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ABSTRACT

This paper presents the development and implementation of
a cloud detection algorithm for Proba-V. Accurate and auto-
matic detection of clouds in satellite scenes is a key issue for
a wide range of remote sensing applications. With no accu-
rate cloud masking, undetected clouds are one of the most
significant sources of error in both sea and land cover bio-
physical parameter retrieval. The objective of the algorithms
presented in this paper is to detect clouds accurately providing
a cloud flag per pixel. For this purpose, the method exploits
the information of Proba-V using statistical machine learning
techniques to identify the clouds present in Proba-V products.
The effectiveness of the proposed method is successfully il-
lustrated using a large number of real Proba-V images.

Index Terms— Proba-V, cloud detection, ML

1. INTRODUCTION

The main objective of this work is to propose a cloud detec-
tion algorithm for Proba-V [1f]. Images acquired by Proba-V
instrument, which works in the visible and infrared (VIS-IR)
ranges of the electromagnetic spectrum, may be affected by
the presence of clouds.

Cloud detection approaches, also referred to as cloud mask-
ing, are generally based on the assumption that clouds present
some useful characteristics for its identification. The simplest
approach to cloud detection in a scene is the use of a set of
static thresholds (e.g. over reflectance or temperature) ap-
plied to every pixel in the image, which provides a cloud flag
(binary classification) [2]. However, the Proba-V instrument
presents a limited number of spectral bands (Blue, Red, NIR
and SWIR) which makes cloud detection particularly chal-
lenging since it does not present thermal channels or a ded-
icated cirrus band (Fig. . On the one hand, thicker clouds
should be easily detected and masked out from visible and
near-infrared Proba-V bands, but this is not true for thiner
clouds, which are semitransparent to solar radiation. More-
over, bright pixels, such as ice and snow in the surface, can be
misclassified as clouds. Bright land covers and clouds have
a similar reflectance behavior, thus thresholds on reflectance
values do not solve the problem. On the other hand, signal
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Fig. 1. Proba-V channels (boxes) superimposed to a reflectance
spectra of healthy vegetation and bare soil (dash-dotted lines).

coming from optically-thin semitransparent clouds is mostly
affected by surface contribution, and it ranges from very low
to extremely high values depending on whether the cloud is
over water or ice, respectively. Therefore, they are extremely
difficult to detect from reflectance properties in VNIR data.
These problems preclude the use of simple approaches based
on static thresholds and suggest the use of more advanced
cloud masking methods [3}/4].

Current Proba-V cloud detection uses multiple thresholds
applied to the blue and the SWIR spectral bands [5], but
the definition of global thresholds is practically impossible.
Hence, for next Proba-V reprocessing [[6], monthly compos-
ites of cloud-free reflectance in the blue band are used to
define dynamic thresholds depending on the land cover type.
Few works using more sophisticated machine learning tools
have been presented so far in the cloud detection literature,
such as Bayesian methods [[7]], fuzzy logic [8]], artificial neural
networks [9]], or recently kernel methods [4}[10].

In this context, the European Space Agency (ESA) has
started the study ‘Clouds Detection Algorithms for Proba-V’
in order to propose and compare different cloud detection
approaches for Proba-V. This paper presents our contribution
in the framework of this Proba-V Clouds Detection Round
Robin experiment. The proposed cloud detection algorithms
rely on advanced non-linear methods capable of exploiting
the information of Proba-V features in order to improve the
cloud masking products.

2. METHODOLOGY

The cloud masking process relies on the extraction of mean-
ingful physical features (e.g. brightness and whiteness) that
are combined with spatial features to increase the cloud de-
tection accuracy. Then, a supervised pixel-based classifica-



tion, based on the TOA reflectance and on a manually labeled
training set, is applied to these features providing the pixel
label (cloud or cloud free). The supervised classifiers to be
developed and tested on this data should allow the use of a
high number of input features and allow an easy integration
of heterogeneous sources of information.

2.1. Proba-V Data and Ground Truth

In this work, we consider as input data Proba-V Level 2A
products with TOA reflectance, i.e. the four Proba-V bands
are radiometrically and geometrically corrected and resam-
pled at 333m. The available data set for the Proba-V Round
Robin| exercise consists of 331 products acquired in four
days covering the four seasons: 21/03/2014, 21/06/2014,
21/09/2014, and 21/12/2014. A reduced set of Proba-V data
for a number of representative sites worldwide is used to train
the algorithm and validate its performance.

In order to train statistical machine learning models from
real data, a representative number of samples have to be la-
belled as cloud-contaminated or cloud-free samples. To la-
bel in a semi-automatic way a sufficient number of pixels
from the Proba-V images, we have adapted the user-driven
methodology proposed for MERIS in [3] to the Proba-V im-
ages, where the labeling of cloud clusters found in the image
is done by the user.

2.2. Feature Extraction

Several physically-inspired features can be extracted from the
spectrum before applying the classification methods in order
to improve their performance. In this work, we take advan-
tage of previous research and, rather than working with the
spectral reflectance only, physically-inspired features are ex-
tracted in order to increase the separability of clouds and sur-
face covers [[11]. The final set of features that are analyzed in
the frame of this work are listed in Table[Il

Together with the spectral features, basic spatial features
are extracted at different scales: the mean (u) and standard
deviation (o) are computed for each pixel-based feature at two
different scales in 3 x 3 and 5 x 5 windows. Summarizing, we
consider the four Proba-V spectral channels (4), the spectral
features described in Table[T](10), and the mean (1) and stan-
dard deviation at two different scales, which are computed for
each pixel-based feature ((4 + 10) x 4). That results in a to-
tal number of 70 possible input features (4 reflectance bands,
10 spectral features, 56 spatio-spectral features). Moreover,
in order to reduce the complexity of the trained classifiers,
we define two sets of features with the first 20 and 40 most
relevant features that will be compared in the classification
experiments.

Uhttp://earth.esa.int/web/sppa/activities/instrument-characterization-
studies/pv-cdrr

Table 1. Cloud features extracted from Proba-V images.

Cloud Feature Feature

Brightness TBr

Brightness VIS TBr, VIS

Brightness NIR TBr,NIR

Whiteness TWh

Whiteness VIS TWh,VIS

Whiteness NIR TWh,NIR

Snow NDSI T(Blue—NIR)/(Blue+NIR)
Snow NDSI T(Blue—SWIR)/(Blue+SWIR)
Red-SWIR ratio TRed/SWIR

NDVI Z(NIR—Red)/(NIR+Red)

2.3. Supervised Classification Algorithms

The extracted features and the original spectral bands are used
as inputs of advanced supervised classification algorithms,
which are required to solve complex classification problems
such as cloud masking. The detection of clouds can be consid-
ered as a two-class classification problem. In these problems,
we are given a set of £ labeled (training) samples {x;, yi}le,
where x; € R%is defined in an input space X', and y; € {0, 1}
belongs to the observation (output) space (‘cloudy’ or ‘cloud
free’). In this paper, different classification methods are an-
alyzed: classification trees (TREE) [12], support vector ma-
chines (SVMs) [[13]], and multilayer perceptron (MLP) neural
networks [14].

The CART algorithm is a tree graph structure with a se-
quence of nodes that are partitioned or split into two branches
by means of decision rules and each terminal node (leaf) is
classified with the predicted value for that node. Pruning and
cross-validation methods are usually employed on CART al-
gorithms to avoid overfitting. In this work, a 10-fold cross-
validation procedure is used to find the minimum-cost tree
and to estimate the best level of pruning.

The SVM binary classifier is a statistical learning algorithm
based on constructing a maximum margin separating hyper-
plane in a reproducing kernel Hilbert space. SVMs allow the
use of a high number of input features as it combats the curse
of dimensionality efficiently. In this work, we use a Gaussian
RBF kernel, given by K (x;,x;) = exp (—||x; — x,;||*/20?);
and free SVM parameters are selected by following an 8-fold
cross-validation procedure in the training set.

The MLP neural network |14]], which has been a traditional
approach for supervised cloud classification [9], is also in-
cluded in the comparison. In all the cases, the neurons of the
hidden layer present the hyperbolic tangent sigmoid activa-
tion function while the neuron of the output layer presents a
linear output function in order to better analyze the distribu-
tion of the output values.

3. EXPERIMENTS & RESULTS

In order to decide which features are more relevant, the in-
formation of the spectral channels and the extracted features
for cloud detection is analyzed in terms of classification accu-
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Fig. 2. Overall Accuracy (OA%) over the test sets for the ana-
lyzed methods (TREE, SVM and MLP). The number of input fea-
tures (spectral, spatial, and all features) and training samples per
class vary for each test set.

racy. In the following experiments, classifiers are trained with
different numbers of training samples and different combina-
tions of features. Figure 2] shows the Overall Accuracy (OA)
for each number of features, i.e. the classification accuracy of
the TREEs, MLPs and SVMs for the sets of selected features.

Several conclusions can be extracted from Fig. 2| Clas-
sification trees are very efficient classification algorithms but
provide the less accurate detection results for all cases. SVMs
provide excellent results when few training samples are avail-
able but present a huge computational cost when the number
of samples increases (no SVM models have been trained for
more than 15000 training samples per class). Finally, MLP
neural networks provide excellent cloud detection accuracy
and the extracted spatio-spectral cloud features drastically im-
prove results, obtaining the best results with the top 40 se-
lected features.

In what follows, we focus only on MLPs, which have of-
fered improved performance, using the top 40 selected fea-
tures for Proba-V. Also, and given that accuracy is not im-
proved too much with an increasing number of samples, we
concentrate on using 50, 000 training samples per class in all
cases, and classification accuracy is computed using 380, 000
test samples. Figure [3| shows the Overall Accuracy (OA%)
for the 54 validation images that have been manually labeled
in order to be used as reference (ground truth). In this fig-
ure, one can observe that in most images the cloud detection
accuracy is higher than 90%. This confirms that the trained
MLP provides an excellent generalization over the analyzed
images. However, it is important to remark that we are using
as reference cloud mask a ‘ground truth’ that has been manu-
ally generated. Hence, the risk of learning and reproduce the
errors present in the ground truth there always exists.

In order to better analyze the type of errors that we are
committing, Table 2| shows the overall Confusion Matrix for
the 54 validation images manually labeled. One can observe
that the proposed method provides a balanced number of false
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Fig. 3. Overall Accuracy (%) for the 54 validation images manu-
ally labeled in order to be used as reference (ground truth).

Table 2.  Confusion Matrix for the 54 validation images that
have been manually labeled in order to be used as reference (ground
truth). True Negatives (TN), False Negatives (FN), True Positives
(TP), False Positives (FP), Producer Accuracy (PA), User Accuracy
(UA), and Overall Accuracy (OA).

Manual Labels
Cloud-free Cloudy
Predicted Cloud-free | TN:345X106" FN:25x10% | PA:93%
Predicted Cloudy FP: 9x10° TP: 191x10° | PA:95%
UA: 97% UA: 88% 0A: 93%

negatives (FN) and false positives (FP), although the number
of FN is relatively higher. However, the average Overall Ac-
curacy for all images is 93% and we can consider that the
agreement between the predicted cloud masks and the gener-
ated ground truth is high enough.

Finally, an example of the resulting cloud mask is shown
in Fig. [ In this figure, the proposed cloud mask is bench-
marked against the manually generated ‘ground truth’ for a
Proba-V product. This image has been selected because it il-
lustrates most common cloud detection problems (e.g. cloud
borders, thin clouds, ice/snow covers). In these plots, pixels
detected as cloudy pixels by the cloud detection method but
labeled as cloud free in the ‘ground truth’ are plotted in blue,
while discrepancy pixels classified as cloud free but marked
as clouds in the ‘ground truth’ are shown in orange. The pix-
els detected as cloud-free by the algorithm that are labeled as
cloudy in the ‘ground truth’ (orange) match snow and glaciers
over mountains in the South Island of New Zealand, and some
parts of the coastline. Therefore, one can assume that these
differences are not errors but cloudy pixels, and that proposed
method recognizes these difficult cases, although it is true that
some thin cloud borders are also detected as cloud-free. How-
ever, in these cases a spatial growing of the cloud mask should
easily improve the results.
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Fig. 4. Cloud detection example showing the RGB false color
composite, the manually generated ground truth, the cloud mask ob-
tained with the final MLP classifier, and the comparison of the ‘man-
ual ground truth’ with the ‘Proba-V Cloud Flag’: discrepancies are
shown in blue when proposed method detects cloud and in orange
when pixels are classified as cloud-free.

4. CONCLUSIONS

In this paper, a methodology that faces the problem of ac-
curately identifying the location of clouds in Proba-V im-
ages is described. The cloud masking algorithm is based on
simple spatio-spectral physical features, which are intended
to increase separability between clouds and ground covers,
and are extracted from the converted top of atmosphere re-
flectance in order to reduce dependence on illumination and
geometric acquisition conditions. A supervised classification
is carried out based on the selected extracted features and se-
lected training samples covering most relevant image condi-
tions, background surfaces, and cloud types. In particular,
several machine learning methods have been trained using
different sets of input features and different sets of training
samples in order to select the best empirical model. The fi-
nal implemented method is based on artificial neural networks
trained with manually labeled real data. The performance of
the method has been tested on a large number of real im-
ages and on scenes presenting most critical cloud detection
problems, and results show an accurate discrimination of thin
clouds, cloud borders, and bright surfaces.
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