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Obijectives:

Improve resolution of three-component surface
motion in area of complex crustal deformation.

Many faults with varied styles of slip in an area with
~| cm/yr of dextral transtension.

Using ERS+Envisat data from WinSAR and
GeoEarthScope archives to estimate “long-term”
secular motion.

Has potentially important impact on our estimates of
seismic hazard and geodynamics.



Sierra Nevada Part of a Microplate

—

Pacific Plate

L

B MAGNET GPS

B Continuous GPS
(PBO, BARGEN, BARD,
SCIGN, PANGA)

Dense GPS Coverage in
California and Nevada

e EarthScope PBO across CA/NV quantify
rate, pattern and style of deformation in
3 components.

e SNGV rigid to the level of ~1 mm/yr,
Walker Lane deforms in dextral
transtension ~10 mm/yr.

e <1 mm/yr deformations attributable to
postseismic from historic earthquakes
(e.g. 1857, 1872, 1906, 1952, 1993,
1999).

e In vertical dimension: Longer term
measures of deformation e.qg.
topography, structure, normal fault slip
rates on eastern edge of SNGV...

e Describe down to the west tilting along
entire length of range 0.3 to 1.3 mm/yr.
e Do these imply vertical rigidity?
coherence of vertical motion?



Sierra Nevada Part of a Microplate
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10 mm/yr (95%)

Dense GPS Coverage in
California and Nevada

e EarthScope PBO across CA/NV quantify
rate, pattern and style of deformation in
3 components.

e SNGV rigid to the level of ~1 mm/yr,
Walker Lane deforms in dextral
transtension ~10 mm/yr.

e <1 mm/yr deformations attributable to
postseismic from historic earthquakes
(e.g. 1857, 1872, 1906, 1952, 1993,
1999).

e In vertical dimension: Longer term
measures of deformation e.qg.
topography, structure, normal fault slip
rates on eastern edge of SNGV...

e Describe down to the west tilting of
range 0.3 to 1.3 mm/yr.

e Do these imply vertical rigidity?
coherence of vertical motion?
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Vertical GPS Time Series

on west slope of Sierra Nevada Range
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* >| dozen stations (7 shown here)

* Trends nearly all upward ~[-2 mm/yr
* These in a NA filtered frame

* Station pairs (Sierra Nevada vs. eastern
Nevada) show relief generation.

* Longest running stations indicate Sierra Nevada
moving upward in ITRF2005 (center of mass of
whole Earth System)

* Analysis performed on mega-network of
~10000 stations globally distributed

* Developed criteria to focus on long term
motion: 3 years minimum, <5 mm annual terms,
linear time series.

* This criteria accepts most stations.



Vertical GPS Velocities Show Sierra Nevada Uplift

and Central Nevada Postseismic Relaxation
GPS Observations Interpolated Using Kriging
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We Need Earthquake Cycle Models:

Central Nevada Postseismic Viscoelastic Relaxation
Interpolated Using Kriging

Postseismic Relaxation Model
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INSAR Results Corroborate Upward Motion

of Sierra Nevada
Getting True Vertical from InSAR+GPS
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INSAR Results Corroborate Upward Motion

of Sierra Nevada
Getting True Vertical from InSAR+GPS
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INSAR Results Corroborate Upward Motion

of Sierra Nevada
Getting True Vertical from InSAR+GPS
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* GPS Station distribution important




How good are these alignments?

Tracks 399, 442 & 170

INnSAR LOS Rate
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* RMS of misfit between InSAR and
GPS is ~0.7 mm/yr (warts and all).

* Must be careful, though, because
correlation is a function of crustal
deformation signal.

* Best to use RMS as measure of
similarity between internal structure

of INSAR and GPS velocity fields,
identify outliers, etc.

* RMS can be reduced using more
aggressive masking (geology, flatness,
coherence, etc.)

* Suggests INSAR rates are precise

enough to contribute to crustal
deformation studies in Great Basin.



Southern Sierra Nevada and Walker Lane
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Predicted Vu (mm/yr)

Predictions from Block Modeling
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* Getting first order signals (e.g. Sierra Uplift)
* But not yet capturing every bit of signal in INSAR



Not Tectonics Everywhere

0.00
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mm/yr line of sight

* Owens Valley

* Signals, likely hydrology,
associated with Owens
River; agriculture.

* Structurally bounded by
Owens Valley fault, location
of 1872 earthquake.

* In block models we omit
these areas with mask based
on flatness of topography.

* Works as well as a mask
based on geology but is
easier to implement.



Conclusions

InSAR time series results indicate a 1.6+0.7 mm/yr uplift rate of
Southern Sierra Nevada.

This corroborates results from GPS stations which are rising |-2
mm/yr and localizes the gradient in vertical rate to lie near the Sierra
Nevada rangefront faults.

These results apply to solid rock uplift rate, not rate of motion of
surface (i.e. mountain). Geodesy not measuring erosion.
However erosion rate is likely ~0.1 mm/yr or less.

We interpret these observations to indicate a young (<3 Myr) and
growing Sierra Nevada, part of an actively uplifting range.






Vertical GPS Velocity (mm/yr)

Profile of Vertical GPS Velocity
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ldeas About Sierra
Nevada Elevation

o Westward tilting of the SNGV owin
to a combination of loads, including

e Denudation/unloading of High
Sierra

e Sedimentation increases load on
the Great Valley

e Lithospheric delamination, Isabella
anomaly in southern Sierra, may
explain higher elevations to the
south

e Deglaciation, expected to have a
small contribution

e Weakening of the plate at SNGV
eastern edge

e Active tectonics drive normal

faulting at 0.3 to 1.3 mm/yr normal
slip rates on the eastern edge of the
microplate (to form 2-3 km of relief



INSAR Time Series Approach

38°N

36°N -

38°N

- 36'N

* Looking at a portion of the
SNGV/Great Basin transition:
Southern Walker Lane/ECSZ

* Using INSAR TS method of Li
et al., 2009 (see Monday talk
G13B-07), a descendant of
SBAS Berardino et al., 2002.

* Accounts for effects of orbit/
atmosphere error to estimate
steady linear motion.

* Descending tracks, up to 109
scenes.

 ERS data between 1992 and
2009

* Envisat coming soon...



Seasonal Terms in Vertical GPS Time Series

Amplitude of Annual Term in Vertical Time Series
Time Series Length > 3 Years
Clipped at > 10 mm
Frame=GB09
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Relative Motion Between Two Stations

Blue = RAIL, Green = MUSB
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