagcn de amplitud
cxpresados en contajcs digitales, A0 es una constantc y
A es una tabla de reescalado que depende de la distancia
de rango. Los archivos de encabezamiento de las

imagencs contienen cstos valores o datos adecuados de
los cuales sc puedcn obtener. Si bicn cs posible calcular
a 0 para cada pixel, su significado tfsico cobra sentido
cuando cste valor sc promedia sobre un grupo de pixeles
correspondientes a un blanco distribuido en la imagen.
Se utiliz6 el software PCI para llcvar a cabo este
procedimiento.

5.2. Reduccion de speckle

Es posiblc reducir cl efecto de! ruido speckle aplicando
tecnicas de filtrado a las irnagenes SAR de varios looks.
Si bien cxisten distintos tipos de filtros [6]-[7], cl mayor
problema de los metodos se encuentra en la estimaci6n
de los valores de los parametros de cntrada de los
distintos algoritmos: cl tamafio de la vcntana m6vil. cl
desvfo estandar del speckle y el factor de damping . La
selecci6n de estos pararnetros depcndc en gran mcdida
de las caractcrfsticas dcl area de cstudio. Rcgiones con
grandes variaciones en los tonos de gris, muestran
detalles finos en la imagen, por lo tanto cs preferible quc
la ventana sea pequefia. Por el contrario, para zonas
homogeneas, donde casi no existen variaciones en los
tonos de gris, una ventana de mayor tamafio es
preferiblc a fin de mantener la homogeneidad de la
imagcn [8)-[9). Por otro !ado, la tcxtura de regioncs
hornogencas proviene del ruido speckle y por lo tanto.
contiene informacion relacionada con cl desvfo estandar
de! mismo.

Requerimientos para los I I Lfnea metodol6gica
datos de entrada

0
Datos SAR que recibe el usuaric

. 0
-en potencia, CT

II

contajes de amplitud ;> ••I Calibraci6n I "'I -en amplitud, CT A

-en decibeles.O
0 I dB

Datos de salida

Rcducci6n de ruido I "'I amplitud/potencia

Toma de muestras para tratamicnto ~ potencia
estadistico de primer ordcn I . L..'....__

Calculos cstadisticos de primer orden ~ decibeles

Figura 2: Linea metodologica desarrollada para el preprocesamiento y procesamiento de datos SAR.

La identificaci6n, en la imagen original, de cste tipo de
regiones es el primer paso para estimar el dcsvfo
estandar de! speckle. Finalmente, aquellos filtros que

incluyen cl factor de damping. pcrmitan garantizar
caracterfsticas adaptivas. Sin embargo. cl uso de valorcs
de dumping grandcs, preserva los hordes mejor, pcro



reduce cl cfecto de suavizado. Por cl contrario. la
utilizacion de valorcs pcqucrios de damping aumcma cl
cfecio de suavizado. pcro no manticnc los hordes de
forrna corrccta [ 10]. Como sc indica en la Figura 2. cl

tipo de rcprcsentacion de a" para la cntrada/salida dcl
filtrn pucdc scr en amplitud o en potcncia depcndicndo
del tipo de filtro y dcl disciio del so/111 ore.

Se cvaluo cl comportumicnto, para la zona de cstudio.
de cuatro filtros espccfficos para rcduccion de speckle:
Enhanced Frost. Gamma Map. Kuan y Frost. Sc
utilizaron criterios cualitativos talcs corno la
cornparacion visual de las imageries Iiltradas con
respecto a la original y cl analisis de transcctas para la
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cvaluacion de la dcgradacion de las pcndicntcs, Por otro
lado sc utilizaron critcrios cuantitativos basados en la
cstadistica de las imagcncs filtradas y original. talcs
como la conscrvacion dcl valor mcdio, la rcduccion de
la dcsviacion cstandar y cl valor mcdio de la difcrcncia
absoluta cntrc la nnagcn original y las filtradas. La
Figura 3 mucstra la difcrcncia cntre cl valor medio de la
imagcn filtrada y cl valor medic de la imagcn original
para cad a uno de los cuatro fi ltros, la Figura 4 mucstra
cl dcsvio csuindar corrcspondicntc a cada filtro y la
Figura 5 cl valor mcdio de la difcrcncia ahsoluta cntrc la
imagcn original y la rcsultantc de cada Iiltro.

• Enh. Frost

Diferencia Porcentual de Valores Medios
.

-
-

,...

-

- -

n n

Gamma Map

llill Kuan

Frost

0

J 5 7 9 II J 5 7 t) II J 5 7 9 II J 5 7 9 II

Ven tan a de Filtrado

4

3.5

J

:; 2.5-·
:; 1:; -;::
0:::

1.5

0.5

Figura 3: Diferencia /){)rce11t110/de/ valor medio de Iii imagenfiltrada rclativo of valor mcdio de la inwgrn original
para cada 11110de losfiltros analit.ados _,.para tamaitos de ventanas variando de 3x3 {/ I lx l I.
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Figura 4: Desvio estdndar de las inuigencsfiltradas para cada 11110 de los filtros analitudos y para tamahos de
ventanas variando de 3x3 a J Ix 11. La recta constante en negro indica el desvio de la imagen original.
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Figura 5: Valor medio de la diferencia absoluta entre la imagen original r las filtradas para cada uno de los filtros
analizados v para tamaiios de ventanas variando de 3x3 a I lx l I.



5.3. Correcciones geornetricas

Las correcciones geornctricas, ya sea utilizando un
modelo digital de tcrrcno a fin de obtcner una orto­
imagen o una correccion polinomial asumiendo una
supcrficie plana, involucran la utilizaci6n de tecnicas de
reemucstrco que a su vcz incluyen la aplicacion de
interpolaciones radiornctricas entrc pixclcs vecinos. La
ecuacion de radar general izada para bl an cos extcndidos
calcula la potencia rccibida mediantc la suma pesada (en
el lfmitc, una integral) incluycndo valorcs CJ 11 en
incrcmcntos de area rclcvantes. Si sc amplia cstc
concepto, la magnitud mas adccuada para la
interpolacion radiornctrica en cl procedimicnto de
reemucstrco es CJ 11 en potcncia. Resulta obvio que si cl
metodo de interpolacion utilizado es cl de! vecino mas
proximo, cl resultado scra el mismo cualquiera sea cl
tipo de rcprcsentacion utilizada para CJ 11. En rclacion
con los metcdos de reernuestrco, cs convcnicntc
considerar lo siguientc: I) el rnetodo de! vecino m<is
proximo manticne la cstadfstica global pcro cambia la
textura local, 2) la intcrpolacion bilineal degrada la
resolucion, y 3) la convoluci6n cubic a o un kernel sine
tienden a mantener la fide Iidad en los val ores locales y
tcxturas. Por lo tanto, SC recomienda cstc ultimo metodo.
Previarncnre a la extraccion cuantitativa de inforrnacion
de las irnagenes. cs ncccsano corrcgirlas
geornctricamentc a una dada proyeccion gcografica, De
esa mancra es posiblc la superposicion de las distintas
imagencs cntre sf y la ubicacion en las mismas de
muestras tomadas en cl tcrreno. La zona de cstudio no
posee diferencias importantes de elcvacion por lo quc no
cs necesario la utilizaci6n de un rnodclo de terreno para
realizar una ortorectificaci6n. Por lo tanto, se cmplco
una corrcccion mediantc rernucstrco por convolucion
cubica de la imagen calibrada en potcncia mcdiantc una
transformaci6n polinornica obtenida a partir de la toma
de puntos de control. Sc utilizo corno referencia una
imagen TM georefcrcnciada a una proyeccion Gauss­
Kruger con un tamario de pixel de 28.5 metros. Las
imagencs sc rectificaron con un tamaiio de pixel de 14.5
metros para los modos standard y de 7. 125 metros para
cl modo fine. Los crrorcs r.111.s.obtcnidos cstuvicron
comprendidos entrc 20 y 40 metros.

Para las imagenes en modo estandar (SI y S6), cl
analisis de las amplitudes y graficos de dispersion de los
vectores de errores rcsiduales para los puntos de control
mostro una distribucion prioritaria en cl sentido dcl
rango cuando se suponfa polinomios de grade I. Esto
indica una deformacion residual en la direccion de!
rango mayor que en la direcci6n de azirnut. Este cfecto
desaparcce cuando se sclccciona un polinomio de grado
2. El analisis de los valores de posicionamicnto
geografico prcscntes en cl header de las imagcncs
muestra iguales resultados. siendo mas importantc cl
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efecto para cl modo SI. lo cual concuerda con lo
esperado.

5.4. Extracci6n de informaci6n cuantitativa de las
imagenes de radar

Como sc ha scfialado en el parrafo anterior, resulta
diffcil (sin datos adicionalcs y/o modelos) separar la
contribucion de las caractcrfsticas clectricas de las
gcomctricas en las imagcncs de radar. A fin de extraer
inforrnacion cuantitativa acerca de los mecanisrnos de
interaccion dcl sensor con los clmcntos seleccionados
(pajonal, bosque, juncal), SC ]]CVO a cabo Un analisis de]
contcnido textural de los mismos. La tcxtura contienc
importantc informaci6n acerca dcl arrcglo estructural de
la supcrficie y de la rclacion de cstc arreglo con el
cntorno. En cste trabajo se han utilizado cstadisticas de
primer ordcn para analizar la tcxtura que esta ;ona.
dadas sus caractcrfsticas. ofrece al radar. Para llcvar a
cabo el objctivo propuesto, sc cxtrajcron de las
imagcncs prcproccsandas. entre 50 y I00 mucstras de
aproximadamcntc 50 pixeles cada una para cada uno de
los arnbicntcs sclcccionados. Estc paso sc llcvo a cabo
sobrc imageries de potcncia. scgun sc indica en la Figura
2. Como datos de rcfcrcncia SC utilizaron fotos aercas y
datos de carnpo cxistcntcs. A fin de ascgurar quc las
mucstras obtenidas corrcspondian a cada uno de los
arnbicntcs scleccionados. se trabajo sobrc una imagcn
TM gcolocalizada de marzo de 1997 (fecha de vcrano
proxirna a Ios modos SI y S6) y sc obtuvieron los
perfilcs cspcctralcs de todas las mucstras. Este analisis
confirrno la pertincncia de las mucstras.

A fin de utilizar las estadisticas de primer orden para
dctcrminar la tcxtura caracterfstica. sc calcularon medias
µ. dcsvfos estandar a y coeficientcs de variacion cr1µ
(indicador del grado de heterogcncidad). Es decir. sc
tomaron m regioncs como mucstras de un arnbiente
dado. cada una de cstas m rcgiones poscc valores
estadfsticos. Es decir. para la region i se conoccn: u.:
valor mcdio, o.: desvfo cstandar y n.: nurnero de pixcles
corrcspondientes a la region y tambien los valorcs
maximo y mfnimo alcanzados en cada muestra. Los
val ores esradisticos analizados se calcularon
considcrando dos situaciones difercntcs:

- Caso I: Sc calcularon los valorcs medics y los desvios
estandar de cada ambiente corrcspondientcs al
conjunto de "todos los pixclcs" de "todas las
rnucstras". Es dccir. el valor promcdio resultantc de
cada ambiente conticnc la intluencia de! ruido speckle.

- Caso 2: Se calcularon los valorcs medios y los dcsvios
estandar de cada arnbiente a partir de! conjunto de
mucstras. En cstc caso cada mucstra es un individuo,
definido por un valor medio. Los valores resultantcs
contcndran muy poca inforrnacion debida al ruido
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speckle (ya que este se encuentra reducido por la
operacion "prornedio").

Para poder analizar los resultados y a fin de poder
compararlos con los obtenidos por otros autores, los
valores promedio y desvfo para los dos casos se

convirtieron de potencia a CT
0 (decibeles). Finalmente,

para cada muestra de cada ambiente, se calcularon
tambien los coeficientes de variacion. Estos valores se
promediaron y se obtuvo un unico valor medio para
cada ambiente y el desvfo estandar correspondiente. Las
Figuras 6 y 7 muestran este analisis.

6. RESULTADOS Y CONCLUSIONES

De la Figura 3 se observa que el filtro quc mejor
conserva el valor medio es el Gamma Map, presentando
diferencias menores al 0.75 % con respecto al valor
medio de la imagen original para cualquier tamafi.o de
ventana. Los dernas filtros presentan diferencias que
oscilan aproximadamente entre el 1.75 % y el 3.75%,
aumentando con el tamafi.o de la ventana. El desvfo
estandar de las imagenes filtradas (Figura 4) disminuye
a medida que aumenta el tamafi.o de la ventana de
filtrado. indicando una disminucion en el contenido de
inforrnacion. Si bien para una dada dimension de
ventana, todos los filtros producen valores equivalentes
de desvfo estandar, la imagen filtrada mcdiante el
algoritmo Gamma Map presenta valores levemente
superiores, indicando una pequefi.a pero mayor
conservacion de! contenido de informacion original. La
Figura 5 presenta una cuantificacion de las imagenes de
diferencia absoluta. El filtro Gamma Map produce las
menores diferencias, y por lo tanto la menor perdida de
inforrnacion. Por otra parte, el analisis de transectas
mostro para el filtro Gamma Map una muy buena
conservacion de las pendientes.

Los resultados obtenidos llevaron a la eleccion de! filtro
Gamma Map para el tratamiento posterior de las
imagenes. Debe tenerse en cuenta que esto significa que
este filtro es el que mejor se comporta en el area de
estudio analizada y no puede extrapolarse esta
conclusion a otras regiones.

La zona de estudio carece de topograffa, por lo que no
es necesario utilizar un modelo de terreno para su
correccion. Teniendo en cuenta este hecho y el resultado
de los analisis, las imageries se corrigieron utilizando
polinomios de orden 2 y remuestreo por convolucion
cubica.

Las Figura 6 muestra las estadfsticas correspondientes a
los distintos ambientcs segun lo descripto en la
metodologfa como caso 2. En terrninos generales, se
observa que los tres tipos de fisonomfas propuestas

tienen valores medios muy semejantes. Existe poca
diferencia entre los valores de CT

0 correspondientes a
los modos S1 y S6 siendo mayores los de! modo SI. A

()
su vez, el rango de valores de CT de todos los
ambientes para ambos modos es muy similar.

En particular. los ambientes de bosque y pajonal no son
diferenciables entre sf en ninguno de los modos

utilizados y los valores de o " oscilan entrc -5 y -10
decibeles. A diferencia de estos, los ambientes de juncal
presentan valores mas elevados de (J () para el modo s1
probablemente debido a que, al tratarse de juncos en
agua quieta, estos actuan como corner reflectors (efecto
esquina) naturales. En el caso de las lagunas, la porcion

central de la misma presenta valores bajos de CT
11

debido a que la presencia de una pelfcula de agua quieta
acnia como un reflector especular. El borde de las
lagunas, al presentar mayor densidad de vegetacion,
tiene una respuesta similar a la de los otros ambientes.

Con respecto al modo SI los valores de marzo son
mayorcs (mayor cantidad de biomasa verde en pie) que
los de agosto. En cuanto al rango de dispersion, este
varfa poco entre ambas fechas. Sin embargo, cabe
sefi.alar que en el caso de las plantaciones de sauce, estas
presentan mayor variabilidad en agosto, probablemente
debido a que al estar los arboles sin hojas, existe una
mayor influencia de! sotobosque en la serial
retrodispersada.

Al considerar los mismos ambientes pcro de acuerdo a
las estadfsticas calculadas segun el caso 1, se observe
quc el efecto de! ruido speckle aparece bien marcado ya
que aumenta de manera significativa la dispersion de los
datos. Sin embargo los valores mcdios de CT

11 son
similares a los de! caso 2.

Finalmente, se representaron los valores de! coeficiente
de variacion para todos los ambientes y los modos
considerados. La Figura 7 muestra los resultados
obtenidos. Esta figura tambien presenta el coeficientc de
variacion correspondiente a zonas hornogeneas para una
imagen de potencia de 4 looks. Los valores de
coeficiente de variacion de todos los ambientes. tanto
para cl modo SI como S6, se encuentran muy pr6ximos
al valor teorico calculado para zonas hornogeneas, que
es de 0,5. En aquellos casos dondc se registraron valores
de! coeficiente de variacion mayores (entre 0,6 y 0.8)
cstos son indicadores de una heterogeneidad propia de
cada ambiente. Sin embargo los mismos presentan una
gran dispersion lo que imposibilita atribuirles una
textura particular. A fin de verificar estos resultados, se
procedio a calcular el coeficiente de variacion para toda
la imagen de! modo SI y para distintos tamafi.os de
ventanas (5, 7 y 11) y se observe una gran
homogeneidad en las imagenes resultantes. Si bien el



coeficicntc de vanaci6n constituye un indicador de
texturas muy utilizado, en estc caso, los rcsultados no
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son satisfactorios, cs decir, cstc metodo de tcxtura
aporta poco a la scparabilidad de los ambientcs.
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Abstract. The C-band ERS-1 SAR data were combined
with the Landsat TM data to improve the soil moisture
estimates in a semiarid region. The SAR data were
compared with the soil moisture measurements at three
conditions: a) without any correction for soil roughness
and vegetation effects; b) corrected for soil roughness
effects; and c) corrected for both soil roughness and
vegetation effects. The soil roughness effects were
taken into account by using a dry season SAR image.
The vegetation influence was considered by using an
empirical relationship between SAR and leaf area index
data, the latter being derived from TM images. Results
indicated that the contribution of soil roughness and
vegetation in the radar backscatter were significant and
they must be taken into account to obtain accurate soil
moisture estimations.

Keywords: Radar Remote Sensing; Soil Moisture;
SAR/TM synergy.

Introduction

Soil moisture content needs to be measured consistently
on a spatially distributed basis because it plays a critical
role in hydrologic processes and energy fluxes at local,
regional, and global scales by controlling the
distribution of rainfall into runoff, evapotranspiration
and infiltration (Benallegue et al., 1995; Dubois et al.,
1995). Although ground-based techniques to measure
soil moisture such as the gravimmetric method, neutron
probe, and Time Domain Reflectrometry present
accurate measurements, they are labor-intensive and
represent point-based information of a terrain. As a
result, this variable is often neglected in hydroclimatical
and agricultural models.

Attempts have been made to derive spatially-based
soil moisture content information from synthetic

aperture radar (SAR) data. Many studies (Bernard et al.,
1982; Benallegue et al., 1994; Cognard et al., 1995,
among others) have obtained a simple linear correlation
between soil moisture content and SAR data in long
wavelengths (e.g., C-band at 5 cm or L-band at 21 cm).
However, these and other promising results were
obtained either from bare soil fields or from agricultural
fields with flat surfaces and wide ranges of surface soil
moisture contents. When sites of variable vegetation
cover and soil roughness are included in the regression,
we often find a considerable dispersion in the
regression. The primary objective of this study was to
develop a practical approach to account for both soil
roughness and vegetation effects in the C-band SAR
data to improve the estimation of rocky soil moisture
content over a semiarid rangeland.

2 Experiment

The study area is located at the Walnut Gulch
Experimental Watershed (31.72° N, 110.00° W), a
representative site of shrub- and grass-dominated
rangelands found in the southwestern part of the United
States (Figure I). The surface soils (0-5 cm) are
predominantly sandy loams and gravelly loamy sands,
with a rock content around 30% (Gelderman, 1970;
Kustas and Goodrich, 1994). The vegetation is a mixed
shrub/grass rangeland; that is, shrub-dominated in the
western part of the watershed, and grass-dominated in
the estearn part.

Seven European Remote Sensing (ERS-1) SAR
images were acquired in 1992 as part of the Walnut
Gulch Watershed remote sensing (WG'92) experiment
conducted by the U.S. Department of Agriculture
(Moran et al., 1996) and another single image was
obtained in 1994 during the wet season (Day of Year -

Image Processing Techniques Proceedings of the 2'"1 l.atino-American Seminar on Radar Remote Sensing held at Santos, Sao
Paulo, Brazil, 11-12 September 1998 (ESA SP-434, October 1998).
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DOY 206, Table 1). These images, obtained at a 30 m
nominal spatial resolution and 12 m pixel spacing, were
georreferenced to the Universal Transverse Mercator
coordinate system (Zone 12, 1927 North American
Datum, Clarke 1866), and calibrated, that is, corrected
for topographic effects by accounting for the real
backscatter area of each pixel using a digital elevation
model (Beaudoin et al., 1994). Radar backscatter
coefficients ( ()0; units = dB) were extracted from these
preprocessed images using the equation proposed by
Laur (1992):

cr" = 1010{DN':=.
where DX = average digital number of the site

(average of at least 50 pixels per site);

STD = standard deviation of ON; and

K = sensor calibration constant.

Regarding the Landsat TM data, eight images
obtained during the WG'92 experiment were analyzed
(Table I). The TM digital numbers were transformed to
surface reflectance values in three steps (Moran et
al., 1992, 1996; Washbume, 1994 ): a) acquisition of the
incident solar illumination data from sunrise to solar
noon in the same day of the Landsat overpasses, using a
solar radiometer, to account for the atmospheric effects
in the TM digital numbers; b) generation of at-satellite
radiance values for a given series of surface reflectance
values by using the Herman-Browning radiative transfer
code; and c) generation of TM reflectance images from
values derived from the radiative transfer code and from
Landsat TM sensor calibrations. All TM images were
also georeferenced to the UTM coordinate system.

Leaf area index (LAI) values were calculated from
all Landsat TM scenes by using the following
relationship proposed by Baret ( 1995):

LAI=- log[(A-MSAV!)IB]
K

where MSA VI is defined as (Qi et al., 1994):

MSAVI = (2PN!R + I - [(2 PNIR + I)* 2 - 8
(PNIR - PRED)] * 0.5) I 2

where PNIR and PRED are the surface reflectances in
the near infrared and red spectral regions, respectively.
For arid and semiarid regions, Qi et al. (1994) found the
following values for K, A, and B: 0.67, 0.82, and 0.78,
respectively.

Gravimetric samples for soil moisture content
were collected at the Meteorological-Energy flux (MF)
stations 1, 3, 5, and 6 in 1992 (Table I). Six replicates
of each sample were averaged to one reading.
Volumetric soil moisture contents were derived using
previously measured bulk densities ( l .44 ~ 1.83 g/crrr')
(Troufleau et al., 1997). Soil moisture measurements
were also made on the same day of the ERS-1 SAR
overpass in 1994 at 21 validation sites in the shrub­
dom inated part of the watershed (three replicates). Dry
bulk density data were obtained for each site by the
excavation method (Blake and Hartge, 1986), allowing
the calculation of volumetric soil moisture contents.

3 Approach

Investigation Sites

The MF sites I, 2, 3, 7, and 8, located in the shrub­
dominated part of the watershed (Figure I), were
selected to investigate the use of SAR/TM synergism to
correct the effects of vegetation in the SAR data, in
order to obtain an improved estimation of soil moisture
content from radar data in the watershed. The MF sites
4, 5, and 6, located in the eastern, grass-dominated side
of the watershed, were not included in the analysis
because of the limited number of available SAR images.
The analysis was performed in four steps:

I) analysis of relationship between SAR and TM
data, by comparing the multitemporal values of a0

and LAI simultaneously;

2) correction of the topographic effects in the radar
backscattering signals. The technique involved a
subtraction (a0 - cr0drJ; that is, the cr0 from a given
image was subtracted by the cr0 from a dry season
image. The assumption in this step was that the
soil roughness is the only important parameter in
the backscattering process in a dry season image.
The coefficients derived from this subtraction is
referred as cr01 hereafter.

3) finding of an empirical relationship between cr01

and LAI. This relation corresponds to the linear
regression equation obtained by considering the
cr01 and LAI from four MF sites above mentioned;
and

4) correction of the vegetation effects on cr01 In this
step, we calculated the residuals of radar
backscattering coefficients (o"2) for the MF sites
by subtracting the measured and the estimated cr01
values. The measured a01 values refer to the SAR
signals obtained from the subtraction of cr0 from a
dry season image (step 2), while the estimated cr01
values refer to the SAR signals calculated from the
empirical cr01 -LAI relation.



Validation Sites

To validate the approach described above, the SAR and
soil moisture data acquired in 1994 in the shrub­
dominated part of the watershed by Sano et al. ( 1998)
were analyzed applying the same methodology used for
the investigation sites. In other words, the soil moisture
contents measured during the 1994 ERS-1 SAR
overpass were compared with the radar backscattering
coefficients at three steps: 1) without any correction; 2)
partially corrected for soil roughness; and 3) fully
corrected for soil roughness and vegetation effects. The
0°1-LAI relation obtained from the investigation sites
were applied to account for the vegetation effects. The
LAI value for each validation site was derived by
linearly interpolating the LAI values obtained in DOYs
194 and 226 ( 1992). These 1992 dates were the two
closest days in relation to the 1994 overpass (Table I).

4 Results
Investigation Sites
Figure 2 shows a temporal pattern (from April to
November, 1992) of both LAI and 0° at MF sites 1, 2,
3, 7, and 8. Because the ERS-1 and Landsat satellite
overpasses were not coincident, LAI values were
linearly interpolated at the ERS-1 overpasses by using
two adjacent LAI values. The assumption was that the
soil drying was uniform and that there was no rain
during the two TM overpasses. For MF sites I, 2, and 7,
we can notice a good degree of similarity between LAI
and 0°. particularly from DOY 160 to DOY 290. The
reason for the small temporal 0° variation of MF sites 3
and 8 needs to be investigated.

Therefore, we used the 0° values from MF sites I,
2, and 7 to derive the empirical LAI and 0° 1 relation for
the investigation sites (Figure 3). All multitemporal 0°

values (from DOY 135 to DOY 291) were subtracted
from the DOY 170 0° , since the lowest backscattering
coefficients for all MF sites were found on this date.
Figure 3 also shows a consistently higher 0°1 values for
MF 2, in comparison with MF I and MF 7 with similar
LAI values. This suggests a higher soil moisture
contents for the MF 2, so that this site was not included
in the derivation of 0°1 -LAI relation. The obtained
linear regression equation was:

CT0I (dB)= -10.69 + 148.58 LAI

Validation Sites
The SAR and field data from 21 investigation sites 111

the shrub-dominated part of the watershed is shown in
Table 2. Figure 4a shows the linear relationship
between SAR backscattering coefficients and
volumetric soil moisture content for the validation sites,
without any correction for soil roughness and vegetation
effects. The correlation was poor (r2 = 0.09). When only
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soil roughness is corrected by using the subtraction
technique, the soil moisture and SAR backscattering
correlation was worse (r2 = 0.06, Figure 4b ).
Consequently, correction for soil roughness without
considering vegetation effects may not improve soil
moisture estimation in arid and semiarid regions.

When both soil roughness and vegetation effects
were corrected for, the soil moisture and SAR
backscatter correlation was substantially improved
(Figure 4c). The relatively high r2 and slope values (
0.66 and 0.30, respectively, if we do not include Sites 3,
4, and 5, which probably presented some laboratory or
field experimental error) indicate that the techniques
used in this study to account for roughness and
vegetation effects were successful. However, the
correlation is still lower than expected or lower than
those obtained from other regions such as in agricultural
areas or in temperate regions (r2 > 0.80, e.g., Bernard et
al., 1992). The reason for this low correlation can be the
spatial variability of soil moisture in the study area,
which was discussed in details by Sano et al. ( 1998).

5 Concluding Remarks
In this study, we used a microwave and optical
synergism to improve the soil moisture content
estimation using C-band ERS-1 SAR data in a semiarid
region. The following were the major findings:
a) the C-band radar backscattering coefficients were

highly, positively correlated with leaf area index
derived from Landsat TM data. This indicates that
the sparse vegetation in semiarid regions does
contribute significantly to the radar backscatter
observed with SAR systems. This was mainly due
to low soil moisture contents in the semiarid
regions(< 20%). In other words, the contribution
from soil moisture in the backscattering process in
semiarid regions is not significantly higher than
that from vegetation, so that the influence of
vegetation becomes significant in a multitemporal
radar data analysis.

b) the techniques used in this study to account for soil
roughness and vegetation effects allowed us to
obtain improved soil moisture estimates and, upon
validation, it may become an easy way to correct
for effects of these two parameters without using
multipolarization or multifrequency SAR data.

c) the CT''-LAIrelation obtained from the investigation
sites (MF sites) performed well for some of the
validation sites; nevertheless, future research
involving more multitemporal data and more
vegetation types needs to be conducted to obtain a
more generical relationship.
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Table I. Dates for the Acquisition of Remotely Sensed and Soil Moisture Data for the WG '92 Experiment.

Day of Year. 1992 Landsat TM ERS-1 SAR Soil Moisture Sampling
114 yes yes
116 yes
130 yes
135 yes
146 yes
162 yes yes
170 yes
178 yes yes
194 yes
210 yes
226 yes yes
240 yes
258 yes
274 yes yes
275 yes
290 yes
291 yes
306 yes
310 yes
326 yes
206' yes yes

'Image acquired in 1994

Table 2. Synthetic Aperture Radar and Field Data from the 21 Validation Sites Located in the Shrub-dominated
Part of the Walnut Gulch Experimental Watershed ( 1994 data).

Sampling UTM UTM Backscattering Soil Moisture
Point (East-West) (North-South) Coefficient (dB) (cmvcm")
I 3512550 585919 -9.39 8.13
2 3511915 586178 -8.56 9.58
3 3511214 586882 -8.67 7.74
4 3509980 586177 -9.18 3.93
5 3510284 585769 -8.29 6.25
6 3505697 593802 -9.99 10.00
7 3506746 594404 -8.97 8.01
8 3507806 593359 -8.99 5.41
9 3507567 592558 -8.19 7.90
10 3511154 588333 -7.86 9.30
11 3513025 588458 -7.92 18.78
12 3512517 588488 -8.11 15.90
13 3512751 589841 -7.78 15.11
14 3511811 589109 -8.73 11.59
15 3512092 589711 -9.4 7 11.67
16 3511383 589706 -8.88 9.51
17 3511000 589044 -9.29 11.58
18 3512040 590393 -9.61 11.15
19 3511716 590388 -8.49 9.31
20 3510398 592299 - I0.08 10.94
21 3508993 592309 -9.00 7.77
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Fig. 2 - Temporal patterns of the backscattering coefficients and leaf area indices for Metflux stations 1, 2, 3, 7, and 8.
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ABSTRACT
An interferometry related application that has recently
attracted a lot of interest from the scientific community
is the exploitation of the coherence information
derivable from ERS SAR image data to evaluate land
surface characteristics and its changes in time. Interfero­
metric techniques can provide very valuable and unique
information for monitoring land surface changes,
regardless the cloud cover (which makes difficult the
use of optical data) or the strong wind conditions
(which makes less reliable the use of SAR intensity
images only). This paper briefly describes the inforrna­
tion content in these coherence images and provides and
example of the exploitation of this information over an
area in Central America. The example here presented
has been processed with an ERS SAR Interferometric
Quick Look (IQL) processor developed at ESRIN. The
main characteristics of this processor and its key outputs
are also described in the paper.
Keywords: SAR Interferometry, Coherence, Land Use.

I. INTRODUCTION

The confidence on the enormous potential of SAR
Interferometry is increasing every day. This regards not
only the most known applications as the generation of
Digital Elevation Models (DEM) or the detection of
surface movements, but particularly those applications
related to land use analysis and monitoring. However,
there is still the need to investigate and better
understand the real potential and limitation of these
techniques, and this is the purpose of the work being
still carried out.

The paper is focussed on the use of interferometric
images for land use analysis and change monitoring.
The ERS mission characteristics make possible to create
interferometric pairs with different time interval
between two acquisitions over the same area. This
interval of time ranges from the minimum I day during
the Tandem mission (which is the minimum time elapse
between space-borne SAR images available today), to 3
days, 35 days and any multiple of them.

Clearly, the information contained in an interferometric
pair depends strongly on the amount of time between
the acquisitions. Limiting the discussion to land use
applications, we can say that tandem pairs are the best
suited for land use analysis while pairs with longer time
interval are more suited for the analysis of surface
changes.

2. METHODOLOGY

An interferometric pair of ERS SAR images (i.e. a pair
of complex SAR images acquired over the same area at
different times) can provide valuable information. On
the one hand, by combining the phase information of
both images (either using ERS.SAR.RA W or
ERS.SAR.SLC products, where the phase information is
still present), an interferogram can be generated. The
interferogram represents the phase difference between
the two images and therefore, it is the starting point for
the further derivation of DEM or for the analysis of
surface vertical movements.

On the other hand, the correlation between the two
complex SAR images provides information related to
the "similarities" between both data acquired and so
between the characteristics of the surface at the two
acquisition dates. This particular correlation is known as
interferometric coherence (y) and can be estimated as:

£{h111• lm2'}r = , ,
£{!1m1n. £{itm2n

being Im 1 one of the complex SAR images
(ERS.SAR.SLC product) of the interferometric pair and
Im, the other complex SAR image over the same area.

The module of the interferometric coherence varies
between 0 and I and clearly, the measured coherence
will mainly depend on the time interval between
acquisitions and on the surface characteristics
(assuming a perfect co-registration between the two
images).

Image Processing Techniques Proceedings oft he 2'"1 l.atino-Amcrican Se111i11ur011Radar Remote Sensing held al Santos, Sao
Paulo, Brazil, I !-12 September 1998 (ES;\ SP-434, October 1998).
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Basically, as shorter is the time interval between
acquisitions, less possible are the changes in the surface
between acquisitions and therefore, higher may be the
final coherence. However, the level of coherence for
the same time interval between acquisitions will depend
on the type of surface illuminated. On one hand, it will
depend on how quickly the surface can change and on
the other hand, on the scattering mechanism taking
place on the surface.

Let's image two extreme cases: a very arid surface such
as a desert and a very dynamic one, such the ocean. In
the first case, interferometric coherence will be high
event for long time intervals between acquisitions.
However, in the second case, the changes in the surface
are so rapid, that even for acquisitions very close in
time, the correlation of the images will be very low.
Clearly, between these two extreme cases, we can find
any other situation.

From this brief discussion, the potential of the
interferometric coherence for identifying different kinds
of surfaces and for monitor their evolution in time is
clear. In fact, it is particularly useful when it is
combined with the traditional SAR intensity, since both
informations (intensity and coherence) are proved to
provide complementary information ..

In order to exploit the information provided by the
coherence image, a new kind of ERS SAR product is
being evaluated namely the Interferometric Land Use
(ILU) image. It is generated from a pair of ERS SAR
acquisitions by combining three derived dataset as
follows: the mean SAR intensity of both acquisitions,
usually visualised in the RGB green channel, the
difference between both SAR intensities, usually in the
blue channel, and the interferometric coherence, usually
in the red channel. The result is a colour composite
image joining the traditional information provided by
two single SAR images with the additional information
provided by the coherence between them.

This basic idea has been already applied over some
areas in Europe (Wegmuller, 1996 and Borgeaud,
1996), and the interesting results obtained strongly
stimulate to continue investigating the possibilities of
this technique.

The ILU images presented in this paper are generated
with an ERS SAR Interferometric Quick Look
processor installed at ESRIN (in Frascati, Italy), which
is briefly described section 4.

3. AN EXAMPLE OVER CENTRAL AMERICA

A Tandem pair over an area of about 100 km x 560 km
over Mexico and Guatemala, has been processed with
the IQL and corresponding ILU and IBP images are
presented here (fig.2 and fig.3). The SAR tandem pair
was acquired the 8th/9th of April 1996 (ERS-1 Orbit
24742, ERS-2 Orbit 5069). A map of the area is shown
in fig. I. Several features can be observed in these
images.

First of all, a global overview of the images gives an
idea of the variety of land surfaces in the area. The
Laguna de los Terminos appears in the top of the
images (fig2 & fig.3). As it is expected, very low
coherence is obtained over the water. Going south, we
arrive at a quite flat area where some forest and
cultivated areas can be distinguished. The level of the
topography can be easily derived from the IBP image
when we take into account that the altitude of ambiguity
for this interferometric pair is approximately 90 m.
This means that the change in altitude for each colour
fringe in the IBP image is about 90 m. Therefore, the
wide fringes appearing south of Laguna de los
Terminos, indicates a maximum change in altitude of
around 320 m from east to west (less than 4 fringes are
obtained). The Salinas River (fig.4) is clearly present in
blue in the ILU image (low coherence, low intensity and
notable change in intensity), with the cities of Emilio
Zapata and Tenosiqueda Pino Suarez appearing in
yellow (high coherence, high SAR intensity, low
intensity change) close to the river.

It is interesting to see the loss of coherence that takes
place when we pass from the plain scarcely vegetated
plain (red areas in the ILU image) to the Meseta Agua
Escondida (mostly green in the ILU). This change in
coherence (fig.4) shows the characteristic coherence
behaviour of forest areas. Due to the fact that over
forest, the dominant backscattering mechanism is the
volumetric one, and due also to the effect of wind and
small variations in the trees leaves, the two SAR
complex signals present low correlation over forest.

It can also be observed that as the topography gets
higher, the interferometric fringes are narrower,
following the height variations in a similar to the iso­
altitude curves in a topographic map. South to the
Sierra de los Cuchumanes, the volcanic area is clearly
visible in the image (fig.5). The Atitlan Lake is present
on the left of the image and the volcanoes Taliman,
Atitlan, Fuego and Agua appear from west to east.
Inhabited areas around the volcanoes show up as bright
yellow spots, among which the city of Guatemala is
particularly visible in the eastern part of the image.



Fig. 2 IBP image Fig. 3 ILU image
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Fig. I Map of the area with the location of
the processed data.

Fig. 4. Zoom of the ILU image over Salinas
River and Meseta Agua Escondida.
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4. AN ERS SAR INTERFEROMETRIC QUICK
LOOK (IQL) PROCESSOR

A prototype implementation of this IQL processor exists
at ESRIN. This is a high-throughput SAR processor
running on a Silicon Graphics Power Challenge
platform equipped with an 8xR8000 CPU and 2 GBytes
of memory. The IQL can process, in one operation,
large(> I000 km) strips of ERS SAR acquisitions.

The output products of the IQL processor are:

• Interferometric Browse Product (IBP)
A combination of three images:
- Interferometric Phase (ranging from 0 to 2n
projected on a colour wheel)

- Interferometric Coherence (ranging from 0 to 1)
- Averaged SAR Radiometric Intensity of both
acquisitions.

The coherence is used as a soft mask: over areas
with a coherence ::::::<- 0.2, the SAR intensity is
shown (grey-scale); over the areas with coherence ::::::
-> 0.2 the Interferometric Phase is shown.
The IBP product gives mainly an indication of the
ERS SAR data quality for topographic mapping
applications. Distinct interferometric fringes could
be further unwrapped to produce a Digital Elevation
Model (DEM) of the Earth's surface.

• Interferometric Land Use (ILU)
A Red-Green-Blue (RGB) combination of three
quantities:
- Interferometric Coherence (Red channel)
- Averaged SAR Radiometric Intensity of both
acquisitions (Green channel)

- SAR Radiometric Intensity Change between the
two acquisitions (Blue channel).

The ILU product gives an indication of the ERS
SAR data quality for classification of Land Surface
type. The relation between ILU image colours
(assuming the above channel assignments) and land
surface type under current investigation gives the
following preliminary understanding:

Red/Yellow areas correspond to high coherence,
high intensity, small intensity changes - typically
urban centres, bare rock, stable agricultural fields
Green areas correspond to low coherence, high
intensity, small intensity changes - typically
heavily vegetated areas (e.g. forest) and/or
layover regions (e.g. mountain peaks/ridges)
Blue areas correspond to low coherence, low
intensity, big intensity changes: typically water
surfaces (sea & inland water) and possibly soil
transport in desert areas.

The IBP and !LU products can be produced at Browse
resolution (configurable, currently at 200 m pixels),
ground-range projected.

In addition, the IQL processor can output separately,
each of the following information:
- SAR Radiometric Intensity image for the first
acquisition

- SAR Radiometric Intensity image for the second
acquisition

- Interferometric Coherence image
- Interferometric Phase image.

In terms of performance, the Interferometric Quick
Look processor can generate IBP + ILU products in
under 10 minutes from raw data on disk for an area
corresponding to a ERS full frame (i.e. 100 x 100 km2).

The processing of a 100 x 1000 km2 strip takes typically
under 2 hours, including input of raw data from either a
Sony D-1 digital cassette or Digital Linear Tape (DLT).

Some !LU and IBP images wide world are being
systematically processed at ESRIN with the IQL
processor. They can be consulted on-line at the
following web address: http://earthl.esrin.esa.it/INSI

4. CONCLUSIONS

The Interferometric Browse and Land Use products
generated by an Interferometric Quick Look processor
are useful tool for a preliminary analysis of large
regions, specifically of areas where a Digital Elevation
Model could be derived with good accuracy, and of the
type of surface cover and use. In this sense, the ILU
image can constitute a first glance analysis over a large
region along the satellite orbit to quickly identify urban
settlements, deforested or burned forest areas, water
bodies, cultivated zones, and so on. Finally, it is
suggested to explore the ESA Web site at:

https/rearthnet.esrin.esa.it
where information about the current and future Earth
Observation missions of ESA and related operations are
described.
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