The Influence of Uncertainty in Cloud Masking on the Quality of VIIRS Snow Products

> Igor Appel IMSG/NOAA

VIIRS Snow Product on May 13, 2012

False Color Image

False Color Image on November 15, 2012

False Color Image on November 18, 2012

VIIRS Snow Product on November 15, 2012

VIIRS Snow Product on November 18, 2012

False Color Image on November 15, 2012

Snow Retrieval on November 15, 2012

Different confidences of cloud mask 11/15/12

VIIRS Snow Product for "conservative" cloud mask

VIIRS Snow Product for Conservative Cloud Mask

False Color Image on March 15, 2012

Different confidences of cloud mask 03/15/13

Omission Errors in Snow Retrieval on 03/15/2013

Omission Errors for Different Latitudes

Omission Errors Depending on Scan Angles

Commission Errors in Snow Retrieval

Commission Errors for different Latitudes

Commission Errors Depending on Scan Angles

Siberia – the Region of the Latest Tests

Omission Errors for Different Latitudes

Probability of Different Cloud Confidences

Date	Time	Confidently	Probably	Probably	Confidently
111	1000	clear	clear	cloudy	cloudy
297	03:20	28	3	1	26
298	03:00	36	4	1	29
299	06:05	16	1	0.4	42
300	04:05	15	0.9	0.6	31
301	03:45	18	3	1	32
302	03:25	29	4	1	35
303	06:30	8	2	1	44
304	04:30	10	1	0.5	31
Average		20	2	1	34

Omission Errors for Different Cloud Confidences

Day	Time	Confident	Probably	Probably	Weighted
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2 8 80	ly clear	clear	cloudy	average
297	03:20	18	85	91	26
298	03:00	13	84	81	21
299	06:05	7	34	43	8
300	04:05	8	69	69	13
301	03:45	19	61	69	27
302	03:25	21	55	40	25
303	06:30	16	17	16	16
304	04:30	7	13	14	8
Average		14	52	53	18
2월 일이 힘을 빼내					

Advantage of Using Fractional Snow Cover

Scattering Regimes

Simple semianalytical solution instead of radiative transfer codes

Relatively new approach
Special asymptotic solution
Formula for bidirectional reflectance and albedo
Analytical algorithms for retrieval of snow properties

Resulting equation for reflection fraction

 $R_{0} = F(P(\theta))$ $P(\theta) - \text{phase function (very important)}$ Where K_{0} - the escape function approximated as $K_{0}(\xi) = (3/7)(1 + 2\cos(\xi))$ And fraction of absorbed energy (λ) $\alpha = 4\sqrt{(1-\omega)/3(1-g)}$ Reflection function = Φ (ω , g, P(θ))

Reflection Ratio

Upward Radiance Factor

