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1. Introduction 
 
The covhsmp and covhs2p software have been developed several years ago, in preparation of 
advanced space gravity missions (e.g. Aristoteles, studied between 1986 and 1993)  having 
capabilities of providing high resolution Earth's gravity field models with good error 
structure. These software were written without documentation at that time, though with lots of 
comments in the code (in French), and left in a dormant state for many years. Variances only 
were needed in applications using "old" gravity models, and a simple software, based on a 
direct algorithm, was used (the size of the problems did not require much sophistication). The 
advent of the three new satellite gravity mapping missions: CHAMP, GRACE and GOCE, 
with a much larger number of gravity model parameters and more sophisticated applications 
(especially in oceanography) asked for reviving those advanced tools. Therefore they were 
revisited (Balmino, 2008 – paper in annex) to produce the actual software. 
 
 In a least squares approach to determine gravity field models from observations (often of  
various types), the error information lies in the variance-covariance matrix (abbreviated VC 
matrix in the following) which is the inverse of the normal matrix N, weighted by a variance 
factor s0 . It provides what we call  formal error estimates on the model parameters. The goal 
is to map the VC matrix information onto various geodetic  functions of the gravity field, to 
derive: (i) errors on these functions (square root of the variance) at some points; (ii) cross-
covariances of errors between pairs of points. These points are located on a reference 
ellipdoid approximating the Earth's surface (actually approximating the geoid) or at constant 
altitude in some cases. In the problem which we solve with the two software, all points are 
distributed regularly in latitude and longitude, i.e. lie on a grid;  the errors (and covariances) at 
(between) any point(s) can then be efficiently computed by interpolation of the gridded 
values.     
 
Our approach is fairly general. The gravity field is a peculiar case of functions approximated 
by truncated spherical harmonic series of the form: 
  
                                                                                                                                                 (1) 
 
 
or 
 
q = Y t X                                                                                                                                    (2) 
 
In current applications q can be: geoid height, gravity anomaly or disturbance, or their vertical 
gradient, equivalent water height (accounting for the loading effect), topography, or any other 
function subject to this type of representation. 
 
   This is written on a surface (e.g. the Earth’s surface, a reference ellipsoid) with ϕ ,λ  being 
the geo/planeto-centric latitude and longitude, respectively, and where the coefficients Cℓm 
and Sℓm have been predetermined from observations of q (or one or several functions of q). In 
gravitational potential problems, the Cℓ0’s may be residual harmonics (when the normal 
potential of a reference ellipsoid is subtracted). The Cℓm and Sℓm coefficients are usually 
normalized (Ferrer – geodetic normalization is our choice) and ordered according to a certain 
numbering scheme, that is X = {Cℓm ; Sℓm}ℓ,m . 
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   In (2) we have Y = { fℓm Pℓm(sinϕ ) cos mλ ; fℓm Pℓm(sinϕ ) sin mλ }ℓ,m : vector of the 
corresponding spherical harmonic functions, ordered like the X components; the Pℓm's are the 
Legendre polynomials (m=0) and functions (m>0) of the geocentric latitude ϕ , normalized 
like the Cℓm , Sℓm ; they are replaced by their definite integrals over the latitude limits of a 
given area when the mean value of q is considered over this area.   The fℓm ’s are constants or 
functions of latitude  (ϕ ) only; they may incorporate filtering coefficients, or tapering 
coefficients limiting the harmonic series to some window in the (ℓ,m) domain for specific 
problems. This will be explained in the next section. 
 
   A zone on the working surface (e.g. the Earth) and an equiangular grid covering this zone 
being defined, our goal is to compute: 
   (a)  the variance of the error on q at each grid point, or its mean value over a grid cell : this 
is performed by covhsmp; 
   (b) the error-covariances between a given point and all other points in the grid (up to a 
certain distance); this is done by covhs2p. 
 
   Γ = s0

2 N -1 being the covariance matrix of X, equal to the inverse of the normal matrix N, 
scaled by the unit variance factor s0, one has: 
- for problem (a), at any point P:   
             
     σ2(q) = Y t Γ Y                                                                                                                      (3) 
 
- for problem (b):  
                              
                                                                                                                                                  (4) 
 
 
 
where the subscripts 1, 2  refer to a pair of points P1 and P2 ; the diagonal terms can be 
computed as in problem (a), making (a) a particular case of problem (b). The covhs2p 
software provides variances at each grid node and covariances between each node and 
neighbouring ones and could suffice, but for many problems the variances only are needed 
which justified the development of the simpler software covhsmp. 
 
An important feature of both software is that the full (square) matrix Γ is required, for sake of 
efficiency, and that it is stored on disc (allowing the treatment of large problems) – see section 
5.1, 5.2 and 5.3. 
 
2. Features common to both software 
 
2.1. Constants, model degree and order, grid definition 
 
- Constants: 
 
Both software need, for geodetic functions, the following constants: 
 
GM  : product of the Newton gravitational constant by the body (Earth) mass 
a   : equatorial semi-major axis of reference, used in the gravity model  
f   : flattening of the reference ellipsoid (used for latitude conversion) 
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ω  : mean angular velocity of the rotating body (or reference ellipsoid) 
 
Units are those of  the S.I. system 
 
For other types of function, GM, a and ω are in general not needed (except a if one uses a 
Gauss filter – see below). 
 
- model degree and order: 
 
The model coefficients themselves {Cℓm ; Sℓm}ℓ,m are never needed, but one has to know the 
minimum and maximum values of ℓ,m and the ordering scheme. 
 
We first define:  lmin, lsup     : minimum and maximum degree 
                           mmin, msup : minimum and maximum order 
with mmin ≤  lmin , and msup ≤ lsup. 
 
The harmonic coefficients are ordered as follows (according to m) : 
    .      constant coefficient  : C0 (corresponds to ℓ = m = 0) 
    .      zonal coefficients     : Cℓ0, for ℓ = lbeg(0) to lend(0) 
    .      tesseral coefficients  : Cℓm and Sℓm 
                                               for m = mmin to msup and for each m,  ℓ = lbeg(m) to lend(m). 
Usually lbeg(m) = m and lend(m) = lsup, but it is possible to define different values for some 
m; for example it is frequent to have no constant term, no degree one terms, and to start the 
order one terms at ℓ = 2. 
 
- grid definition: 
 
 The grid is limited by: 
 parallels of latitudes       :     ϕmin ,   ϕmax  
 meridians of longitude   :      λmin ,   λmax  (λ  is  >0  eastward). 
 
 The grid stepsizes are δϕ, δλ  in latitude and longitude (respectively);  δϕ and δλ  must 
divide  ϕmax -  ϕmin  and λmax - λmin respectively.  
 
Then we may have point values (Kmp = 1) or mean values - over each grid bin (Kmp = 0 ). In 
covhsmp mean values are average values (rigorously computed), whereas in covhs2p they are 
point values computed at the center of each cell (choice justified by most applications which 
use point values indeed). Consequently the grid has  Nϕ = (ϕmax -  ϕmin )/ δϕ + Kpm "lines" (or 
bands) of latitude and Nλ = (λmax - λmin)/ δλ + Kpm meridians (or bands in longitude). 
 
The grid nodes and the values attached to them (a single number in the case of covhsmp, a set 
of  numbers – the covariances, in the case of covhs2p) are ordered (and values are stored 
accordingly on disc) in matrix fashion and by decreasing latitudes. The i.th row corresponds 
to one "line" of  latitude ϕ i =  ϕmax - δϕ (1-Kpm)/2 – (i-1) δϕ, and the j.th column corresponds 
to one meridian of longitude λ j =  λmin + δλ (1-Kpm)/2 + (j-1) δλ, the coordinates being those 
of the bin center in the case of mean (or pseudo-mean) values. 
 
In the variance case (covhsmp), we compute the error (square root of variance) σ ij at each grid 
node. 
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 In the covariance computation case (covhs2p), we call the grid domain the working zone [Z], 
or also (in the comments embedded in the software) "inner zone"; that is  [Z] = [ ϕ Nϕ , ϕ 1 ] x  
[ λ 1 , λ Nλ ]. Then we define a moving window WHK(Nij) around each node (i, j ) which 
consists of all points (ϕh , λk) such that i-H ≤ h ≤ i+H  and  j-K ≤ k ≤ j+K; H and K are chosen 
by the user and characterize the maximum distance at which we compute the covariances (this 
distance depends on latitude since we work in spherical coordinates and with equiangular 
bins). The union of  [Z] and all  WHK 's is a domain called the envelope {E[Z]} of the inner 
zone. {E[Z]} may go beyond a pole or have a λ- extension larger than 2π, of which we have 
taken care. Therefore, at each node (i,j) of the regular grid we compute the tensor components 

),cov( hkij
hk
ij qqC =   for all neighbouring nodes ( h,k ) in the window of  (i,j) – see fig. 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Fig. 1.  Geometry of the computation of covariances. Grid nodes can be at corners of   
                 equiangular cells  or at their center. hk

ijC  are computed for each (i,j) and (h,k) such  

                 that  i-H ≤  h ≤ i+H  and j-K ≤  k ≤ j+K, with hk
ijC  = ij

hkC . The coloured "spherical"  
                 rectangle centered at node (i,j) is the window of this node. 
 
 
2.2. Considered functions: geoid, gravity, etc. 
 
We here give the expression of the fℓm 's in formula (1) apart from the filtering coefficients;  
for most of the considered functions q (especially the geodetic ones),  fℓm only depends on the 
degree ℓ and we write it as the product of a constant ( f0) and of a gℓ  term, both depending on 
function q: 
 
- geoid height (in meter):   f0 = GM / a ;     gℓ = (a/r) ℓ+1 / γ 
- free-air gravity anomaly Δg (in milligal):      f0 = 105  GM / a2 ;     gℓ = (ℓ -1) ((a/r) ℓ+2  
 
- gravity disturbance (milligal):    f0 = 105  GM / a2 ;     gℓ = (ℓ +1) ((a/r) ℓ+2  
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- normal gravity gradient = ∂2T / ∂r2 (Eötvös), where T is the disturbing potential (true   
  potential of body minus potential of the reference dynamic ellipsoid:  
                       f0 = 109  GM / a3     ;     gℓ = (ℓ +1) (ℓ +2)  ((a/r) ℓ+3 
 
- normal gradient of Δg (milligal/meter)   :  f0 = -105  GM / a3    ;    gℓ = (ℓ -1) (ℓ +2)  ((a/r) ℓ+3 
 
- equivalent water height (meter):  f0 = g /(4πρ0 G)   ;     gℓ = (2ℓ +1) / (1+ k'ℓ) . 
 
- other functions:     f0   is defined by the user,  and gℓ =1 for all ℓ. 
 
In the above, G, M, a are as previously defined, r is the radius vector and γ  the normal gravity 
at the computation point; k'ℓ is the load Love number of degree ℓ . 
 
2.3. Computation of Legendre functions 
 
Normalized Legendre functions of degree ℓ and order m (polynomials when m = 0) are 
defined as: 
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where u = sinϕ . Since the factor (1-u2) m/ 2 is cosmϕ  and may yield underflows close to the 
poles, we use recursive formulas on the polynomials (of degree l-m) which are obtained in 
dropping this factor (applied afterwards). These formulas can be found in Balmino et al. 
(1990). 
The definite integrals  ∫=

2

1

cos)(sin
ϕ

ϕ
ϕϕϕ dPI lmlm  needed in the case of mean values are 

computed by an algoritm adapted from Gerstl (1980), which is described in Balmino (1994). 
 
2.4. Filters 
 
Filtering coefficients in the spectral domain can be introduced as in Jekeli (1981). They are 
isotropic filters which result in multiplying the Legendre functions and polynomials (and their 
integrals) for each degree ℓ by spectral factors. We have four types of filters, defined in the 
spatial domain; ψ being the angular distance on the unit sphere, they are: 
 
- Meissl-Pellinen  (wP): it is spatially defined by: 
 wP(ψ) = 1 if ψ ≤ ψ0 ; wP(ψ) = 0 otherwise; ψ0 is the size of the averaging cap. 
 
- Hanning filter (wH): it is such that: 
 wH(ψ) = [1+cos(π ψ/ψ0)]/2   if ψ ≤ ψ0 ; wH(ψ) = 0 otherwise; ψ0 is as above. 
 
- Gauss global filter (wG), defined by: 

             wG(ψ) =  )cos1(
212

1 ψα
α

α
π

−−
−−

e
e

 

The parameter α is computed as α =  -Log(Ω) / [ 1 - cos(Δ/a) ], where Ω is the value (between 
0 and 1) of kernel wG at distance Δ (in meter) at the surface of the sphere of radius a. 
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- Gauss cap-limited filter (wG
*), defined by: 

 wG
*(ψ) = wG(ψ) if ψ ≤ ψ0  ;  wG

*(ψ) = 0 otherwise. 
 
The corresponding spectral factors are computed by recursive formulas as in Jekeli (ibid.) 
with some refinement in the case of wH and wG

*. 
 
2.5. Input files 
 
The software use so-called "directing files"; they have many identical records but some 
differences in covhsmp and covhs2p so they are described in sections 3.1 and 4.1. Both 
software share exactly two files, one containing the VC matrix, the other one the load Love 
numbers. 
 
2.5.1.  Variance-covariance matrix 
 
We first define a case identifier XX...X  (15 characters max., input from keyboard in the PC 
version). Then the VC matrix, which is on unit nucov must have the following name: 
 
    'matcov_XX...X'  
  
The matrix must be "full" - square (and in binary, sequential form on nucov). The file has no 
header preceeding the matrix rows.The ordering (rows-columns) must correspond exactly to 
the ordering of the unknown vector components Xk . 
 
2.5.2.  Love numbers 
 
This file is only required when one computes the errors (or covariances) on the equivalent 
water height, which corresponds to the perturbation of a mean gravity field model (this is the 
type of  analysis made with the GRACE mission derived models and time variations). 
 
The file name is 'fic_love_load'  ; it is on unit nu7, which is formatted ("free" format). It 
contains the load Love numbers up to degree 250 (sufficient for the current applications). The 
first and last values are given below. 
 
   1  0.00E+00 
   2 -3.05E-01 
   3 -1.96E-01 
   4 -1.34E-01 
   5 -1.05E-01 
   6 -9.03E-02 
   7 -8.21E-02 
   8 -7.67E-02 
   9 -7.26E-02 
  10 -6.92E-02 
  ... 
  ... 
 245 -6.64E-03 
 246 -6.62E-03 
 247 -6.60E-03 
 248 -6.58E-03 
 249 -6.56E-03 
 250 -6.54E-03 
 

3. Using covhsmp 
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The first thing to do is to set the maximum dimensions which the problem requires, which are 
given by three numbers defined in module parameter_limites_cov. This may be done once for 
all or for each given case - if one wants to optimize the used core on the computer (this 
implies the re-compilation of the module). The three corresponding instructions in the module 
are:  
 
  integer , parameter :: lim = 151     !  >= max. degree/order of spherical harmonic model 
 
  integer , parameter :: nlon1 = 361  !  >= max. number of longitudes in the grid 
 
  integer, parameter  :: nlign = 181   !   = number of lines  in a block  
 
The last number (nlign) sets the (exact) size of the block of latitudes lines (or bands if mean 
values are computed) which are processed all together. It impacts greatly the used core, for 
the (usually) largest array in the software is faux, which is dimensioned (laux,nlign), with 
                                    laux = [(lim+1)*(lim+2)]/2  
 
3.1. Directing file (input commands); example 
 
We define a case identifier XX...X  (15 characters max., input from keyboard in the PC 
version); this is the same identifier already encountered in naming the VC matrix file. 
 
The directing file is generated by the user. Its name is built with the identifier XX…X, it is   
'covhsmp_dir_XX...X.txt' , it is placed on unit nu5 by the software. Here is an example. 
 
directing file for covhsmp 
GRACE150                    (eigen_gl04s) : name given to model = 15 first characters (max.) 
meanponc=1           0 : grid of mean values  ;  1 : grid of point values 
gm=0.39860044150000e+15,a=0.63781364600000e+07,uapl=0.29825765000000E+03,om=0.72920905111492E-04 
lmin=002  min. degree taken into account 
lsup=150  max. degree ... 
mmin=000 min. order ... 
msup=150 max. order ... 
m=-99,l_beg=000,l_end=000  for specific orders (m=...) : min. and max. degree (end if m=-99)   
s0=+1.48548e+00               variance factor, will multiply the covariance matrix (read in e12.5)   
kf=1                       function type : 1=n(geoid),2=deltag(FA),3=dg=trr,4=d2T/dr2,5=dFA/dr,6=water eq.,0=other 
kse=2                     key for type of latitudes (1:geoc. , 2:ellip.) 
h=+0.000000000    altitude (m): in effect according to function type (kf=3,4,5) ,read in f12.0 
iunit=0                    iunit for lat./lon. steps   (0:degree  , 1:minute) 
fimin=-90.00,fimax=+90.00,dfi=+10.00,xlmin=-180.00,xlmax=+180.00,dxl=+10.00  (grid limits in deg.) 
f0=0.0000000000 factor depending on function type (effective or not) , read in f12.0     
kfilter=00,dfilter=300000.00,psi0=5.000,fract0=0.500 filter parameters (no filtering if kfilter=0)              
l1=002,l2=150,lstp=00  step by step cumulated errors from deg. l1 to l2, by step lstp (if =0 : l1 to l2) 
0               end of file (for PC) 
 
Most entries are self-explanatory. Parameters which need clarification are: 
 
- uapl = inverse of flattening. 
- m=-99,l_beg=000,l_end=000 : these are the modifications of the limiting degree, per order, 
of some spherical harmonics. In this example, there is none. If one would start at degree 2 for 
m=1, one would have: 

m=001,l_beg=002,l_end=150 
m=-99,l_beg=000,l_end=000  :  to mark the end of such rec. 

- f0 : this is applied only if kf = 0 (other function than geodetic); in other cases f0 is computed 
(and written on output). 
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- kfilter=00,dfilter=300000.00,psi0=5.000,fract0=0.500 :  filter parameters 
 kfilter = 0 no filter 
 kfilter = 1 : Meissl-Pellinen 
 kfilter = 2 : Hanning 
 kfilter = 3 : Gauss (global) 
 kfilter = 4 : cap-limited Gauss 

dfilter = Δ : distance in meter 
psi0    = ψ0 : angular distance, in degree 
fract0  = Ω : between 0 and 1 

 (psi0 is ignored when kfilter = 3, dfilter and fract0 are needed only when kfilter = 3 or 4) 
- l1=002,l2=150,lstp=00 : computation of cumulated errors from degree ℓ =l1 to degree ℓ =l2,   
  by step of lstp (always starting at degree l1): 

. if one grid only (total error), take lstp = 0, or define l1=l2 and lstp=1. 

. if not, one computes grids of cumulated errors (from l1, up to l2 [at most], 
   and by step of lstp)  
              N.B. this implies reductions of the covariance matrix (by s/p redhsmp)  
 
3.2. Output files 
 
3.2.1. Output controls ("prints"); example 
 
The file  'covhsmp_out_XX...X_.txt' : on unit nu6, contains everything written on output. 
We give here an example of geoid gridding with the GRACE eigen_gl04s model, complete to 
degree and order 150; the grid is worldwide, with steps of 10° in latitude and longitude. 
Computation is done in one block. 
 
                              point synthesis of variances 
 
          calculation : m=   0     ldeb=   2   lfin= 150 
          calculation : m=   1     ldeb=   2   lfin= 150 
          calculation : m=   2     ldeb=   2   lfin= 150 
          calculation : m=   3     ldeb=   3   lfin= 150 
          calculation : m=   4     ldeb=   4   lfin= 150 
          calculation : m=   5     ldeb=   5   lfin= 150 
          … 
          calculation : m= 145     ldeb= 145   lfin= 150 
          calculation : m= 146     ldeb= 146   lfin= 150 
          calculation : m= 147     ldeb= 147   lfin= 150 
          calculation : m= 148     ldeb= 148   lfin= 150 
          calculation : m= 149     ldeb= 149   lfin= 150 
          calculation : m= 150     ldeb= 150   lfin= 150 
 
          total number of parameters= 22797 
 
          sigma0=   1.485478156765300 
 
          kse= 2 ----> latitudes are geodetic (ellipsoidal) 
 
            1     n(geoid)            altitude=       0.000 metres 
 
          zone :      latitude     : min=  -90.0000      max=  90.0000     step=  10.00000 
                          longitude  : min=-180.0000     max= 180.0000     step=  10.00000 
 
 reference ellipsoid defined by                  gm= 398600.44150000E+09 
                                                                     a = 6378.1364600000E+03 
                                                                     f = 1./      298.25765 
                                                                   om= 7.2920905111492E-0 
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  geometrical parameters                              b = 6356.7518066306E+03 
                                                                     ge= 521.85359180424E+03 
                                                                      e = 8.1819132449895E-02 
                                                                     ep= 8.2094378965670E-02 
 
 dynamical parameters                                u0= 72.105843211372E+03 
                                                                   pm= 3.4497624792635E-03 
                                                                     ga= 9.7803272087811E+00     (gravity at equator)  
                                                                     gb= 9.8321865256238E+00     (gravity at poles) 
                                                                                                                     
                                                    (    f2= 5.2788883556304E-03     (coef. of sin2  fi) 
  gravity as function of fi            (                                                                        
                                                    (    f4= 2.3295306130934E-05     (coef. of sin4  fi) 
 
                                                                   j2= 1.0826375455676E-03 
                                                                   j4=-2.3836835418358E-06 
 
 
          the generated grid, on scratch file (tape  2) has    19 records of    37 words 
 
          verification:     kf=  1     f0= 6.249481239541E+07 
 
          kfilter= 0     dfilter=  300000. m     psi0=   5. deg.     fract0=     0.500 
 
                           date/time :   2009   1   8    60  16  23  17   78     ==> tbegin_sec =  58997.078 
 
          No modification of the degrees, therefore matrix is identical 
 
 n0. block =   0   date/time :   2009   1   8    60  16  23  17  125     ==>  t0_sec =  58997 
 
                    control : block   1     lat. =   90.000 
                    control : block   1     lat. =   80.000 
                    control : block   1     lat. =   70.000 
                    … 
                    control : block   1     lat. =  -80.000 
                    control : block   1     lat. =  -90.000 
 
 n0. block =   1   date/time :   2009   1   8    60  16  23  47       ==>  t1_sec =  59027 
                                        nrec_nucov =   1000   time  =    15.096 sec 
 
 n0. block =   1   date/time :   2009   1   8    60  16  24  02       ==>  t1_sec =  59042 
                                        nrec_nucov =   2000   time  =    14.148 sec 
 
 n0. block =   1   date/time :   2009   1   8    60  16  24  17       ==>  t1_sec =  59057 
                                        nrec_nucov =   3000   time  =    14.235 sec 
 
 n0. block =   1   date/time   2009   1   8    60  16  24  31       ==>  t1_sec =  59071 
                                        nrec_nucov =   4000   time  =    13.627 sec 
 

… 
 
 n0. block =   1   date/time :   2009   1   8    60  16  28  18        ==>  t1_sec =  59298 
                                        nrec_nucov =  21000   time  =    13.539 sec 
 
 n0. block =   1   date/time :   2009   1   8    60  16  28  32        ==>  t1_sec =  59312 
                                        nrec_nucov =  22000   time  =    13.336 sec 
 
          degree min. :   2   degree max. : 150   r.m.s. of errors :  6.486457E-02 
 
 
                    grid extreme values : min=    0.024041  max=    0.071373  metre      
 
 
 
                            date/time :   2009   1   8    60  16  28  32       ==> t (lp)_sec =  59312.484 
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                                                                       lp =  150   time =  315.406 sec 
 
3.2.2. Generated grid(s) 
 
The file named   'grid_err_XX...X' , with the identifier XX…XX previously defined, contains 
the final grid(s). It is a formatted file, on unit nu4, with the following structure: 
 
   . when errors are cumulated, from degree l1 (fixed) to l2 (i.e. from l1  with stepsize lstp), 
one finds ng grids on nu4 (each one has a header) with ng = [ (l2-l1)/lstp ] + 1 ; the k.th grid 
contains the errors  cumulated from degree l1 up to degree l1 + (k-1) * lstp. 
 
   . when lstp = 0 (or if l1=l2 and lstp=1), there is only one grid on nu4  (with its header). 
 
   . each header record specifies the min.  and the max. degree (this is also the case if one has 
one grid only) written with the format  ('l1=',i3,',l2=',i3). 
 
   . the grid is written in matrix form: following the header one has Nϕ  records, each of Nλ 
words, where Nϕ  and  Nλ  have been defined in section 2.1. 
 
 4.  Using covhs2p 
 
There are lots of similarities with the use of covhsmp. They are repeated here so as not to 
force the user to read this section and the previous one at the same time. 
 
The first thing to do is to set the maximum dimensions which the problem requires, which are 
given by: 
 
- three numbers defined in module parameter_limites_cov. This may be done once for all or  
   for each given case - if one wants to optimize the used core on the computer (this implies    
   the re-compilation of the module). The three corresponding instructions in the module are:  
 
  integer , parameter :: lim = 201     !  >= max. degree/order of spherical harmonic model 
 
  integer , parameter :: nlon1 = 361  !  >= max. number of longitudes in the grid 
 
  integer, parameter  :: nlign = 181   !   = number of lines  in a block  
 
- three other numbers defined in module parameter_covhs2p. They are: nmaxcov, lathmax, 

lonkmax, and they are defined in the following instructions in the module: 
 
       integer, parameter :: nmaxcov = 181 !   max. dim. of tables of isotropic, 
                                                                       !   N-S and E-W covariances 
 
       integer, parameter :: lathmax = 20 !   Hmax = max. value of  H 
 
       integer, parameter :: lonkmax = 20 !   Kmax = max. value of  K 
 
    (Hmax, Kmax  define the maximum size of the window centered at each grid node) 
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The last number (nlign) in the first module and the second number in the second module 
(Hmax) set the (exact) size of the block of latitudes lines (or bands if pseudo-mean values are 
computed) which are processed all together.  It impacts greatly the used core, for the (usually) 
largest array in the software is faux, which is dimensioned (laux, nlign + 2 Hmax), with 
                                    laux = [(lim+1)*(lim+2)]/2  
       ex : lim = 200 (GOCE), therefore laux = 20301  
              nlign=181 (the whole sphere, with a step of 1 deg. in latitude) 
              lathmax = 20 : half-"height" of windows (in latitude) 
             => nlign + 2 Hmax = 221  => faux has dimension. 4 486 521 (!) 
 
4.1. Directing file (input commands); example 
 
We define a case identifier XX...X  (15 characters max., input from keyboard in the PC 
version); this is the same identifier already encountered in naming the VC matrix file. 
 
The directing file is generated by the user. Its name is built with the identifier XX…X, it is   
'covhs2p_dir_XX...X.txt' , it is placed on unit nu5 by the software. Here is an example. 
 
directing file for covhs2p 
GOCE200                     (simulated recovery) : name given to model = 15 first characters (max.)  
typgrid=0                0 : direct access     1 : sequential  (binary files) 
meanponc=1           0 : grid of ( pseudo) mean values  ;  1 : grid of point values 
gm=0.39860044150000e+15,a=0.63781364600000e+07,uapl=0.29825765000000E+03,om=0.72920905111492E-04 
lmin=002  min. degree taken into account 
lsup=200  max. degree ... 
mmin=000 min. order ... 
msup=200 max. order ... 
m=-99,l_beg=000,l_end=000  for specific orders (m=...) : min. and max. degree (end if m=-99)  
s0=+1.00000e+00   variance factor, will multiply the covariance matrix (read in e12.5)  
kf=1                        function type : 1=n(geoid),2=deltag(FA),3=dg=trr,4=d2T/dr2,5=dFA/dr,6=water eq.,0=other 
kse=2                      key for type of latitudes (1:geoc. , 2:ellip.) 
h=+0.000000000    altitude (m): in effect according to function type (if kf=3, 4 or 5), read in f12.0 
iunit=0                      iunit for lat./lon. steps   (0:degree  , 1:minute) 
fimin=+20.00,fimax=+80.00,dfi=+01.00,xlmin=-060.00,xlmax=+030.00,dxl=+01.00 (limits of inner zone Z in deg.) 
H=lath=020,K=lonk=020   window size : half-height, halh-width (in number of grid points) 
f0=1.0000000000     factor depending on function type (effective or not) , read in f12.0   
kfilter=00,dfilter=300000.00,psi0=5.000,fract0=0.500 filter parameters (no filtering if kfilter=0)          
l1=001,l2=200          computation for degree between l1 and l2 (eventually: reduction of cov. matrix) 
dpsi=01.000000        stepsize (in degree) for tables of covariance functions) , read in f9.0 
kverif=0                   key for verification by "brute force" at a few points (if cov. matrix fits in core), 0: no 
interp_ex=1   key for testing the interpolation procedure (if DA file), 0: no; 1:yes, for pair below 
zi_lat=+40.50,zi_lon=+000.50,v_lat=+48.50,v_lon=+003.50  pair of points (1 in Z ; 2 in W [1]) for interp. 
0               end of file   (for PC) 
 
Most entries are self-explanatory. Parameters which need clarification are: 
 
- typgrid: this keyword decides on the type (and structure) of the output grid file. 
                0 : direct access  ; 1 : sequential.   The file is always binary. 
 This was implemented at the request of some users. Note that the choice "sequential" 

forbids the use of software extra_cov2p and inter_cov2p (see section 5). 
- uapl = inverse of flattening. 
- m=-99,l_beg=000,l_end=000 : these are the modifications of the limiting degree, per order, 
of some spherical harmonics. In this example, there is none. If one would start at degree 2 for 
m=1, one would have: 

m=001,l_beg=002,l_end=150 
m=-99,l_beg=000,l_end=000  :  to mark the end of such rec. 
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- f0 : this is applied only if kf = 0 (other function than geodetic); in other cases f0 is computed 
(and written on output). 
- kfilter=00,dfilter=300000.00,psi0=5.000,fract0=0.500 :  filter parameters 
 kfilter = 0 no filter 
 kfilter = 1 : Meissl-Pellinen 
 kfilter = 2 : Hanning 
 kfilter = 3 : Gauss (global) 
 kfilter = 4 : cap-limited Gauss 

dfilter = Δ : distance in meter 
psi0    = ψ0 : angular distance, in degree 
fract0  = Ω : between 0 and 1 

 (psi0 is ignored when kfilter = 3, dfilter and fract0 are needed only when kfilter = 3 or 4) 
- l1=002,l2=200 : computation of covariances from degree ℓ =l1 to degree ℓ =l2; this is for   
     studying limited (truncated) cases, i.e. with l1 ≥ lmin and/or l2 < lsup (which implies    
     a reduction of the covariance matrix - by s/p redhsmp) 
- kverif: this is a keyword to decide or not on whether we make a verification by a "brute 
force" algorithm at a few nodes.   

This verification is made by the s/p verif_varhs2p, which we have especially 
developped, at 81 (9*9) couples of points  (mostly useful for testing the software 
during the installation phase); it is limited to cases where the covariance matrix can be 
put in core (cf. value of ncmax, in parameter in s/p verif_varhs2p, to be modified as 
the user wants – according to the available memory). At 9 nodes (i,j) of the inner zone, 
of latitude ϕ1 – (i-1) δϕ  and longitude  λ1 + (j-1) δλ, one (re)computes the covariances 

hk
ijC   between (i,j) and (h,k), for 9 values of (h,k).  

The selected test nodes are: i = 1, Nϕ /2, Nϕ , and j = 1, Nλ /2, Nλ,   and the associated 
points are h = i-H, i, i+H, and k = j-K, j, j+K. 

   This computation is performed by a direct algorithm which evaluates   Yhk Γ Yij with  
no trick at all. Results are compared to those obtained by s/p  varhs2p. 
For this verification, the VC matrix is read only once, and it is stored in array  
cov  (ncmax,ncmax)... but only if the total number of harmonics in the problem is less 
or equal to ncmax (declared in 'parameter' as written above). This limits the possibility 
of verification to relatively "small" cases (this statement depends on the computer 
available memory) - to the benefice of  efficiency and simplicity of the strategy. 

 
- interp_ex: keyword for testing the interpolator (0 or 1). Such a procedure has been 
developped for many applications; it works when typgrid = 0 (grid file in direct access). One 
pair of point (z,w) is chosen for the test: z must be in [Z] and w in the "window" of z, i.e. at 
angular distances less than H δϕ  and  K δλ , respectively in latitude and longitude. 
Coordinates of z and w are read in the following record (as examplified). 
 
4.2. Output files 
 
4.2.1. Output controls ("prints"); example 
 
The file  'covhs2p_out_XX...X_.txt' : on unit nu6, contains everything written on output. We 
give an example of geoid covariances computation. It corresponds to a GOCE mission 
simulation performed for one measuring phase of 6 months, at a mean altitude of 265 km. The 
Earth’s gravity field is recovered up to degree and order 200, which makes the full Γ matrix 
occupy 13 Gb on disk. The considered zone [Z] extends from 20°N to 80°N and from 60°W 
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to 30°E. With a step size of one degree in latitude and longitude and with 40° x 40° windows 
(H=K=20), the computation (done in one block) took a little  less than 5000 seconds on a 
standard PC (the same referred to in the article of the annex), which is a gain of ~50% on 
previous tests (due to the use of different compiler options). 
 
                              point synthesis of covariances between two points 
 
                              typgrid =  0 
 
          calculation : m=   0     lbeg=   2   lend= 200 
          calculation : m=   1     lbeg=   2   lend= 200 
          calculation : m=   2     lbeg=   2   lend= 200 
          calculation : m=   3     lbeg=   3   lend= 200 
          … 
          calculation : m= 196     lbeg= 196   lend= 200 
          calculation : m= 197     lbeg= 197   lend= 200 
          calculation : m= 198     lbeg= 198   lend= 200 
          calculation : m= 199     lbeg= 199   lend= 200 
          calculation : m= 200     lbeg= 200   lend= 200 
 
          total number of parameters= 40397 
 
          sigma0=   1.00000000000000 
 
          kse= 2 ----> latitudes are geodetic (ellipsoidal) 
 
 
reference ellipsoid defined by                  gm= 398600.44150000E+09 
                                                                     a = 6378.1364600000E+03 
                                                                     f = 1./      298.25765 
                                                                   om= 7.2920905111492E-0 
 
  geometrical parameters                              b = 6356.7518066306E+03 
                                                                     ge= 521.85359180424E+03 
                                                                      e = 8.1819132449895E-02 
                                                                     ep= 8.2094378965670E-02 
 
 dynamical parameters                                u0= 72.105843211372E+03 
                                                                   pm= 3.4497624792635E-03 
                                                                     ga= 9.7803272087811E+00     (gravity at equator)  
                                                                     gb= 9.8321865256238E+00     (gravity at poles) 
                                                                                                                     
                                                    (    f2= 5.2788883556304E-03     (coef. of sin2  fi) 
  gravity as function of fi            (                                                                        
                                                    (    f4= 2.3295306130934E-05     (coef. of sin4  fi) 
 
                                                                   j2= 1.0826375455676E-03 
                                                                   j4=-2.3836835418358E-06 
 
           1     n(geoid)            altitude=       0.000 metres 
 
          inner zone :      latitude    :   min=  20.0000     max=  80.0000     step=   1.00000 
                                   longitude :   min= -60.0000     max=  30.0000    step=   1.00000 
 
          the inner zone/grid has   61 lines in latitude and    91 columns in longitude   ==>    5551 nodes 
 
 
          window size :     H=lath=  20     K=lonk=  20 
 
          the generated file has    5551 records of   1683 words each 
 
          verification:     kf=  1     f0= 6.249481239541E+07 
 
          kfilter= 0     dfilter=  300000. m     psi0=   5. deg.     fract0=     0.500 
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          dpsi  =   1.000000 deg.    : stepsize of tables of covariance functions (iso,n-s,e-w) 
 
 
 date/time : 20090113 122002.359 +0100       2009   1  13    60  12  20   2  359     ==> tbegin_sec =  44402.359 
 
          No modification of the degrees, therefore matrix is identical 
 
    Call to varhs2p  
 
 n0. block =   0   date/time :      2009   1  13    60  12  20   2  375     ==>  t0_sec =  44402.375 
 
 n0. block =   1   date/time :      2009   1  13    60  12  22   5   78     ==>  t1_sec =  44525.078 
                                        nrec_nucov =   1000   delta(time)  =   122.703 sec 
 
 n0. block =   1   date/time :      2009   1  13    60  12  24  10  859     ==>  t1_sec =  44650.859 
                                        nrec_nucov =   2000   delta(time)  =   125.781 sec 

...  
n0. block =   1   date/time :      2009   1  13    60  13  40  16  625     ==>  t1_sec =  49216.625 
                                        nrec_nucov =  39000   delta(time)  =   124.250 sec 
 
 n0. block =   1   date/time :      2009   1  13    60  13  42  19  593     ==>  t1_sec =  49339.593 
                                        nrec_nucov =  40000   delta(time)  =   122.968 sec 
 
 Out of varhs2p  
 
          degree min. :   2   degree max. : 200   calculation finished... 
 
          Verification of covariance functions : iso , n-s , e-w 
 
    n      psi (deg)              fcov_iso    ( nval )               fcov_n-s    ( nval )             fcov_e-w    ( nval ) 
 
    0      0.000000      2.124340E-04  ( 10738)       2.124340E-04  (  5642)       2.124340E-04  ( 10283) 
    1      1.000000      1.233236E-04  ( 75985)       1.235043E-04  ( 11193)      1.206238E-04  ( 22750) 
    2      2.000000      1.426108E-04  (145236)      1.417969E-04  ( 11284)      1.477557E-04  ( 22750) 
    3      3.000000      1.151392E-04  (225498)      1.060590E-04  ( 11284)      1.213302E-04  ( 22022) 
    4      4.000000      1.188274E-04  (288197)      1.050238E-04  ( 11375)      1.402988E-04  ( 21294) 
    5      5.000000      1.016775E-04  (342069)      7.553444E-05  ( 11375)      1.382674E-04  ( 18018) 
    6      6.000000      9.648963E-05  (388206)      6.378022E-05  ( 11466)      1.626426E-04  ( 16562) 
    7      7.000000      8.045237E-05  (430430)      3.762685E-05  ( 11466)      1.543081E-04  ( 14560) 
    8      8.000000        8.276579E-05  (464919)      2.958263E-05  ( 11557)      1.639852E-04  ( 12922) 
    9      9.000000        5.522578E-05  (490581)      1.887106E-07  ( 11557)      1.570991E-04  ( 11466) 
   10     10.000000      4.369802E-05  (514241)     -1.575716E-05  ( 11557)      1.580669E-04  ( 10192) 
   11     11.000000      2.349728E-05  (527527)     -3.623165E-05  ( 11375)      1.555643E-04  (   9464) 
   12     12.000000     -1.626885E-06  (537810)     -5.691606E-05  ( 11284)      1.475191E-04  (   8008) 
   13     13.000000     -1.222237E-05  (541996)     -6.496271E-05  ( 11102)      1.465701E-04  (   6916) 
   14     14.000000     -3.966501E-05  (548093)     -8.324447E-05  ( 11011)      1.308330E-04  (   6006) 
   15     15.000000     -4.968117E-05  (545181)     -8.586595E-05  ( 10829)      1.266021E-04  (   4914) 
   16     16.000000     -7.000760E-05  (538538)     -9.426018E-05  ( 10738)      1.096386E-04  (   4186) 
   17     17.000000     -7.496658E-05  (530712)     -9.024622E-05  ( 10556)      1.041302E-04  (   3094) 
   18     18.000000     -8.436056E-05  (511875)     -8.684648E-05  ( 10465)      8.656117E-05  (   1638) 
   19     19.000000     -9.878611E-05  (492947)     -8.636886E-05  ( 10283)      8.149719E-05  (     546) 
   20     20.000000     -9.759828E-05  (471744)     -7.434528E-05  ( 10192)      0.000000E+00  (        0) 
   21     21.000000     -9.781373E-05  (286286)      0.000000E+00  (        0)      0.000000E+00  (        0) 
   22     22.000000     -9.270572E-05  (173628)      0.000000E+00  (        0)      0.000000E+00  (        0) 
   23     23.000000     -8.812517E-05  (109382)      0.000000E+00  (        0)      0.000000E+00  (        0) 
   24     24.000000     -7.486374E-05  (  70980)      0.000000E+00  (        0)      0.000000E+00  (        0) 
   25     25.000000     -6.624610E-05  (  38948)      0.000000E+00  (        0)      0.000000E+00  (        0) 
   26     26.000000     -4.872753E-05  (  20202)      0.000000E+00  (        0)      0.000000E+00  (        0) 
   27     27.000000     -3.738262E-05  (    7644)      0.000000E+00  (        0)      0.000000E+00  (        0) 
   28     28.000000     -2.602923E-05  (    1638)      0.000000E+00  (        0)      0.000000E+00  (        0) 
 
           ******   No verification by direct algo. 
 
           ******   Execute one example of interpolation :  use of s/p interp_cov2p 
 
 i,i1,j,j1 :  41  40  62  61 
 fii,fii1,xlj,xlj1 :  40.0000000000000  41.0000000000000  1.00000000000000  0.000000000000000 
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 h,h1,k,k1 :  33  32  65  64 
 fih,fih1,xlk,xlk1 :  48.0000000000000  49.0000000000000  4.00000000000000  3.00000000000000 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  1  1  40  61  32  64 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  1  2  40  61  32  65 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  1  3  40  61  33  65 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  1  4  40  61  33  64 
                                p,Ch1k1,Ch1k,Chk,Chk1 :   1  2.186820504639600E-005  1.587030203982503E-005  
6.964959623725848E-005  6.647943517087066E-005  : 1-2-3-4 
                        ----------------p, c(p) :   1  4.346688462358754E-005 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  2  1  40  62  32  64 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  2  2  40  62  32  65 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  2  3  40  62  33  65 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  2  4  40  62  33  64 
                                p,Ch1k1,Ch1k,Chk,Chk1 :   2  2.717104864196947E-005  2.093685783013844E-005  
6.751527202253276E-005  6.813129318337236E-005  : 1-2-3-4 
                        ----------------p, c(p) :   2  4.593861791950326E-005 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  3  1  41  62  32  64 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  3  2  41  62  32  65 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  3  3  41  62  33  65 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  3  4  41  62  33  64 
                                p,Ch1k1,Ch1k,Chk,Chk1 :   3 -1.594919958752995E-005 -1.668430568163937E-005  
2.139664318964785E-005  2.880847094829536E-005  : 1-2-3-4 
                        ----------------p, c(p) :   3  4.392902217193472E-006 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  4  1  41  61  32  64 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  4  2  41  61  32  65 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  4  3  41  61  33  65 
  *-*-* lath, lonk, p,q,i0,j0,h0,k0 :  20  20  4  4  41  61  33  64 
                                p,Ch1k1,Ch1k,Chk,Chk1 :   4 -1.738959056494679E-005 -1.449720655042875E-005  
1.659430253978638E-005  2.251611624894857E-005  : 1-2-3-4 
                        ----------------p, c(p) :   4  1.805905418339851E-006 
 Covariance between point (in inner zone) : lat =   40.500  lon =    0.500    , and point : lat =   48.500  lon =    3.500   (inside 
window of 1.st point) 
  
          valcov (interpolated) =  2.390107754E-05          ier =   0 
 
 date/time : 20090113 134313.921 +0100       2009   1  13    60  13  43  13  921     ==>   tend_sec =  49393.921 
 
          time for reduc. + comput. + verif. + interp. =  4991.562 sec 
 
4.2.2. Generated grid and covariance table files 
 

(a) the grid file of covariances : 
 
The generated grid file contains one record per node ; its type and structure depend on the 
keyword typgrid (cf. directing file): 
 
- if typgrid = 1, the file is binary sequential  (no format), the s/p does not make any 'rewind'  

at the beginning (==> header possible prior to call). 
Its name is  'covhs2p_cov_S_XX...X'    and it is on unit nu4. 

     One has one record per node (i,j) of the inner zone, in increasing order  for i (= decreasing   
     latitudes, i = 1,2,…Nϕ) and, for each i, index j is increasing  (= increasing longitude) from   
     1 to Nλ; the record contains the components C(i,j,h,k) = hk

ijC   for h increasing from i-H to  
      i+H  and, for each h,  k is increasing  from j-K to j+K .  Thus, there are Nϕ * Nλ records   
     (following, eventually, the header records), and we have (2*H+1)*(2*K+1) words per  
      record.           
     The C(i,j,h,k)'s for given i and j are in record (i-1)* Nλ +j  (following eventual header), and      
      the (h,k) component is the word of rank  (2*K+1)*[h-(i-H)]+k-(j-K)+1. 
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- if typgrid = 0, the file is in direct access, without format, and with no header. It is this type 
of file which is proper to window extraction and interpolation by our procedures.  
Its name is   'covhs2p_cov_DA_XX...X'   and it is on unit nu2. 

      One has one record per node (i,j) of the inner zone in increasing order for the latitude   
       index i  (i=1,2,... Nϕ) - i.e. decreasing latitude and,  for each  i, j is increasing (=increasing  
       longitude) from 1 to Nλ. 
       Each record contains two integers at the beginning (i and j), then the  C(i,j,h,k) = hk

ijC  for   
       h increasing from i-H to i+H and, for each h, k increasing from j-K to j+K. 
       Thus, there are Nϕ * Nλ  records and 2+(2*H+1)*(2*K+1) words per record. 
       The C(i,j,h,k)'s for given i and j are in record (i-1)* Nλ +j, and the (h,k) component is the  
       word of rank 2+(2*K+1)*[h-(i-H)]+k-(j-K)+1.          
 

(b) the file of covariance tables : 
  
The file named   'tab_fcov_XX...X' , which is on unit nu9, contains the three tables of 
isotropic, N-S et E-W covariance functions. It is a sequential (free-)formatted file. 
 
Each record contains: 
 
   n,  psi, fcov_iso(n), nbcov_iso(n), fcov_ns(n), nbcov_ns(n) , fcov_ew(n),  nbcov_ew(n)  
 
with (maxcov having been defined in module parameter_covhs2p , and dpsi in the 
directing file): 
 
 . fcov_iso (_ns) (_ew) : vectors (0:nmaxcov), contain the function values,  
     discretized. fcov_...(n) corresponds to a distance psi = ψ 
    such that  (n-1)/2*dpsi ≤ psi ≤ (n+1)/2*dpsi. 
 . nbcov_iso (_ns) (_ew) : vectors (0:nmaxcov) : number of valeurs of 
     C(i,j,h,k) which contribute to fcov_...(n) 
 . ncov_iso(_ns) (_ew) : highest rank of the last non zero component. 
 
                     

5. The utility software  
 
5.1. Fullmat_form_bin2 
 
This software reads a general square matrix C, for instance a covariance matrix (in full form), 
formatted, split into Nfic files, - usually generated on "mainframe" and in a Unix 
environment. 
The "Fullmat_form_bin2" s/w is usually run in a different environment (e.g. Windows) - This 
is the very reason to have it ! 
It reads the different files, and re-writes the C matrix on a single binary file suited e.g. for the 
usage by the covhsmp and covhs2p s/w (or similar ones), especially when they are run on a 
PC or in a non Unix environment. This is why this transformation is necessary  (since the 
binary files are incompatible). 
Parameters describing the case and necessary for running the s/w are input via a "Directing 
file", named 'Fullmat_form_bin2_dir.txt'. 
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In our case, the C matrix comes from "real" calculations (modelling from observations) or 
from a simulation of the recovery of a global gravitationnal model expanded in spherical 
harmonics, e.g. in the framework of a space mission such as GOCE. 
The matrix is solely for the harmonic coefficients of the model, from degree ldmin to degree 
ldmax (read in input) and the model is supposed to be complete, i.e. the number of parameters 
(= order of the C matrix) has to be N = (ldmax+1)**2 - ldmin**2 (if it is not the case, it's easy 
to modify it in the s/w). This means that all other parameters have been eliminated (reduced). 
Harmonic coefficients must also be ordered in the order which is used by the subsequent s/w 
(covhsmp, covhs2p, ...)   
 
The matrix blocks are on files (F1), F(2), ... in this order. That is each (Fk), k = 1, 2, ...Nfic, 
corresponds to a block C(k) from the sequential splitting of the C matrix. Each file (Fk) bears 
the name: namefic_in // 'k' , where k has one or two characters (left justified), i.e. Nfich < 100. 
namefic_in is read in input  (and has 20 characters max.). The program searches the files 
bearing the names  trim (namefic_in) // 'k' 
None of the (Fk) files has headers. 
The Nfic-1 first files all have the same number of records which correspond to Nlfic rows (or 
"lines") of the matrix (Nlfic : read in input). 
The last one has exactly N - (Nfic-1) * Nlfic records; this number is computed. 
 
 Each record = one full row of C, i.e. N real numbers (type SINGLE according to the 
definitions in module f90_kind). 
  Read-in format of (Fk) : '(N(formread))', 
            formread is defined in input (10 char. max.), e.g.: es20.13 
            Then the exact format is built by the program. 
 
C is copied on a file: tape33, binary, of name 'namefic_out', defined in input (20 charact. 
max). This file has no header and can be used as such in the afore mentionned s/w. 
 
  N.B. 1. It is possible to test the program with (at most) the two first files (Fk) and over the   
              first rows only (according to the nlwr parameter) of each file. It suffices to define the  
              keyword Ktest  to 1 in input... 
   Author  : G. Balmino (2008)  
              Version : PC - Windows XP - Absoft Pro Fortran V.9 
           2. ATTENTION : this version uses two vectors (a, b) for reading and writing each line  
              of the matrix, due to the limitation of the implicit do loop counter on some compilers:    
               M= 2**15-1 . If needed the procedure needs to be modified (i.e. by using three, 
               four,... vectors) if N > 2*M . 
 
The directing file for the GOCE200 case is copied below. Entries are self-explanatory 
following the definitions given above.  
 
Directing file for Fullmat_form_bin (and versions 1, 2) ****** 
8      Nfic  :  number of input files containing the matrix 
matcov_form_          namefic_in  (20 char. max) 
5000   Nlfic : number of lines (rec.) (except the last one - size will be computed) 
2   ldmin  (min. degree of spherical harmonic model) 
200   ldmax  (max. degree of spherical harmonic model) 
e16.9        formread : format of real numbers on input files (10 char. max) 
25   nlwr  : number of lines(rows) (of each input files) printed for control 
10   nmwr  : number of columns printed for control  
1000   ideltawr : global control of progressing exec' every ideltawr rows  
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matcov_GOCE200     namefic_out : name of output file (20 char. max) 
0   Ktest  : for executing s/w on a small part of the input file(s) 0 : no 
00000   end of this directing file  (on PC) ****** 
 
5.2. Ltrimat_form_bin2 
 
This is similar to Fullmat_form_bin2, but adapted to symmetric matrices of which the lower 
triangle is given. 
 
It reads a lower triangular covariance matrix C  formatted, split into Nfic files, - usually 
generated on "mainframe" and in a Unix environment. 
The "Ltrimat_form_bin2" s/w is usually run in a different environment (e.g. Windows) - this 
is the very reason to have it. 
It reads the different files, and re-writes the C matrix on a single binary file suited for the 
usage by the covhsmp_tri, covhsd_tri  s/w (or similar ones), especially when they are run on a 
PC or in a  non Unix environment. This is why this transformation is necessary (since the 
binary files are incompatible). 
The output file may also be used by the compcarmat s/w which transforms the triangular 
matrix into a full square one, e.g. for subsequent use by the covhsmp and covhs2p s/w.   
Parameters describing the case and necessary for running the s/w are input via a "Directing 
file", named 'Ltrimat_form_bin2_dir.txt' . 
In the present case, the C matrix comes from "real" calculations (modelling from 
observations) or from a simulation of the recovery of a global gravitationnal model expanded 
in spherical harmonics, e.g. in the framework of a space mission such as GOCE.    
The matrix is solely for the harmonic coefficients of the model, from degree ldmin to degree 
ldmax (read in input) and the model is supposed to be complete, i.e. the number of parameters 
(= order of the C matrix) has to be N = (ldmax+1)**2 - ldmin**2 (if it is not the case, it's easy 
to modify it in the s/w). This means that all other parameters have been eliminated (reduced). 
Harmonic coefficients must also be ordered in the order which is used by the subsequent s/w 
(covhsmp_tri, covhsmp, covhs2p, ...) .  
 
The matrix blocks are on files (F1), F(2), ... in this order. That is each (Fk), k = 1, 2, ...Nfic, 
corresponds to a block C(k) from the sequential splitting of the C matrix. 
Each file (Fk) bears the name: namefic_in //  'k' , where k has one or two characters (left 
justified), i.e. Nfich < 100. 
namefic_in  is read in input  (and has 20 characters max.). The program searches the files 
bearing the names  trim (namefic_in) //  'k' 
None of the (Fk) files has headers. 
The Nfic-1 first files all have the same number of records which correspond to Nlfic rows (or 
"lines") of the matrix (Nlfic : read in input). 
The last one has exactly N - (Nfic-1) * Nlfic records; this number is computed. 
 
Each record = one truncated row of C, i.e. the i.th row contains i real numbers (type SINGLE 
according to module f90_kind) : C(i,j) j = 1 to i. 
         Read-in format of (Fk) : '(i(formread))', i being between 1 and N. 
          formread is defined in input (10 char. max.), e.g.: es20.13 
          Then the exact format is built by the program. 
 
C is copied on a file: tape33, binary, of name 'namefic_out', defined in  
input (20 charact. max).  
This file has no header and can be used as such in the afore mentionned s/w. 
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   N.B. (1) It is possible to test the program with (at most) the two first files (Fk) and over the  
                 first rows only (according to the nlwr parameter) of each file. It suffices to define t   
                 the keyword  Ktest  to 1 in input... 
      Author  : G. Balmino (2008)  
                 Version : PC - Windows XP - Absoft Pro Fortran V.9 

(2) ATTENTION : This version uses up to two vectors (a, b) for reading and writing   
      each line of the matrix, due to the limitation of the implicit do loop counter on   
      some compilers:  M= 2**15-1. If needed the procedure needs to be modified (i.e.  
       by using three, four,... vectors) if N > 2*M.   

 
A directing file applicable to the GOCE200 case is copied below. Entries are self-explanatory 
following the description above.  
 
Directing file for Ltrimat_form_bin (and versions 1, 2) ****** 
8      Nfic  :  number of input files containing the triangular matrix 
matcov_form_          namefic_in  (20 char. max) 
5000   Nlfic : number of lines (rec.) (except the last one - size will be computed) 
2   ldmin  (min. degree of spherical harmonic model) 
200   ldmax  (max. degree of spherical harmonic model) 
e16.9        formread : format of real numbers on input files (10 char. max) 
25   nlwr  : number of lines(rows) (of each input files) printed for control 
10   nmwr  : max. number of columns printed for control  
1000   ideltawr : global control of progressing exec' every ideltawr rows  
matcovt_GOCE200        namefic_out : name of output file (20 char. max) 
1   Ktest  : for executing s/w on a small part of the input file(s) 0 : no 
00000   end of this directing file  (for PC) ****** 
 
 
5.3. compcarmat 
 
The VC matrix may be given by one of its triangles, we assume it is the lower one. In order to 
use the covhsmp and covhs2ps/w one needs to complement the triangular matrix into a square 
matrix. This is the case of  the GOCE-VC matrices provided by the ESA/EGGC H.P.F. (High 
level Processing Facility). This transformation is not trivial when the matrices do not fit in 
core. It can be performed by the subroutine compcar_matriang, which may be called by the 
program compcarmat. 
 
We first present the subroutine. 
 
SUBROUTINE compcar_matriang  (n, b ,m, numtri, numcar, x, ndimx, ier) 
 
The two matrices: T (lower triangular), A (square) are on disc, in sequential binary form, and 
are written in row  increasing order. 
 
-  "in" variables: 

n : order of matrix 
b : working vector 
m : dimension of vector b (the largest possible, and with m ≥ 2*n) 
numtri : unit number of file containing the triangular part, T, of A.  

If h is the header number of records (see down below) the  (n+h).th record     
contains n words. 
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numcar : unit number of file containing the square matrix A 
x : auxiliary (working) vector 
ndimx : dimension of x ( ≥ n) 

N.B. vectors b and x could be omitted in the calling sequence and declared as  arrays internal 
to this s/p. We did it for verification purposes... 
 
- "out" variable : 
ier : error code . 0 = O.K.,  = -1 if m is too small. 
- s/p:  this subroutine needs : header_mat : provided by the user. 
 
ATTENTION : files numtri and numcar are opened by the user prior to the call.  If they have 
headers, these are managed (in reading on numtri, in writing on numcar...) by the s/p 
header_mat which calling sequence should be as follows:  
        call header_mat(numtri,numcar,kle_rw) 
     numtri   : unit number of first file 
     numcar  : unit number of second file 
            kle_rw  = 0 for initialization (usually the case when called by main prog.)   
                         = 1 for reading an header on numtri (make it work if no header !) 
                         = 2 for writing an header on numcar, 
                         = 3 for reading an header on numtri, and to copy it on numcar 
                         = 4 for reading a header on numcar     
           other variables may be transfered via the modules : 
              - parameter_dim_mat_tri_sq  (see below) 
              - common_tr_header_mat (user defined) 
 
           The header_mat s/p is always called, even if there is no header at all. 
           After a call to this s/p the file(s) is (are) positionned so as to read/write the first record  
           of matrix A.  
 
Program compcarmat uses the s/p compcar_matriang . We provide a version which generates 
its own test matrix and then transforms it with compcar_matriang .  
It is very simple to use: 
 
- first the user must properly define, in module parameter_dim_mat_tri_sq, the following 
integers:  nmax : maximum order of matrix  
  mmax: maximum size of working array b(:), used in compcar_matriang. 
                       maxrec_header: maximum number of header records. 
 
- then the user must define the case by constructing the "Directing file", named  
                       'compcarmat_dir.txt' 
 
  Here is an example corresponding to the test case generated by the provided  
                        test program: 
 

Directing file for prog_mat_tri_sq (compcarmat) 
95  order of matrix 
250             size of working array b (largest possible) 
1  k-header : 0= no header, 1= header 
end_header      key-word (alf) , 10 characters : 1.st word of last rec. of header 
0               end of file (for PC) 

 



 23

5.4. extra_cov2p 
 
This program is usually run after the execution of covhs2p and generation of a 4-D grid of 
covariances. It extracts windows of size (2H+ 1)x(2K+1) around nodes of (or arbitrary points 
in) the inner zone [Z], for instance for local studies, graphic representation, etc. 
 
The input grid file is on unit nugrid, in direct access. However it may have been generated by 
another software under the conditions that the context described in the following is identical 
and that the structure of the file is exactly the same. 
 
Having defined a case identifier nommod = 'XX...X'  (15 characters max., input from 
keyboard in the PC version) – which is the same identifier already encountered in naming the 
VC matrix file and in defining the case, the name of file nugrid is: 
          'covhs2p_cov_DA_' // trim(nommod)   
 

(a) Context: 
 

We repeat some of the basic facts and definitions which are used in covhs2p. 
 
 Pairs of points belong to a 4-dimension domain consisting of : 
- a "inner" zone, noted [Z], defined by latitudes (λ) and longitudes (ϕ)  
      with min/max values as follows : 
  .  fimax to fimin = fimax  - (Nϕ  -1)*δϕ , 
                       .  xlmin to xlmax = xlmin + (Nλ -1)*δλ ;       
      this zone is covered by a grid, consisting of Nϕ * Nλ  "nodes"  z(i,j),  equidistant in latitude   
       (step = δϕ) and in longitude (step = δλ), (unit of angles : degree).  
      ATTENTION: here fimin, fimax, xlmin, xlmax are the coordinates of the grid limits when   
      we deal with point values (at the corner of the grid equi-angular cells); they are the    
      coordinates of the limiting cell centers at the NW, NE, SE, SW of the grid in the case of  
      (pseudo) mean values. 
 
  - windows W[z(i,j)] centered on each node z(i,j) of the inner zone;  the size of each window   
       is fixed and defined by H = lath ≤ lathmax, K = lonk ≤ lonkmax , and each one consists in   
       (2*H+1)*(2*K+1) points equidistant in latitude ( step δϕ) and in longitude (step δλ)  -   
       like the nodes of [Z]; points in the window of z(i,j) are said to be in its "vicinity" and are  
       noted  v(z(i,j)), or simply v if there is no ambiguity.   
      
     N.B. : lathmax and lonkmax are defined in module parameter_covhs2p. 
 
 The domain of the sphere (or of R**2) consisting in [Z] and of the coverage by the ensemble 
{W[z]} of all windows is called the "envelope of [Z]" and noted { E[Z] }, or simply {E}. It is 
also a grid, having the same steps as  [Z], which nodes are noted e(m,n); over the part 
common to [Z] and {E}, the nodes  e(-,-) are obviously identical to the nodes z(-,-). 
 
  At each node z(i,j) of [Z], of latitude fimax-(i-1)* δϕ  and longitude xlmin+(j-1)* δλ, we   
  have computed covariance tensor components : 
                     C(i,j,h,k) = Cov [z(i,j),v(h,k)] 
  between z(i,j) and points in its vicinity v(h,k), for h=i-H to i+H, and k=j-K to j+K.   
 
  N.B. Unit = [unit of the values of studied function]**2  since we deal with covariances. 
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  The structure of file nugrid is the following : 
    
    - no header (i.e. no record before the grid records). 
    - there is one record per node (i,j) of the inner zone, with i increasing (i=1,2,... Nϕ)  
                 and for each i, j increases too (from 1 to Nλ); i.e.  latitude decreases with i and  
                 longitude increases with j; the record has two integers at the beginning: i and j,  
                 followed by the values  C(i,j,h,k) with h increasing from i-H to i+H  and, for each  
                 h,  k increases from j-K to j+K. 
 
     So, there are Nϕ* Nλ records and 2+(2*H+1)*(2*K+1) words/record. 
                The covariance C(i,j,h,k) for i and j fixed is in record number (i-1)*nlo+j, 
      and this is the word of rank 2+(2*K+1)*[h-(i-H)]+k-(j-K)+1. 
 

(b) Directing file: 
                                           
Its name is 'extra_cov2p_dir.txt' ; it is located on unit nu5 and it contains the directing 
parameters. Here is an example corresponding to a GRACE150 case (or the GOCE200 
simulated case). Entries are self-explanatory following the description above. 
 
directing file for extra_cov2p 
iunit=0          iunit   (0:degree  , 1 :minutes) for the lat/long stepsizes of the grid 
fimin=+20.00,fimax=+80.00,dfi=+01.00,xlmin=-060.00,xlmax=+030.00,dxl=+01.00 grid [Z] limits (deg.) 
H=lath=020,K=lonk=020   window parameters (half-height and half-width in grid steps) 
zi_lat=+75.50,zi_lon=+000.50      center of window 
zi_lat=+45.00,zi_lon=-050.00       center of window  
zi_lat=99999.                     END  (... when lat > 100.) 
 
(c)  Output file: 
 
It is on unit nu6. Its name is 'extra_cov2p_output.txt' . Here is an example of extraction of two 
windows from a GRACE150 case, run with the same parameters as in the directing file above. 
 
     Extraction of covariance windows from a 4-D grid pre-generated by covhs2p  (in direct access) 
 
          inner zone :       latitude  : min=  20.0000     max=  80.0000     step=   1.00000 
                                  longitude : min= -60.0000     max=  30.0000     step=   1.00000 
 
          the inner zone has   61 lines (rows) in latitude and    91 columns in longitude   ==>    5551 nodes 
 
          size of each window :     H=lath=  20     K=lonk=  20 
 
          ===> on input D.A. file :   5551 records of   1683 words/rec. 
 
 Extraction : window number    1  centered on point of the inner zone : lat =   75.500  lon =    0.500 
          closest node : i =   6   j=  62    lat =   75.000  lon =    1.000 
 
 Extraction : window number    2  centered on point of the inner zone : lat =   45.000  lon =  -50.000 
          closest node : i =  36   j=  11    lat =   45.000  lon =  -50.000 
 
          We have extracted    2  windows          END of program 
  

(c) Generated file of windows 
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Its name is :  'gwindows_cov2p_' // trim(nommod) ; it is on unit nu9, which is sequential and 
in "free" format. It contains the grids of covariance values corresponding  to the extracted 
windows, one after the other. These grids all have the same size, and their structure is the 
following: 

- each one starts by a record containing (all angles are in degree) : 
   . the window number (in the order of extraction), 
   . the coordinates (latitude, longitude) of the central node (as input), 
                         . the latitudes min. and max., the longitudes min. et max. of the window, 
   . the steps δϕ , δλ, 
    . the number of records, equal to (2*H+1), which follow (for this window),   

   and the number of words, equal to (2*K+1), per record. 
   N.B.  H et K are constants, however these parameters  
            are repeated for each grid in order to facilitate their use.  
                
- we then have 2*H+1 records, one per latitude (in decreasing order), each one having   
       2*K+1 words and containing the covariances for the longitudes (in increasing order). 
 
5.5. inter_cov2p 
 
This is a subroutine to interpolate a grid of cross-variances of a function (or its errors)  at two 
points : z, v. Its use is examplified at the end of covhs2p. 
 

(a) Context: 
 
We redescribe below much of it, which is more comfortable for the user.  
 
The functional is f(lat, lon) given on a sphere: lat = latitude ϕ, lon =  longitude λ. We may 
also consider that [lat,lon] is replaced by [Y,X], any set of parameters in a certain domain of 
R**2 , (X = longitude, Y = latitude). 
  
  The grid has been generated by s/w covhs2p (and its main s/p varhs2p), and is on unit 
nugrid, in direct access. 
  
   The pair of points : (z,v) for which we want to compute the covariance belongs to a 4-
dimension domain consisting of :  
   - a "inner" zone, noted [Z], defined by latitudes (Y) and longitudes (X)  
       with min/max values as follows : 
    .  fimax to fimin = fimax - (nfi-1)  *dfi , 
             .  xlmin to xlmax = xlmin+(nlo-1) *dxl ;  
       
      this zone is covered by a grid, consisting of nfi*nlo "nodes"  z(i,j), equidistant in   
      latitude/Y (step = dfi) and in longitude/X (step = dxl), (unit of angles : degree - or units  
      proper to X and Y). 
      ATTENTION: here fimin, fimax, xlmin, xlmax are the coordinates of the grid limits when   
      we deal with point values (at the corner of the grid equi-angular cells); they are the    
      coordinates of the limiting cell centers at the NW, NE, SE, SW of the grid in the case of  
      (pseudo) mean values. 
  
   - windows W[z(i,j)] centered on each node z(i,j) of the inner zone; the size of each window   
      is fixed and defined by H = lath ≤ lathmax, K = lonk ≤ lonkmax , and each one consists in   
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     (2*H+1)*(2*K+1) points equidistant in latitude (dfi) and in longitude (dxl) - like the nodes        
     of [Z]; points in the window of z(i,j) are said to be in its "vicinity" and are noted v(z(i,j)),  
     or simply v if there is no ambiguity.   
       
      N.B. : lathmax and lonkmax are defined in module parameter_covhs2p. 
  
  The domain of the sphere (or of R**2) consisting in [Z]} and of the coverage by  the   
  ensemble {W[z]} of all windows is called the "envelope of [Z]" and noted { E[Z] },  or  
  simply {E}. It is also a grid, having the same steps as  [Z], which nodes are noted e(m,n);  
  over the part common to [Z] and {E}, the nodes  e(-,-) are obviously identical to the nodes  
  z(-,-). 
  
  As a consequence of these definitions and assumptions : 
            .  z must be in [Z] 
            .  v must be in {E} and in W[z]   
   
   
  At each node z(i,j) of [Z], of latitude fimax-(i-1)* δϕ  and longitude xlmin+(j-1)* δλ, we   
  have computed covariance tensor components : 
                     C(i,j,h,k) = Cov [z(i,j),v(h,k)] 
  between z(i,j) and points in its vicinity v(h,k), for h=i-H to i+H, and k=j-K to j+K.   
 
  N.B. Unit = [unit of the values of studied function]**2  since we deal with covariances. 
 
  The structure of file nugrid is the following : 
    
    - no header (i.e. no record before the grid records). 
    - there is one record per node (i,j) of the inner zone, with i increasing (i=1,2,... Nϕ)  
                 and for each i, j increases too (from 1 to Nλ); i.e.  latitude decreases with i and  
                 longitude increases with j; the record has two integers at the beginning: i and j,  
                 followed by the values  C(i,j,h,k) with h increasing from i-H to i+H  and, for each  
                 h,  k increases from j-K to j+K. 
 
     So, there are Nϕ* Nλ records and 2+(2*H+1)*(2*K+1) words/record. 
                The covariance C(i,j,h,k) for i and j fixed is in record number (i-1)*nlo+j, 
      and this is the word of rank 2+(2*K+1)*[h-(i-H)]+k-(j-K)+1. 
                                           
 (b) What the s/p does: 
 
  One computes valcov = Cov (z,v) = Cov( [z_lat, z_lon], [v_lat, v_lon] ), with : 
 . z_lat, z_lon : coordinates (lat/Y, lon/X) of a point z inside the inner zone - 
                   [Z] stricto senso (not enlarged, but including the boundary), 
 . v_lat, v_lon : cooordinates (lat/Y, lon/X) of a neighbouring point, v, i.e.  
                  in the window of point  (z_lat, z_lon), i.e. such that : 
        abs [v_lat  - z_lat]   ≤  H * dfi 
        abs [v_lon - z_lon]  ≤  K * dxl . 
      N.B. the window W(z) of an arbitrary point z is therefore defined like the window 
            of a grid node z(i,j). 
 
  ier : this is an error code returned by the s/p; it may be:  
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 =  0 : OK 
 = -1 : the provided file is not in direct access – i.e. typgrid is not equal to 0 :  
                        interpolation can not be made with inter_cov2p 
 = +1 : point [z_lat , z_lon] is not in [Z] 
 = +2 : point [v_lat , v_lon] is not in W(z) 
 = +3 : case corresponding to ie r= +1 and ier = +2. 
 = +4 : (very) peculiar case : all points E(q) are outside the windows W[Z(p)]   
          - see below, in (c), for the definition of Z(:) and E(:). 
 

(c) Method: 
 

See figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                Fig. 2. Principle of interpolation in the C(i,j,h,k) grid: 
                                   Cov(Zn,v) = bilin.(v) [Cov(Zn,E1), Cov(Zn,E2), Cov(Zn,E3), Cov(Zn,E4)]; 
                           then Cov(z,v   )= bilin.(z) [Cov(Z1,v), Cov(Z2,v), Cov(Z3,v), Cov(Z4,v)]. 
 
   
Point z is surrounded by 4 nodes Z(p), (p = 1 to 4), of the grid covering the inner zone [Z], 
and point v is also surrounded by 4 points, E(q), (q=1 à 4), of the grid corresponding to the 
envelope {E(Z)}. Each point E(q) may be considered neighbour to each Z(p), i.e. in the 
window  W[Z(p)] - except in some peculiar case when one E(q)  (or two E(q)'s at most) are 
("slightly" - since v must be in W[z]) outside W[Z(p)]; in such special case one keeps only the 
E(q)'s which are satisfactory, and one applies a different interpolation formula. 
 
  (i) Positioning z in [Z] and v in {E} :  
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      lat(n) and lon(m) being the latitudes and longitudes of the nodes of  [Z]  (and of {E}),  
      with:       lat(n)=fimax-(n-1)*dfi,   lon(m)=xlmin+(nlo-1)*dxl, 
                          n=1 to nfi for [Z],   and n=1-H to nfi+H for {E}, 
                         m=1 to nlo for [Z] , and m=1-K to nlo+K for {E}, 
      one determines : i and i1=i-1   such that lat(i)     <  z_lat  ≤  lat(i1),  
                                 j and j1=j-1   such that lon(j1)  ≤  z_lon <  lon(j) , 
                       then : h and h1=h-1 such that lat(h)   <  v_lat  ≤  lat(h1), 
                                 k and k1=k-1 such that lon(k1) ≤ v_lon <  lon(k) . 
 
      One then defines the surrounding points in the following order : 
 
        - for z :    Z(1) = z(i1,j1)       Z(2) = z(i1,j ) 
                        Z(4) = z(i ,j1)        Z(3) = z(i ,j )   ⇐  p =1,2,3,4 
 
        - for v :    E(1) = e(h1,k1)       E(2) = e(h1,k ) 
                        E(4) = e(h ,k1)       E(3) = e(h ,k )   ⇐  q =1,2,3,4 
  
  (ii) Compute, for p = 1 to 4 : c(p) = Cov(Z(p),v) 
       
      Each c(p) is obtained by bilinear interpolation, at v, of the 4 values  Cov(Z(p),E(q)),  
     (p fixed, q=1 to 4), or by a weighted average when we are  in a particular case (cf. above). 
      The values Cov(Z(p),E(q)) are the C(i0,j0,h1,k1) , C(i0,j0,h1,k ) 
                                                              C(i0,j0,h ,k1) ,  C(i0,j0,h ,k ),    
      read on nugrid and corresponding to the nodes E(q) surrounding v, i.e. for (i0,j0) equal to  
     (respectively) :     (i1,j1) :  for p=1, 
                                   (i1,j ) :  for p=2,  
                                    (i ,j ) :  for p=3, 
                                   (i ,j1) :  for p=4.   
       
  (iii) Compute valcov = Cov (z,v), by bilinear interpolation, at z, of : 
  
                           c(1) = Cov( Z(1),v )           c(2) = Cov( Z(2),v )  
                           c(4) = Cov( Z(4),v )           c(3) = Cov( Z(3),v ).   
 
Remark (for the tests): if points z and v are both centers of a cell of [Z]  ( and of {E} ), 
                                      then valcov = [sum of the Cov( Z(p),E(q) )] / 16. 
 
 
 
             
 

-------------- 
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Abstract. We have applied efficient methods for computing variances and covariances of 
functions of a global gravity field model expanded in spherical harmonics, using the full 
variance-covariance matrix of the coefficients. Examples are given with recent models 
derived from GRACE (up to degree and order 150), and with simulated GOCE derived 
solutions (up to degree and order 200).   
 
Keywords:  Global gravity field modelling; Spherical harmonics; Covariance matrix; Error 
propagation 
 
 
 
1 Introduction  
 
From the Earth's gravity field mapping missions of this decade, especially GRACE and 
GOCE, many global models of the field in spherical harmonics are and will be produced. 
Besides the current use of these models, for instance in terms of grids of geoid heights, of 
gravity anomalies or any other functional of the gravitational potential useful in the 
geosciences and various applications, there is a need for knowing the error characteristics of 
the model as precisely as possible and include them in data assimilation procedures, for 
instance in oceanography. This not only requires the knowledge of the error variances but also 
of the error covariances between two points (sometimes called cross-variances). Their 
derivation from the gravity field model involves the full variance-covariance matrix which 
can be very large, implying a priori huge computational efforts. 
   We show in this paper how the rigorous computation of the variances and covariances over 
grids can be optimized by using elementary algebra. The software has been written and tested 
on a personal computer, in keeping the spherical harmonics variance-covariance matrix out of 
core and by minimizing drastically the number of times that the program requires to access 
data from the disk. We show some results based on GRACE recent solutions on the one hand, 
and on GOCE simulations on the other hand, which demonstrate the efficiency of the 
algorithms.  
 
2 Formulation of the problem  
 
Let q be any function of two variables, expanded into surface spherical harmonics, for 
instance a linear (or linearized) functional of the gravity field: 
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                                                                                                                                                 (1) 
 
 
or 
 
q = Y t X                                                                                                                                    (2) 
 
In current applications q can be: geoid height, gravity anomaly or disturbance, or their vertical 
gradient, equivalent water height (accounting for the loading effect), topography, or any other 
function subject to this type of representation. 
   This is written on a surface (e.g. the Earth’s surface, a reference ellipsoid) with ϕ ,λ  being 
the geo/planeto-centric latitude and longitude, respectively, and where the coefficients Cℓm 
and Sℓm have been predetermined from observations of q (or one or several functions of q) by 
means of a least squares adjustment (of normal matrix N). In gravitational potential problems, 
the Cℓ0’s may be residual harmonics (when the normal potential of a reference ellipsoid is 
subtracted). The Cℓm and Sℓm coefficients are usually normalized and ordered according to a 
certain numbering scheme, that is X = {Cℓm ; Sℓm}ℓ,m . 
   In (2) we have Y = { fℓm Pℓm(sinϕ ) cos mλ ; fℓm Pℓm(sinϕ ) sin mλ }ℓ,m : vector of the 
corresponding spherical harmonic functions, ordered like the X components; the Pℓm's are the 
Legendre polynomials (m=0) and functions (m>0) of the geocentric latitude ϕ , normalized 
like the Cℓm , Sℓm . The fℓm ’s are constants or functions of latitude  (ϕ ) only; for instance if q 
is  the geoid height fℓm=R (the radius of the mean spherical Earth) in spherical approximation, 
or fℓm=GM Rℓ/(rℓ+1γ) on the ellipsoid  (with G : gravitational constant, M : Earth mass, r : 
radius vector and γ : normal gravity at the computation point). The fℓm ’s may also incorporate 
filtering coefficients such as those developed by Jekeli (1981), or tapering coefficients 
limiting the harmonic series to some window in the (ℓ,m) domain for specific problems. 
   In most cases, q is a scalar function but it may also be vectorial in which case the fℓm 
coefficients are also vectors; an example will be given in section 4. Also some functions (e.g. 
the deflection of the vertical in geodesy) may involve derivatives of the Pℓm 's, which can be 
treated similarly. 
   A zone on the working surface (e.g. the Earth) and a grid covering this zone being defined, 
our goal is to compute: 
   (a)  the variance of the error on q at each grid point; when q is a vector, we also want the 
covariances between its components at the same point; 
   (b) the error-covariances between a given point and all other points in the grid (up to a 
certain distance). 
   Γ = σ0

2 N -1 being the covariance matrix of X, equal to the inverse of the normal matrix N, 
scaled by the unit variance factor σ0, one has: 
- for problem (a), at any point P:   
             
     σ2(q) = Y t Γ Y                                                                                                                      (3) 
 
- for problem (b):  
                              
                                                                                                                                                  (4) 
 
 
 

⎥
⎦

⎤
⎢
⎣

⎡

ΓΓ
ΓΓ

=⎥
⎦

⎤
⎢
⎣

⎡

2212

2111

2
2

21

211
2

)(),cov(
),cov()(

YYYY
YYYY

qqq
qqq

tt

tt

σ
σ

]sin)(sincos)(sin[ λϕλϕ mPSmPCfq mm
L m

mmm ll
l l

lll∑ ∑
≤ ≤

+=



 33

where the subscripts 1, 2  refer to a pair of points P1 and P2 ; the diagonal terms can be 
computed as in problem (a), making (a) a particular case of problem (b). 
   We have developed efficient methods to compute over any equiangular grid: 
- (i) at each node ( i,j )  point or mean values of σ2(q) for a  Γ matrix of any size (Γ being 
either in core – when it can fit, or stored sequentially on disc); as it will be shown in section 3, 
this uses recursive evaluations of partial sums at longitudinal nodes for a fixed latitude 
(equivalent to a Fourier approach - FFT); for mean values, we evaluate the Legendre 
functions’ integrals  Iℓm rigorously by using a variant of the Gerstl (1980) formulation and 
described in Balmino (1994).  
- (ii) at each node ( i,j ) of the regular grid the tensor )()(),cov( ij

t
hkhkij

hk
ij YYqqC Γ==   for all 

neighbouring nodes ( h,k ) – up to chosen distances in latitude and longitude, with Y(αβ) = 
value of harmonic functions vector components at node (α,β). This makes use of algorithms 
similar to the ones in (i) and also takes advantage of symmetries: ij

hk
hk
ij CC = . Besides we also 

compute tables of the isotropic, North-South and East-West covariance functions over the 
zone, which provides the user the means to evaluate the covariances beyond the prescribed 
distances: an empirical anisotropic covariance function (depending on both distance ψ  and 
azimuth) may be fitted to the cov

s
(ψ ) values where the superscript s stands for isotropic, N-S 

or  E-W.  
 
3 The core of the method 
 
The main improvement over the standard computation of matrix and dot products involved in 
expressions such as Y1

 t Γ Y2  consists, in the regular grid case, in accelerating some operations 
by adapting what we call the partial sums – longitude recursion algorithm (or PSLR) 
introduced by Bosch (1983). Fourier methods may also be used as in Haagmans and van 
Gelderen (1991) or Sneeuw and Bun (1996) but we favoured the simplicity of the PSLR. We 
will see later the similarities between the two approaches. 
 
   We want to evaluate the summations involved in (3) or (4) where the points P, or P1 and P2  
are the nodes Nij of the grid, defined by: 
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            (5) 

 
The grid may be parameterized in geodetic latitude, in which case ϕ i is transformed into 
geocentric latitude when needed. Also Δλ could be made latitude dependant in the case of a 
quasi-equivalent area decomposition of the unit sphere, which does not change the basis of the 
algorithm. 
    [ ϕ I , ϕ 0 ] x  [ λ 0 , λ J ] defines the working zone [Z], called the "inner zone" in the 
covariance computation case. 
   When mean values are computed, the bins are centered at (ϕ i +ϕ i+1)/2 and at (λ j +λ j+1)/2 = 

jλ  , and we replace the quantities )sin,(cos jj mm λλ  by )sin,cos( jmjm mm λθλθ  where            
θ0 = 1,  θm = sin (m Δλ/2) /   (m Δλ/2); in addition the Pℓm 's (or their derivatives in the case of 
some geodetic functions) are replaced by their mean values over the latitude extent of each 
bin. 
   For the covariances we define a moving window WHK(Nij) around each node (i, j ) which 
consists of all points (ϕh , λk) such that i-H ≤ h ≤ i+H  and  j-K ≤ k ≤ j+K. The union of  [Z] 
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and all  WHK 's is a domain called the envelope {E[Z]} of the inner zone. {E[Z]} may go 
beyond a pole or have a λ- extension larger than 2π, of which we have taken care: when 

2/πϕ >h  we replace [ϕh , λk] by [sgn(ϕh).π-ϕh , λk+π]  and in the latter particular case we 
extend the range of the longitude index. 
   With the notations of equation (4) let us detail the computation of Y1

 t Γ Y2 for two points P1 
and P2 which are nodes of  {E[Z]}, with for instance P2 being in [Z] and P1 in WHK(P2). 
   We first compute ΓY2 = V2 . A component   nV2  corresponds to one row of  Γ, therefore: 
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where Fℓm = fℓm Pℓm  or  fℓm Iℓm θm  in the case of mean values. In this equation (and 
subsequently) we dropped the subscript "2" from the Fℓm 's and λ 's since there should be no 
confusion on where these quantities are evaluated. 
   )(),( 21 mm ll determine the range of the columns which limit the considered  blocks of the 
covariance matrix through which the effective columns  jc(l,m),  js (l, m) of Γ are selected. 
These arrays are determined once and for all at the beginning, and correspond to the adopted 
numbering scheme. Usual values are ℓ1(m) = sup(1,m) and ℓ2(m) = L. 
 
   (i) Partial sums (PS) 
 
Equation (6) can be rewritten as follows: 
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where: 
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These sums, independent of λ, can be computed without the cosmϕ  factor from the Legendre 
functions (or from the integrals Iℓm with a modification of the algorithm which evaluate them), 
also in applying an empirical scaling factor so as to gain in accuracy and to cope with the 
allowed magnitude of real numbers in the used computer (a necessity when L becomes large); 
in doing so we have followed Holmes and Featherstone (2002). 
 
   (ii) Longitude recursion (LR) 
 
Since λλλ Δ+= joj  (or λλ Δ++ )( 2

1jo  in the case of mean values) it is easy to show (see 
appendix A) that: 
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with 
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Expressing cos (mj Δλ ) and  sin (mj Δλ )  in terms of sine and cosine of  m (j-1) Δλ  and      m 
(j-2) Δλ , we find the following recursion formula: 
 

n
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n
jm hhmh 2,1,, cos2 −− −Δ= λ                                                                                  (9) 

 
to be initialized by: 
 

n
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λσλγ Δ+Δ= mmh n
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  Needless to say that it is not necessary, in programming this algorithm, to keep the 
superscript n as an array index; so not only this trick works fast but it is also economical 
memory-wise. 
   Finally we perform the summation over m of the n

jmh ,  for each λj , in applying a Horner 
scheme of order m  in cosϕ  and dividing by the previously applied scaling factor as in 
Holmes and Featherstone (ibid.). 
   To achieve the computation, it suffices to calculate the dot product   21 VY t  that is 

( )n
i

n YY∑ Γ 21  a writing which shows that this can be done by successive accumulation as one 

browses the Γ matrix forward and for all points at a time in WHK(P2), with a similar PSLR 
technique. 
   Because the variance-covariance matrix Γ  is rather large it generally cannot be in core. 
Since the efficiency of the algorithm also comes from the use of the full square Γ matrix we 
first – and once for all, complement (into a square matrix) the covariance matrix when it is 
given as a (lower) triangular one, on disc; the software which performs this transformation 
does not (can not) put the triangular matrix in core but instead uses a limited size working 
array. Optimization is also enforced in minimizing the number of times the program accesses 
data from the disk. A revolving buffer zone and (relatively small) auxiliary arrays help 
reducing the amount of re-reading of Γ; we work simultaneously with the largest possible 
number of parallels (of latitude ϕ i ) in [Z] and also optimize the storage of the Legendre 
functions and integrals over these parallels. 
  The Fourier approach, used for instance by Haagmans and van Gelderen, is in principle 
similar to ours: the first gain in computer time is in the PS part of the PSLR and results, as in 
our case, from their reversal of the summation sequence over degree ℓ and order m (a trick 
which has been commonly applied); then the second gain comes from their use of fast Fourier 
transform (FFT) instead of our longitude recursions (LR). The technical differences lie: (i) in 
the covariance matrix which needs to be in core in their approach whereas it is brought in core 
one row at a time in ours; (ii) in the isolation of the cos mϕ  factors and the use of an Horner 
summation scheme.    
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4 Performances and examples 
 
The software, written in Fortran 90, has been developed and run on a standard (3 GHz single 
processor) personal computer with 1 Gb memory and 180 Gb disk space. It has been validated 
thanks to a built-in verification procedure by brute force (direct method) at a few grid nodes, 
also by extensive comparisons with results from an independent software written in the 1980's 
at the French Space Centre. The latter, which uses only the PS part of the PSLR algorithm and 
runs on mainframe had been validated against another software independently developed at 
GFZ (GeoForschungZentrum). Besides, comparisons have been made in the diagonal matrix 
case (i.e. when we do not consider correlations between the coefficients) with another 
independent software (Knudsen, personal communication, 2008) and good agreement was 
obtained. 
   An interpolation procedure (needed in most applications) has also been developed, which 
allows the fast computation of cov(q1, q2) from the 4-D grid of the  hk

ijC  values; it uses two 
bilinear interpolators involving 8 points associated in 16 pairs. 
   Figure 1 shows the errors on the geoid associated with the EIGEN-GL04S1 solution, a 
(static, mean) model derived from four years of GRACE data and Lageos 1 and 2 data (over 
the same time period), complete to degree and order 150 (Foerste et al., 2007). The grid 
resolution is 1°x1°. The full Γ matrix occupies 4 Gb in this case. The elapsed time on the 
computer referred to above was 15 minutes. 
 
 
  **********************   FIG. 1 *********************** 
 
 
Fig. 1 :   Map of the geoid errors (in centimeter) of the EIGEN-GL04S1 model derived from  
              GRACE and Lageos 1 and 2 satellites (the r.m.s. error is 6.2 cm). The errors are   
              slightly asymmetric with respect to the equator which may be attributed to the  
              errors on the odd zonal coefficients. 
 
 
   Figures 2 and 3 show results of covariances computation. They correspond to a GOCE 
mission simulation (Abrikosov et al., 2006). It was performed for one measuring phase of 6 
months, at a mean altitude of 265 km. The Earth’s gravity field is recovered up to degree and 
order 200, which makes the full Γ matrix occupy 13 Gb on disk. The considered zone [Z] 
extends from 20°N to 80°N and from 60°W to 30°E. With a step size of one degree in latitude 
and longitude and with H=K=20, the computation took three hours, of which 1h20mn were 
needed to read the matrix (this was determined separately).  Three windows of 40° x 40° are 
shown on figure 2. The covariances are in m2. 
   The isotropic, north-south and east-west covariance functions which are simultaneously 
computed are shown on figure 3. They demonstrate an increasing anisotropy for distances 
larger than a few degrees; the east-west component in particular shows larger error 
covariances which may be attributed to the limited measurement bandwidth of the 
gradiometer and some characteristics of the processing (arc length, weighting and regularizing 
strategies, etc). 
 

 
**********************   FIG. 2 *********************** 
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Fig. 2 :   Example of  40°x40° windows of geoid error covariances (in cm2) for a 6 months   
              GOCE simulation. Longitudes are on the horizontal axes, latitudes on the vertical  
              ones. 
 
 
 
 
 

**********************   FIG. 3 *********************** 
 
 
 
Fig. 3 :  Isotropic, N-S and E-W covariance functions determined over a 60° x 90° area  for a   

six months GOCE simulation (values of the N-S and E-W functions beyond 20 and 15  
degrees respectively are not computed due to the window size, the limited area and  
 the equiangular geometry). Values are in cm2. The larger error of the E-W component  
 compared to the N-S one may have to do with the along-track data sampling interval    
(about  8 km) versus the across-track separation of the ground tracks (about 35 km for 
the simulated orbit).  
  

 
   Finally, to illustrate the case of  a vectorial function q, we give an example of covariances of 
the geoid model induced error on the geostrophic currents. 
   Let h (ϕ,λ) be the sea surface topography at any place on the oceans, N (ϕ,λ) the geoid 
height and H (ϕ,λ) the ellipsoid height at this point. The geostrophic current velocity vector   
q = ( )yx &&,  is given by: 
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with R the mean Earth's radius as before,  f = 2 ω sin ϕ (ω = Earth's rotation rate in rad/s), g 
the mean surface gravity. {x, y} is a local system with x being eastward and y northward. This 
equation may be used about 5 to 10 degrees off the equator. 
   On the other hand, we have: 
 
 h = H – N                                                                                (11) 
 
Assuming no correlation between H – which comes from satellite altimetric measurements, 
and N – which comes from a global gravity field model, we write: 
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where (ξ,η) are the components of the deflection of the vertical. 
   The first term in (12) is attributed to sea surface slope errors coming from instrumental 
errors (i.e. from the altimeter measuring system) while the second term comes from the error 
on the geoid. It is this second part which can be easily computed and visualized by its error 
ellipse at any point (see appendix B), from the gravity harmonics covariance matrix. Figure 4 
shows such error ellipses for the EIGEN-GL04S1 model at grid points of a limited area in the 
north-west Atlantic Ocean, super-imposed on the Levitus current velocities. 
 
 

**********************   FIG. 4 *********************** 
 
Fig. 4: Error ellipses of the geostrophic current velocity vector, induced by errors on the 

global gravity field model EIGEN-GL04S1. The arrows show the velocity vector itself 
according to Levitus model. The size of the circle and of the vertical arrow at the 
bottom indicate the scale (in cm). Ellipses are elongated in the N-S direction because 
this component (y) corresponds to errors on the derivative of the geoid height in 
longitude, and because the GRACE mission produces the best accuracy in the N-S 
direction.  

 
   Such an analysis is complementary to the computation and analysis of the covariances; it is 
useful for quickly assessing the isotropic character of errors on any gravity model, or 
departure from it over a given area. 
 
5 Conclusion 
 
We have found and implemented simple, though efficient algorithms which allow to 
propagate geodetic function error variances and covariances from the complete covariance 
matrix associated to a global gravitational potential model expanded in spherical harmonics. 
The software currently runs on a standard personal computer and is used in applications 
relating to the GRACE and GOCE gravity mapping missions. 
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Appendix A: The LR algorithm 
 
We rewrite equation (7) of the text in dropping superscript n: 
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which has to be evaluated for each λλλ Δ+= jj 0 . 
The LR algorithm is a recursive relation between the jmjm hh ,)( =λ with m fixed. 
We have: 
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with obvious notations; note that γ0  = A0 and σ0  = 0. 
 
We then use the following trigonometric identities: 
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with x = mΔλ. 
 
Therefore: 
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that is 
 

2,1,, cos2 −− −Δ= jmjmjm hhmh λ  
 
which is initialized with hm,0  and hm,1 . 
This is the recursive formula found by Bosch (ibid.) and which we have used in this paper. 
 
 
 
Appendix B: Error ellipse of the geostrophic current velocity vector 
 
The covariances are gridded on the Earth's surface, using the algorithm described in the text. 
At each grid node, we have: 
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The equation of the ellipse of error at this point in the local coordinate system {x, y} is: 
 
( ) ( ) 11 =− yxCyx t     
 
that is: 
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12 22 =++ cyxybax  

 
where: 
  

Δ= /2
ya &σ  

Δ−= /yxb &&σ  

Δ= /2
xc &σ  

with: 0222 >−=Δ yxyx &&&& σσσ     (since C is symmetric, positive definite) 
 
- If  a ≠ c, let us define 
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 . if  a' ≤ c', then θ is the polar angle, with respect to the West-East direction, of the semi-
major axis of the ellipse, which value is: a′/1  ; the semi-minor axis is c′/1 . 
 

 . if  a' > c', θ  is replaced by 
2
πθ +  and the axes are inter-changed. 

 
- If  a = c  
 
 . if  b = o: the ellipse degenerates into a circle 

 . if  b ≠ o: 
4
πθ = , bacbaa −=′+=′ , . If b < o , the semi-major axis of the ellipse is 

( )ba +/1 , the semi-minor axis is ( )ba −/1 . In the other case (b ≥ o), 
4

3πθ =  and the axes 

are interchanged. 
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Fig. 1 :   Map of the geoid errors (in centimeter) of the EIGEN-GL04S1 model derived from  
              GRACE and Lageos 1 and 2 satellites (the r.m.s. error is 6.2 cm). The errors are   
              slightly asymmetric with respect to the equator which may be attributed to the  
              errors on the odd zonal coefficients. 
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Fig. 2 :   Example of  40°x40° windows of geoid error covariances (in cm2) for a 6 months   
              GOCE simulation. Longitudes are on the horizontal axes, latitudes on the vertical  
              ones. 
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Fig. 3 :  Isotropic, N-S and E-W covariance functions determined over a 60° x 90° area  for a   

six months GOCE simulation (values of the N-S and E-W functions beyond 20 and 15  
degrees respectively are not computed due to the window size, the limited area and  
 the equiangular geometry). Values are in cm2. The larger error of the E-W component  
 compared to the N-S one may have to do with the along-track data sampling interval    
(about  8 km) versus the across-track separation of the ground tracks (about 35 km for 
the simulated orbit).  
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Fig. 4: Error ellipses of the geostrophic current velocity vector, induced by errors on the 

global gravity field model EIGEN-GL04S1. The arrows show the velocity vector itself 
according to Levitus model. The size of the circle and of the vertical arrow at the 
bottom indicate the scale (in cm). Ellipses are elongated in the N-S direction because 
this component (y) corresponds to errors on the derivative of the geoid height in 
longitude, and because the GRACE mission produces the best accuracy in the N-S 
direction.  

 
 


