
 1

The covhsmp and covhs2p software

 User's guide

G. Balmino

14 January 2009

GOCE User Toolbox (GUT)

GUT IMPLEMENTATION AND SUPPORTING SCIENTIFIC STUDIES

 2

The covhsmp and covhs2p software - User's guide

Table of contents

1. Introduction
2. Features common to both software

 2.1. constants, model degree & order, grid definition
 2.2. considered functions : geoid, gravity, etc.
 2.3. computation of Legendre functions
 2.4. filters
 2.5. input files
 2.5.1. covariance matrix
 2.5.2. Love numbers

3. Using covhsmp
 3.1. directing file (input commands); example
 3.2. output files
 3.2.1. output controls ("prints"); example
 3.2.2. generated grid(s)
 4. Using covhs2p
 4.1. directing file (input commands); example
 4.2. output files
 4.2.1. output controls ("prints"); example
 4.2.2. generated grid and covariance table files
 5. The utility software
 5.1. Fullmat_form_bin2
 5.2. Ltrimat_form_bin2
 5.3. compcarmat
 5.4. extra_cov2p
 5.5. inter_cov2p

Annex

The algorithms of covhsmp and covhs2p:
"Efficient propagation of error covariance matrices of gravitational models.
Application to GRACE and GOCE."

 3

1. Introduction

The covhsmp and covhs2p software have been developed several years ago, in preparation of
advanced space gravity missions (e.g. Aristoteles, studied between 1986 and 1993) having
capabilities of providing high resolution Earth's gravity field models with good error
structure. These software were written without documentation at that time, though with lots of
comments in the code (in French), and left in a dormant state for many years. Variances only
were needed in applications using "old" gravity models, and a simple software, based on a
direct algorithm, was used (the size of the problems did not require much sophistication). The
advent of the three new satellite gravity mapping missions: CHAMP, GRACE and GOCE,
with a much larger number of gravity model parameters and more sophisticated applications
(especially in oceanography) asked for reviving those advanced tools. Therefore they were
revisited (Balmino, 2008 – paper in annex) to produce the actual software.

 In a least squares approach to determine gravity field models from observations (often of
various types), the error information lies in the variance-covariance matrix (abbreviated VC
matrix in the following) which is the inverse of the normal matrix N, weighted by a variance
factor s0 . It provides what we call formal error estimates on the model parameters. The goal
is to map the VC matrix information onto various geodetic functions of the gravity field, to
derive: (i) errors on these functions (square root of the variance) at some points; (ii) cross-
covariances of errors between pairs of points. These points are located on a reference
ellipdoid approximating the Earth's surface (actually approximating the geoid) or at constant
altitude in some cases. In the problem which we solve with the two software, all points are
distributed regularly in latitude and longitude, i.e. lie on a grid; the errors (and covariances) at
(between) any point(s) can then be efficiently computed by interpolation of the gridded
values.

Our approach is fairly general. The gravity field is a peculiar case of functions approximated
by truncated spherical harmonic series of the form:

 (1)

or

q = Y t X (2)

In current applications q can be: geoid height, gravity anomaly or disturbance, or their vertical
gradient, equivalent water height (accounting for the loading effect), topography, or any other
function subject to this type of representation.

 This is written on a surface (e.g. the Earth’s surface, a reference ellipsoid) with ϕ ,λ being
the geo/planeto-centric latitude and longitude, respectively, and where the coefficients Cℓm
and Sℓm have been predetermined from observations of q (or one or several functions of q). In
gravitational potential problems, the Cℓ0’s may be residual harmonics (when the normal
potential of a reference ellipsoid is subtracted). The Cℓm and Sℓm coefficients are usually
normalized (Ferrer – geodetic normalization is our choice) and ordered according to a certain
numbering scheme, that is X = {Cℓm ; Sℓm}ℓ,m .

]sin)(sincos)(sin[λϕλϕ mPSmPCfq mm
L m

mmm ll
l l

lll∑ ∑
≤ ≤

+=

 4

 In (2) we have Y = { fℓm Pℓm(sinϕ) cos mλ ; fℓm Pℓm(sinϕ) sin mλ }ℓ,m : vector of the
corresponding spherical harmonic functions, ordered like the X components; the Pℓm's are the
Legendre polynomials (m=0) and functions (m>0) of the geocentric latitude ϕ , normalized
like the Cℓm , Sℓm ; they are replaced by their definite integrals over the latitude limits of a
given area when the mean value of q is considered over this area. The fℓm ’s are constants or
functions of latitude (ϕ) only; they may incorporate filtering coefficients, or tapering
coefficients limiting the harmonic series to some window in the (ℓ,m) domain for specific
problems. This will be explained in the next section.

 A zone on the working surface (e.g. the Earth) and an equiangular grid covering this zone
being defined, our goal is to compute:
 (a) the variance of the error on q at each grid point, or its mean value over a grid cell : this
is performed by covhsmp;
 (b) the error-covariances between a given point and all other points in the grid (up to a
certain distance); this is done by covhs2p.

 Γ = s0

2 N -1 being the covariance matrix of X, equal to the inverse of the normal matrix N,
scaled by the unit variance factor s0, one has:
- for problem (a), at any point P:

 σ2(q) = Y t Γ Y (3)

- for problem (b):

 (4)

where the subscripts 1, 2 refer to a pair of points P1 and P2 ; the diagonal terms can be
computed as in problem (a), making (a) a particular case of problem (b). The covhs2p
software provides variances at each grid node and covariances between each node and
neighbouring ones and could suffice, but for many problems the variances only are needed
which justified the development of the simpler software covhsmp.

An important feature of both software is that the full (square) matrix Γ is required, for sake of
efficiency, and that it is stored on disc (allowing the treatment of large problems) – see section
5.1, 5.2 and 5.3.

2. Features common to both software

2.1. Constants, model degree and order, grid definition

- Constants:

Both software need, for geodetic functions, the following constants:

GM : product of the Newton gravitational constant by the body (Earth) mass
a : equatorial semi-major axis of reference, used in the gravity model
f : flattening of the reference ellipsoid (used for latitude conversion)

⎥
⎦

⎤
⎢
⎣

⎡

ΓΓ
ΓΓ

=⎥
⎦

⎤
⎢
⎣

⎡

2212

2111

2
2

21

211
2

)(),cov(
),cov()(

YYYY
YYYY

qqq
qqq

tt

tt

σ
σ

 5

ω : mean angular velocity of the rotating body (or reference ellipsoid)

Units are those of the S.I. system

For other types of function, GM, a and ω are in general not needed (except a if one uses a
Gauss filter – see below).

- model degree and order:

The model coefficients themselves {Cℓm ; Sℓm}ℓ,m are never needed, but one has to know the
minimum and maximum values of ℓ,m and the ordering scheme.

We first define: lmin, lsup : minimum and maximum degree
 mmin, msup : minimum and maximum order
with mmin ≤ lmin , and msup ≤ lsup.

The harmonic coefficients are ordered as follows (according to m) :
 . constant coefficient : C0 (corresponds to ℓ = m = 0)
 . zonal coefficients : Cℓ0, for ℓ = lbeg(0) to lend(0)
 . tesseral coefficients : Cℓm and Sℓm
 for m = mmin to msup and for each m, ℓ = lbeg(m) to lend(m).
Usually lbeg(m) = m and lend(m) = lsup, but it is possible to define different values for some
m; for example it is frequent to have no constant term, no degree one terms, and to start the
order one terms at ℓ = 2.

- grid definition:

 The grid is limited by:
 parallels of latitudes : ϕmin , ϕmax
 meridians of longitude : λmin , λmax (λ is >0 eastward).

 The grid stepsizes are δϕ, δλ in latitude and longitude (respectively); δϕ and δλ must
divide ϕmax - ϕmin and λmax - λmin respectively.

Then we may have point values (Kmp = 1) or mean values - over each grid bin (Kmp = 0). In
covhsmp mean values are average values (rigorously computed), whereas in covhs2p they are
point values computed at the center of each cell (choice justified by most applications which
use point values indeed). Consequently the grid has Nϕ = (ϕmax - ϕmin)/ δϕ + Kpm "lines" (or
bands) of latitude and Nλ = (λmax - λmin)/ δλ + Kpm meridians (or bands in longitude).

The grid nodes and the values attached to them (a single number in the case of covhsmp, a set
of numbers – the covariances, in the case of covhs2p) are ordered (and values are stored
accordingly on disc) in matrix fashion and by decreasing latitudes. The i.th row corresponds
to one "line" of latitude ϕ i = ϕmax - δϕ (1-Kpm)/2 – (i-1) δϕ, and the j.th column corresponds
to one meridian of longitude λ j = λmin + δλ (1-Kpm)/2 + (j-1) δλ, the coordinates being those
of the bin center in the case of mean (or pseudo-mean) values.

In the variance case (covhsmp), we compute the error (square root of variance) σ ij at each grid
node.

 6

 In the covariance computation case (covhs2p), we call the grid domain the working zone [Z],
or also (in the comments embedded in the software) "inner zone"; that is [Z] = [ϕ Nϕ , ϕ 1] x
[λ 1 , λ Nλ]. Then we define a moving window WHK(Nij) around each node (i, j) which
consists of all points (ϕh , λk) such that i-H ≤ h ≤ i+H and j-K ≤ k ≤ j+K; H and K are chosen
by the user and characterize the maximum distance at which we compute the covariances (this
distance depends on latitude since we work in spherical coordinates and with equiangular
bins). The union of [Z] and all WHK 's is a domain called the envelope {E[Z]} of the inner
zone. {E[Z]} may go beyond a pole or have a λ- extension larger than 2π, of which we have
taken care. Therefore, at each node (i,j) of the regular grid we compute the tensor components

),cov(hkij
hk
ij qqC = for all neighbouring nodes (h,k) in the window of (i,j) – see fig. 1

 Fig. 1. Geometry of the computation of covariances. Grid nodes can be at corners of
 equiangular cells or at their center. hk

ijC are computed for each (i,j) and (h,k) such

 that i-H ≤ h ≤ i+H and j-K ≤ k ≤ j+K, with hk
ijC = ij

hkC . The coloured "spherical"
 rectangle centered at node (i,j) is the window of this node.

2.2. Considered functions: geoid, gravity, etc.

We here give the expression of the fℓm 's in formula (1) apart from the filtering coefficients;
for most of the considered functions q (especially the geodetic ones), fℓm only depends on the
degree ℓ and we write it as the product of a constant (f0) and of a gℓ term, both depending on
function q:

- geoid height (in meter): f0 = GM / a ; gℓ = (a/r) ℓ+1 / γ
- free-air gravity anomaly Δg (in milligal): f0 = 105 GM / a2 ; gℓ = (ℓ -1) ((a/r) ℓ+2

- gravity disturbance (milligal): f0 = 105 GM / a2 ; gℓ = (ℓ +1) ((a/r) ℓ+2

 7

- normal gravity gradient = ∂2T / ∂r2 (Eötvös), where T is the disturbing potential (true
 potential of body minus potential of the reference dynamic ellipsoid:
 f0 = 109 GM / a3 ; gℓ = (ℓ +1) (ℓ +2) ((a/r) ℓ+3

- normal gradient of Δg (milligal/meter) : f0 = -105 GM / a3 ; gℓ = (ℓ -1) (ℓ +2) ((a/r) ℓ+3

- equivalent water height (meter): f0 = g /(4πρ0 G) ; gℓ = (2ℓ +1) / (1+ k'ℓ) .

- other functions: f0 is defined by the user, and gℓ =1 for all ℓ.

In the above, G, M, a are as previously defined, r is the radius vector and γ the normal gravity
at the computation point; k'ℓ is the load Love number of degree ℓ .

2.3. Computation of Legendre functions

Normalized Legendre functions of degree ℓ and order m (polynomials when m = 0) are
defined as:

[]l
ml

ml

l

m
m

lm u
du
d

l
u

ml
mlluP)1(

!2
)1(

)!(
)!)(12)(2()(2

2/22
1

0 −
−

⎥
⎦

⎤
⎢
⎣

⎡
+

−+−
= +

+δ (5)

where u = sinϕ . Since the factor (1-u2) m/ 2 is cosmϕ and may yield underflows close to the
poles, we use recursive formulas on the polynomials (of degree l-m) which are obtained in
dropping this factor (applied afterwards). These formulas can be found in Balmino et al.
(1990).
The definite integrals ∫=

2

1

cos)(sin
ϕ

ϕ
ϕϕϕ dPI lmlm needed in the case of mean values are

computed by an algoritm adapted from Gerstl (1980), which is described in Balmino (1994).

2.4. Filters

Filtering coefficients in the spectral domain can be introduced as in Jekeli (1981). They are
isotropic filters which result in multiplying the Legendre functions and polynomials (and their
integrals) for each degree ℓ by spectral factors. We have four types of filters, defined in the
spatial domain; ψ being the angular distance on the unit sphere, they are:

- Meissl-Pellinen (wP): it is spatially defined by:
 wP(ψ) = 1 if ψ ≤ ψ0 ; wP(ψ) = 0 otherwise; ψ0 is the size of the averaging cap.

- Hanning filter (wH): it is such that:
 wH(ψ) = [1+cos(π ψ/ψ0)]/2 if ψ ≤ ψ0 ; wH(ψ) = 0 otherwise; ψ0 is as above.

- Gauss global filter (wG), defined by:

 wG(ψ) =)cos1(
212

1 ψα
α

α
π

−−
−−

e
e

The parameter α is computed as α = -Log(Ω) / [1 - cos(Δ/a)], where Ω is the value (between
0 and 1) of kernel wG at distance Δ (in meter) at the surface of the sphere of radius a.

 8

- Gauss cap-limited filter (wG
*), defined by:

 wG
*(ψ) = wG(ψ) if ψ ≤ ψ0 ; wG

*(ψ) = 0 otherwise.

The corresponding spectral factors are computed by recursive formulas as in Jekeli (ibid.)
with some refinement in the case of wH and wG

*.

2.5. Input files

The software use so-called "directing files"; they have many identical records but some
differences in covhsmp and covhs2p so they are described in sections 3.1 and 4.1. Both
software share exactly two files, one containing the VC matrix, the other one the load Love
numbers.

2.5.1. Variance-covariance matrix

We first define a case identifier XX...X (15 characters max., input from keyboard in the PC
version). Then the VC matrix, which is on unit nucov must have the following name:

 'matcov_XX...X'

The matrix must be "full" - square (and in binary, sequential form on nucov). The file has no
header preceeding the matrix rows.The ordering (rows-columns) must correspond exactly to
the ordering of the unknown vector components Xk .

2.5.2. Love numbers

This file is only required when one computes the errors (or covariances) on the equivalent
water height, which corresponds to the perturbation of a mean gravity field model (this is the
type of analysis made with the GRACE mission derived models and time variations).

The file name is 'fic_love_load' ; it is on unit nu7, which is formatted ("free" format). It
contains the load Love numbers up to degree 250 (sufficient for the current applications). The
first and last values are given below.

 1 0.00E+00
 2 -3.05E-01
 3 -1.96E-01
 4 -1.34E-01
 5 -1.05E-01
 6 -9.03E-02
 7 -8.21E-02
 8 -7.67E-02
 9 -7.26E-02
 10 -6.92E-02
 ...
 ...
 245 -6.64E-03
 246 -6.62E-03
 247 -6.60E-03
 248 -6.58E-03
 249 -6.56E-03
 250 -6.54E-03

3. Using covhsmp

 9

The first thing to do is to set the maximum dimensions which the problem requires, which are
given by three numbers defined in module parameter_limites_cov. This may be done once for
all or for each given case - if one wants to optimize the used core on the computer (this
implies the re-compilation of the module). The three corresponding instructions in the module
are:

 integer , parameter :: lim = 151 ! >= max. degree/order of spherical harmonic model

 integer , parameter :: nlon1 = 361 ! >= max. number of longitudes in the grid

 integer, parameter :: nlign = 181 ! = number of lines in a block

The last number (nlign) sets the (exact) size of the block of latitudes lines (or bands if mean
values are computed) which are processed all together. It impacts greatly the used core, for
the (usually) largest array in the software is faux, which is dimensioned (laux,nlign), with
 laux = [(lim+1)*(lim+2)]/2

3.1. Directing file (input commands); example

We define a case identifier XX...X (15 characters max., input from keyboard in the PC
version); this is the same identifier already encountered in naming the VC matrix file.

The directing file is generated by the user. Its name is built with the identifier XX…X, it is
'covhsmp_dir_XX...X.txt' , it is placed on unit nu5 by the software. Here is an example.

directing file for covhsmp
GRACE150 (eigen_gl04s) : name given to model = 15 first characters (max.)
meanponc=1 0 : grid of mean values ; 1 : grid of point values
gm=0.39860044150000e+15,a=0.63781364600000e+07,uapl=0.29825765000000E+03,om=0.72920905111492E-04
lmin=002 min. degree taken into account
lsup=150 max. degree ...
mmin=000 min. order ...
msup=150 max. order ...
m=-99,l_beg=000,l_end=000 for specific orders (m=...) : min. and max. degree (end if m=-99)
s0=+1.48548e+00 variance factor, will multiply the covariance matrix (read in e12.5)
kf=1 function type : 1=n(geoid),2=deltag(FA),3=dg=trr,4=d2T/dr2,5=dFA/dr,6=water eq.,0=other
kse=2 key for type of latitudes (1:geoc. , 2:ellip.)
h=+0.000000000 altitude (m): in effect according to function type (kf=3,4,5) ,read in f12.0
iunit=0 iunit for lat./lon. steps (0:degree , 1:minute)
fimin=-90.00,fimax=+90.00,dfi=+10.00,xlmin=-180.00,xlmax=+180.00,dxl=+10.00 (grid limits in deg.)
f0=0.0000000000 factor depending on function type (effective or not) , read in f12.0
kfilter=00,dfilter=300000.00,psi0=5.000,fract0=0.500 filter parameters (no filtering if kfilter=0)
l1=002,l2=150,lstp=00 step by step cumulated errors from deg. l1 to l2, by step lstp (if =0 : l1 to l2)
0 end of file (for PC)

Most entries are self-explanatory. Parameters which need clarification are:

- uapl = inverse of flattening.
- m=-99,l_beg=000,l_end=000 : these are the modifications of the limiting degree, per order,
of some spherical harmonics. In this example, there is none. If one would start at degree 2 for
m=1, one would have:

m=001,l_beg=002,l_end=150
m=-99,l_beg=000,l_end=000 : to mark the end of such rec.

- f0 : this is applied only if kf = 0 (other function than geodetic); in other cases f0 is computed
(and written on output).

 10

- kfilter=00,dfilter=300000.00,psi0=5.000,fract0=0.500 : filter parameters
 kfilter = 0 no filter
 kfilter = 1 : Meissl-Pellinen
 kfilter = 2 : Hanning
 kfilter = 3 : Gauss (global)
 kfilter = 4 : cap-limited Gauss

dfilter = Δ : distance in meter
psi0 = ψ0 : angular distance, in degree
fract0 = Ω : between 0 and 1

 (psi0 is ignored when kfilter = 3, dfilter and fract0 are needed only when kfilter = 3 or 4)
- l1=002,l2=150,lstp=00 : computation of cumulated errors from degree ℓ =l1 to degree ℓ =l2,
 by step of lstp (always starting at degree l1):

. if one grid only (total error), take lstp = 0, or define l1=l2 and lstp=1.

. if not, one computes grids of cumulated errors (from l1, up to l2 [at most],
 and by step of lstp)
 N.B. this implies reductions of the covariance matrix (by s/p redhsmp)

3.2. Output files

3.2.1. Output controls ("prints"); example

The file 'covhsmp_out_XX...X_.txt' : on unit nu6, contains everything written on output.
We give here an example of geoid gridding with the GRACE eigen_gl04s model, complete to
degree and order 150; the grid is worldwide, with steps of 10° in latitude and longitude.
Computation is done in one block.

 point synthesis of variances

 calculation : m= 0 ldeb= 2 lfin= 150
 calculation : m= 1 ldeb= 2 lfin= 150
 calculation : m= 2 ldeb= 2 lfin= 150
 calculation : m= 3 ldeb= 3 lfin= 150
 calculation : m= 4 ldeb= 4 lfin= 150
 calculation : m= 5 ldeb= 5 lfin= 150
 …
 calculation : m= 145 ldeb= 145 lfin= 150
 calculation : m= 146 ldeb= 146 lfin= 150
 calculation : m= 147 ldeb= 147 lfin= 150
 calculation : m= 148 ldeb= 148 lfin= 150
 calculation : m= 149 ldeb= 149 lfin= 150
 calculation : m= 150 ldeb= 150 lfin= 150

 total number of parameters= 22797

 sigma0= 1.485478156765300

 kse= 2 ----> latitudes are geodetic (ellipsoidal)

 1 n(geoid) altitude= 0.000 metres

 zone : latitude : min= -90.0000 max= 90.0000 step= 10.00000
 longitude : min=-180.0000 max= 180.0000 step= 10.00000

 reference ellipsoid defined by gm= 398600.44150000E+09
 a = 6378.1364600000E+03
 f = 1./ 298.25765
 om= 7.2920905111492E-0

 11

 geometrical parameters b = 6356.7518066306E+03
 ge= 521.85359180424E+03
 e = 8.1819132449895E-02
 ep= 8.2094378965670E-02

 dynamical parameters u0= 72.105843211372E+03
 pm= 3.4497624792635E-03
 ga= 9.7803272087811E+00 (gravity at equator)
 gb= 9.8321865256238E+00 (gravity at poles)

 (f2= 5.2788883556304E-03 (coef. of sin2 fi)
 gravity as function of fi (
 (f4= 2.3295306130934E-05 (coef. of sin4 fi)

 j2= 1.0826375455676E-03
 j4=-2.3836835418358E-06

 the generated grid, on scratch file (tape 2) has 19 records of 37 words

 verification: kf= 1 f0= 6.249481239541E+07

 kfilter= 0 dfilter= 300000. m psi0= 5. deg. fract0= 0.500

 date/time : 2009 1 8 60 16 23 17 78 ==> tbegin_sec = 58997.078

 No modification of the degrees, therefore matrix is identical

 n0. block = 0 date/time : 2009 1 8 60 16 23 17 125 ==> t0_sec = 58997

 control : block 1 lat. = 90.000
 control : block 1 lat. = 80.000
 control : block 1 lat. = 70.000
 …
 control : block 1 lat. = -80.000
 control : block 1 lat. = -90.000

 n0. block = 1 date/time : 2009 1 8 60 16 23 47 ==> t1_sec = 59027
 nrec_nucov = 1000 time = 15.096 sec

 n0. block = 1 date/time : 2009 1 8 60 16 24 02 ==> t1_sec = 59042
 nrec_nucov = 2000 time = 14.148 sec

 n0. block = 1 date/time : 2009 1 8 60 16 24 17 ==> t1_sec = 59057
 nrec_nucov = 3000 time = 14.235 sec

 n0. block = 1 date/time 2009 1 8 60 16 24 31 ==> t1_sec = 59071
 nrec_nucov = 4000 time = 13.627 sec

…

 n0. block = 1 date/time : 2009 1 8 60 16 28 18 ==> t1_sec = 59298
 nrec_nucov = 21000 time = 13.539 sec

 n0. block = 1 date/time : 2009 1 8 60 16 28 32 ==> t1_sec = 59312
 nrec_nucov = 22000 time = 13.336 sec

 degree min. : 2 degree max. : 150 r.m.s. of errors : 6.486457E-02

 grid extreme values : min= 0.024041 max= 0.071373 metre

 date/time : 2009 1 8 60 16 28 32 ==> t (lp)_sec = 59312.484

 12

 lp = 150 time = 315.406 sec

3.2.2. Generated grid(s)

The file named 'grid_err_XX...X' , with the identifier XX…XX previously defined, contains
the final grid(s). It is a formatted file, on unit nu4, with the following structure:

 . when errors are cumulated, from degree l1 (fixed) to l2 (i.e. from l1 with stepsize lstp),
one finds ng grids on nu4 (each one has a header) with ng = [(l2-l1)/lstp] + 1 ; the k.th grid
contains the errors cumulated from degree l1 up to degree l1 + (k-1) * lstp.

 . when lstp = 0 (or if l1=l2 and lstp=1), there is only one grid on nu4 (with its header).

 . each header record specifies the min. and the max. degree (this is also the case if one has
one grid only) written with the format ('l1=',i3,',l2=',i3).

 . the grid is written in matrix form: following the header one has Nϕ records, each of Nλ
words, where Nϕ and Nλ have been defined in section 2.1.

 4. Using covhs2p

There are lots of similarities with the use of covhsmp. They are repeated here so as not to
force the user to read this section and the previous one at the same time.

The first thing to do is to set the maximum dimensions which the problem requires, which are
given by:

- three numbers defined in module parameter_limites_cov. This may be done once for all or
 for each given case - if one wants to optimize the used core on the computer (this implies
 the re-compilation of the module). The three corresponding instructions in the module are:

 integer , parameter :: lim = 201 ! >= max. degree/order of spherical harmonic model

 integer , parameter :: nlon1 = 361 ! >= max. number of longitudes in the grid

 integer, parameter :: nlign = 181 ! = number of lines in a block

- three other numbers defined in module parameter_covhs2p. They are: nmaxcov, lathmax,

lonkmax, and they are defined in the following instructions in the module:

 integer, parameter :: nmaxcov = 181 ! max. dim. of tables of isotropic,
 ! N-S and E-W covariances

 integer, parameter :: lathmax = 20 ! Hmax = max. value of H

 integer, parameter :: lonkmax = 20 ! Kmax = max. value of K

 (Hmax, Kmax define the maximum size of the window centered at each grid node)

 13

The last number (nlign) in the first module and the second number in the second module
(Hmax) set the (exact) size of the block of latitudes lines (or bands if pseudo-mean values are
computed) which are processed all together. It impacts greatly the used core, for the (usually)
largest array in the software is faux, which is dimensioned (laux, nlign + 2 Hmax), with
 laux = [(lim+1)*(lim+2)]/2
 ex : lim = 200 (GOCE), therefore laux = 20301
 nlign=181 (the whole sphere, with a step of 1 deg. in latitude)
 lathmax = 20 : half-"height" of windows (in latitude)
 => nlign + 2 Hmax = 221 => faux has dimension. 4 486 521 (!)

4.1. Directing file (input commands); example

We define a case identifier XX...X (15 characters max., input from keyboard in the PC
version); this is the same identifier already encountered in naming the VC matrix file.

The directing file is generated by the user. Its name is built with the identifier XX…X, it is
'covhs2p_dir_XX...X.txt' , it is placed on unit nu5 by the software. Here is an example.

directing file for covhs2p
GOCE200 (simulated recovery) : name given to model = 15 first characters (max.)
typgrid=0 0 : direct access 1 : sequential (binary files)
meanponc=1 0 : grid of (pseudo) mean values ; 1 : grid of point values
gm=0.39860044150000e+15,a=0.63781364600000e+07,uapl=0.29825765000000E+03,om=0.72920905111492E-04
lmin=002 min. degree taken into account
lsup=200 max. degree ...
mmin=000 min. order ...
msup=200 max. order ...
m=-99,l_beg=000,l_end=000 for specific orders (m=...) : min. and max. degree (end if m=-99)
s0=+1.00000e+00 variance factor, will multiply the covariance matrix (read in e12.5)
kf=1 function type : 1=n(geoid),2=deltag(FA),3=dg=trr,4=d2T/dr2,5=dFA/dr,6=water eq.,0=other
kse=2 key for type of latitudes (1:geoc. , 2:ellip.)
h=+0.000000000 altitude (m): in effect according to function type (if kf=3, 4 or 5), read in f12.0
iunit=0 iunit for lat./lon. steps (0:degree , 1:minute)
fimin=+20.00,fimax=+80.00,dfi=+01.00,xlmin=-060.00,xlmax=+030.00,dxl=+01.00 (limits of inner zone Z in deg.)
H=lath=020,K=lonk=020 window size : half-height, halh-width (in number of grid points)
f0=1.0000000000 factor depending on function type (effective or not) , read in f12.0
kfilter=00,dfilter=300000.00,psi0=5.000,fract0=0.500 filter parameters (no filtering if kfilter=0)
l1=001,l2=200 computation for degree between l1 and l2 (eventually: reduction of cov. matrix)
dpsi=01.000000 stepsize (in degree) for tables of covariance functions) , read in f9.0
kverif=0 key for verification by "brute force" at a few points (if cov. matrix fits in core), 0: no
interp_ex=1 key for testing the interpolation procedure (if DA file), 0: no; 1:yes, for pair below
zi_lat=+40.50,zi_lon=+000.50,v_lat=+48.50,v_lon=+003.50 pair of points (1 in Z ; 2 in W [1]) for interp.
0 end of file (for PC)

Most entries are self-explanatory. Parameters which need clarification are:

- typgrid: this keyword decides on the type (and structure) of the output grid file.
 0 : direct access ; 1 : sequential. The file is always binary.
 This was implemented at the request of some users. Note that the choice "sequential"

forbids the use of software extra_cov2p and inter_cov2p (see section 5).
- uapl = inverse of flattening.
- m=-99,l_beg=000,l_end=000 : these are the modifications of the limiting degree, per order,
of some spherical harmonics. In this example, there is none. If one would start at degree 2 for
m=1, one would have:

m=001,l_beg=002,l_end=150
m=-99,l_beg=000,l_end=000 : to mark the end of such rec.

 14

- f0 : this is applied only if kf = 0 (other function than geodetic); in other cases f0 is computed
(and written on output).
- kfilter=00,dfilter=300000.00,psi0=5.000,fract0=0.500 : filter parameters
 kfilter = 0 no filter
 kfilter = 1 : Meissl-Pellinen
 kfilter = 2 : Hanning
 kfilter = 3 : Gauss (global)
 kfilter = 4 : cap-limited Gauss

dfilter = Δ : distance in meter
psi0 = ψ0 : angular distance, in degree
fract0 = Ω : between 0 and 1

 (psi0 is ignored when kfilter = 3, dfilter and fract0 are needed only when kfilter = 3 or 4)
- l1=002,l2=200 : computation of covariances from degree ℓ =l1 to degree ℓ =l2; this is for
 studying limited (truncated) cases, i.e. with l1 ≥ lmin and/or l2 < lsup (which implies
 a reduction of the covariance matrix - by s/p redhsmp)
- kverif: this is a keyword to decide or not on whether we make a verification by a "brute
force" algorithm at a few nodes.

This verification is made by the s/p verif_varhs2p, which we have especially
developped, at 81 (9*9) couples of points (mostly useful for testing the software
during the installation phase); it is limited to cases where the covariance matrix can be
put in core (cf. value of ncmax, in parameter in s/p verif_varhs2p, to be modified as
the user wants – according to the available memory). At 9 nodes (i,j) of the inner zone,
of latitude ϕ1 – (i-1) δϕ and longitude λ1 + (j-1) δλ, one (re)computes the covariances

hk
ijC between (i,j) and (h,k), for 9 values of (h,k).

The selected test nodes are: i = 1, Nϕ /2, Nϕ , and j = 1, Nλ /2, Nλ, and the associated
points are h = i-H, i, i+H, and k = j-K, j, j+K.

 This computation is performed by a direct algorithm which evaluates Yhk Γ Yij with
no trick at all. Results are compared to those obtained by s/p varhs2p.
For this verification, the VC matrix is read only once, and it is stored in array
cov (ncmax,ncmax)... but only if the total number of harmonics in the problem is less
or equal to ncmax (declared in 'parameter' as written above). This limits the possibility
of verification to relatively "small" cases (this statement depends on the computer
available memory) - to the benefice of efficiency and simplicity of the strategy.

- interp_ex: keyword for testing the interpolator (0 or 1). Such a procedure has been
developped for many applications; it works when typgrid = 0 (grid file in direct access). One
pair of point (z,w) is chosen for the test: z must be in [Z] and w in the "window" of z, i.e. at
angular distances less than H δϕ and K δλ , respectively in latitude and longitude.
Coordinates of z and w are read in the following record (as examplified).

4.2. Output files

4.2.1. Output controls ("prints"); example

The file 'covhs2p_out_XX...X_.txt' : on unit nu6, contains everything written on output. We
give an example of geoid covariances computation. It corresponds to a GOCE mission
simulation performed for one measuring phase of 6 months, at a mean altitude of 265 km. The
Earth’s gravity field is recovered up to degree and order 200, which makes the full Γ matrix
occupy 13 Gb on disk. The considered zone [Z] extends from 20°N to 80°N and from 60°W

 15

to 30°E. With a step size of one degree in latitude and longitude and with 40° x 40° windows
(H=K=20), the computation (done in one block) took a little less than 5000 seconds on a
standard PC (the same referred to in the article of the annex), which is a gain of ~50% on
previous tests (due to the use of different compiler options).

 point synthesis of covariances between two points

 typgrid = 0

 calculation : m= 0 lbeg= 2 lend= 200
 calculation : m= 1 lbeg= 2 lend= 200
 calculation : m= 2 lbeg= 2 lend= 200
 calculation : m= 3 lbeg= 3 lend= 200
 …
 calculation : m= 196 lbeg= 196 lend= 200
 calculation : m= 197 lbeg= 197 lend= 200
 calculation : m= 198 lbeg= 198 lend= 200
 calculation : m= 199 lbeg= 199 lend= 200
 calculation : m= 200 lbeg= 200 lend= 200

 total number of parameters= 40397

 sigma0= 1.00000000000000

 kse= 2 ----> latitudes are geodetic (ellipsoidal)

reference ellipsoid defined by gm= 398600.44150000E+09
 a = 6378.1364600000E+03
 f = 1./ 298.25765
 om= 7.2920905111492E-0

 geometrical parameters b = 6356.7518066306E+03
 ge= 521.85359180424E+03
 e = 8.1819132449895E-02
 ep= 8.2094378965670E-02

 dynamical parameters u0= 72.105843211372E+03
 pm= 3.4497624792635E-03
 ga= 9.7803272087811E+00 (gravity at equator)
 gb= 9.8321865256238E+00 (gravity at poles)

 (f2= 5.2788883556304E-03 (coef. of sin2 fi)
 gravity as function of fi (
 (f4= 2.3295306130934E-05 (coef. of sin4 fi)

 j2= 1.0826375455676E-03
 j4=-2.3836835418358E-06

 1 n(geoid) altitude= 0.000 metres

 inner zone : latitude : min= 20.0000 max= 80.0000 step= 1.00000
 longitude : min= -60.0000 max= 30.0000 step= 1.00000

 the inner zone/grid has 61 lines in latitude and 91 columns in longitude ==> 5551 nodes

 window size : H=lath= 20 K=lonk= 20

 the generated file has 5551 records of 1683 words each

 verification: kf= 1 f0= 6.249481239541E+07

 kfilter= 0 dfilter= 300000. m psi0= 5. deg. fract0= 0.500

 16

 dpsi = 1.000000 deg. : stepsize of tables of covariance functions (iso,n-s,e-w)

 date/time : 20090113 122002.359 +0100 2009 1 13 60 12 20 2 359 ==> tbegin_sec = 44402.359

 No modification of the degrees, therefore matrix is identical

 Call to varhs2p

 n0. block = 0 date/time : 2009 1 13 60 12 20 2 375 ==> t0_sec = 44402.375

 n0. block = 1 date/time : 2009 1 13 60 12 22 5 78 ==> t1_sec = 44525.078
 nrec_nucov = 1000 delta(time) = 122.703 sec

 n0. block = 1 date/time : 2009 1 13 60 12 24 10 859 ==> t1_sec = 44650.859
 nrec_nucov = 2000 delta(time) = 125.781 sec

...
n0. block = 1 date/time : 2009 1 13 60 13 40 16 625 ==> t1_sec = 49216.625
 nrec_nucov = 39000 delta(time) = 124.250 sec

 n0. block = 1 date/time : 2009 1 13 60 13 42 19 593 ==> t1_sec = 49339.593
 nrec_nucov = 40000 delta(time) = 122.968 sec

 Out of varhs2p

 degree min. : 2 degree max. : 200 calculation finished...

 Verification of covariance functions : iso , n-s , e-w

 n psi (deg) fcov_iso (nval) fcov_n-s (nval) fcov_e-w (nval)

 0 0.000000 2.124340E-04 (10738) 2.124340E-04 (5642) 2.124340E-04 (10283)
 1 1.000000 1.233236E-04 (75985) 1.235043E-04 (11193) 1.206238E-04 (22750)
 2 2.000000 1.426108E-04 (145236) 1.417969E-04 (11284) 1.477557E-04 (22750)
 3 3.000000 1.151392E-04 (225498) 1.060590E-04 (11284) 1.213302E-04 (22022)
 4 4.000000 1.188274E-04 (288197) 1.050238E-04 (11375) 1.402988E-04 (21294)
 5 5.000000 1.016775E-04 (342069) 7.553444E-05 (11375) 1.382674E-04 (18018)
 6 6.000000 9.648963E-05 (388206) 6.378022E-05 (11466) 1.626426E-04 (16562)
 7 7.000000 8.045237E-05 (430430) 3.762685E-05 (11466) 1.543081E-04 (14560)
 8 8.000000 8.276579E-05 (464919) 2.958263E-05 (11557) 1.639852E-04 (12922)
 9 9.000000 5.522578E-05 (490581) 1.887106E-07 (11557) 1.570991E-04 (11466)
 10 10.000000 4.369802E-05 (514241) -1.575716E-05 (11557) 1.580669E-04 (10192)
 11 11.000000 2.349728E-05 (527527) -3.623165E-05 (11375) 1.555643E-04 (9464)
 12 12.000000 -1.626885E-06 (537810) -5.691606E-05 (11284) 1.475191E-04 (8008)
 13 13.000000 -1.222237E-05 (541996) -6.496271E-05 (11102) 1.465701E-04 (6916)
 14 14.000000 -3.966501E-05 (548093) -8.324447E-05 (11011) 1.308330E-04 (6006)
 15 15.000000 -4.968117E-05 (545181) -8.586595E-05 (10829) 1.266021E-04 (4914)
 16 16.000000 -7.000760E-05 (538538) -9.426018E-05 (10738) 1.096386E-04 (4186)
 17 17.000000 -7.496658E-05 (530712) -9.024622E-05 (10556) 1.041302E-04 (3094)
 18 18.000000 -8.436056E-05 (511875) -8.684648E-05 (10465) 8.656117E-05 (1638)
 19 19.000000 -9.878611E-05 (492947) -8.636886E-05 (10283) 8.149719E-05 (546)
 20 20.000000 -9.759828E-05 (471744) -7.434528E-05 (10192) 0.000000E+00 (0)
 21 21.000000 -9.781373E-05 (286286) 0.000000E+00 (0) 0.000000E+00 (0)
 22 22.000000 -9.270572E-05 (173628) 0.000000E+00 (0) 0.000000E+00 (0)
 23 23.000000 -8.812517E-05 (109382) 0.000000E+00 (0) 0.000000E+00 (0)
 24 24.000000 -7.486374E-05 (70980) 0.000000E+00 (0) 0.000000E+00 (0)
 25 25.000000 -6.624610E-05 (38948) 0.000000E+00 (0) 0.000000E+00 (0)
 26 26.000000 -4.872753E-05 (20202) 0.000000E+00 (0) 0.000000E+00 (0)
 27 27.000000 -3.738262E-05 (7644) 0.000000E+00 (0) 0.000000E+00 (0)
 28 28.000000 -2.602923E-05 (1638) 0.000000E+00 (0) 0.000000E+00 (0)

 ****** No verification by direct algo.

 ****** Execute one example of interpolation : use of s/p interp_cov2p

 i,i1,j,j1 : 41 40 62 61
 fii,fii1,xlj,xlj1 : 40.0000000000000 41.0000000000000 1.00000000000000 0.000000000000000

 17

 h,h1,k,k1 : 33 32 65 64
 fih,fih1,xlk,xlk1 : 48.0000000000000 49.0000000000000 4.00000000000000 3.00000000000000
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 1 1 40 61 32 64
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 1 2 40 61 32 65
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 1 3 40 61 33 65
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 1 4 40 61 33 64
 p,Ch1k1,Ch1k,Chk,Chk1 : 1 2.186820504639600E-005 1.587030203982503E-005
6.964959623725848E-005 6.647943517087066E-005 : 1-2-3-4
 ----------------p, c(p) : 1 4.346688462358754E-005
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 2 1 40 62 32 64
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 2 2 40 62 32 65
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 2 3 40 62 33 65
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 2 4 40 62 33 64
 p,Ch1k1,Ch1k,Chk,Chk1 : 2 2.717104864196947E-005 2.093685783013844E-005
6.751527202253276E-005 6.813129318337236E-005 : 1-2-3-4
 ----------------p, c(p) : 2 4.593861791950326E-005
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 3 1 41 62 32 64
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 3 2 41 62 32 65
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 3 3 41 62 33 65
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 3 4 41 62 33 64
 p,Ch1k1,Ch1k,Chk,Chk1 : 3 -1.594919958752995E-005 -1.668430568163937E-005
2.139664318964785E-005 2.880847094829536E-005 : 1-2-3-4
 ----------------p, c(p) : 3 4.392902217193472E-006
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 4 1 41 61 32 64
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 4 2 41 61 32 65
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 4 3 41 61 33 65
 --* lath, lonk, p,q,i0,j0,h0,k0 : 20 20 4 4 41 61 33 64
 p,Ch1k1,Ch1k,Chk,Chk1 : 4 -1.738959056494679E-005 -1.449720655042875E-005
1.659430253978638E-005 2.251611624894857E-005 : 1-2-3-4
 ----------------p, c(p) : 4 1.805905418339851E-006
 Covariance between point (in inner zone) : lat = 40.500 lon = 0.500 , and point : lat = 48.500 lon = 3.500 (inside
window of 1.st point)

 valcov (interpolated) = 2.390107754E-05 ier = 0

 date/time : 20090113 134313.921 +0100 2009 1 13 60 13 43 13 921 ==> tend_sec = 49393.921

 time for reduc. + comput. + verif. + interp. = 4991.562 sec

4.2.2. Generated grid and covariance table files

(a) the grid file of covariances :

The generated grid file contains one record per node ; its type and structure depend on the
keyword typgrid (cf. directing file):

- if typgrid = 1, the file is binary sequential (no format), the s/p does not make any 'rewind'

at the beginning (==> header possible prior to call).
Its name is 'covhs2p_cov_S_XX...X' and it is on unit nu4.

 One has one record per node (i,j) of the inner zone, in increasing order for i (= decreasing
 latitudes, i = 1,2,…Nϕ) and, for each i, index j is increasing (= increasing longitude) from
 1 to Nλ; the record contains the components C(i,j,h,k) = hk

ijC for h increasing from i-H to
 i+H and, for each h, k is increasing from j-K to j+K . Thus, there are Nϕ * Nλ records
 (following, eventually, the header records), and we have (2*H+1)*(2*K+1) words per
 record.
 The C(i,j,h,k)'s for given i and j are in record (i-1)* Nλ +j (following eventual header), and
 the (h,k) component is the word of rank (2*K+1)*[h-(i-H)]+k-(j-K)+1.

 18

- if typgrid = 0, the file is in direct access, without format, and with no header. It is this type
of file which is proper to window extraction and interpolation by our procedures.
Its name is 'covhs2p_cov_DA_XX...X' and it is on unit nu2.

 One has one record per node (i,j) of the inner zone in increasing order for the latitude
 index i (i=1,2,... Nϕ) - i.e. decreasing latitude and, for each i, j is increasing (=increasing
 longitude) from 1 to Nλ.
 Each record contains two integers at the beginning (i and j), then the C(i,j,h,k) = hk

ijC for
 h increasing from i-H to i+H and, for each h, k increasing from j-K to j+K.
 Thus, there are Nϕ * Nλ records and 2+(2*H+1)*(2*K+1) words per record.
 The C(i,j,h,k)'s for given i and j are in record (i-1)* Nλ +j, and the (h,k) component is the
 word of rank 2+(2*K+1)*[h-(i-H)]+k-(j-K)+1.

(b) the file of covariance tables :

The file named 'tab_fcov_XX...X' , which is on unit nu9, contains the three tables of
isotropic, N-S et E-W covariance functions. It is a sequential (free-)formatted file.

Each record contains:

 n, psi, fcov_iso(n), nbcov_iso(n), fcov_ns(n), nbcov_ns(n) , fcov_ew(n), nbcov_ew(n)

with (maxcov having been defined in module parameter_covhs2p , and dpsi in the
directing file):

 . fcov_iso (_ns) (_ew) : vectors (0:nmaxcov), contain the function values,
 discretized. fcov_...(n) corresponds to a distance psi = ψ
 such that (n-1)/2*dpsi ≤ psi ≤ (n+1)/2*dpsi.
 . nbcov_iso (_ns) (_ew) : vectors (0:nmaxcov) : number of valeurs of
 C(i,j,h,k) which contribute to fcov_...(n)
 . ncov_iso(_ns) (_ew) : highest rank of the last non zero component.

5. The utility software

5.1. Fullmat_form_bin2

This software reads a general square matrix C, for instance a covariance matrix (in full form),
formatted, split into Nfic files, - usually generated on "mainframe" and in a Unix
environment.
The "Fullmat_form_bin2" s/w is usually run in a different environment (e.g. Windows) - This
is the very reason to have it !
It reads the different files, and re-writes the C matrix on a single binary file suited e.g. for the
usage by the covhsmp and covhs2p s/w (or similar ones), especially when they are run on a
PC or in a non Unix environment. This is why this transformation is necessary (since the
binary files are incompatible).
Parameters describing the case and necessary for running the s/w are input via a "Directing
file", named 'Fullmat_form_bin2_dir.txt'.

 19

In our case, the C matrix comes from "real" calculations (modelling from observations) or
from a simulation of the recovery of a global gravitationnal model expanded in spherical
harmonics, e.g. in the framework of a space mission such as GOCE.
The matrix is solely for the harmonic coefficients of the model, from degree ldmin to degree
ldmax (read in input) and the model is supposed to be complete, i.e. the number of parameters
(= order of the C matrix) has to be N = (ldmax+1)**2 - ldmin**2 (if it is not the case, it's easy
to modify it in the s/w). This means that all other parameters have been eliminated (reduced).
Harmonic coefficients must also be ordered in the order which is used by the subsequent s/w
(covhsmp, covhs2p, ...)

The matrix blocks are on files (F1), F(2), ... in this order. That is each (Fk), k = 1, 2, ...Nfic,
corresponds to a block C(k) from the sequential splitting of the C matrix. Each file (Fk) bears
the name: namefic_in // 'k' , where k has one or two characters (left justified), i.e. Nfich < 100.
namefic_in is read in input (and has 20 characters max.). The program searches the files
bearing the names trim (namefic_in) // 'k'
None of the (Fk) files has headers.
The Nfic-1 first files all have the same number of records which correspond to Nlfic rows (or
"lines") of the matrix (Nlfic : read in input).
The last one has exactly N - (Nfic-1) * Nlfic records; this number is computed.

 Each record = one full row of C, i.e. N real numbers (type SINGLE according to the
definitions in module f90_kind).
 Read-in format of (Fk) : '(N(formread))',
 formread is defined in input (10 char. max.), e.g.: es20.13
 Then the exact format is built by the program.

C is copied on a file: tape33, binary, of name 'namefic_out', defined in input (20 charact.
max). This file has no header and can be used as such in the afore mentionned s/w.

 N.B. 1. It is possible to test the program with (at most) the two first files (Fk) and over the
 first rows only (according to the nlwr parameter) of each file. It suffices to define the
 keyword Ktest to 1 in input...
 Author : G. Balmino (2008)
 Version : PC - Windows XP - Absoft Pro Fortran V.9
 2. ATTENTION : this version uses two vectors (a, b) for reading and writing each line
 of the matrix, due to the limitation of the implicit do loop counter on some compilers:
 M= 2**15-1 . If needed the procedure needs to be modified (i.e. by using three,
 four,... vectors) if N > 2*M .

The directing file for the GOCE200 case is copied below. Entries are self-explanatory
following the definitions given above.

Directing file for Fullmat_form_bin (and versions 1, 2) ******
8 Nfic : number of input files containing the matrix
matcov_form_ namefic_in (20 char. max)
5000 Nlfic : number of lines (rec.) (except the last one - size will be computed)
2 ldmin (min. degree of spherical harmonic model)
200 ldmax (max. degree of spherical harmonic model)
e16.9 formread : format of real numbers on input files (10 char. max)
25 nlwr : number of lines(rows) (of each input files) printed for control
10 nmwr : number of columns printed for control
1000 ideltawr : global control of progressing exec' every ideltawr rows

 20

matcov_GOCE200 namefic_out : name of output file (20 char. max)
0 Ktest : for executing s/w on a small part of the input file(s) 0 : no
00000 end of this directing file (on PC) ******

5.2. Ltrimat_form_bin2

This is similar to Fullmat_form_bin2, but adapted to symmetric matrices of which the lower
triangle is given.

It reads a lower triangular covariance matrix C formatted, split into Nfic files, - usually
generated on "mainframe" and in a Unix environment.
The "Ltrimat_form_bin2" s/w is usually run in a different environment (e.g. Windows) - this
is the very reason to have it.
It reads the different files, and re-writes the C matrix on a single binary file suited for the
usage by the covhsmp_tri, covhsd_tri s/w (or similar ones), especially when they are run on a
PC or in a non Unix environment. This is why this transformation is necessary (since the
binary files are incompatible).
The output file may also be used by the compcarmat s/w which transforms the triangular
matrix into a full square one, e.g. for subsequent use by the covhsmp and covhs2p s/w.
Parameters describing the case and necessary for running the s/w are input via a "Directing
file", named 'Ltrimat_form_bin2_dir.txt' .
In the present case, the C matrix comes from "real" calculations (modelling from
observations) or from a simulation of the recovery of a global gravitationnal model expanded
in spherical harmonics, e.g. in the framework of a space mission such as GOCE.
The matrix is solely for the harmonic coefficients of the model, from degree ldmin to degree
ldmax (read in input) and the model is supposed to be complete, i.e. the number of parameters
(= order of the C matrix) has to be N = (ldmax+1)**2 - ldmin**2 (if it is not the case, it's easy
to modify it in the s/w). This means that all other parameters have been eliminated (reduced).
Harmonic coefficients must also be ordered in the order which is used by the subsequent s/w
(covhsmp_tri, covhsmp, covhs2p, ...) .

The matrix blocks are on files (F1), F(2), ... in this order. That is each (Fk), k = 1, 2, ...Nfic,
corresponds to a block C(k) from the sequential splitting of the C matrix.
Each file (Fk) bears the name: namefic_in // 'k' , where k has one or two characters (left
justified), i.e. Nfich < 100.
namefic_in is read in input (and has 20 characters max.). The program searches the files
bearing the names trim (namefic_in) // 'k'
None of the (Fk) files has headers.
The Nfic-1 first files all have the same number of records which correspond to Nlfic rows (or
"lines") of the matrix (Nlfic : read in input).
The last one has exactly N - (Nfic-1) * Nlfic records; this number is computed.

Each record = one truncated row of C, i.e. the i.th row contains i real numbers (type SINGLE
according to module f90_kind) : C(i,j) j = 1 to i.
 Read-in format of (Fk) : '(i(formread))', i being between 1 and N.
 formread is defined in input (10 char. max.), e.g.: es20.13
 Then the exact format is built by the program.

C is copied on a file: tape33, binary, of name 'namefic_out', defined in
input (20 charact. max).
This file has no header and can be used as such in the afore mentionned s/w.

 21

 N.B. (1) It is possible to test the program with (at most) the two first files (Fk) and over the
 first rows only (according to the nlwr parameter) of each file. It suffices to define t
 the keyword Ktest to 1 in input...
 Author : G. Balmino (2008)
 Version : PC - Windows XP - Absoft Pro Fortran V.9

(2) ATTENTION : This version uses up to two vectors (a, b) for reading and writing
 each line of the matrix, due to the limitation of the implicit do loop counter on
 some compilers: M= 2**15-1. If needed the procedure needs to be modified (i.e.
 by using three, four,... vectors) if N > 2*M.

A directing file applicable to the GOCE200 case is copied below. Entries are self-explanatory
following the description above.

Directing file for Ltrimat_form_bin (and versions 1, 2) ******
8 Nfic : number of input files containing the triangular matrix
matcov_form_ namefic_in (20 char. max)
5000 Nlfic : number of lines (rec.) (except the last one - size will be computed)
2 ldmin (min. degree of spherical harmonic model)
200 ldmax (max. degree of spherical harmonic model)
e16.9 formread : format of real numbers on input files (10 char. max)
25 nlwr : number of lines(rows) (of each input files) printed for control
10 nmwr : max. number of columns printed for control
1000 ideltawr : global control of progressing exec' every ideltawr rows
matcovt_GOCE200 namefic_out : name of output file (20 char. max)
1 Ktest : for executing s/w on a small part of the input file(s) 0 : no
00000 end of this directing file (for PC) ******

5.3. compcarmat

The VC matrix may be given by one of its triangles, we assume it is the lower one. In order to
use the covhsmp and covhs2ps/w one needs to complement the triangular matrix into a square
matrix. This is the case of the GOCE-VC matrices provided by the ESA/EGGC H.P.F. (High
level Processing Facility). This transformation is not trivial when the matrices do not fit in
core. It can be performed by the subroutine compcar_matriang, which may be called by the
program compcarmat.

We first present the subroutine.

SUBROUTINE compcar_matriang (n, b ,m, numtri, numcar, x, ndimx, ier)

The two matrices: T (lower triangular), A (square) are on disc, in sequential binary form, and
are written in row increasing order.

- "in" variables:

n : order of matrix
b : working vector
m : dimension of vector b (the largest possible, and with m ≥ 2*n)
numtri : unit number of file containing the triangular part, T, of A.

If h is the header number of records (see down below) the (n+h).th record
contains n words.

 22

numcar : unit number of file containing the square matrix A
x : auxiliary (working) vector
ndimx : dimension of x (≥ n)

N.B. vectors b and x could be omitted in the calling sequence and declared as arrays internal
to this s/p. We did it for verification purposes...

- "out" variable :
ier : error code . 0 = O.K., = -1 if m is too small.
- s/p: this subroutine needs : header_mat : provided by the user.

ATTENTION : files numtri and numcar are opened by the user prior to the call. If they have
headers, these are managed (in reading on numtri, in writing on numcar...) by the s/p
header_mat which calling sequence should be as follows:
 call header_mat(numtri,numcar,kle_rw)
 numtri : unit number of first file
 numcar : unit number of second file
 kle_rw = 0 for initialization (usually the case when called by main prog.)
 = 1 for reading an header on numtri (make it work if no header !)
 = 2 for writing an header on numcar,
 = 3 for reading an header on numtri, and to copy it on numcar
 = 4 for reading a header on numcar
 other variables may be transfered via the modules :
 - parameter_dim_mat_tri_sq (see below)
 - common_tr_header_mat (user defined)

 The header_mat s/p is always called, even if there is no header at all.
 After a call to this s/p the file(s) is (are) positionned so as to read/write the first record
 of matrix A.

Program compcarmat uses the s/p compcar_matriang . We provide a version which generates
its own test matrix and then transforms it with compcar_matriang .
It is very simple to use:

- first the user must properly define, in module parameter_dim_mat_tri_sq, the following
integers: nmax : maximum order of matrix
 mmax: maximum size of working array b(:), used in compcar_matriang.
 maxrec_header: maximum number of header records.

- then the user must define the case by constructing the "Directing file", named
 'compcarmat_dir.txt'

 Here is an example corresponding to the test case generated by the provided
 test program:

Directing file for prog_mat_tri_sq (compcarmat)
95 order of matrix
250 size of working array b (largest possible)
1 k-header : 0= no header, 1= header
end_header key-word (alf) , 10 characters : 1.st word of last rec. of header
0 end of file (for PC)

 23

5.4. extra_cov2p

This program is usually run after the execution of covhs2p and generation of a 4-D grid of
covariances. It extracts windows of size (2H+ 1)x(2K+1) around nodes of (or arbitrary points
in) the inner zone [Z], for instance for local studies, graphic representation, etc.

The input grid file is on unit nugrid, in direct access. However it may have been generated by
another software under the conditions that the context described in the following is identical
and that the structure of the file is exactly the same.

Having defined a case identifier nommod = 'XX...X' (15 characters max., input from
keyboard in the PC version) – which is the same identifier already encountered in naming the
VC matrix file and in defining the case, the name of file nugrid is:
 'covhs2p_cov_DA_' // trim(nommod)

(a) Context:

We repeat some of the basic facts and definitions which are used in covhs2p.

 Pairs of points belong to a 4-dimension domain consisting of :
- a "inner" zone, noted [Z], defined by latitudes (λ) and longitudes (ϕ)
 with min/max values as follows :
 . fimax to fimin = fimax - (Nϕ -1)*δϕ ,
 . xlmin to xlmax = xlmin + (Nλ -1)*δλ ;
 this zone is covered by a grid, consisting of Nϕ * Nλ "nodes" z(i,j), equidistant in latitude
 (step = δϕ) and in longitude (step = δλ), (unit of angles : degree).
 ATTENTION: here fimin, fimax, xlmin, xlmax are the coordinates of the grid limits when
 we deal with point values (at the corner of the grid equi-angular cells); they are the
 coordinates of the limiting cell centers at the NW, NE, SE, SW of the grid in the case of
 (pseudo) mean values.

 - windows W[z(i,j)] centered on each node z(i,j) of the inner zone; the size of each window
 is fixed and defined by H = lath ≤ lathmax, K = lonk ≤ lonkmax , and each one consists in
 (2*H+1)*(2*K+1) points equidistant in latitude (step δϕ) and in longitude (step δλ) -
 like the nodes of [Z]; points in the window of z(i,j) are said to be in its "vicinity" and are
 noted v(z(i,j)), or simply v if there is no ambiguity.

 N.B. : lathmax and lonkmax are defined in module parameter_covhs2p.

 The domain of the sphere (or of R**2) consisting in [Z] and of the coverage by the ensemble
{W[z]} of all windows is called the "envelope of [Z]" and noted { E[Z] }, or simply {E}. It is
also a grid, having the same steps as [Z], which nodes are noted e(m,n); over the part
common to [Z] and {E}, the nodes e(-,-) are obviously identical to the nodes z(-,-).

 At each node z(i,j) of [Z], of latitude fimax-(i-1)* δϕ and longitude xlmin+(j-1)* δλ, we
 have computed covariance tensor components :
 C(i,j,h,k) = Cov [z(i,j),v(h,k)]
 between z(i,j) and points in its vicinity v(h,k), for h=i-H to i+H, and k=j-K to j+K.

 N.B. Unit = [unit of the values of studied function]**2 since we deal with covariances.

 24

 The structure of file nugrid is the following :

 - no header (i.e. no record before the grid records).
 - there is one record per node (i,j) of the inner zone, with i increasing (i=1,2,... Nϕ)
 and for each i, j increases too (from 1 to Nλ); i.e. latitude decreases with i and
 longitude increases with j; the record has two integers at the beginning: i and j,
 followed by the values C(i,j,h,k) with h increasing from i-H to i+H and, for each
 h, k increases from j-K to j+K.

 So, there are Nϕ* Nλ records and 2+(2*H+1)*(2*K+1) words/record.
 The covariance C(i,j,h,k) for i and j fixed is in record number (i-1)*nlo+j,
 and this is the word of rank 2+(2*K+1)*[h-(i-H)]+k-(j-K)+1.

(b) Directing file:

Its name is 'extra_cov2p_dir.txt' ; it is located on unit nu5 and it contains the directing
parameters. Here is an example corresponding to a GRACE150 case (or the GOCE200
simulated case). Entries are self-explanatory following the description above.

directing file for extra_cov2p
iunit=0 iunit (0:degree , 1 :minutes) for the lat/long stepsizes of the grid
fimin=+20.00,fimax=+80.00,dfi=+01.00,xlmin=-060.00,xlmax=+030.00,dxl=+01.00 grid [Z] limits (deg.)
H=lath=020,K=lonk=020 window parameters (half-height and half-width in grid steps)
zi_lat=+75.50,zi_lon=+000.50 center of window
zi_lat=+45.00,zi_lon=-050.00 center of window
zi_lat=99999. END (... when lat > 100.)

(c) Output file:

It is on unit nu6. Its name is 'extra_cov2p_output.txt' . Here is an example of extraction of two
windows from a GRACE150 case, run with the same parameters as in the directing file above.

 Extraction of covariance windows from a 4-D grid pre-generated by covhs2p (in direct access)

 inner zone : latitude : min= 20.0000 max= 80.0000 step= 1.00000
 longitude : min= -60.0000 max= 30.0000 step= 1.00000

 the inner zone has 61 lines (rows) in latitude and 91 columns in longitude ==> 5551 nodes

 size of each window : H=lath= 20 K=lonk= 20

 ===> on input D.A. file : 5551 records of 1683 words/rec.

 Extraction : window number 1 centered on point of the inner zone : lat = 75.500 lon = 0.500
 closest node : i = 6 j= 62 lat = 75.000 lon = 1.000

 Extraction : window number 2 centered on point of the inner zone : lat = 45.000 lon = -50.000
 closest node : i = 36 j= 11 lat = 45.000 lon = -50.000

 We have extracted 2 windows END of program

(c) Generated file of windows

 25

Its name is : 'gwindows_cov2p_' // trim(nommod) ; it is on unit nu9, which is sequential and
in "free" format. It contains the grids of covariance values corresponding to the extracted
windows, one after the other. These grids all have the same size, and their structure is the
following:

- each one starts by a record containing (all angles are in degree) :
 . the window number (in the order of extraction),
 . the coordinates (latitude, longitude) of the central node (as input),
 . the latitudes min. and max., the longitudes min. et max. of the window,
 . the steps δϕ , δλ,
 . the number of records, equal to (2*H+1), which follow (for this window),

 and the number of words, equal to (2*K+1), per record.
 N.B. H et K are constants, however these parameters
 are repeated for each grid in order to facilitate their use.

- we then have 2*H+1 records, one per latitude (in decreasing order), each one having
 2*K+1 words and containing the covariances for the longitudes (in increasing order).

5.5. inter_cov2p

This is a subroutine to interpolate a grid of cross-variances of a function (or its errors) at two
points : z, v. Its use is examplified at the end of covhs2p.

(a) Context:

We redescribe below much of it, which is more comfortable for the user.

The functional is f(lat, lon) given on a sphere: lat = latitude ϕ, lon = longitude λ. We may
also consider that [lat,lon] is replaced by [Y,X], any set of parameters in a certain domain of
R**2 , (X = longitude, Y = latitude).

 The grid has been generated by s/w covhs2p (and its main s/p varhs2p), and is on unit
nugrid, in direct access.

 The pair of points : (z,v) for which we want to compute the covariance belongs to a 4-
dimension domain consisting of :
 - a "inner" zone, noted [Z], defined by latitudes (Y) and longitudes (X)
 with min/max values as follows :
 . fimax to fimin = fimax - (nfi-1) *dfi ,
 . xlmin to xlmax = xlmin+(nlo-1) *dxl ;

 this zone is covered by a grid, consisting of nfi*nlo "nodes" z(i,j), equidistant in
 latitude/Y (step = dfi) and in longitude/X (step = dxl), (unit of angles : degree - or units
 proper to X and Y).
 ATTENTION: here fimin, fimax, xlmin, xlmax are the coordinates of the grid limits when
 we deal with point values (at the corner of the grid equi-angular cells); they are the
 coordinates of the limiting cell centers at the NW, NE, SE, SW of the grid in the case of
 (pseudo) mean values.

 - windows W[z(i,j)] centered on each node z(i,j) of the inner zone; the size of each window
 is fixed and defined by H = lath ≤ lathmax, K = lonk ≤ lonkmax , and each one consists in

 26

 (2*H+1)*(2*K+1) points equidistant in latitude (dfi) and in longitude (dxl) - like the nodes
 of [Z]; points in the window of z(i,j) are said to be in its "vicinity" and are noted v(z(i,j)),
 or simply v if there is no ambiguity.

 N.B. : lathmax and lonkmax are defined in module parameter_covhs2p.

 The domain of the sphere (or of R**2) consisting in [Z]} and of the coverage by the
 ensemble {W[z]} of all windows is called the "envelope of [Z]" and noted { E[Z] }, or
 simply {E}. It is also a grid, having the same steps as [Z], which nodes are noted e(m,n);
 over the part common to [Z] and {E}, the nodes e(-,-) are obviously identical to the nodes
 z(-,-).

 As a consequence of these definitions and assumptions :
 . z must be in [Z]
 . v must be in {E} and in W[z]

 At each node z(i,j) of [Z], of latitude fimax-(i-1)* δϕ and longitude xlmin+(j-1)* δλ, we
 have computed covariance tensor components :
 C(i,j,h,k) = Cov [z(i,j),v(h,k)]
 between z(i,j) and points in its vicinity v(h,k), for h=i-H to i+H, and k=j-K to j+K.

 N.B. Unit = [unit of the values of studied function]**2 since we deal with covariances.

 The structure of file nugrid is the following :

 - no header (i.e. no record before the grid records).
 - there is one record per node (i,j) of the inner zone, with i increasing (i=1,2,... Nϕ)
 and for each i, j increases too (from 1 to Nλ); i.e. latitude decreases with i and
 longitude increases with j; the record has two integers at the beginning: i and j,
 followed by the values C(i,j,h,k) with h increasing from i-H to i+H and, for each
 h, k increases from j-K to j+K.

 So, there are Nϕ* Nλ records and 2+(2*H+1)*(2*K+1) words/record.
 The covariance C(i,j,h,k) for i and j fixed is in record number (i-1)*nlo+j,
 and this is the word of rank 2+(2*K+1)*[h-(i-H)]+k-(j-K)+1.

 (b) What the s/p does:

 One computes valcov = Cov (z,v) = Cov([z_lat, z_lon], [v_lat, v_lon]), with :
 . z_lat, z_lon : coordinates (lat/Y, lon/X) of a point z inside the inner zone -
 [Z] stricto senso (not enlarged, but including the boundary),
 . v_lat, v_lon : cooordinates (lat/Y, lon/X) of a neighbouring point, v, i.e.
 in the window of point (z_lat, z_lon), i.e. such that :
 abs [v_lat - z_lat] ≤ H * dfi
 abs [v_lon - z_lon] ≤ K * dxl .
 N.B. the window W(z) of an arbitrary point z is therefore defined like the window
 of a grid node z(i,j).

 ier : this is an error code returned by the s/p; it may be:

 27

 = 0 : OK
 = -1 : the provided file is not in direct access – i.e. typgrid is not equal to 0 :
 interpolation can not be made with inter_cov2p
 = +1 : point [z_lat , z_lon] is not in [Z]
 = +2 : point [v_lat , v_lon] is not in W(z)
 = +3 : case corresponding to ie r= +1 and ier = +2.
 = +4 : (very) peculiar case : all points E(q) are outside the windows W[Z(p)]
 - see below, in (c), for the definition of Z(:) and E(:).

(c) Method:

See figure 2.

 Fig. 2. Principle of interpolation in the C(i,j,h,k) grid:
 Cov(Zn,v) = bilin.(v) [Cov(Zn,E1), Cov(Zn,E2), Cov(Zn,E3), Cov(Zn,E4)];
 then Cov(z,v)= bilin.(z) [Cov(Z1,v), Cov(Z2,v), Cov(Z3,v), Cov(Z4,v)].

Point z is surrounded by 4 nodes Z(p), (p = 1 to 4), of the grid covering the inner zone [Z],
and point v is also surrounded by 4 points, E(q), (q=1 à 4), of the grid corresponding to the
envelope {E(Z)}. Each point E(q) may be considered neighbour to each Z(p), i.e. in the
window W[Z(p)] - except in some peculiar case when one E(q) (or two E(q)'s at most) are
("slightly" - since v must be in W[z]) outside W[Z(p)]; in such special case one keeps only the
E(q)'s which are satisfactory, and one applies a different interpolation formula.

 (i) Positioning z in [Z] and v in {E} :

 28

 lat(n) and lon(m) being the latitudes and longitudes of the nodes of [Z] (and of {E}),
 with: lat(n)=fimax-(n-1)*dfi, lon(m)=xlmin+(nlo-1)*dxl,
 n=1 to nfi for [Z], and n=1-H to nfi+H for {E},
 m=1 to nlo for [Z] , and m=1-K to nlo+K for {E},
 one determines : i and i1=i-1 such that lat(i) < z_lat ≤ lat(i1),
 j and j1=j-1 such that lon(j1) ≤ z_lon < lon(j) ,
 then : h and h1=h-1 such that lat(h) < v_lat ≤ lat(h1),
 k and k1=k-1 such that lon(k1) ≤ v_lon < lon(k) .

 One then defines the surrounding points in the following order :

 - for z : Z(1) = z(i1,j1) Z(2) = z(i1,j)
 Z(4) = z(i ,j1) Z(3) = z(i ,j) ⇐ p =1,2,3,4

 - for v : E(1) = e(h1,k1) E(2) = e(h1,k)
 E(4) = e(h ,k1) E(3) = e(h ,k) ⇐ q =1,2,3,4

 (ii) Compute, for p = 1 to 4 : c(p) = Cov(Z(p),v)

 Each c(p) is obtained by bilinear interpolation, at v, of the 4 values Cov(Z(p),E(q)),
 (p fixed, q=1 to 4), or by a weighted average when we are in a particular case (cf. above).
 The values Cov(Z(p),E(q)) are the C(i0,j0,h1,k1) , C(i0,j0,h1,k)
 C(i0,j0,h ,k1) , C(i0,j0,h ,k),
 read on nugrid and corresponding to the nodes E(q) surrounding v, i.e. for (i0,j0) equal to
 (respectively) : (i1,j1) : for p=1,
 (i1,j) : for p=2,
 (i ,j) : for p=3,
 (i ,j1) : for p=4.

 (iii) Compute valcov = Cov (z,v), by bilinear interpolation, at z, of :

 c(1) = Cov(Z(1),v) c(2) = Cov(Z(2),v)
 c(4) = Cov(Z(4),v) c(3) = Cov(Z(3),v).

Remark (for the tests): if points z and v are both centers of a cell of [Z] (and of {E}),
 then valcov = [sum of the Cov(Z(p),E(q))] / 16.

 29

References

Balmino G., J.P. Barriot, N. Valès: Non Singular Fast Formulation of the Gravity Vector and
 Gravity Gradient Tensor in Spherical Harmonics, Manuscripta Geodaetica, n°15,
 pp. 11-16, 1990.

Balmino G.: Gravitational potential harmonics from the shape of an homogeneous
 body, Cel. Mech. and Dyn. Astr., Vol 60, n°3, pp. 331-364, 1994.

Gerstl M.: On the recursive computation of the integrals of the associated Legendre functions,
 Manuscripta Geodaetica, n° 5, pp. 181-199, 1980

 30

Annex

The algorithms of covhsmp and covhs2p

" Variances and Covariances of Global Gravity Field Models.
 Application to GRACE and GOCE "
 (submitted to JoG, March 2008)

Revised : Dec. 2008. Title changed to :

"Efficient propagation of error covariance matrices of gravitational models.
Application to GRACE and GOCE."

 31

Submitted to Journal of Geodesy (April 8, 2008)
Revised Dec. 17, 2008

Efficient propagation of error covariance matrices of gravitational models.
Application to GRACE and GOCE.

G. Balmino ()
C.N.E.S., Groupe de Recherches de Geodesie Spatiale,
Observatoire Midi-Pyrenees
14, Avenue Edouard Belin, 31400 Toulouse, France
Tel.: +33 (0)5 61 33 2980
E-mail: balmino@dtp.obs-mip.fr

Abstract. We have applied efficient methods for computing variances and covariances of
functions of a global gravity field model expanded in spherical harmonics, using the full
variance-covariance matrix of the coefficients. Examples are given with recent models
derived from GRACE (up to degree and order 150), and with simulated GOCE derived
solutions (up to degree and order 200).

Keywords: Global gravity field modelling; Spherical harmonics; Covariance matrix; Error
propagation

1 Introduction

From the Earth's gravity field mapping missions of this decade, especially GRACE and
GOCE, many global models of the field in spherical harmonics are and will be produced.
Besides the current use of these models, for instance in terms of grids of geoid heights, of
gravity anomalies or any other functional of the gravitational potential useful in the
geosciences and various applications, there is a need for knowing the error characteristics of
the model as precisely as possible and include them in data assimilation procedures, for
instance in oceanography. This not only requires the knowledge of the error variances but also
of the error covariances between two points (sometimes called cross-variances). Their
derivation from the gravity field model involves the full variance-covariance matrix which
can be very large, implying a priori huge computational efforts.
 We show in this paper how the rigorous computation of the variances and covariances over
grids can be optimized by using elementary algebra. The software has been written and tested
on a personal computer, in keeping the spherical harmonics variance-covariance matrix out of
core and by minimizing drastically the number of times that the program requires to access
data from the disk. We show some results based on GRACE recent solutions on the one hand,
and on GOCE simulations on the other hand, which demonstrate the efficiency of the
algorithms.

2 Formulation of the problem

Let q be any function of two variables, expanded into surface spherical harmonics, for
instance a linear (or linearized) functional of the gravity field:

 32

 (1)

or

q = Y t X (2)

In current applications q can be: geoid height, gravity anomaly or disturbance, or their vertical
gradient, equivalent water height (accounting for the loading effect), topography, or any other
function subject to this type of representation.
 This is written on a surface (e.g. the Earth’s surface, a reference ellipsoid) with ϕ ,λ being
the geo/planeto-centric latitude and longitude, respectively, and where the coefficients Cℓm
and Sℓm have been predetermined from observations of q (or one or several functions of q) by
means of a least squares adjustment (of normal matrix N). In gravitational potential problems,
the Cℓ0’s may be residual harmonics (when the normal potential of a reference ellipsoid is
subtracted). The Cℓm and Sℓm coefficients are usually normalized and ordered according to a
certain numbering scheme, that is X = {Cℓm ; Sℓm}ℓ,m .
 In (2) we have Y = { fℓm Pℓm(sinϕ) cos mλ ; fℓm Pℓm(sinϕ) sin mλ }ℓ,m : vector of the
corresponding spherical harmonic functions, ordered like the X components; the Pℓm's are the
Legendre polynomials (m=0) and functions (m>0) of the geocentric latitude ϕ , normalized
like the Cℓm , Sℓm . The fℓm ’s are constants or functions of latitude (ϕ) only; for instance if q
is the geoid height fℓm=R (the radius of the mean spherical Earth) in spherical approximation,
or fℓm=GM Rℓ/(rℓ+1γ) on the ellipsoid (with G : gravitational constant, M : Earth mass, r :
radius vector and γ : normal gravity at the computation point). The fℓm ’s may also incorporate
filtering coefficients such as those developed by Jekeli (1981), or tapering coefficients
limiting the harmonic series to some window in the (ℓ,m) domain for specific problems.
 In most cases, q is a scalar function but it may also be vectorial in which case the fℓm
coefficients are also vectors; an example will be given in section 4. Also some functions (e.g.
the deflection of the vertical in geodesy) may involve derivatives of the Pℓm 's, which can be
treated similarly.
 A zone on the working surface (e.g. the Earth) and a grid covering this zone being defined,
our goal is to compute:
 (a) the variance of the error on q at each grid point; when q is a vector, we also want the
covariances between its components at the same point;
 (b) the error-covariances between a given point and all other points in the grid (up to a
certain distance).
 Γ = σ0

2 N -1 being the covariance matrix of X, equal to the inverse of the normal matrix N,
scaled by the unit variance factor σ0, one has:
- for problem (a), at any point P:

 σ2(q) = Y t Γ Y (3)

- for problem (b):

 (4)

⎥
⎦

⎤
⎢
⎣

⎡

ΓΓ
ΓΓ

=⎥
⎦

⎤
⎢
⎣

⎡

2212

2111

2
2

21

211
2

)(),cov(
),cov()(

YYYY
YYYY

qqq
qqq

tt

tt

σ
σ

]sin)(sincos)(sin[λϕλϕ mPSmPCfq mm
L m

mmm ll
l l

lll∑ ∑
≤ ≤

+=

 33

where the subscripts 1, 2 refer to a pair of points P1 and P2 ; the diagonal terms can be
computed as in problem (a), making (a) a particular case of problem (b).
 We have developed efficient methods to compute over any equiangular grid:
- (i) at each node (i,j) point or mean values of σ2(q) for a Γ matrix of any size (Γ being
either in core – when it can fit, or stored sequentially on disc); as it will be shown in section 3,
this uses recursive evaluations of partial sums at longitudinal nodes for a fixed latitude
(equivalent to a Fourier approach - FFT); for mean values, we evaluate the Legendre
functions’ integrals Iℓm rigorously by using a variant of the Gerstl (1980) formulation and
described in Balmino (1994).
- (ii) at each node (i,j) of the regular grid the tensor)()(),cov(ij

t
hkhkij

hk
ij YYqqC Γ== for all

neighbouring nodes (h,k) – up to chosen distances in latitude and longitude, with Y(αβ) =
value of harmonic functions vector components at node (α,β). This makes use of algorithms
similar to the ones in (i) and also takes advantage of symmetries: ij

hk
hk
ij CC = . Besides we also

compute tables of the isotropic, North-South and East-West covariance functions over the
zone, which provides the user the means to evaluate the covariances beyond the prescribed
distances: an empirical anisotropic covariance function (depending on both distance ψ and
azimuth) may be fitted to the cov

s
(ψ) values where the superscript s stands for isotropic, N-S

or E-W.

3 The core of the method

The main improvement over the standard computation of matrix and dot products involved in
expressions such as Y1

 t Γ Y2 consists, in the regular grid case, in accelerating some operations
by adapting what we call the partial sums – longitude recursion algorithm (or PSLR)
introduced by Bosch (1983). Fourier methods may also be used as in Haagmans and van
Gelderen (1991) or Sneeuw and Bun (1996) but we favoured the simplicity of the PSLR. We
will see later the similarities between the two approaches.

 We want to evaluate the summations involved in (3) or (4) where the points P, or P1 and P2
are the nodes Nij of the grid, defined by:

),...1,0(
),...1,0(

0

0

Jjj
Iii

j

i

=Δ+=
=Δ−=

λλλ
ϕϕϕ

 (5)

The grid may be parameterized in geodetic latitude, in which case ϕ i is transformed into
geocentric latitude when needed. Also Δλ could be made latitude dependant in the case of a
quasi-equivalent area decomposition of the unit sphere, which does not change the basis of the
algorithm.
 [ϕ I , ϕ 0] x [λ 0 , λ J] defines the working zone [Z], called the "inner zone" in the
covariance computation case.
 When mean values are computed, the bins are centered at (ϕ i +ϕ i+1)/2 and at (λ j +λ j+1)/2 =

jλ , and we replace the quantities)sin,(cos jj mm λλ by)sin,cos(jmjm mm λθλθ where
θ0 = 1, θm = sin (m Δλ/2) / (m Δλ/2); in addition the Pℓm 's (or their derivatives in the case of
some geodetic functions) are replaced by their mean values over the latitude extent of each
bin.
 For the covariances we define a moving window WHK(Nij) around each node (i, j) which
consists of all points (ϕh , λk) such that i-H ≤ h ≤ i+H and j-K ≤ k ≤ j+K. The union of [Z]

 34

and all WHK 's is a domain called the envelope {E[Z]} of the inner zone. {E[Z]} may go
beyond a pole or have a λ- extension larger than 2π, of which we have taken care: when

2/πϕ >h we replace [ϕh , λk] by [sgn(ϕh).π-ϕh , λk+π] and in the latter particular case we
extend the range of the longitude index.
 With the notations of equation (4) let us detail the computation of Y1

 t Γ Y2 for two points P1
and P2 which are nodes of {E[Z]}, with for instance P2 being in [Z] and P1 in WHK(P2).
 We first compute ΓY2 = V2 . A component nV2 corresponds to one row of Γ, therefore:

() []∑ ∑ ∑
= = =

Γ+Γ+Γ=Γ
)0(

)0(1

)(

)(
),(),(),(2

2

1

2

1

sincos
l

ll

l

ll
llllll

L

m

m

m
m

n
mjm

n
mj

n
oj

n mFmFFY
scoc

λλ (6)

where Fℓm = fℓm Pℓm or fℓm Iℓm θm in the case of mean values. In this equation (and
subsequently) we dropped the subscript "2" from the Fℓm 's and λ 's since there should be no
confusion on where these quantities are evaluated.
)(),(21 mm ll determine the range of the columns which limit the considered blocks of the
covariance matrix through which the effective columns jc(l,m), js (l, m) of Γ are selected.
These arrays are determined once and for all at the beginning, and correspond to the adopted
numbering scheme. Usual values are ℓ1(m) = sup(1,m) and ℓ2(m) = L.

 (i) Partial sums (PS)

Equation (6) can be rewritten as follows:

()

∑

∑

=

=

=

++=Γ

L

m

n
m

L

m

n
m

n
m

nn

h

mBmAAY

0

1
02

)(

sincos

λ

λλ
 (7)

where:

∑
=

=Γ=
)(

)(
),(

2

1

),...1,0(,
m

m
m

n
mj

n
m LmFA

c

l

ll
ll

∑
=

=Γ=
)(

)(
),(

2

1

),...2,1(,
m

m
m

n
mj

n
m LmFB

s

l

ll
ll

These sums, independent of λ, can be computed without the cosmϕ factor from the Legendre
functions (or from the integrals Iℓm with a modification of the algorithm which evaluate them),
also in applying an empirical scaling factor so as to gain in accuracy and to cope with the
allowed magnitude of real numbers in the used computer (a necessity when L becomes large);
in doing so we have followed Holmes and Featherstone (2002).

 (ii) Longitude recursion (LR)

Since λλλ Δ+= joj (or λλ Δ++)(2

1jo in the case of mean values) it is easy to show (see
appendix A) that:

() () ()λσλγλ Δ+Δ== mjmjhh n
m

n
mj

n
m

n
jm sincos, (8)

 35

with

)(,sincos ommBmA o
n
mo

n
m

n
m >+= λλγ

n
o

n
o A=γ

)(,sincos ommAmB o
n
mo

n
m

n
m >−= λλσ

Expressing cos (mj Δλ) and sin (mj Δλ) in terms of sine and cosine of m (j-1) Δλ and m
(j-2) Δλ , we find the following recursion formula:

n
jm

n
jm

n
jm hhmh 2,1,, cos2 −− −Δ= λ (9)

to be initialized by:

n
m

n
omh γ=,

λσλγ Δ+Δ= mmh n
m

n
m

n
m sincos1,

 Needless to say that it is not necessary, in programming this algorithm, to keep the
superscript n as an array index; so not only this trick works fast but it is also economical
memory-wise.
 Finally we perform the summation over m of the n

jmh , for each λj , in applying a Horner
scheme of order m in cosϕ and dividing by the previously applied scaling factor as in
Holmes and Featherstone (ibid.).
 To achieve the computation, it suffices to calculate the dot product 21 VY t that is

()n
i

n YY∑ Γ 21 a writing which shows that this can be done by successive accumulation as one

browses the Γ matrix forward and for all points at a time in WHK(P2), with a similar PSLR
technique.
 Because the variance-covariance matrix Γ is rather large it generally cannot be in core.
Since the efficiency of the algorithm also comes from the use of the full square Γ matrix we
first – and once for all, complement (into a square matrix) the covariance matrix when it is
given as a (lower) triangular one, on disc; the software which performs this transformation
does not (can not) put the triangular matrix in core but instead uses a limited size working
array. Optimization is also enforced in minimizing the number of times the program accesses
data from the disk. A revolving buffer zone and (relatively small) auxiliary arrays help
reducing the amount of re-reading of Γ; we work simultaneously with the largest possible
number of parallels (of latitude ϕ i) in [Z] and also optimize the storage of the Legendre
functions and integrals over these parallels.
 The Fourier approach, used for instance by Haagmans and van Gelderen, is in principle
similar to ours: the first gain in computer time is in the PS part of the PSLR and results, as in
our case, from their reversal of the summation sequence over degree ℓ and order m (a trick
which has been commonly applied); then the second gain comes from their use of fast Fourier
transform (FFT) instead of our longitude recursions (LR). The technical differences lie: (i) in
the covariance matrix which needs to be in core in their approach whereas it is brought in core
one row at a time in ours; (ii) in the isolation of the cos mϕ factors and the use of an Horner
summation scheme.

 36

4 Performances and examples

The software, written in Fortran 90, has been developed and run on a standard (3 GHz single
processor) personal computer with 1 Gb memory and 180 Gb disk space. It has been validated
thanks to a built-in verification procedure by brute force (direct method) at a few grid nodes,
also by extensive comparisons with results from an independent software written in the 1980's
at the French Space Centre. The latter, which uses only the PS part of the PSLR algorithm and
runs on mainframe had been validated against another software independently developed at
GFZ (GeoForschungZentrum). Besides, comparisons have been made in the diagonal matrix
case (i.e. when we do not consider correlations between the coefficients) with another
independent software (Knudsen, personal communication, 2008) and good agreement was
obtained.
 An interpolation procedure (needed in most applications) has also been developed, which
allows the fast computation of cov(q1, q2) from the 4-D grid of the hk

ijC values; it uses two
bilinear interpolators involving 8 points associated in 16 pairs.
 Figure 1 shows the errors on the geoid associated with the EIGEN-GL04S1 solution, a
(static, mean) model derived from four years of GRACE data and Lageos 1 and 2 data (over
the same time period), complete to degree and order 150 (Foerste et al., 2007). The grid
resolution is 1°x1°. The full Γ matrix occupies 4 Gb in this case. The elapsed time on the
computer referred to above was 15 minutes.

 ********************** FIG. 1 ***********************

Fig. 1 : Map of the geoid errors (in centimeter) of the EIGEN-GL04S1 model derived from
 GRACE and Lageos 1 and 2 satellites (the r.m.s. error is 6.2 cm). The errors are
 slightly asymmetric with respect to the equator which may be attributed to the
 errors on the odd zonal coefficients.

 Figures 2 and 3 show results of covariances computation. They correspond to a GOCE
mission simulation (Abrikosov et al., 2006). It was performed for one measuring phase of 6
months, at a mean altitude of 265 km. The Earth’s gravity field is recovered up to degree and
order 200, which makes the full Γ matrix occupy 13 Gb on disk. The considered zone [Z]
extends from 20°N to 80°N and from 60°W to 30°E. With a step size of one degree in latitude
and longitude and with H=K=20, the computation took three hours, of which 1h20mn were
needed to read the matrix (this was determined separately). Three windows of 40° x 40° are
shown on figure 2. The covariances are in m2.
 The isotropic, north-south and east-west covariance functions which are simultaneously
computed are shown on figure 3. They demonstrate an increasing anisotropy for distances
larger than a few degrees; the east-west component in particular shows larger error
covariances which may be attributed to the limited measurement bandwidth of the
gradiometer and some characteristics of the processing (arc length, weighting and regularizing
strategies, etc).

********************** FIG. 2 ***********************

 37

Fig. 2 : Example of 40°x40° windows of geoid error covariances (in cm2) for a 6 months
 GOCE simulation. Longitudes are on the horizontal axes, latitudes on the vertical
 ones.

********************** FIG. 3 ***********************

Fig. 3 : Isotropic, N-S and E-W covariance functions determined over a 60° x 90° area for a

six months GOCE simulation (values of the N-S and E-W functions beyond 20 and 15
degrees respectively are not computed due to the window size, the limited area and
 the equiangular geometry). Values are in cm2. The larger error of the E-W component
 compared to the N-S one may have to do with the along-track data sampling interval
(about 8 km) versus the across-track separation of the ground tracks (about 35 km for
the simulated orbit).

 Finally, to illustrate the case of a vectorial function q, we give an example of covariances of
the geoid model induced error on the geostrophic currents.
 Let h (ϕ,λ) be the sea surface topography at any place on the oceans, N (ϕ,λ) the geoid
height and H (ϕ,λ) the ellipsoid height at this point. The geostrophic current velocity vector
q = ()yx &&, is given by:

∂λ
∂

ϕ

∂ϕ
∂

h
Rf

gy

h
Rf

gx

cos
1

=

−=

&

&

 (10)

with R the mean Earth's radius as before, f = 2 ω sin ϕ (ω = Earth's rotation rate in rad/s), g
the mean surface gravity. {x, y} is a local system with x being eastward and y northward. This
equation may be used about 5 to 10 degrees off the equator.
 On the other hand, we have:

 h = H – N (11)

Assuming no correlation between H – which comes from satellite altimetric measurements,
and N – which comes from a global gravity field model, we write:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
η
ξ

λ∂
∂

ϕ

ϕ∂
∂

cov

cos
1

1

covcov 2

2

H
R

H
R

f
g

y
x
&

&
 (12)

 38

where (ξ,η) are the components of the deflection of the vertical.
 The first term in (12) is attributed to sea surface slope errors coming from instrumental
errors (i.e. from the altimeter measuring system) while the second term comes from the error
on the geoid. It is this second part which can be easily computed and visualized by its error
ellipse at any point (see appendix B), from the gravity harmonics covariance matrix. Figure 4
shows such error ellipses for the EIGEN-GL04S1 model at grid points of a limited area in the
north-west Atlantic Ocean, super-imposed on the Levitus current velocities.

********************** FIG. 4 ***********************

Fig. 4: Error ellipses of the geostrophic current velocity vector, induced by errors on the

global gravity field model EIGEN-GL04S1. The arrows show the velocity vector itself
according to Levitus model. The size of the circle and of the vertical arrow at the
bottom indicate the scale (in cm). Ellipses are elongated in the N-S direction because
this component (y) corresponds to errors on the derivative of the geoid height in
longitude, and because the GRACE mission produces the best accuracy in the N-S
direction.

 Such an analysis is complementary to the computation and analysis of the covariances; it is
useful for quickly assessing the isotropic character of errors on any gravity model, or
departure from it over a given area.

5 Conclusion

We have found and implemented simple, though efficient algorithms which allow to
propagate geodetic function error variances and covariances from the complete covariance
matrix associated to a global gravitational potential model expanded in spherical harmonics.
The software currently runs on a standard personal computer and is used in applications
relating to the GRACE and GOCE gravity mapping missions.

Acknowledgments. I thank my colleagues from the CNES Toulouse Space Center: R. Biancale and
J.M. Lemoine for providing the GRACE covariance matrix, J.C. Marty and S. Bruinsma for providing
the GOCE simulated covariance matrix, and N. Vales who helped in running the graphical software
part. I also thank the reviewers who made very constructive comments and helped improving the
paper.

Appendix A: The LR algorithm

We rewrite equation (7) of the text in dropping superscript n:

∑
=

=
L

m
mhh

0

with

λλ mBmAh mmm sincos +=

 39

which has to be evaluated for each λλλ Δ+= jj 0 .
The LR algorithm is a recursive relation between the jmjm hh ,)(=λ with m fixed.
We have:

λσλγ
λλλλλλ

λλλλ

Δ+Δ=
Δ−+Δ+=

Δ++Δ+=

mjmj
mjmAmBmjmBmA

mjmBmjmAh

mm

mmmm

mmjm

sincos
sin)sincos(cos)sincos(

)sin()cos(

0000

00,

with obvious notations; note that γ0 = A0 and σ0 = 0.

We then use the following trigonometric identities:

xjxjxjx
xjxjxjx
)2(sin)1(sincos2sin

)2cos()1cos(cos2cos
−−−=
−−−=

with x = mΔλ.

Therefore:

])2(sin)2(cos[-
])1(sin)1(cos[cos2

)2(sin)1(sincos2.

)2(cos)1(coscos2.,

λσλγ
λσλγλ
λσλλσ

λγλλγ

Δ−+Δ−
Δ−+Δ−Δ=
Δ−−Δ−Δ+

Δ−−Δ−Δ=

jmjm
jmjmm

jmjmm

jmjmmh

mm

mm

mm

mmjm

that is

2,1,, cos2 −− −Δ= jmjmjm hhmh λ

which is initialized with hm,0 and hm,1 .
This is the recursive formula found by Bosch (ibid.) and which we have used in this paper.

Appendix B: Error ellipse of the geostrophic current velocity vector

The covariances are gridded on the Earth's surface, using the algorithm described in the text.
At each grid node, we have:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 2

2

cov
yyx

yxx

y
x

C
&&&

&&&

&

&

σσ
σσ

The equation of the ellipse of error at this point in the local coordinate system {x, y} is:

() () 11 =− yxCyx t

that is:

 40

12 22 =++ cyxybax

where:

Δ= /2
ya &σ

Δ−= /yxb &&σ

Δ= /2
xc &σ

with: 0222 >−=Δ yxyx &&&& σσσ (since C is symmetric, positive definite)

- If a ≠ c, let us define

ca

bArctg
−

=
2
1θ

θθθθ

θθθθ
22

22

coscossin2sin
sincossin2cos

cbac
cbaa

+−=′

++=′

 . if a' ≤ c', then θ is the polar angle, with respect to the West-East direction, of the semi-
major axis of the ellipse, which value is: a′/1 ; the semi-minor axis is c′/1 .

 . if a' > c', θ is replaced by
2
πθ + and the axes are inter-changed.

- If a = c

 . if b = o: the ellipse degenerates into a circle

 . if b ≠ o:
4
πθ = , bacbaa −=′+=′ , . If b < o , the semi-major axis of the ellipse is

()ba +/1 , the semi-minor axis is ()ba −/1 . In the other case (b ≥ o),
4

3πθ = and the axes

are interchanged.

References

Abrikosov O, Foerste C, Rothacher M, Bruinsma S, Marty JC, Balmino G (2006) Gravity
 Field Recovery with Simulated GOCE Observations, EGU, Vienna (A), Session G8
Balmino G (1994) Gravitational potential harmonics from the shape of an homogeneous body,
 Cel Mech and Dyn Astr, Vol 60, N°3: 331-364
Bosch W (1983) Effiziente Algorithmen zur Berechnung von Raster-Punkwerten von
 Kugelfunktionsentwicklungen, Memorandum, D.G.F.I. , Munich
Foerste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, Konig R, Neumayer H, Biancale
 R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2007) The GFZ/GRGS
 Satellite-Only and Combined Gravity Field Models : EIGEN-GL04S1 and EIGEN-GL04C.

 41

 J Geod, doi: 10.1007/s00190-007-0183-8
Gerstl M (1980) On the recursive computation of the integrals of the associated Legendre
 functions, Manuscripta Geodaetica 5: 181-199
Haagmans RHN and van Gelderen M (1991) Error Variances-Covariances of GEM-T1: Their
 Characteristics and Implications in Geoid Computation. J. Geophys. Res., Vol. 96 (B12),
 20,011-20,022
Holmes SA and Featherstone WE (2002) A unified approach to the Clenshaw summation and
 the recursive computation of very high degree and order normalised associated Legendre
 functions. J Geod 76: 279-299
Jekeli C (1981) Alternative methods to smooth the Earth's gravity field, Rep 310, Department
 of Geodetic Science and Surveying, Ohio State University, Columbus
Sneeuw N and Bun R (1996) Global spherical harmonic computation by two-dimensional
 Fourier methods. J Geod 70: 224-232

------------------- end of text

 4 figures follow (one per page) -------------------

 42

Fig. 1 : Map of the geoid errors (in centimeter) of the EIGEN-GL04S1 model derived from
 GRACE and Lageos 1 and 2 satellites (the r.m.s. error is 6.2 cm). The errors are
 slightly asymmetric with respect to the equator which may be attributed to the
 errors on the odd zonal coefficients.

 43

Fig. 2 : Example of 40°x40° windows of geoid error covariances (in cm2) for a 6 months
 GOCE simulation. Longitudes are on the horizontal axes, latitudes on the vertical
 ones.

 44

Fig. 3 : Isotropic, N-S and E-W covariance functions determined over a 60° x 90° area for a

six months GOCE simulation (values of the N-S and E-W functions beyond 20 and 15
degrees respectively are not computed due to the window size, the limited area and
 the equiangular geometry). Values are in cm2. The larger error of the E-W component
 compared to the N-S one may have to do with the along-track data sampling interval
(about 8 km) versus the across-track separation of the ground tracks (about 35 km for
the simulated orbit).

 45

Fig. 4: Error ellipses of the geostrophic current velocity vector, induced by errors on the

global gravity field model EIGEN-GL04S1. The arrows show the velocity vector itself
according to Levitus model. The size of the circle and of the vertical arrow at the
bottom indicate the scale (in cm). Ellipses are elongated in the N-S direction because
this component (y) corresponds to errors on the derivative of the geoid height in
longitude, and because the GRACE mission produces the best accuracy in the N-S
direction.

