GOSAT-2/TANSO-CAI-2
 Level 1 Data Description Document

Feb,2019
Japan Aerospace Exploration Agency

GOSAT-2/TANSO-CAI-2 Level 1 Data Description Document

Contents

1. Introduction 0
1.1. Outline 0
1.2. Baseline Documents 0
2. Overview of products 1
2.1. Definition of processing level 1
2.2. Unit of product 4
2.3. Data contents 5
3. Product format 7
3.1. File name convention 7
3.1.1. File name convention of TANSO-CAI-2 L1A (HDF5 format) 7
3.1.2. Fine name convention of processing result (XML format) 8
3.2. Dataset Structure 9
3.3. Notes for definition of data group 11
3.4. Definition of common file 14
3.4.1. Metadata group 14
3.4.2. SpacecraftTimeError group 14
3.4.3. SiderealTimeInfo group 14
3.4.4. Definition of TransMatrixInfo data group 15
3.4.5. OnboardOrbitData group 15
3.4.6. KinematicOrbitDataPredicted group 15
3.4.7. KinematicOrbitDataDetermined group 15
3.4.8. AttitudeData group 15
3.4.9. SolarEphemeris group 16
3.4.10. LunarEphemeris group 16
3.4.11. TemperatureTelemetry_1sec group 16
3.4.12. TemperatureTelemetry_32sec group 16
3.4.13. HK_Telemetry_1sec group 17
3.5. Definition of Forward/Backward looking band file 18
3.5.1. Metadata group 18
3.5.2. SceneAttribute group 18
3.5.3. LineAttribute_500 group 18
3.5.4. LineAttribute_1km group 18
3.5.5. ImageData group 19
3.5.6. GeometryAttribute group 19
3.5.7. ImageGeometry group 21
3.5.8. SatelliteGeometry group 24
3.5.9. SolarGeometry group 25
3.5.10. LunarGeometry group 25
4. Image Processing 26
4.1. Processing flow 26
4.1.1. \quad Band 2,3,4,7,8 and 9 26
4.1.1. Band 1,6 27
4.1.1. Band 5,10 28
4.2. Radiometric conversion 29
4.3. Band-to-band registration 32
4.4. Saturation correction 33
4.5. Stray light correction for band 1 and 6 35
4.6. Out-of-band stray light correction for band 1 and 6 37
4.7. Band 1 and 6 crosstalk correction 38
4.8. Inter-channel crosstalk correction for band 5 and 10 41
4.9. Stray light correction for band 5 and 10 44
4.10. Filling missing line by interpolation 46
4.11. Image border processing 46
5. Geometric conversion 48
6. Format Details 51

1. Introduction

1.1. Outline

The GOSAT-2 mission is aimed at continuing and advancing GOSAT mission and continuously providing useful information that contributes to environmental decision making for global warming.

GOSAT-2 project is promoted under the cooperation between the Ministry of the Environment (MOE), the Japan Aerospace Exploration Agency (JAXA) and the National Institute for Environmental Studies (NIES).
JAXA implements Level 1 processing of GOSAT-2 data. The Level 1 products based on the observation data of GOSAT-2 is processed by GOSAT-2 Mission Operations System.

This document describes the format of TANSO-CAI-2 Level 1 following products generated by GOSAT-2 Mission Operations System.

- Level 1A product
- Level 1A calibration product

TANSO-CAI-2 Level 1 products are stored in HDF5 (Hierarchical Data Format Version 5). They are produced with HDF5 library.

1.2. Baseline Documents

Following documents give the baseline for the design of products:
(1) HDF5

- HDF5 Reference Manual (Release 1.8.18)
- HDF5 User's Guide(Release 1.8.18)
(2) Engineering Specification Document (ESPC)
- ESPC for global earth observation data processing system (for GOSAT-2), in Japanese
- Definition of GOSAT-2 Level 1 Products, in Japanese

2. Overview of products

2.1. Definition of processing level

Processing of TANSO-CAI-2 level 1 product is defined as follows:
Level 1A processing:

Level 1A products contains uncorrected image data of TANSO-CAI-2, which is stored as digital number together with telemetry of geometric information at observation point, orbit and attitude data, temperature, etc. Uncorrected image data in the product is digital value output from the sensor

Table $2.1-1$ shows definitions of TANSO-CAI-2 products.
Table 2.1-2 shows correspondence table of between product and mode and band.

Table 2.1-1 Definition of TANSO-CAI-2 Product

Type	Definition	Operation Mode	Appended information
Level 1A	Level 1A products contain uncorrected image data of TANSO-CAI-2, which is stored as digital number, together with geometric information at observation point and telemetry of temperature, etc. Every scene, the following 4 files are produced. - Common file Common information for both Forward looking and Backward looking is stored. - Forward looking band file Information for Forward looking is stored (The observation data of band $1-5$, etc.). Backward looking band file Information for Backward looking is stored (The observation data of band $6-10$, etc.). TANSO-CAI-2 L1 processing result file Quality information, geometric information of representative point and etc. are stored as XML format.	Observation Mode	- Point number - Line exposure time - Gain, various sensor temperatures and exposure duration - Latitude and longitude at representative point - Satellite orbit data at representative point (ECI, ECR) - Satellite attitude data at representative point - Sensor zenith and azimuth angles at representative point - Sun position at representative point (ECI, ECR) - Moon position at representative point (ECI, ECR) - Quality information
Level 1A Calibration	Same as Level 1A.	Electrical Calibration Dark Calibration Lunar Calibration	Same as Level 1A. In this mode, sensor doesn't observe on the earth surface, therefore information of geolocation, etc. at representative point is not calculated.

Table 2.1-2 Correspondence table of product and mode/band

		TANSO-CAI-2 Observation or Calibration mode	Stored Band
TANSO-CAI-2 L1A Product	Observation (day)	Observation Mode	Forward looking (Band1-5)
		Backward looking (Band6-10)	
TANSO-CAI-2 L1A Calibration Product	Dark Calibration	Electrical Calibration	Electrical Calibration mode

2.2. Unit of product

Unit of TANSO-CAI-2 level 1 product is described as follows:
(1) One scene product is defined as 1 satellite revolution data starting from ascending node to the next ascending node. If the observation points (satellite position) cross ascending node, the product should be divided into separate products.
(2) Common file, Forward looking band file (for band 1-5) and Backward looking band file (for band 6-10) are produced for both of Observation mode and Calibration mode. Calibration product has plural calibration mode in a product (Night, Electrical, Lunar calibration mode). These calibration data are united together for every calibration mode and stored.

2.3. Data contents

Basic observation modes of TANSO-CAI-2 are shown in Table 2.3-1.
In nominal operation phase, TANSO-CAI-2 sensor of Forward looking observes with band 1-5 and Backward looking observes with band 6-10 during the daytime on earth surface.
Lunar calibration uses the reflected solar irradiance from moon. In this calibration, TANSO-CAI-2 is oriented the moon during night and CAI-2's FOV catches the reflected solar irradiance after attitude maneuver.

Table 2.3-1 Basic observation modes of TANSO-CAI-2

Observation Mode		Description
Observation Mode 1	Nominal Observation	
Observation Mode 2	In the situation that the power supply level of the satellite becomes lower and the satellite cannot keep observation mode1, the observation continues under the condition that a part of function of TANSO-CAI-2 is suspended depending on the power level.	
Calibration Mode	Lunar Calibration	Once a month Same as Observation Mode 1 and 2.
	Electric Calibration	Every path Performs calibration of signal processing after the analogue-signal processing system, by inputting a reference voltage signal.
	Dark Calibration	Once a month as needed. Same as Observation Mode 1 and 2. Calibrates the offset level during nighttime.

Data contents for each processing level and mode are shown in Table 2.3-2.

Table2.3-2 Contents of TANSO-CAI-2 L1 Products

Processing Level	Observation Mode	Used Band	Data Contents (for one observation point)	Data size	Note
1A	Observation Mode	Forward looking band(Band 1-5) Backward looking band (Band 6-10)	Band 1-4, Band 6-9: 2056 pixels. $1^{\text {st- }}$ 8th $^{\text {th }}$ pixel : dark Band 5, Band 10: 1024 pixels $1^{\text {st- }} 6^{\text {th }}$ pixel: dark $7-66^{\text {th }}$ pixel: invalid	The nominal data size of daytime satellite in a revolution is about 40,000 lines (In case of Band 5,10 are about a half of above, 20,000 lines)	-
$1 \mathrm{~A}$ Calibration	Calibration Mode (Electric Calibration)	ibid	ibid	A series of Electric and Dark calibration data	Input reference voltage signal
	Calibration Mode (Dark Calibration)				Observe earth in night time for acquiring the dark offset level. Acquire the offset level by observing during night time.
	Calibration Mode (Lunar Calibration)	ibid	ibid	A series of Lunar calibration data	Observe Lunar

3. Product format

3.1. File name convention

3.1.1. File name convention of TANSO-CAI-2 L1A (HDF5 format)

Table 3.1^{-1} shows the file name convention of TANSO-CAI-2 L1A products.
Table3.1-1 File name convention of TANSO-CAI-2 L1A products
 GOSAT 2TCAI 2/YYYYMMDDHHmmPPPISS. LLBARCOOOOOOAAABBB. h 5

Convention for each item is shown below

- Satellite Name : GOSAT2 (Fixed)
- Sensor Name : TANSO-CAI-2: TCAI2 (Fixed)
- Observation time at the first line of scene (year • month • day • hour • minute) : YYYYMMDDHHmm (UT)
Compared with the first line of time of Forward and Backward band, the former line time is nominally stored. Because in nominal case, the start of Forward looking is ahead of that of Backward looking.
- Path No. : PPP(001-089)
- Scene No. : 00(Fixed)
- Processing Level : 1A(Fixed)
- Band : B

Common file : C
Forward looking band (Band1-5) : F
Backward looking band (Band6-10) : B

- Orbit data used for processing : R

Using predicted orbit data : P
Using GPS or determined orbit data: D

- Correction coefficients used for processing : C

Using nominal coefficients: N
Using updated coefficients: U

- Reserved : 00
- Operation Mode : OOOO

Observation Mode (day) : OBSM
Dark calibration mode : NCAL
Electric calibration mode: ECAL
Lunar calibration mode : LCAL

- Algorithm Version : AAA (000-999)
- Parameter Version : BBB (000-999)
- Extension : h5 (Fixed)

3.1.2. File name convention of processing result (XML format)

Table 3.1-2 shows File name convention of TANSO-CAI-2 L1 processing result file.

Table3.1-2 File name convention of TANSO-CAI-2 L1 processing result file

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |
| :--- | $\mathbf{4 7}$| 48 |
| :--- |

The convention for each item is shown below.

- Satellite Name : GOSAT2 (Fixed)
- Sensor Name : TANSO-CAI-2: TCAI2 (Fixed)
- Start Time of Observation (year • month • day • hour • minute) : YYYYMMDDHHmm (UT)
- Path No. : PPP (001-089)
- Scene No. : 00 (Fixed)
- Processing Level : 1A (Fixed)
- Band : B

Common file : C
Forward looking band (Band1-5) : F
Backward looking band (Band6-10) : B

- Orbit data used for processing : R

Using predicted orbit data : P
Using GPS or determined orbit data: D

- Correction coefficients used for processing : C

Using nominal coefficients : N
Using updated coefficients : U

- Reserved : 00
- Operation Mode : OOOO

Observation Mode (day) : 0BSM
Dark calibration mode : NCAL
Electric calibration mode : ECAL
Lunar calibration mode : LCAL

- Algorithm Version : AAA (000-999)
- Parameter Version : BBB (000-999)
- Extension : XML (Fixed)

3.2. Dataset Structure

TANSO-CAI-2 L1 product consists of Common file (consists of common information to Forward looking and Backward looking), Forward looking band file (for band 1-5) and Backward looking band file (for band 6-10).
Common file contains metadata, orbit and attitude data, ephemeris data (sun and moon), housekeeping telemetry data such as temperature, status of instruments.
Forward/Backward looking band file contain metadata, Scene Attribute (information of number of pixels, etc.), Line Attribute (line observation time, etc.), Geometric information, Image (digital number for each band), these are Forward/Backward specific information.
Dataset structure of TANSO-CAI-2 L1 product is shown in Table 3.2-1.
Table 3.2-1 Dataset Structure of TANSO-CAI-2 Level 1 Product (1/2)

File	Group	Outline
Common file	Metadata	Items below are stored as explanation of product type, contents, etc. - Granule ID - Operation Mode - Date of product creation - Processing Level - Processing Algorithm/Parameter version - Start and end time of observation - Quality information
	SpacecraftTimeError	Parameter for correcting spacecraft time error is stored.
	SiderealTimeInfo	Parameter for calculating Greenwich sidereal time is stored.
	TransMatrixInfo	Transform matrix which convert from J2000.0 to TOD and true ECR corresponding polar motion is stored.
	OnboardOrbitData	Onboard orbit data is stored.
	KinematicOrbitDataPredicted	Predicted kinematic orbit data is stored.
	KinematicOrbitDataDetermined	Determined kinematic orbit data is stored.
	AttitudeData	Onboard attitude data is stored.
	SolarEphemeris	Solar position and velocity data is stored.
	LunarEphemeris	Lunar position and velocity data is stored.
	TemperatureTelemetry_1sec	Temperature telemetry of 1 sec period is stored.
	TemperatureTelemetry_32sec	Temperature telemetry of 32 sec period is stored.
	HK_Telemetry_1sec	Housekeeping telemetry of 1sec period is stored.
Forward / Backward looking band file	Metadata	Items below are stored as explanation of product type, contents, etc. - Granule ID - Operation Mode - Date of product creation - Processing Level - Processing Algorithm Name and its version - Start and end time of observation
	SceneAttribute	Number of bands, pixels and lines are stored as information about observation point data.

Table 3.2-1 Dataset Structure of TANSO-CAI-2 Level 1 Product (2/2)

File	Group	Outline
	LineAttribute_500	Observed time, missing flag, etc. for each line are stored as information of band 1-4(for Forward looking band file) or 6-9(for Backward looking band file).
	LineAttribute_1km	Observed time, missing flag, etc. for each line are stored as information of band 5(for Forward looking band file) or 10(for Backward looking band file).
	ImageData	Image data is stored.
	GeometryAttribute	Standard band No, sampling interval of both pixel and line direction, number of the sample of both pixel and line direction, etc. are stored as geometric information for reference band
	ImageGeometry	Latitude, longitude, sensor zenith and azimuth angle, solar zenith and azimuth angle, etc. for each sample are stored as geometric information for reference band.
	SatelliteGeometry	Satellite position, velocity and attitude for each line are stored as geometric information for reference band.
	SolarGeometry	Solar position and velocity for each line are stored as geometric information for reference band.
	LunarGeometry	Lunar position and velocity for each line are stored as geometric information for reference band.

3.3. Notes for definition of data group

(1) Definition of data type

Table 3.3-1 describes definition of data type stored in TANSO-CAI-2 L1A products.
Table 3.3-1 Definition of data type

HDF5 type	Data type
H5T_STRING	more than 1 byte string
H5T_STD_I8LE	signed 1byte integer
H5T_STD_U8LE	unsigned 1byte integer
H5T_STD_I16LE	signed 2byte integer
H5T_STD_U16LE	unsigned 2byte integer
H5T_SSTD_I32LE	signed 4byte integer
H5T_STD_U32LE	unsigned 4byte integer
H5T_IEEE_F32LE	signed 4byte float
H5T_IEEE_F64LE	signed 8byte double

(2) Expression of time

UTC date is expressed as "YYYY-MM-DDThh:mm:ss.ffffffZ" with string data. "YYYY-MM-DD" means year, month and day. "hh:mm" means hour and minute. "ss.ffffffZ" means second with microsecond accuracy.

Spacecraft time is defined as follows:
Spacecraft Time (s) = GPS Time (s) - 1,041,033,615(s),
where GPS Time (s) is total seconds since 00:00:00 UTC, Jan 6, 1980.

(3) Definition of coordinates

Table 3.3-2 describes definition of coordinates used for dataset.

Table 3.3-2 Definition of coordinates

Name	Abbreviated name	The origin/Axis	Definition		
Inertial coordinate system (J2000.0 coordinate)	Φ_{1}	The origin: $\mathrm{O}_{\text {I }}$	Earth centered	$\begin{aligned} & \text { EPOCH } \\ & \text { 2000/01/01 } \\ & \text { 12:00:00 TT(Earth time) } \end{aligned}$	
		X_{I}	Direction of mean vernal equinox of EPOCH		
		Y_{1}	$\mathrm{Z}_{\mathrm{I}} \times \mathrm{X}_{\mathrm{I}}$		
		Z	Vertical direction of mean equatorial plain of EPOCH (Direction of the north pole is +)		
Coordinate Reference Systems in Orbit	Φ_{R}	The origin: O_{R}	Ascending node		
		X_{R}	Coincide with ascending node of orbit coordinate		
		Y_{R}			
		Z_{R}			
Orbit coordinate	Φ_{0}	The origin:Oo	Center of the mass of satellite	Defined by orbit model of AOCE inInertial coordinate system.	
		X_{0}	$Y_{0} \times Z_{0}$		
		Y_{0}	Opposite direction of vector of orbit plane		
		Z_{0}	Direction of center of the earth		
Coordinate Reference Systems in STT (Reference point for determination of satellite attitude)	$\Phi_{\text {STT1 }}$	The origin: $\mathrm{O}_{\text {STT1 }}$	Reference mirror in STT	Defined after early operations phase on orbit	
		$\mathrm{X}_{\text {STT1 }}$	Roll axis in orbit		
		$Y_{\text {STT1 }}$	Pitch axis in orbit		
		$\mathrm{Z}_{\text {STT1 }}$	Yaw axis in orbit		
Satellite coordinate	$\Phi_{\text {B }}$	The origin: O_{B}	Center of the mass of satellite	Coincide with the orbit coordinate except for attitude error	
		X_{B}	Parallel to each axis of coordinate reference systems in STT		
		Y_{B}			
		Z_{B}			
Coordinate Reference Systems in TANSO-CAI-2	$\Phi_{\text {CAI-2 }}$	The origin: $\mathrm{O}_{\mathrm{CAI}-2}$	Transform matrix to convert Satellite coordinate Φ_{B} from Coordinate Reference Systems in TANSO-CAI-2 is provided as separate file. Ideally, this is stored in unit matrix. The origin is same as satellite coordinate.		
		$\mathrm{X}_{\text {CAI-2 }}$			
		$\mathrm{Y}_{\text {CAI-2 }}$			
		$\mathrm{Z}_{\text {CAI-2 }}$			
Satellite-fixed coordinate	$\Phi_{\text {S }}$	The origin: $\mathrm{O}_{\text {S }}$	Intersection point of center line of and satellite separation plain		
		X_{S}	Roll axis in machine		
		Y_{S}	Pitch axis in machine		
		$\mathrm{Z}_{\text {S }}$	Yaw axis in machine		
Earth-fixed coordinate	$\Phi_{\text {WGS84 }}$	The origin: $\mathrm{O}_{\text {WGS84 }}$	the gravity center of the earth	GPSR gives absolute position and absolute velocity on this corrdinate	
		$X_{\text {WGS84 }}$	Coincide with X axis which is defined byBIH for calculation of earth rotation paramerter		
		$\mathrm{Y}_{\text {WGS84 }}$	$Z_{\text {WGS84 }} \times \mathrm{X}_{\text {WGS84 }}$		
		$\mathrm{Z}_{\text {WGS84 }}$	Parallel to Z axis which is defined byBIH for calculation of earth rotation paramerter. Z axis is the direction of CTP.		
TOD coordinate	$\Phi_{\text {TOD }}$	The origin: $\mathrm{O}_{\text {TOD }}$	Earth centered		
		$\mathrm{X}_{\text {TOD }}$	Direction of vernal equinox at the present time	Inertial coordinate system (J2000.0 coordinate) ФI with taking into precession and nutation.	
		$Y_{\text {TOD }}$	$\mathrm{Z}_{\text {TOD }} \times \mathrm{X}_{\text {TOD }}$		
		$\mathrm{Z}_{\text {TOD }}$	Vertical direction of equatorial plain at the present time (Direction of the north pole is +)		

(4) Definition of latitude/longitude

Unless otherwise specifically noted, latitude and longitude in this document means geographic latitude and longitude.

3.4. Definition of common file

3.4.1. Metadata group

Each dataset in Metadata describes product type, contents, etc which are related to this product file.

Metadata group in common file contains productQualityFlag. productQualityFlag refers to number of missing lines and evaluates quality of product in four levels (Good, Fair, Poor, NG). The criteria are shown below.
When productQualityFlag is Good, there is no missing lines.
Fair/Poor/NG is determined by the threshold value defined in this system. When productQualityFlag is evaluated "NG", product isn't provided to users.

3.4.2. SpacecraftTimeError group

SpacecraftTimeError group contains the information to correct the gap between satellite and the ground station time. If the status of time system is normal, this correction is not required to use.
Formula to correct the time gap is as follows:
Spacecraft time (after correction)
$=$ periodCount * $\{$ spacecraft time(before correction) - refCount $\}+$ groundTime

3.4.3. SiderealTimeInfo group

SiderealTimeInfo group contains information of Greenwich sidereal time. Using this information, TOD can be converted to pseudo earth-fixed coordinates (Polar motion is not considered.).

Using Greenwich sidereal time $\theta_{g o}$ at the baseline time t_{0} and Deviation of Greenwich sidereal time $d \theta_{g} / d t$ Greenwich sidereal time θ_{g} at the arbitrary time t is expressed as follows:

$$
\theta_{g}=\theta_{g 0}+d \theta_{g} / d t \times\left(t-t_{0}\right)
$$

Transform matrix conversion from TOD to pseudo earth-fixed coordinate $\mathbf{M}_{\text {Tod-PECR }}$ is as follows:

$$
\mathbf{M}_{\text {TOD-PECR }}=\left(\begin{array}{ccc}
\cos \theta_{g} & \sin \theta_{g} & 0 \\
-\sin \theta_{g} & \cos \theta_{g} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

3.4.4. Definition of TransMatrixInfo data group

TransMatrixInfo data group contains PN matrix which can convert from J2000.0 coordinates to TOD coordinates and XY matrix which can convert from pseudo earth-fixed coordinates to ECR coordinates.
Data interval is 60 sec . But in case of the leap second, data interval is 61 sec .

3.4.5. OnboardOrbitData group

OnboardOrbitData group contains onboard orbit data (expressed in ECR coordinates) and orbit data converted to TOD coordinates from onboard orbit data.
Data interval is 1 sec . But in case of data missing, there can be some gap in data interval.
The Conversion method from position vector $\mathbf{P}_{\text {ECR }}$ and velocity vector $\mathbf{V}_{\text {ECR }}$ of onboard in ECR to position vector $\mathbf{P}_{\text {TOD }}$ and velocity vector $\mathbf{V}_{\text {ToD }}$ in TOD is described below.
First, $\mathbf{P}_{\text {ECR }}$ and $\mathbf{V}_{\text {ECR }}$ convert to position vector and velocity vector in pseudo earth-fixed coordinates (This coordinate doesn't consider polar motion) using XY matrix:

$$
\begin{align*}
& \mathbf{P}_{\mathbf{P E C R}}=\mathbf{X} \mathbf{Y}^{t} \times \mathbf{P}_{\mathrm{ECR}} \\
& \mathbf{V}_{\mathbf{P E C R}}=\mathbf{X} \mathbf{Y}^{t} \times \mathbf{V}_{\mathrm{ECR}}
\end{align*}
$$

(The superscript t denotes transpose. Since XY matrix is unitary, transpose of it is the same as its inverse matrix.)
Next, $\mathbf{P}_{\text {Pecr }}$ and $\mathbf{V}_{\text {Pecr }}$ convert to $\mathbf{P}_{\text {tod }}$ and $\mathbf{V}_{\text {tod }}$ using Greenwich sidereal time $\boldsymbol{\theta}_{g}$ and Deviation of Greenwich sidereal time $d \theta_{g} / d t$

$$
\begin{align*}
& \mathbf{P}_{\text {TOD }}=\left(\begin{array}{ccc}
\cos \left(-\theta_{g}\right) & \sin \left(-\theta_{g}\right) & 0 \\
-\sin \left(-\theta_{g}\right) & \cos \left(-\theta_{g}\right) & 0 \\
0 & 0 & 1
\end{array}\right) \times \mathbf{P}_{\mathbf{P E C R}} \\
& \mathbf{V}_{\text {TOD }}=\left(\begin{array}{ccc}
\cos \left(-\theta_{g}\right) & \sin \left(-\theta_{g}\right) & 0 \\
-\sin \left(-\theta_{g}\right) & \cos \left(-\theta_{g}\right) & 0 \\
0 & 0 & 1
\end{array}\right) \times\left[\mathbf{V}_{\mathbf{P E C R}}+\left(\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{g}
\end{array}\right) \otimes \mathbf{P}_{\mathrm{PECR}}\right]
\end{align*}
$$

Eq. 3.4.5-4
where \otimes denotes outer product.

3.4.6. KinematicOrbitDataPredicted group

KinematicOrbitDataPredicted group contains predicted kinematic orbit data in ECR and TOD coordinates, this data is distributed from the kinematic orbit system.
In all cases (includes the leap second is inserted), data interval is 60 sec .

3.4.7. KinematicOrbitDataDetermined group

KinematicOrbitDataDetermined group contains determined kinematic orbit data in ECR and TOD coordinates, this data is distributed from the kinematic orbit system.
In all cases (includes the leap second is inserted), data interval is 60 sec .

3.4.8. AttitudeData group

AttitudeData group contains onboard attitude data and yaw steering flag which shows
yaw steering operation status.
The data interval is not constant. But, in case of data missing, there can be some gap in data interval.

Attitude data is given in quaternion $Q=\left(q_{0}, q_{1}, q_{2}, q_{3}\right)$ in $J 2000.0 . q_{0}$ is scalar component and (q_{1}, q_{2}, q_{3}) are vector components.
Interpolation is needed to determine attitude data at the given time.

Transform matrix $\mathbf{M}_{\text {I2000-body }}$ which convert satellite coordinates from J2000.0 coordinates is expressed as follows:

$$
\mathbf{M}_{\text {J2000-body }}=\left(\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2\left(q_{1} q_{2}+q_{0} q_{3}\right) & 2\left(q_{1} q_{3}-q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}-q_{0} q_{3}\right) & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}+q_{0} q_{2}\right) & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}
\end{array}\right)
$$

Transform matrix $\mathbf{M}_{\text {body-J2000 }}$ which converts J2000.0 coordinates from satellite coordinates is transpose matrix of $\mathbf{M}_{\mathbf{J 2 0 0 0} \text {-body. }} \mathbf{M}_{\text {body-J2000 }}$ is expressed as follows (The superscript t denotes transpose):
$\mathbf{M}_{\text {body-J2000 }}=\left(\mathbf{M}_{\text {J2000-body }}\right)^{t}=\left(\begin{array}{ccc}q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2\left(q_{1} q_{2}-q_{0} q_{3}\right) & 2\left(q_{1} q_{3}+q_{0} q_{2}\right) \\ 2\left(q_{1} q_{2}+q_{0} q_{3}\right) & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) \\ 2\left(q_{1} q_{3}-q_{0} q_{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}\end{array}\right)$
Eq. 3.4.8-2

3.4.9. SolarEphemeris group

SolarEphemeris group contains the kinematic solar position and velocity data in ECR and TOD coordinates distributed from kinematic orbit system. In all cases (includes the leap second is inserted), data interval is always 60 sec .
Solar position and velocity data are true position and velocity at the time. The light propagation time from sun to earth is not taken in account. However, time data has been recorded since about 10 minutes before start of observation. Thus, solar position and velocity data with taking account of light propagation time can be calculated.

3.4.10. LunarEphemeris group

LunarEphemeris group contains kinematic lunar position and velocity data in ECR and TOD coordinates distributed from kinematic orbit system. In all cases (includes the leap second is inserted), data interval is always 60 sec .

3.4.11. TemperatureTelemetry_1sec group

TemperatureTelemetry_1sec group contains temperature telemetry.
Data interval is 1 sec but there can be some gap in data interval in case of data missing.
The evaluation result about the range of temperature is stored for each data.
Data of sensorTemp, preAmpTemp and ampTemp in this group are used for radiometric conversion. (For the radiometric conversion, see Chapter 4.2)
Temperature data except the above are used for checking sensor condition.

3.4.12. TemperatureTelemetry_32sec group

TemperatureTelemetry_32sec group contains temperature telemetry.

Data interval is 32 sec but there can be some gap in data interval in case of data missing. The evaluation result about the range of temperature is stored for each data.
The temperature data are used for checking sensor condition.

3.4.13. HK_Telemetry_1sec group

HK_Telemetry_1sec group contains housekeeping telemetry.
Data interval is 1 sec but there can be some gap in data interval in case of data missing. The telemetry data are used for checking sensor condition.

3.5. Definition of Forward/Backward looking band file

3.5.1. Metadata group

Each dataset in Metadata describes product type, contents, etc are related to this product file.

3.5.2. SceneAttribute group

SceneAttribute group contains number of bands, pixels and lines for each resolution in this product are stored, which are related to this product file.

CAI-2 has 2 resolutions, one is 500 m and 1000 m is the other.
In Forward looking band file, 500 m spatial resolution bands are Band 1-4, total 4 bands and 1 km spatial resolution band is only Band 5 .

In Backward looking band file, 500 m spatial resolution bands are Band 6-9,total 4 bands, and 1 km spatial resolution band is only Band 10 .

3.5.3. LineAttribute_500 group

LineAttribute_500 group contains the following information for 500 m spatial resolution bands.

- missingFlag
- observationTime
- satTime
- satTimeStatusFlag
- fineobservationCounter
- integrationNum
- exposureTime
observationTime is the center of exposureTime considering the duration of exposure. In case satellite time system status is anomaly, observationTime is corrected by time correction information.
satTime and exposureTime are used for calculation of observationTime. observationTime is expressed as follows:

```
observationTime
    \(=\) satTime \(+(\) Fixed-delay time \()+\) exposureTime \(\times 0.5\)
```

(Fixed-delay time) is a fixed parameter and it is not stored in product.

3.5.4. LineAttribute_1km group

LineAttribute_1km group contains observationTime, etc. for 1 km spatial resolution bands. The contents are the same as LineAttribute_500 group.

3.5.5. ImageData group

ImageData group contains the digital number of CAI-2 data (Effective digit are 12 bits). Each band includes dark pixels, invalid pixels and valid pixel. The dark pixels are the pixel to store data during dark. The valid pixels are the pixel to store during observing earth surface data. The invalid pixels are not used in processing.

Table 3.5.5-1 shows the pixel number of dark, invalid and valid pixels for each band.

Table 3.5.5-1 Pixel number of Dark, invalid and valid pixels

Band	Number of pixels	Dark pixel No.	Invalid pixel No.	Valid pixel No.
Band $1 \sim 4$ Band $6 \sim 9$	2056	$1 \sim 8$	-	$9 \sim 2056$
Band 5,10	1024	$1 \sim 6$	$7 \sim 66$	$67 \sim 1024$

3.5.6. GeometryAttribute group

GeometryAttribute group contains information about pixel which has geometry information. The pixels are sampled from reference band every 10 pixels and 10 lines as Figure $3.5 .6-1$ shows. The reference band is any one of band 1 to 4 in the case of forward looking and any one of band 6 to 9 in the case of backward looking and stdBand shows the band number.

In pixel direction, the pixel are sampled every 10 pixels start from the pixel number 9 to pixel number 2056. The last pixel is 2056 .

In line direction, the lines are sampled from the beginning of the lines and every 10 lines. The last line will be a sampled line. Only information of the pixel which has valid orbit data will be stored in the group.

Figure 3.5.6-1 The sample pixels

3.5.7. ImageGeometry group

ImageGeometry group contains latitude and longitude on the standard band image, sensor zenith and azimuth angle, solar zenith and azimuth angle, solar distance from the observation point and lunar to satellite to solar angle.

The calculation of the values in this group related solar position (for example, solar zenith angle, etc.) is used by the apparent position in consideration of light propagation time from sun to earth (fixed value).

The Definition of sensor and solar zenith/azimuth angle and the angle between lunar to satellite vector and solar- to satellite vector in this product are described below.
(1) The Definition of sensor and solar zenith/azimuth angle

When geographic latitude/longitude is defined as λ / φ in observation point $\mathbf{p}_{\text {obs }}=\left(p_{\text {obs_ }}\right.$, $\left.p_{\text {obs_y }}, p_{\text {obs_z }}\right)^{t}$, unit vector of zenith direction \mathbf{z}, unit vector of north direction \mathbf{n} and unit vector of east direction \mathbf{e} are expressed as follows:

$$
\begin{align*}
& \mathbf{z}=\left(\begin{array}{c}
\cos \varphi \cos \lambda \\
\cos \varphi \sin \lambda \\
\sin \varphi
\end{array}\right) \\
& \mathbf{n}=\left(\begin{array}{c}
-\sin \varphi \cos \lambda \\
-\sin \varphi \sin \lambda \\
\cos \varphi
\end{array}\right) \\
& \mathbf{e}=\left(\begin{array}{c}
-\sin \lambda \\
\cos \lambda \\
0
\end{array}\right)
\end{align*}
$$

Eq. 3.5.7-3

Using sensor or solar position vector in ECR $\mathbf{p}_{\text {ECR }}$, zenith angle θ_{z} and azimuth angle $\varphi_{A z}$ are expressed as follows:

$$
\begin{align*}
& \theta_{z}=\operatorname{acos}\left(\frac{\left(\mathbf{p}_{\mathrm{ECR}}-\mathbf{p}_{\mathbf{o b s}}\right) \cdot \mathbf{z}}{\left|\mathbf{p}_{\mathrm{ECR}}-\mathbf{p}_{\mathrm{obs}}\right|}\right) \\
& \varphi_{\mathrm{Az}}=\operatorname{atan} 2\left(\left(\mathbf{p}_{\mathrm{ECR}}-\mathbf{p}_{\mathrm{obs}}\right) \cdot \mathbf{e}, \quad\left(\mathbf{p}_{\mathrm{ECR}}-\mathbf{p}_{\mathrm{obs}}\right) \cdot \mathbf{n}\right)
\end{align*}
$$

$\left(\mathbf{p}_{\text {ECR }}-\mathbf{p}_{\text {obs }}\right)$ is the direction to sun from observation point or satellite.

As the azimuth angle $\varphi_{A z}$ is defined from 0 to 2π [rad] (0 to 360 [deg]). If $\varphi_{A z}$ is negative value at Eq.3.5.7-5 add 2π to $\varphi_{A z}$. The definition of atan 2 function, please refer to Chapter 5.

Figure 3.5.7-1 The definition of sensor and solar zenith/azimuth angle.
(2) The Definition of angle between lunar to satellite vector and solar to satellite vector Using sensor position vector $\mathbf{p}_{\text {sat }}$, solar position vector $\mathbf{p}_{\text {sud }}$ and lunar position vector $\mathrm{p}_{\text {moon }}$, the angle between lunar to satellite vector and solar to satellite vector $\theta_{e l}$ is expressed as follows:

$$
\theta_{e l}=\operatorname{acos}\left(\frac{\left(\mathbf{p}_{\text {MOON }}-\mathbf{p}_{\text {sat }}\right) \cdot\left(\mathbf{p}_{\text {sun }}-\mathbf{p}_{\text {sat }}\right)}{\left|\mathbf{p}_{\text {MOON }}-\mathbf{p}_{\text {sat }} \| \mathbf{p}_{\text {SUN }}-\mathbf{p}_{\text {sat }}\right|}\right)
$$

Figure 3.5.7-2 The angle between lunar-satellite vector and solar-satellite vector.

(3) The definition of scatter angle

The scatter angle is defined as the angle between the progress direction of scattered light and the direction of incident light. When the scatted light progresses to the same direction of incident light ($\varphi_{\text {SCAT }}=0$ degree) , the scatter is called the forward scatter and when it progresses to the opposite direction ($\varphi_{\text {SCAT }}=180$ degree) , it is called the backward scatter. The definition is as follows.

$$
\varphi_{\text {SCAT }}=\operatorname{acos}\left(\Phi_{\text {SCAT }}\right)
$$

$\Phi_{\text {SCAT }}$ is defined as follows and others like $\theta_{Z_{-S a r}}$ refers to section(1) and Figure3.5.8-1

$$
\begin{aligned}
\Phi_{\text {SCAT }}=- & \sin \theta_{z_{-} S U N} \sin \varphi_{A z_{-} S U N} \sin \theta_{z_{-} \text {sat }} \sin \varphi_{A z_{-} \text {sat }} \\
& -\sin \theta_{z_{-} S U N} \cos \varphi_{A z_{-} S U N} \sin \theta_{z_{-} \text {sat }} \cos \varphi_{A z_{-} \text {sat }} \\
& -\cos \theta_{z_{-} S U N} \cos \theta_{z_{-} \text {sat }}
\end{aligned}
$$

Eq.3.5.7-8

Figure 3.5.7-3 The definition of scattered angle

3.5.8. SatelliteGeometry group

SatelliteGeometry group contains satellite position/velocity (in ECR and TOD) and attitude in the sample lines of standardBand and transformation matrix (satToECR_Matrix) which can convert to ECR (WGS84) coordinate from satellite coordinate.

Satellite attitude is stored as quaternion in J2000.0 and roll, pitch and yaw angles. Definition and usage of quaternion are the same as Chapter 3.4.8. Roll, pitch, and yaw angles are calculated by using quaternion, etc. The algorithm is shown later.

Transformation matrix (satToECR_Matrix) can transform coordinate from satellite coordinate to ECR (WGS84) directly. The matrix includes all coordinate transformation from satellite coordinate to J2000, J2000 to TOD, and TOD to ECR(WGS84). For usage of this matrix, see Chapter 5.

The calculation of roll, pitch and yaw angles are described below.
The first step is to make a transform matrix from orbit coordinate to TOD by using $\mathbf{p}_{\text {Tod }}$ satellite position and velocity $\mathbf{v}_{\text {Tod }}$ vectors in TOD .

$$
\mathbf{E}_{\text {orbit-TOD }}=\left(\begin{array}{lll}
E_{11} & E_{12} & E_{13} \\
E_{21} & E_{22} & E_{23} \\
E_{31} & E_{32} & E_{33}
\end{array}\right)
$$

Each element of the matrix is defined as follows:

$$
\begin{align*}
& \mathbf{E}_{\mathbf{z}}=\left(\begin{array}{l}
E_{13} \\
E_{23} \\
E_{33}
\end{array}\right)=-\frac{\mathbf{p}_{\text {TOD }}}{\left|\mathbf{p}_{\text {TOD }}\right|} \\
& \mathbf{E}_{\mathrm{y}}=\left(\begin{array}{l}
E_{12} \\
E_{22} \\
E_{32}
\end{array}\right)=-\frac{\mathbf{p}_{\text {TOD }} \otimes \mathbf{v}_{\text {TOD }}}{\left|\mathbf{p}_{\text {Tod }} \otimes \mathbf{v}_{\text {ToD }}\right|} \\
& \mathbf{E}_{\mathrm{x}}=\left(\begin{array}{l}
E_{11} \\
E_{21} \\
E_{31}
\end{array}\right)=\mathbf{E}_{\mathrm{y}} \otimes \mathbf{E}_{\mathrm{z}}
\end{align*}
$$

Eq. 3.5.8-4
where \otimes denotes outer product.
Next step is to make a transform matrix from orbit coordinate to satellite body $\mathbf{M}_{\text {orbit-body }}$ by using E $_{\text {orbit-Tod }}$, quaternion, and PN matrix,

$$
\mathbf{M}_{\text {orbit-body }}=\mathbf{M}_{\text {t2000-body }} \times \mathbf{P N}^{t} \times \mathbf{E}_{\text {orbit-TOD }},
$$

where the superscript t denotes transpose, and $\mathbf{M}_{\mathbf{J 2 0 0 0} \text {-body }}$ is defined by Eq. 3.4.8-1.
The same matrix $\mathbf{M}_{\text {I2000-body }}$ can be defined by roll φ, pitch θ and yaw ψ, where each angle is defined as the rotation (Euler) angle between orbit coordinate and satellite body:

$$
\begin{aligned}
\mathbf{M}_{\text {orbit-body }} & =\left(\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi & \sin \varphi \\
0 & -\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \theta \cos \psi & \cos \theta \sin \psi & -\sin \theta \\
\sin \varphi \sin \theta \cos \psi-\cos \varphi \sin \psi & \sin \varphi \sin \theta \sin \psi+\cos \varphi \cos \psi & \sin \varphi \cos \theta \\
\cos \varphi \sin \theta \cos \psi+\sin \varphi \sin \psi & \cos \varphi \sin \theta \sin \psi-\sin \varphi \cos \psi & \cos \varphi \cos \theta
\end{array}\right)
\end{aligned}
$$

Eq. 3.5.8-6
By equation Eq. 3.5.8-5 and Eq. 3.5.8-6, roll φ, pitch θ and yaw ψ can be obtained as follows:

$$
\begin{align*}
& \varphi=\operatorname{atan} 2\left(M_{23}, M_{33}\right) \\
& \theta=\operatorname{asin}\left(-M_{13}\right) \\
& \psi=\operatorname{atan} 2\left(M_{12}, M_{11}\right)
\end{align*}
$$

3.5.9. SolarGeometry group

SolarGeometry group contains apparent solar position and velocity (in ECR and TOD) in the sample lines of standardBand. The values take account of the light propagation time from sun to earth (8 minutes 19 seconds/ fixed value/ specified by parameters).

3.5.10. LunarGeometry group

LunarGeometry group contains true lunar position and velocity (in ECR and TOD) in the sample lines of standard band.

4. Image Processing

This chapter describes how to convert the digital number stored in ImageData group to the luminance with band-to-band registration

4.1. Processing flow

4.1.1. Band $2,3,4,7,8$ and 9

Figure $4-1$ shows the image processing for band $2,3,4,7,8$ and 9 .

Figure 4 -1 Image processing for Band $2,3,4,7,8$ and 9

The image is processed in following steps.
Radiometric Convert 12bit observation data to the luminance ($\mathrm{W} / \mathrm{m}^{2} / \mu \mathrm{m} / \mathrm{str}$). conversion Refer to section 4.2.

Band-to-band Transform the image to be overlaid on the base band.
registration Refer to section 4.3

4.1.1. Band 1,6

Figure 4-2 shows the image processing for band 1 and 6.

Figure 4-2 Image processing for Band 1 and 6

The image is processed in following steps.

Radiometric Convert 12bit observation data to the luminance (W/m ${ }^{2 /} \mu \mathrm{m} / \mathrm{str}$).
conversion Refer to section 4.2.

Saturation Correct saturated pixel value with the estimated value of around correction corresponding pixel of band 2,7.

Refer to section 4.3 .

Stray light \quad Correct stray light in 1 or 6 band.
correction Refer to section 4.5.

Out-of-band \quad Correct out-of-band stray light from band 2,3,4 or 7, 8,9 .
stray light Refer to section 4.6.
correction
Band 1 and 6 Correct crosstalk between band 1 and band 6.
crosstalk Refer to section 4.7.
correction

Band-to-band Transform the image to be overlaid on the base band.
Registration Refer to section 4.3.

4.1.1. Band 5,10

Figure 4-3 shows the image processing for band 5 and 10 .

Figure 4-3 Image processing for Band 5 and 10

The image is processed in following steps.
Inter-channel Correct inter-channel crosstalk within the band.
crosstalk Refer to section 4.8.
correction

Radiometric Convert 12bit observation data to the luminance ($\mathrm{W} / \mathrm{m}^{2} / \mu \mathrm{m} / \mathrm{str}$).
conversion Refer to section 4.2.
Stray light Correct stray light in band5 or band10.
correction Refer to section 4.9.
Band-to-band Transform the image to be overlaid on the base band.
registration Refer to section 4.3.

4.2. Radiometric conversion

Radiometric conversion method calculating from the digital values, DN to the brightness
($\mathrm{W} / \mathrm{m}^{2} / \mu \mathrm{m} / \mathrm{str}$) is described below. In follows, temperatures are expressed in degrees Celsius.
(1) Correction of the DN value for valid pixels using pre-amplifier temperature T_{1} and amplifier temperature T_{2}
The DN value of valid pixels $X(m, n . l)$ are corrected with pre-amplifier temperature T_{1} and amplifier temperature T_{2}.

$$
Z_{1}(m, n, l)=\frac{X(m, n, l)}{C_{1}\left(m, T_{1}(m, l)\right) C_{2}\left(m, T_{1}(m, l)\right)}
$$

m, n and l are band number, pixel number and line number, respectively.

The coefficient C_{1} and C_{2} is calculated as follows:

$$
\begin{align*}
& C_{1}\left(m, T_{1}(m, l)\right)=\sum_{k=0}^{3} a(m, k) T_{1}^{k}(m, l) \\
& C_{2}\left(m, T_{2}(m, l)\right)=\sum_{k=0}^{3} b(m, k) T_{2}^{k}(m, l)
\end{align*}
$$

Eq. 4-3

Pre-amplifier temperature T_{1} and amplifier temperature T_{2} are stored in TemperatureTelemetry_1sec group of Common file. The coefficients of polynomial a and b are unique to each band. These are provided in separate file.
(2) The correction term Z_{21} calculated by dark pixel

The correction term Z_{21} can be calculated with average of dark pixels $X_{d k 1}$, pre-amplifier temperature T_{1} and amplifier temperature T_{2}.

$$
\begin{array}{ll}
Z_{21 _O D D}(m, n, l)=\frac{X_{d k 1 _O D D}(m, l)}{C_{1}\left(m, T_{1}(m, l)\right) C_{2}\left(m, T_{2}(m, l)\right)} & \text { if } m \neq 5,10 \text { and } n=2 k-1(k=1,2, \ldots) \\
Z_{21_{-} E V E N}(m, n, l)=\frac{X_{d k 1 _E V E N}(m, l)}{C_{1}\left(m, T_{1}(m, l)\right) C_{2}\left(m, T_{2}(m, l)\right)} & \text { if } m \neq 5,10 \text { and } n=2 k(k=1,2, \ldots) \\
Z_{21}(m, n, l)=\frac{X_{d k 1}(m, l)}{C_{1}\left(m, T_{1}(m, l)\right) C_{2}\left(m, T_{2}(m, l)\right)} & \text { if } m=5,10
\end{array}
$$

Eq. 4-4
Here m, n and l are band number, pixel number and line number, respectively.
$X_{\text {dkI_ODD }}(m, l)$ is the average of up to 4 dark pixels selected from pixel number1,3,5,7 in the l'
$\left(l-p w \leq l^{\prime} \leq l+p w, p w\right.$ is the parameter) near line l.
$X_{\text {dk1_EVEN }}(m, l)$ is the average of up to 4 dark pixels selected from pixel number2, $4,6,8$ in the l ' $\left(l-p w \leq l^{\prime} \leq l+p w, p w\right.$ is the parameter $)$ near line l.
$X_{d k l}$ is the average of up to 6 dark pixels selected from pixel number 1 to 6 in the l' $\left(l-p w \leq l^{\prime} \leq l+p w, p w\right.$ is the parameter) near line l.

The coefficient C_{1} and C_{2} are the same as Eq. 4-2 and 4-3.
(3) The correction term of Z_{22} calculated by dark earth observation data, pixel temperature T_{3} and exposure duration time $t_{\text {int }}$.
The correction term Z_{22} can be calculated using the night observation data (the average of time series of $X_{d k 2}(m, n)$, pre-amplifier temperature $T^{\prime}{ }_{1}(m)$, amplifier temperature $T^{\prime}{ }_{2}(m)$ and pixel temperature $T_{3}{ }_{3}(m)$ and the exposure time $\left.t_{\text {int. }}(m, l)\right)$ band m, and exposure time tint (m, l) at line l.

Eq. 4-5
Here m, n and l are band number, pixel number and line number, respectively.
$X_{d k 3 _O D D}(m): X_{d k 2}$ is the average of up to 4 dark pixels selected from pixel $X_{d k 2}$ number1,3,5,7. $X_{d k 3 _E V E N}(m): X_{d k 2}$ is the average of up to 4 dark pixels selected from pixel $X_{d k 2}$ number2,4,6,8. $X_{d k 3}(m) \quad: X_{d k 2}$ is the average of up to 6 dark pixels selected from pixel $X_{d k 2}$ number 1 to 6 . $X_{d k 2}$ is provided as the parameter file.

The coefficient C_{1} and C_{2} is calculated by substituting temperatures of pre amplifier $T_{1}{ }_{1}$, $T^{\prime}{ }_{2}$ into Eq.4-2, and Eq.4-3 at the acquisition of $X_{d k 2} . T^{\prime}{ }_{1}, T^{\prime}{ }_{2}$ are provided together with $X_{d k 2}$.

The coefficient C_{3} and C_{4} can be calculated as follows:

$$
\begin{align*}
& C_{3}\left(m, n, T_{3}^{\prime}(m)\right)=\sum_{k=0}^{3} c(m, n, k) T_{3}^{\prime k}(m) \\
& C_{4}\left(m, t_{\mathrm{int}}(m, l), t_{\mathrm{int}}^{\prime}(m)\right)=\sum_{k=0}^{3} d(m, k)\left(\frac{t_{\mathrm{int}}(m, l)}{t_{\mathrm{int}}^{\prime}(m)}\right)^{k}
\end{align*}
$$

Here T_{3}^{\prime} is the pixel temperature at the acquisition of $X_{d k 2}$ and is provided together with $X_{d k 2}$.
Exposure time $t_{\text {int }}$ (ms) is stored for each line in LineAttribute group of forward/backward looking band file. t^{\prime} (int (ms) is the integration time at the acquisition of $X_{d k 2}$ and provide together with $X_{d k 2}$.
The coefficients of polynomial c and d are provided as the parameter file.
(4) The calculation of corrected pixel digital value Z

The corrected pixel digital value Z can be calculated with Z_{1}, Z_{21} and Z_{22} which are defined in above (1) to (3),
$Z(m, n, l)$
$= \begin{cases}Z_{1}(m, n, l)-Z_{21 _O D D}(m, n, l)-Z_{22 _O D D}(m, n, l) & \text { if } m \neq 5,10 \text { and } n=2 k-1(k=1,2 \ldots) \\ Z_{1}(m, n, l)-Z_{21 _E V E N}(m, n, l)-Z_{22 _E V E N}(m, n, l) & \text { if } m \neq 5,10 \text { and } n=2 k(k=1,2 \ldots) \\ Z_{1}(m, n, l)-Z_{21}(m, n, l)-Z_{22}(m, n, l) & \text { if } m=5,10\end{cases}$
(5) Conversion to radiance $R a d$

The conversion from the corrected pixel digital value Z to radiance $\operatorname{Rad}\left[\mathrm{W} / \mathrm{m}^{2} / \mu \mathrm{m} / \mathrm{str}\right]$ is expressed as follows:

$$
\operatorname{Rad}(m, n, l)=R(m, n, 0)+\frac{1}{C_{5}\left(m, t_{\mathrm{int}}(m, l)\right) C_{6}\left(m, T_{3}(m, l)\right)} \sum_{k=1}^{3} R(m, n, k) Z^{k}(m, n, l)
$$

Eq. 4-9

The coefficients C_{5} and C_{6} are calculated as follows:

$$
\begin{align*}
& C_{5}\left(m, t_{\mathrm{int}}(m, l)\right)=\sum_{k=0}^{3} e(m, k) t_{\mathrm{int}}^{k}(m, l) \\
& C_{6}\left(m, T_{3}(m, l)\right)=\sum_{k=0}^{3} f(m, k) T_{3}^{k}(m, l)
\end{align*}
$$

The pixel temperature is stored in the TemperatureTelemetry_1sec group in the common file. The polynominal coeffficent e, f and $R(m, n, k)$ are provided as the parameter file.

Basically $R(m, n, k)$ is constant value because is calculated from sensor gain and the sensor gain will not be changed in space. If sensor gain was changed for some reason, the $R(m, n, k)$ parameter file will be updated and the provided.

4.3. Band-to-band registration

Because the view area of the band is slightly different each other, we transform images by pre-calculated lookup table to be overlaid on the base band. The following equation shows the transformation.

$$
I M G_{i, B}(n, l)=I M G_{i}\left(n_{B}^{\prime}(i, n), l_{B}^{\prime}(i, n, l)\right)
$$

Where
$I M G_{i, B}(n, l):$ The image data of band i overlaid on the band B (pixel n, line l)
$I M G_{i}(u, v)$: The image data of band i (pixel u, line v)
$n^{\prime}{ }_{B}(i, n)$: The pixel number of band i corresponding to the band B pixel n
$l_{B}^{\prime}(i, n, l):$ The line number of band i corresponding to the band B pixel n line l

Figure 4-4 shows the example of the band-to-band registration.

Figure 4-4 Band-to-band registration
$n_{B}^{\prime}(i, n)$ is lookup table in the parameter file..
$l_{B}^{\prime}(i, n, l)$ is defined by following equation.

$$
l_{B}^{\prime}(i, n, l)=l_{s B}(i, l)+\Delta l_{B}(i, n)
$$

Where
$l_{s B}(i, l):$ The line number which was observed at the nearest observation time to band B
line l.
$\Delta l_{B}(i, n):$ The error of line number of band i.
$\Delta l_{B}(i, n)$ is lookup table in the parameter file..

4.4. Saturation correction

The observation data is 12 bit digital number (DN) so it will be saturated with 4095. For band1 and 6, the value before saturation is estimated using pixels around the saturated pixel and other bands. The following equations show the saturation correction.

Band 1

$$
I M G_{1}(n, l)=A_{1,2}(n, l) \cdot I M G_{2}(n, l)
$$

Band 6

$$
I M G_{6}(n, l)=A_{6,7}(n, l) \cdot I M G_{7}(n, l)
$$

Where
$I M G_{i}(n, l)$: The luminance image data of band $i(i=1,6)$ (pixel n, line $\left.l\right)$
$A_{i, r}(n, l)$: The coefficient for band i (pixel n, line l), predicted by band r.

Figure $4-5$ shows the saturation correction (example of band1)

Figure 4-5 Example of saturation correction (in case of band1)
$A_{i, r}(n, l)$ is defined as the following average value of $I M G_{i} / I M G_{r}$ around the saturated pixel n. Where n^{\prime} is the unsaturated nearest neighbor of the saturated pixel n.

$$
\begin{align*}
& A_{i, r}(n, l)=\frac{1}{N} \sum_{v=l-\Delta l}^{l+\Delta l} \sum_{u=n_{\min }^{\prime}}^{n_{\text {max }}^{\prime}} \frac{I M G_{i}(u, v)}{I M G_{r}(u, v)} \\
& n_{\min }^{\prime}= \begin{cases}n^{\prime}-\Delta n & \text { if } n^{\prime}<n \\
n^{\prime} & \text { otherwise }\end{cases} \\
& n_{\max }^{\prime}= \begin{cases}n^{\prime} & \text { if } n^{\prime}<n \\
n^{\prime}+\Delta n & \text { otherwise }\end{cases} \\
& N=(2 \Delta l+1)(\Delta n+1)
\end{align*}
$$

Eq.4.4-6

The both Δn and Δl are parameters which mean the range to calculate $A_{i, r}(n, l)$. No correction will be applied for $\operatorname{IMG}(\mathrm{n}, \mathrm{l})$, when data is missing or $\operatorname{IMG}(\mathrm{n}, \mathrm{l})$ is 0 .

4.5. Stray light correction for band 1 and 6

The observation data of band 1 and band 6 are contaminated by stray light component. We estimate the stray light component by the convolution of observation data and "Point Spread Function (PSF)", and remove it from the observation data.

The following equations show the stray light correction for band 1 and 6 .

Band 1

$$
I M G_{1}(n, l)=A_{1}(n)\left(I M G_{1}(n, l)-H_{1, a}(u, v) \otimes I M G_{1}(n, l)\right)
$$

Band 6

$$
I M G_{6}(n, l)=A_{6}(n)\left(I M G_{6}(n, l)-H_{6, a}(u, v) \otimes I M G_{6}(n, l)\right)
$$

Where
$I M G_{i}(n, l)$: The luminance image data of band $i(i=1,6)$ (pixel n, line $\left.l\right)$
$H_{i, a}(u, v)$: The stray light PSF for band1 $i(i=1,6)$ (pixel u, line v)
\otimes : The convolution operator
$A_{i}(n)$: The coefficient to correct signal reduction by subtraction of the stray light component. (Pixel n)

Figure 4-6 shows the example of stray light correction.

Figure 4-6 Stray light correction (example of band1)

Because stray light depends on the pixel position in image, we use five PSF $H_{i, a}(u, v)$ from $H_{i, 1}(u, v)$ to $H_{i, 5}(u, v)$ for the correction. Figure 4-7 shows example of PSF and applying area.

Figure 4-7 PSF and applying area (example of band1)
$H_{i, a}(u, v)$ and the applying area is defined in the parameter file.
PSF applying area is defined within the valid pixel area. We apply the border processing to out of the valid pixel area. The border processing is described in section 4.11.
Before the convolution, the missing line in $\operatorname{IMG}_{i}(n, l)$ must be filled by the interpolation. The interpolation is described in section 4.10.
$A_{i}(n)$ is the coefficient in the parameter file.

4.6. Out-of-band stray light correction for band 1 and 6

The observation data of band 1 and band6 also are contaminated with stray light component coming from out-of-band. As same as section 4.5, we calculate the stray light component by the convolution of observation data and PSF, and remove it from the observation data.
The following equations show the out-of-band stray light correction for band 1 and 6 .

Band 1

$$
I M G_{1}(n, l)=I M G_{1}(n, l)-\sum_{j=2,3,4} H_{1, j}(u, v) \otimes I M G_{j}(n, l)
$$

Band 6

$$
I M G_{6}(n, l)=I M G_{6}(n, l)-\sum_{j=7,8,9} H_{6, j}(u, v) \otimes I M G_{j}(n, l)
$$

Where
$I M G_{i}(n, l):$ The luminance image data of band $i(i=1,2,3,4,6,7,8,9)$ (pixel n, line l)
$H_{i, j}(u, v)$: The band $j(j=2,3,4,7,8,9)$ out-band-stray light PSF for band $i(i=1,6)$ (pixel u, line v)
\otimes : The convolution operator

Figure $4-8$ shows the out-of-band stray light correction.

PSF applying area is defined within the valid pixel area. We apply the border processing to out of the valid pixel area. The border processing is described in section 4.11.

Before the convolution, the missing line in $I M G_{j}(n, l)(j=2,3,4,7,8,9)$ must be filled by the interpolation. The interpolation is described in section 4.10.

Band 1 (before out-of-band stray light correction) $I M G_{1}$
Band 1 (after out-of-band stray light correction) IMG $_{1}$

Band 2 IMG $_{2}$

Band 2 stray light PSF $H_{1,2}$

Band $3 \mathrm{IMG}_{3}$

Band $4 \mathrm{IMG}_{4}$

$$
H_{1,4}
$$

Figure 4-8 Out-of-band stray light correction (example of band1)

4.7. Band 1 and 6 crosstalk correction

The observation data of band 1 and band6 also are contaminated with crosstalk of each other. As same as section 4.5, we calculate the crosstalk component by the convolution of observation data and PSF, and remove it from the observation data.
The following equations show the band 1 and 6 crosstalk correction.

Band 1

$$
I M G_{1}(n, l)=I M G_{1}(n, l)-H_{6}(u, v) \otimes I M G_{6,1}(n, l)
$$

Band 6

$$
I M G_{6}(n, l)=I M G_{6}(n, l)-H_{1}(u, v) \otimes I M G_{1,6}(n, l)
$$

Where
$I M G_{i}(n, l)$: The luminance image data of band $i(i=1,6)($ pixel n, line $l)$
$\operatorname{IMG}_{r, i}(n, l)$: The luminance image data of band $r(r=1,6)$ which is extracted by observation time of band i
$H_{i}(u, v)$: The band $i(i=1,6)$ crosstalk PSF
\otimes : The convolution operator

Figure 4-9 shows the example of the band-to-band registration for crosstalk correction between band 1 and 6 . For each line of band $i, \operatorname{IMG}_{r, i}(n, l)$ is defined by the band r which observation time is nearest time to band i. If the time difference between band i line l and the its nearest line of band r is greater than the double of nominal observation cycle, we assume the line of $I M G_{i}(n, l)$ is a missing line. Before the convolution, the missing line in $I M G_{r, i}(n, l)$ must be filled by the interpolation. The interpolation is described in section 4.10.

Only forward or backward looking data are filled with 0 in $I M G_{r, i}(n, l)$
PSF applying area is defined in the valid pixel area. We apply the border processing to out of the valid pixel area. The border processing is described in section 4.11.

Figure 4-9 Band-to-band registration for band 1 and 6 crosstalk correction.
4.8. Inter-channel crosstalk correction for band 5 and 10

The observation data of band 5 and band10 are contaminated with the electrical inter-channel crosstalk
between the data reading channels (CH). Figure 4-10 shows the relation of pixels and channels. Figure 4-11 shows the example of inter-channel crosstalk.

Figure 4-10 Band 5 and 10 pixels and channels

Following equation shows to remove the crosstalk component.
Where $C H_{i}(n, l)$ is the observation data as the digital number of band i pixel n, line l.

$$
\begin{aligned}
C H_{1}\left(n_{1}, l\right)= & C H_{1}\left(n_{1}, l\right) \\
& -\left(a_{31} \times C H_{3}\left(n_{3}, l\right)+a_{51} \times C H_{5}\left(n_{5}, l\right)+a_{71} \times C H_{7}\left(n_{7}, l\right)\right) \\
& -\left(b_{31} \times\left|\frac{\partial C H_{3}\left(n_{3}, l\right)}{\partial n}\right|+b_{51} \times\left|\frac{\partial C H_{5}\left(n_{5}, l\right)}{\partial n}\right|+b_{71} \times\left|\frac{\partial C H_{7}\left(n_{7}, l\right)}{\partial n}\right|\right)
\end{aligned}
$$

Eq. 4.8-1

$$
\begin{aligned}
C H_{3}\left(n_{3}, l\right)= & C H_{3}\left(n_{3}, l\right) \\
& -\left(a_{13} \times C H_{1}\left(n_{1}, l\right)+a_{53} \times C H_{5}\left(n_{5}, l\right)+a_{73} \times C H_{7}\left(n_{7}, l\right)\right) \\
& -\left(b_{13} \times\left|\frac{\partial C H_{1}\left(n_{1}, l\right)}{\partial n}\right|+b_{53} \times\left|\frac{\partial C H_{5}\left(n_{5}, l\right)}{\partial n}\right|+b_{73} \times\left|\frac{\partial C H_{7}\left(n_{7}, l\right)}{\partial n}\right|\right)
\end{aligned}
$$

Eq. 4.8-2

$$
\begin{aligned}
C H_{5}\left(n_{5}, l\right)= & C H_{5}\left(n_{5}, l\right) \\
& -\left(a_{15} \times C H_{1}\left(n_{1}, l\right)+a_{35} \times C H_{3}\left(n_{3}, l\right)+a_{75} \times C H_{7}\left(n_{7}, l\right)\right) \\
& -\left(b_{15} \times\left|\frac{\partial C H_{1}\left(n_{1}, l\right)}{\partial n}\right|+b_{35} \times\left|\frac{\partial C H_{3}\left(n_{3}, l\right)}{\partial n}\right|+b_{75} \times\left|\frac{\partial C H_{7}\left(n_{7}, l\right)}{\partial n}\right|\right)
\end{aligned}
$$

Eq. 4.8-3

$$
\begin{aligned}
C H_{7}\left(n_{7}, l\right)= & C H_{7}\left(n_{7}, l\right) \\
& -\left(a_{17} \times C H_{1}\left(n_{1}, l\right)+a_{37} \times C H_{3}\left(n_{3}, l\right)+a_{57} \times C H_{5}\left(n_{5}, l\right)\right) \\
& -\left(b_{17} \times\left|\frac{\partial C H_{1}\left(n_{1}, l\right)}{\partial n}\right|+b_{37} \times\left|\frac{\partial C H_{3}\left(n_{3}, l\right)}{\partial n}\right|+b_{57} \times\left|\frac{\partial C H_{5}\left(n_{5}, l\right)}{\partial n}\right|\right)
\end{aligned}
$$

Eq. 4.8-4

$$
\begin{array}{ll}
n_{1}=2 m+1 & \left(n_{1}=1,3,5, \ldots, 255\right) \\
n_{3}=256+2 m+1 & \left(n_{3}=257,259,261, \ldots, 511\right) \\
n_{5}=512+2 m+1 & \left(n_{5}=513,515,517, \ldots, 767\right) \\
n_{7}=768+2 m+1 & \left(n_{7}=769,711,713, . ., 1023\right)
\end{array}
$$

$$
(0 \leq m<128)
$$

Eq. 4.8-5

$$
\begin{aligned}
C H_{2}\left(n_{2}, l\right)= & C H_{2}\left(n_{2}, l\right) \\
& -\left(a_{42} \times C H_{4}\left(n_{4}, l\right)+a_{62} \times C H_{6}\left(n_{6}, l\right)+a_{82} \times C H_{8}\left(n_{8}, l\right)\right) \\
& -\left(b_{42} \times\left|\frac{\partial C H_{4}\left(n_{4}, l\right)}{\partial n}\right|+b_{62} \times\left|\frac{\partial C H_{6}\left(n_{6}, l\right)}{\partial n}\right|+b_{82} \times\left|\frac{\partial C H_{8}\left(n_{8}, l\right)}{\partial n}\right|\right)
\end{aligned}
$$

Eq. 4.8-6

$$
\begin{aligned}
C H_{4}\left(n_{4}, l\right)= & C H_{4}\left(n_{4}, l\right) \\
& -\left(a_{24} \times C H_{2}\left(n_{2}, l\right)+a_{64} \times C H_{6}\left(n_{6}, l\right)+a_{84} \times C H_{8}\left(n_{8}, l\right)\right) \\
& -\left(b_{24} \times\left|\frac{\partial C H_{2}\left(n_{2}, l\right)}{\partial n}\right|+b_{64} \times\left|\frac{\partial C H_{6}\left(n_{6}, l\right)}{\partial n}\right|+b_{84} \times\left|\frac{\partial C H_{8}\left(n_{8}, l\right)}{\partial n}\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
C H_{6}\left(n_{6}, l\right)= & C H_{6}\left(n_{6}, l\right) \\
& -\left(a_{26} \times C H_{2}\left(n_{2}, l\right)+a_{46} \times C H_{4}\left(n_{4}, l\right)+a_{86} \times C H_{8}\left(n_{8}, l\right)\right) \\
& -\left(b_{26} \times\left|\frac{\partial C H_{2}\left(n_{2}, l\right)}{\partial n}\right|+b_{46} \times\left|\frac{\partial C H_{4}\left(n_{4}, l\right)}{\partial n}\right|+b_{86} \times\left|\frac{\partial C H_{8}\left(n_{8}, l\right)}{\partial n}\right|\right)
\end{aligned}
$$

Eq.4.8-8

$$
\begin{aligned}
C H_{8}\left(n_{8}, l\right)= & C H_{8}\left(n_{8}, l\right) \\
& -\left(a_{28} \times C H_{2}\left(n_{2}, l\right)+a_{48} \times C H_{4}\left(n_{4}, l\right)+a_{68} \times C H_{6}\left(n_{6}, l\right)\right) \\
& -\left(b_{28} \times\left|\frac{\partial C H_{2}\left(n_{2}, l\right)}{\partial n}\right|+b_{48} \times\left|\frac{\partial C H_{4}\left(n_{4}, l\right)}{\partial n}\right|+b_{68} \times\left|\frac{\partial C H_{6}\left(n_{6}, l\right)}{\partial n}\right|\right)
\end{aligned}
$$

Eq.4.8-9

$$
\begin{array}{ll}
n_{2}=2 m+2 & \left(n_{2}=2,4,6, \ldots, 256\right) \\
n_{4}=256+2 m+2 & \left(n_{4}=258,260,262, \ldots, 512\right) \\
n_{6}=512+2 m+2 & \left(n_{6}=514,516,518, \ldots, 768\right) \\
n_{8}=768+2 m+2 & \left(n_{8}=770,712,714, \ldots, 1024\right) \\
& (0 \leq m<128)
\end{array}
$$

Eq. 4.8-10
The coefficients a and b are defined in the parameter file.
$\partial C H_{i}(n, l) / \partial n$ is defined in following equation.

$$
\frac{\partial C H_{i}(n, l)}{\partial n}=\left\{\begin{array}{ll}
C H_{i}(n+2, l)-C H_{i}(n-2, l) & \text { if } 0<n-2 \\
0 & \text { otherwise }
\end{array} \text { and } n+2 \leq 1024\right.
$$

Eq. 4.8-11

4.9. Stray light correction for band 5 and 10

The observation data of band 5 and band10 are also contaminated with stray light component. As same as section 4.5 , we estimate the stray light component by the convolution of observation data and PSF, and remove it from the observation data.
The following equation shows the stray light correction for band 5 and 10 .

Band 5

$$
I M G_{5}(n, l)=A_{5}(n)\left(I M G_{5}(n, l)-H_{5, a}(u, v) \otimes I M G_{5}(n, l)\right)
$$

Band 10

$$
I M G_{10}(n, l)=A_{10}(n)\left(I M G_{10}(n, l)-H_{10, a}(u, v) \otimes I M G_{10}(n, l)\right)
$$

Where
$I M G_{i}(n, l)$: The luminance image data of band $i(i=5,10)$ (pixel n, line l)
$H_{i, a}(u, v)$: The stray light PSF for band1 $i(i=5,10)$ (pixel u, line v)
\otimes : The convolution operator
$A_{i}(n)$: The coefficient to correct signal reduction by subtraction of the stray light component.

Figure 4-12 shows the example of stray light correction.

Figure 4-12 Stray light correction (example of band 5)

Because stray light depends on the pixel position in image, we use five $H_{i, a}(u, v)$ from $H_{i, 1}(u, v)$ to $H_{i, 5}(u, v)$. Figure 4-13 shows example of PSF and applying area.

Figure 4-13 PSF and applying area (example of band5)
$H_{i, a}(u, v)$ and the applying area is defined in the parameter file.
PSF applying area is defined within the valid pixel area. We apply the border processing to out of the valid pixel area. The border processing is described in section 4.11.

Before the convolution, the missing line in $\operatorname{IMG}_{i}(n, l)$ must be filled by the interpolation. The interpolation is described in section 4.10.
$A_{i}(n)$ is the coefficient in the parameter file.

4.10. Filling missing line by interpolation

As the convolution operation needs to be applied to the spatially continuous image data, the missing lines in the image must be filled by interpolation. The following equation shows the interpolation.

$$
I M G_{i}(n, l)=\frac{I M G_{i}\left(n, l_{\max }\right)-I M G_{i}\left(n, l_{\min }\right)}{l_{\max }-l_{\min }}\left(l-l_{\min }\right)+I M G_{i}\left(n, l_{\min }\right)
$$

Where

$$
\begin{aligned}
& I M G_{i}(n, l) \text { : The luminance image data of band } i(i=1,6)\left(\text { pixel } n \text {, line } l: l_{\min }<l<l_{\max }\right) \\
& l_{\min }, l_{\max }: \text { The pre/post non-missing line number of the missing line. }
\end{aligned}
$$

Figure 4-14 shows the interpolation of the missing line.

Figure 4-14 Interpolation of the missing line

As the result of band-to-band registration, the first and/or last line of the target image might be missing line. If the first line of the target image is missing line, the lines will be filled with zero between the first line and the first normal line. If the last line of the target image is missing line, the lines will be filled with zero between the last normal line and the last line.

4.11. Image border processing

PSF and its applying area to the image are provided as the parameter file.
The followings are normal range.

Band 1,2,3,4,6,7,8,9 : Pixel 9 to 2056
Band 5, 10 : Pixel 7 to 1024 (include 7 to 66 pixel)

Figure 4-14 shows the PSF applying area.
The pixels out of applying area will be filled with the value of the border area.
For pixel direction, the border filling width is specified by parameter. The parameter specifies the physical width of sensor receiving potentially extra light. The pixels out of the border range are filled with zero. Figure $4-15$ shows the image border processing.

Figure 4-15 PSF applying area

White box shows the original image size of target image.
$\mathrm{W}_{\text {outside }}$ is a parameter. $\mathrm{W}_{\text {PSF }}$ and HPSF are width/height of PSF.

5. Geometric conversion

Setting of viewing vector, coordinate conversion to ECR coordinate and calculation of observation point are described below.
(1) Definition of view vector in sensor (CAI-2) coordinate

View vector in sensor (CAI-2) coordinate $\mathbf{v}_{\text {sensor }}(m, n)$ is calculated below formula as a unit vector for each band m and Pixel number n.

$$
\begin{aligned}
& \mathbf{v}_{\text {sensor }}(m, n)=\frac{1}{\sqrt{x^{2}(m, n)+y^{2}(m, n)+z^{2}(m, n)}}\left(\begin{array}{l}
x(m, n) \\
y(m, n) \\
z(m, n)
\end{array}\right) \\
& x(m, n)=\sum_{j=0}^{10} g_{j x}(m) \cdot p^{j}(m, n) \\
& y(m, n)=\sum_{j=0}^{10} g_{j y}(m) \cdot p^{j}(m, n) \\
& z(m, n)=\sum_{j=0}^{10} g_{j z}(m) \cdot p^{j}(m, n) \\
& p(m, n)=p_{\text {det }}(m) \cdot\left(n-p_{c}(m)\right)
\end{aligned}
$$

Eq.5-1
Here,
$g_{j k}(m)$ the coefficient of view vector of band m, order $j . k(k=x, y, z)$ means the axis.
$p(m, n)$ the pixel position of pixel n, band m from the reference position on the detector. (Unit:mm).
$p_{\text {det }}(m)$ the pixel pitch of band m of the detector (Unit:mm).
$p_{\mathrm{c}}(m)$ the reference pixel position of band m , on the detector (Unit :pixel)
$g_{j k}(m), p_{\operatorname{det}}(m)$ and $p_{\mathrm{c}}(m)$ are provided in the parameter file.
(2) Conversion from sensor (CAI-2) coordinate to satellite coordinate

Conversion from view vector in sensor (CAI-2) coordinate $\mathbf{v}_{\text {sensor }}$ to view vector in satellite-fixed coordinate $\mathbf{v}_{\text {body }}$ is expressed as follows:

$$
\mathbf{v}_{\text {body }}=\mathbf{M}_{\text {sensor-body }} \times \mathbf{v}_{\text {sensor }}
$$

$\mathbf{M}_{\text {sensor-body }}$ is coordinate transformation matrix convert from sensor (CAI-2) coordinate to satellite coordinate and provided in another file.
(3) Conversion from satellite coordinate to ECR coordinate

Using transformation matrix (satToECR_Matrix) $\mathbf{M}_{\text {body-ECR }}$ which is stored in SatelliteGeometry group, conversion from view vector in satellite coordinate $\mathbf{v}_{\text {body }}$ to view vector in ECR(WGS84) $\mathbf{v}_{\text {ECR }}$ is expressed as follows:

$$
\mathbf{v}_{\text {ECR }}=\mathbf{M}_{\text {body-ECR }} \times \mathbf{v}_{\text {body }}
$$

Conversion from satellite coordinate to J2000.0, TOD, pseudo earth-fixed and ECR coordinate without using $\mathbf{M}_{\text {body-ECR }}$ is described below.
(4) Conversion from satellite coordinate to J2000.0 coordinate

Conversion from view vector in satellite coordinate $\mathbf{v}_{\text {body }}$ to view vector in J2000.0 coordinate $\mathbf{v}_{\mathbf{J 2 0 0 0}}$ is expressed as follows:

$$
\mathbf{v}_{\text {J2000 }}=\mathbf{M}_{\text {body }-\mathbf{J} 2000} \times \mathbf{V}_{\text {body }}
$$

$\mathbf{M}_{\text {body-J2000 }}$ is coordinate transformation matrix converting from satellite coordinate to J2000.0 coordinate using satellite attitude data (quaternion) which is stored in AttitudeData group of Common file (see Chapter 3.4.8).
(5) Conversion from J2000.0 coordinate to TOD coordinate

Using PN matrix which is stored in TransMatrixInfo group of Common file, conversion from view vector in J2000.0 coordinate $\mathbf{v}_{\mathbf{J} 2000}$ to view vector in TOD coordinate $\mathbf{v}_{\text {TOD }}$ is expressed as follows:

$$
\mathbf{v}_{\text {TOD }}=\mathbf{P N} \times \mathbf{v}_{\text {J2000 }}
$$

(6) Conversion from TOD coordinate to pseudo earth-fixed coordinate

Conversion from view vector in TOD coordinate $\mathbf{v}_{\text {TOD }}$ to view vector in pseudo earth-fixed coordinate (without considering the polar motion) $\mathbf{V}_{\text {Pecr }}$ is expressed as follows:

$$
\mathbf{v}_{\text {PECR }}=\mathbf{M}_{\text {TOD-PECR }} \times \mathbf{v}_{\text {TOD }}
$$

$\mathbf{M}_{\text {TOD-PECR }}$ is coordinate transformation matrix convert from TOD coordinate to pseudo earth-fixed coordinate and calculated using Greenwich sidereal time SiderealTimeInfo group of Common file (see Chapter 3.4.3).
(7) Conversion from pseudo earth-fixed coordinate to ECR coordinate

Using XY matrix is stored in TransMatrixInfo group of Common file, conversion from view vector in pseudo earth-fixed coordinate (without considering polar motion) $\mathbf{v}_{\text {Pecr }}$ to view vector in ECR $\mathbf{v}_{\text {ECR }}$ is expressed as follows:

$$
\mathbf{v}_{\mathrm{ECR}}=\mathbf{X Y} \times \mathbf{v}_{\mathbf{P E C R}}
$$

(8) Calculation of observation point on the earth ellipsoid

Using view vector in ECR coordinate $\mathbf{v}_{\text {ECR }}=\left(v_{x}, v_{y}, v_{z}\right)^{t}$ (the superscript t denotes transpose), sensor position vector $\mathbf{p}_{\text {sat }}=\left(p_{\text {sat } x}, p_{\text {sat } y}, p_{\text {sat }}\right)^{t}$ and observation point vector on the earth ellipsoid $p_{\text {obs }}=\left(p_{\text {obs }} \text {, }, p_{\text {obs_ } y,}, p_{\text {obs }}^{-} \text {}\right)^{t}$, observation point is expressed as follows:

$$
\left(\begin{array}{c}
p_{\text {obs }_{-x} x} \\
p_{\text {obs }_{-y}} \\
p_{\text {obs }_{-} z}
\end{array}\right)=\left(\begin{array}{l}
p_{\text {sat }_{-} x} \\
p_{\text {sat }_{-} y} \\
p_{\text {sat }_{-} z}
\end{array}\right)+k\left(\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)
$$

k is intermediate variable.

When the equatorial radius and polar radius on the earth ellipsoid is $R e$ and $R p$, $\mathrm{p}_{\text {obs }}=\left(p_{\text {obs_ }}, p_{\text {obs }}^{y}, \mathrm{y}, p_{\text {obs }}^{-} \text {}\right)^{t}$ satisfies the following relational expression :

$$
\frac{p_{o b s_{-}-x}^{2}+p_{o b s_{-} y}^{2}}{R_{e}^{2}}+\frac{p_{o b s_{-} z}^{2}}{R_{p}^{2}}=1
$$

Assigning Eq.5-7 to Eq.5-8, quadratic equation for k is obtained as follows:

$$
a k^{2}+2 b k+c=0
$$

where

$$
\left\{\begin{array}{l}
a=R_{p}^{2}\left(v_{x}^{2}+v_{y}^{2}\right)+R_{e}^{2} v_{z}^{2} \\
b=R_{p}^{2}\left(p_{\text {sat }-x} v_{x}+p_{\text {sat }-y} v_{y}\right)+R_{e}^{2} p_{\text {sat }-z} v_{z} \\
c=R_{p}^{2}\left(p_{\text {sat }-x}^{2}+p_{\text {sat }-y}^{2}\right)+R_{e}^{2} p_{\text {sat }}^{-z}
\end{array}-R_{e}^{2} R_{p}^{2} .\right.
$$

Then, Eq. 5-9 is solved for k.

$$
k=\frac{-b-\sqrt{b^{2}-a c}}{a}
$$

In case $b^{2}-a c<0$ and $k<0$, observation point is outside of earth surface.
Assigning k to Eq.5-7, observation point vector $\mathrm{p}_{\text {obs }}=\left(p_{\text {obs_x }}, p_{\text {obs } y}, p_{\text {obs_ }}\right)^{t}$ can be calculated.

Figure 5-1 shows each vector.

Figure 5-1 Calculation of observation point

(9) Calculation of geographic latitude/longitude

Geographic longitude λ corresponding observation point vector of the earth ellipsoid $\mathbf{p}_{\text {obs }}=\left(p_{\text {obs }}, p_{\text {obs }}^{-y}, p_{o b s_{-}}\right)^{t}$ is expressed as follows:

$$
\lambda=\operatorname{atan} 2\left(p_{o b s_{-} y}, p_{o b s_{-} x}\right)
$$

Using geocentric latitude ψ, geographic latitude φ can be calculated as follows:

$$
\begin{align*}
& \psi=\operatorname{asin}\left(\frac{p_{o b s_{-} z}}{\sqrt{p_{o b s_{-} x}^{2}+p_{o b s_{-} y}^{2}+p_{o b s_{-} z}^{2}}}\right) \\
& \varphi=\operatorname{atan} 2\left(\sin \psi, \frac{R_{p}^{2}}{R_{e}^{2}} \cos \psi\right)
\end{align*}
$$

Eq. 5-14

Definition of atan2 function is described below.

$$
\operatorname{atan} 2(y, x)=\left\{\begin{array}{cc}
\tan ^{-1}\left(\frac{y}{x}\right) & (x>0) \\
\tan ^{-1}\left(\frac{y}{x}\right)+\pi & (x<0, y \geq 0) \\
\tan ^{-1}\left(\frac{y}{x}\right)-\pi & (x<0, y<0) \\
\frac{\pi}{2} & (x=0, y>0) \\
-\frac{\pi}{2} & (x=0, y<0) \\
\text { undefined } & x=0, y=0
\end{array}\right.
$$

6.Format Details

The details of product (HDF5) and L1 processing result file (XML) format are described below.

Table 6-1 shows the format details of Common file (HDF5) and Table 6-2 shows the format details of Forward/Backward looking band file (L1A/ HDF5).

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (1/12)

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (2/12)

Group Path/Dataset Name		Data size		Data Type	Dataset Name	Explanation (Format)	Unit	Significant digit	Invalid Value	Notes
	endDateFwd	Dimension	Size	H5T_STRING	End date of scene of Forward looking band	End date of scene of Forward looking band (UTC) Time format: YYYY-MM-DDThh:mm:ss. ffffffZ (28bytes, the last 1 byte is a null terminated string) If there is no forward looking data in this scene, "(2bytes, the last 1 byte is a null terminated string) is stored.	UTC	Sigmicant disit	Value	The latest observation time of forward looking without integration time is stored. The time here is the integration start time and common to all bands, because the integration time depends on bands.
	startDateBwd	1	1	H5T_STRING	Start date of scene of Backward looking band	Start date of scene of Backward looking band (UTC) Time format: YYYY-MM-DDThh:mm:ss. ffffffZ (28bytes, the last 1 byte is a null terminated string) If there is no backward looking data in this scene, ""(2bytes, the last 1 byte is a null terminated string) is stored.	UTC	-	"-"	The oldest observation time of backward looking without integration time is stored. The time here is the integration start time and common to all bands, because the integration time depends on bands.
	endDateBwd	1	1	H5T_STRING	End date of scene of Backward looking band	End date of scene of Backward looking band (UTC) Time format : YYYY-MM-DDThh:mm:ss.ffffffZ (28bytes, the last 1 byte is a null terminated string) If there is no backward looking data in this scene, ""(2bytes, the last 1 byte is a null terminated stringe) is stored.	UTC	-	"-"	The latest observation time of backward looking without integration time is stored. The time here is the integration start time and common to all bands, because the integration time depends on bands.
	geodeticDatum	1	1	H5T_STRING	Geodetic datum	"WGS84/ WGS84": Reference EII ipsoid Model/Frame of Reference Fixed (14bytes, the last 1 byte is a null terminated string)	-	-	-	
	satelliteName	1	1	H5T_STRING	Satellite Name	"GOSAT-2": Greenhouse gases Observing SATellite-2 Fixed (8bytes, the last 1 byte is a null terminated string)	-	-	-	
	sensorName	1	1	H5T_STRING	Sensor Name	"TANSO-CAI-2": Cloud and Aerosol Imager-2 Fixed (12bytes, the last 1 byte is a null terminated string)	-	-	-	
	process ingLevel	1	1	H5T_STRING	Processing Level	"L1A": Level 1A (4bytes, the last 1 byte is a null terminated string)	-	-	-	
	algor ithmVersion	1	1	H5T_STRING	Algorithm Version	Algorithm vertsion in processing control information is stored. (4bytes, the last 1 byte is a null terminated string)	-	-	-	
	parameterVersion	1	1	H5T_STRING	ParameterVersion	Parameter vertsion in processing control information is stored. (4bytes, the last 1 byte is a null terminated string)	-	-	-	
	processingFacility	1	1	H5T_STRING	Processing facility name	"G2MDP": Mission Operations System Data Processing "JSS": JAXA Super computer System "EORC": Earth Observation Research Center (the size is the length of string above plus 1byte)	-	-	-	

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (3/12)

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (4/12)

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (5/12)

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (6/12)

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (7/12)

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (8/12)

Group Path/Dataset Name		Data size		Data Type	Dataset Name	Explanation (Format)	Unit	Significant digit	Invalid Value	Notes	
\square SolarEphemer is											
	numData	1	1	H5T_STD_I32LE	Number of data	Number of solar ephemeris data is stored.		-	-	0	
	startDate	1	1	H5T_STRING	Start date of solar ephemer is data (UTC)	Start date of solar ephemeris data (UTC) is stored. Time format: YYYY-MM-DDThh:mm:ss.ffffffZ (28bytes, the last 1 byte is a null terminated string)	UTC	-	-	There is no dataset if numData is 0 .	
	startDate_Cont inuousTime	1	1	H5T_IEEE_F64LE	Start date of solar ephemer is data (seconds)	Total seconds of start date of solar ephemer is data since 23:59:59 UTC, Dec 31, 2012.	sec	-	-	There is no dataset if numData is 0 .	
	time	1	numData	H5T_IEEE_F64LE	Elapse time from Start time start date of solar ephemer is data	The elapsed seconds from start date of solar ephemeris data.	sec	10	-	There is no dataset if numData is 0 .	
	posECR	2	numData, 3	H5T_IEEE_F64LE	$\begin{array}{\|l} \hline \text { Solar Position } \\ \text { Vector (ECR) } \end{array}$	Solar Position Vector in ECR is stored. (x, y, z) ECR (WGS84)	km	10	-	There is no dataset if numData is 0 .	
	velECR	2	numData, 3	H5T_IEEE_F64LE	$\begin{aligned} & \text { Solar Velocity } \\ & \text { Vector (ECR) } \end{aligned}$	Solar Velocity Vector in ECR is stored. (u, v, w) ECR (WGS84)	km/s	10	-	There is no dataset if numData is 0 .	
	posECI	2	numData, 3	H5T_IEEE_F64LE	$\begin{array}{\|l} \hline \text { Solar Position } \\ \text { Vector (ECI) } \end{array}$	Solar Position Vector in ECI is stored. ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) ECI (TOD)	km	10	-	There is no dataset if numData is 0 .	
	velECI	2	numData, 3	H5T_IEEE_F64LE	$\begin{array}{\|l} \hline \text { Solar Velocity } \\ \text { Vector (ECI) } \end{array}$	Solar Velocity Vector in ECI is stored. (u, v, w) ECI (TOD)	km/s	10	-	There is no dataset if numData is 0 .	
,	LunarEphemer is										
	numData	1	1	H5T_STD_I32LE	Number of data	Number of lunar ephemeris data is stored.	-	-	0		
	startDate	1	1	H5T_STRING	Start date of lunar ephemer is data (UTC)	Start date of lunar ephemer is data (UTC) is stored. Time format : YYYY-MM-DDThh:mm:ss.ffffffZ (28bytes, the last 1 byte is a null terminated string)	UTC	-	-	There is no dataset if numData is 0 .	
	startDate_Cont inuousTime	1	1	H5T_IEEE_F64LE	Start date of lunar ephemer is data (seconds)	Total seconds of start date of lunar ephemer is data since 23:59:59 UTC, Dec 31, 2012.	sec	-	-	There is no dataset if numData is 0 .	
	time	1	numData	H5T_IEEE_F64LE	Elapse time from start date of lunar ephemeris data	The elapsed seconds from start date of lunar ephemer is data.	sec	10	-	There is no dataset if numData is 0 .	
	posECR	2	numData, 3	H5T_IEEE_F64LE	$\begin{array}{\|l} \hline \text { Lunar Position } \\ \text { Vector (ECR) } \end{array}$	Lunar Position Vector in ECR is stored. (x, y, z) ECR(WGS84)	km	10	-	There is no dataset if numData is 0 .	
	ve IECR	2	numData, 3	H5T_IEEE_F64LE	$\begin{aligned} & \text { Lunar Velocity } \\ & \text { Vector (ECR) } \end{aligned}$	Lunar Velocity Vector in ECR is stored. ($u, v, w)$ ECR(WGS84)	km/s	10	-	There is no dataset if numbata is 0 .	

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (9/12)

Group Path/Dataset Name		Data size		Data Type	Dataset Name	Explanation (Format)	Unit	Significant digit	Invalid Value	Notes
	posECI	Dimension	Size	H5T_IEEE_F64LE	Lunar Position Vector (ECI)	Lunar Position Vector in ECI is stored. (x, y, z) ECI (TOD)	km	\|	Value	There is no dataset if numData is 0 .
	velECI	2	numData, 3	H5T_IEEE_F64LE	Lunar Velocity Vector (ECI)	Lunar Velocity Vector in ECI is stored. ($u, v, w)$ ECI (TOD)	km/s	10	-	There is no dataset if numData is 0 .
DTemperatureTelemetry_1sec (Temperature telemetry of 1 sec period)										
	numData	,	1	H5T_STD_I32LE	Number of data	Number of data is stored.	-	-	0	
	startDate	1	1	H5T_STRING	$\begin{aligned} & \text { Start date of data } \\ & \text { (UTC) } \end{aligned}$	Start date of data (UTC) is stored. Time format : YYYY-MM-DDThh:mm:ss.ffffffZ (28bytes, the last 1 byte is a null terminated string)	UTC	-	-	There is no dataset if numData is 0 .
	startDate_ContinuousTime	1	1	H5T_IEEE_F64LE	$\begin{aligned} & \text { Start date of data } \\ & \text { (seconds) } \end{aligned}$	Total seconds of start date of data since 23:59:59 UTC, Dec 31, 2012.	sec	-	-	There is no dataset if numData is 0 .
	time	1	numData	H5T_IEEE_F64LE	Elapse time from start date of data	The elapsed seconds from start date of data.	sec	10	-	There is no dataset if numData is 0 .
	sensor Temp	2	numData, 10	H5T_IEEE_F64LE	Sensor temperature	Sensor temperature is stored for each band.	${ }^{\circ} \mathrm{C}$	10	-	There is no dataset if numData is 0 .
	sensorTempQual ity	2	numData, 10	H5T_STD_I8LE	Quality flag of sensor temperature	$\begin{aligned} & \text { Quality flag of sensor temperature is stored. } \\ & \text { 0: Normal } \\ & 1: \text { Abnormal (outside the acceptable range) } \\ & \text { 2: Quality is unknown due to data loss and so on } \end{aligned}$	-	-	-	There is no dataset if numData is 0 .
	preAmpTemp	2	numData, 10	H5T_IEEE_F64LE	Pre-amplifier temperature	Pre-amplifier temperature is stored for each band.	${ }^{\circ} \mathrm{C}$	10	-	There is no dataset if numData is 0 .
	preAmpTempQual ity	2	numData, 10	H5T_STD_I8LE	Quality flag of Pre-amplifier temperature	Quality flag of Pre-amplifier temperature is stored. 0 : Normal 1: Abnormal (outside the acceptable range) 2: Quality is unknown due to data loss and so on	-	-	-	There is no dataset if numData is 0 .
	Amp Temp	2	numData, 10	H5T_IEEE_F64LE	$\begin{array}{\|l} \hline \begin{array}{l} \text { Amplifier } \\ \text { temperature } \end{array} \end{array}$	Amplifier temperature is stored for each band.	${ }^{\circ} \mathrm{C}$	10	-	There is no dataset if numData is 0 .
	AmpTempQual ity	2	numData, 10	H5T_STD_I8LE	$\begin{aligned} & \text { Quality flag of } \\ & \text { Amplifier } \\ & \text { temperature } \end{aligned}$	$\begin{aligned} & \text { Quality flag of Amplifier temperature is stored. } \\ & 0: \text { Normal } \\ & \text { 1: Abnormal (outside the acceptable range) } \\ & \text { 2: Quality is unknown due to data loss and so on } \end{aligned}$	-	-	-	There is no dataset if numbata is 0 .
	IensM_Temp	2	numData, 5	H5T_IEEE_F64LE	lens (M) temperature	Lens (M) temperature is stored for each lens.	${ }^{\circ} \mathrm{C}$	10	-	There is no dataset if numData is 0 .
	IensM_TempQuality	2	numData, 5	H5T_STD_I8LE	Quality flag of lens (M) temperature	$\begin{aligned} & \text { Qual ity flag of lens }(\mathrm{M}) \text { temperature is stored. } \\ & \text { 0: Normal } \\ & \text { 1: Abnormal (outside the acceptable range) } \\ & \text { 2: Quality is unknown due to data loss and so on } \end{aligned}$	-	-	-	There is no dataset if numData is 0 .

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (10/12)

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (11/12)

Table 6-1 Dataset definition of CAI-2 L1A common file (HDF5) (12/12)

Table 6-2 Dataset definition of CAI-2 L1A forward/backward looking band file (HDF5) (1/7)

Group Path/Dataset Name	Forward/Backward	Observation/Cal i ration mode	ension]	Data size ${ }_{\text {Size }}$	Data Type	Dataset Name	Explanation (Format)	Unit	$\begin{array}{\|c\|} \hline{ }^{\text {Significant }} \\ \text { digit } \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Invalid } \\ \text { Value } \end{array}$	Notes
\square \|Netadata											
	Forward, Backward	OBS, CAL	1	1	H5t_String	$\begin{aligned} & \text { File Identifier } \\ & \text { (Granule ID) } \end{aligned}$	Granule ID (47bytes, the last 1 byte is a null terminated string) - Satellite Name : GOSAT2 (Fixed) - Start Time of Observation (year • month • day • hour • minute) : YYYYMMDDHHmm (UTC) Path No. : PPP (001-089) Processing Level: 1A(Fixed) Band Forward looking band (Band1-5) : F Backward looking band (Band6-10): B Orbing predicted orbit data: P Using GPS or determined orbit data: D Correction coefficients used for processing: Using nominal coefficients: N Using updated coefficients: U Reserved : 00 - Operation Mode : 0000 Observation Mode (day) : OBSM Dark calibration mode : NCAL Electric calibration mode : ECAL Lunar calibration mode: LCAL Al gor ithm Version: AAA (0000999) Parameter Version: BBB (000-999)	-	-	-	
operationlode	Forward, Backward	OBS, CAL	1	1	H5T_String	$\begin{array}{\|l} \text { Sensor Operation } \\ \text { liode } \end{array}$		-	-	-	
process ingate	Forward, Backward	OBS, CAL	1	1	H5t_String	Processing date	Date of product creation (UTC) Time format: YYYY-MM-DDThh:mm:ss.ffffffz (28bytes, the last 1 byte is a null terminated string)	UTC	-	-	$\begin{array}{\|l\|} \text { Time when creation job } \\ \text { started is stored. } \end{array}$
startDate	Forward, Backward	OBS, CAL	1	1	H5T_STRINa	$\begin{aligned} & \text { Start date of CAI-2 } \\ & \text { data } \end{aligned}$		utc	-	-	
endate	Forward, Backward	OBS, CAL	1	1	H5T_STRING			UTC	-	-	
geodeticDatum	Forward, Backward	OBS, CAL	1	1	H5T_String	Geodetic datum	"WGS84/ WGS84": Reference EII ipsoid Model/Frame of Reference Fixed (14bytes, the last 1 byte is a null terminated string)	-	-	-	
satel I iteName	Forward, Backward	OBS, CAL	1	1	H5t_String	Satell ite Name	"GOSAT-2" . Greenhouse gases Observing SATellite-2 Fixed (8bytes, the last 1 byte is a null terminated string)	-	-	-	
sensorName	Forward, Backward	OBS, CAL	1	1	H5T_STRING	Sensor Name	"TANSO-CAI-2": Cloud and Aerosol Imager-2 Fixed (12bytes, the last 1 byte is a null terminated string)	-	-	-	
process inglevel	Forward, Backward	OBS, CAL	1	1	H5T_StRINa	Process ing Level	"L1A": Level 1A (4bytes, the last 1 byte is a null terminated string)	-	-	-	
al gor ithnvers ion	Forward, Backward	OBS, CAL	1	1	H5T_STRING	Al gori ithm Vers ion	Algorithm vertsion is stored in processing control information (4bytes, the last 1 byte is a null terminated string	-	-	-	
parameterVersion	Forward, Backward	OBS, CAL	1	1	H5T_STRING	ParaneterVersion	Parameter vertsion is stored in processing control information (4bytes, the last 1 byte is a null terminated string)	-	-	-	

Table 6-2 Dataset definition of CAI-2 L1A forward/backward looking band file (HDF5) (2/7)

	Group Path/Dataset Name	Forward/Backward	Observation/Cal i ration mode	Dimension	$\frac{\text { Data size }}{\text { Size }}$	Data Type	Dataset Name	Explanation (Format)	Unit	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Significant } \\ \text { digit } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Invalid } \\ \text { Value } \end{array}$	Notes
	granul elicommon	Forward, Backward	OBS, CAL	1	1	H5t_String	$\begin{array}{\|l\|l\|} \hline \text { Granule ID of } \\ \text { common file } \end{array}$	Granule ID of common file is stored (47bytes, the last 1 byte is a null terminated string)	-	dist	-	
	process ingFaci l ity	Forward, Backward	OBS, CAL	1	1	ht__tring	Process ing facility name		-	-	-	
ScanAttri iute (Synchronize with observation point)												
	bands_500	Forward, Backward	OBS, cal	1	1	H5T_STD_132LE	$\left\lvert\, \begin{aligned} & \text { Number of } 500 \mathrm{~m} \\ & \text { spatial } \\ & \text { bands }\end{aligned}\right.$	Number of high resolution bands is stored (4bands).	-	-	-	
	pixels_500	Forward, Backward	OBS, CAL	1	1	H5T_ST_I32LE	Number of pixel Is of Som spatiax resolution band	Number of pixels including dark pixels and invalid pixels in a line of high resolution bands (Forward looking band:1-4/Backward looking band:6-9) is stored	-	-	-	
	1 ines_500	Forward, Backward	OBS, CAL	1	1	H5T_STD_132LE	$\|$Number of lines of 500 m spatial resol lution band	Number of lines in a product of high resolution bands (Forward looking band:1-4/Backward looking band:6-9) is stored.	-	-	-	
	mi ssingLi ine_500	Forward, Backward	OBS, CAL	1	bands_500	H5T_ST_I32LE	Number of missing linesof of 500m spatial besond	Number of missing lines in a product of high resolution bands (Forward stored.	-	-	-	
	bands_1km	Forward, Backward	OBS, CAL	1	1	H5T_ST_I32LE	band vanber of 1 km sanatial resol ution bands	Number of low resolution bands is stored (lbands).	-	-	-	
	pixel s_1km	Forward, Backward	OBS, CAL	1	1	H5T_STD_132LE	Number of pixel $/$ of of Lm spatial resolution band	Number of pixels including dark pixels and invalid pixels in a line of low resolution bands (Forward looking band:5/Backward looking band:10) is stored.	-	-	-	
	1 ines _1km	Forward, Backward	OBS, cal	1	1	H5T_STD_32LE	Number of 1. ines spatial resol of of ion band	Number of lines in a product of low resolution bands (Forward looking band:5/Backward looking band:10) is stored.	-	-	-	
	missingLines_1km	Forward, Backward	OBS, CAL	1	bands_1km	H5T_STD_132LE	Number of missing lines of spatial sent band	Number of missing lines in a product of low resolution bands (Forward looking band:5/Backward looking band:10) is stored.	-	-	-	
	LineAtribute_500 (Information for each line of band1-4 and 6-9)											There is no dataset if I ines_500 is 0 .
	miss ingFlag	Forward, Backward	OBS, cal	2	\| ines_500, bands_500	H5T_STD_18LE	Wi issing line flag	$\begin{aligned} & \text { In Forward/Backword looking band file, status of missing line flag } \\ & \text { for band1-4/6-9 is stored. The status is shown below. } \\ & 0: \text { No missing line } \\ & 1: \text { Missing line (No pixel available in the line) } \\ & 2: \text { Invalid (observed in other observation mode) } \end{aligned}$	-	-	-	There is no dataset if I ines_ 500 is 0 .
	observationTime	Forward, Backward	OBS, CAL	2	\| ines_500, bands_500	H5t_String	Line observationtime tine center of (texposure (UTC)(UTime)	In Forward/Backword looking band file (band 1-4/6-9), the center of exposure time of each line (UTC) is stored If satTimeStatusFlag is abnormal, time is corrected by the time correction information Time format:YYYY-MM-DDThh:mm:ss. ffffffz (28bytes, the last 1 byte is a null terminated string \times lines_ $500 \times$ bands_500)	utc	-	-	There is no dataset if I ines_500 is 0 .
	observationT ime_Cont inuoust ine	Forward, Backward	OBS, cal	2	\| ines_500, bands_500	H5T_IEEE_F64LE	Line ebservation time tine eenter of (enposure tite) (seconds)	Total seconds of observationTime since 23:59:59 UTC, Dec 31, 2012.	sec	-	-	There is no dataset if I ines_500 is 0 .

Table 6-2 Dataset definition of CAI-2 L1A forward/backward looking band file (HDF5) (3/7)

Group Path/Dataset Name	Forward/Backward	Observation/Cal iration mode	Dimension	$\frac{\text { Data size }}{\text { Size }}$	Data Type	Dataset Name	Explanation (Format)	Unit	${ }_{\text {digit }}^{\text {Sigificant }}$ digit	$\begin{array}{\|c} \hline \text { Invalid } \\ \text { Value } \end{array}$	Notes
sat Time	Forward, Backward	OBS, CAL	1	1 ines_500	H5T_STD_132LE	Line satel I ite time		sec	-	-	There is no dataset if I ines_500 is 0 .
satTimeStatusf lag	Forward, Backward	OBS, CAL	1	1 ines_500	H5T_ST_I8LE	Satellite time system status flag	Status flag of satellite time system is stored. o Normal (The correction of time error is in ot required.) 1 : Abnormal (The correction of time error is required.)	-	-	-	There is no dataset if lines_500 is 0 .
observationcounter	Forward, Backward	OBS, CAL	1	1 ines_500	H5T_STD_I32LE	$\begin{aligned} & \text { Precise observation } \\ & \text { clock (counter) } \end{aligned}$	Count value of internal clock counter is stored. 1 count= 128 microseconds	-	-	-	There is no dataset if lines_500 is 0 .
integrationNum	Forward, Backward	OBS, CAL	2	\| ines_500, bands_500	H5T_STD_132LE	Number of integration index	In Forward(band1-4)/Backword(band 6-9) looking band file, number of integration of each line is stored.	-	-	-	There is no dataset if I ines_ 500 is 0 .
integrationtime	Forward, Backward	OBS, cal	2	\| ines_500, bands_500	H5T_IEEE_F64LE	Integration time	exposure time	sec	10	-	There is no dataset if I ines_500 is 0 .
LineAttri ibute_1km (Information for each line of band5, 10)											$\begin{array}{\|l\|} \text { There is no dataset if } \\ \text { lines_ } 1 \mathrm{~km} \text { is } 0 . \end{array}$
$\mathrm{m}_{\text {issi ingFlag }}$	Forward, Backward	OBS, CAL	2	\| ines_1kn, bands_1km	H5T_STD_18LE	$\left\lvert\, \begin{aligned} & \text { Wis sing line status } \\ & \text { flag } \end{aligned}\right.$	In Forward/Backword looking band file, status of missing line flag for band1-4/6-9 is stored. The status is shown below. 0 : No missing line 1: Missing line (No pixel available in the line) 2: Invalid (observed in other observation mode)	-	-	-	$\begin{aligned} & \text { There is no dataset if } \\ & 1 \text { ines } 1 \mathrm{~km} \text { is } 0 \text {. } \end{aligned}$
observationtime	Forward, Backward	OBS, CAL	2	\| ines_1kn, bands_1km	ht__String	Line observation time time eenter of (texposure time) (UTC)		UTC	-	-	$\left\lvert\, \begin{aligned} & \text { There is no dataset if } \\ & \text { lines } 1 \mathrm{~km} \text { is } 0 . \end{aligned}\right.$
observationT ime_Cont inuoust ime	Forward, Backward	OBS, CAL	2	\| ines_1kn, bands_1km	H5T_IEEE_F64LE	Line observationtime tine e eenter of (texposuret et ime) (seconds)	Total seconds of observationTi ime since 23:59:59 UTC, Dec 31, 2012.	sec	-	-	There is no dataset if lines 1 km is 0
satTime	Forward, Backward	OBS, CAL	1	${ }^{\prime}$ ines_1km	H5T_STD_I32LE	Line satell ite time		sec	-	-	There is no dataset if I ines_lkm is 0 .
satTi mestatusFl lag	Forward, Backward	OBS, CAL	1	${ }^{\prime}$ ines_1km	H5__STD_8LE	$\begin{aligned} & \text { Satellite time } \\ & \text { status flag } \end{aligned}$	Status flag of satellite time status is stored. o: Normal (The correction of time error is not required.) 1: Abnormal (The correction of time error is required.)	-	-	-	There is no dataset if I ines_1km is 0 .

Table 6-2 Dataset definition of CAI-2 L1A forward/backward looking band file (HDF5) (4/7)

Table 6-2 Dataset definition of CAI-2 L1A forward/backward looking band file (HDF5) (5/7)

Table 6-2 Dataset definition of CAI-2 L1A forward/backward looking band file (HDF5) (6/7)

Group Path/Dataset Name		Forward/Backward	Observation/Cal iration mode	Dimension	$\frac{\text { Data size }}{\text { Size }}$	Data Type	Dataset Name	Explanation (Format)	Unit	$\begin{gathered} \underset{\text { dignificant }}{\text { digit }} \\ \hline \end{gathered}$	(Invalid Value	Notes
	satVel_ECI	Forward, Backward	OBS, CAL	2	subsetNumLines, 3	H5T_IEEE_F64LE	$\begin{aligned} & \text { Satellite velocity } \\ & \left(\begin{array}{l} \text { ECI }(\text { (TOO }) \end{array}\right. \end{aligned}$	Satell ite velocity in ECC((ToD) for each sample and line exposure time of standard band image is stored.	km/s	10	-	$\begin{aligned} & \text { There is no dataset if } \\ & \text { subsetNumLines is } 0 \text {. } \end{aligned}$
	satArgLat	Forward, Backward	OBS, CAL	1	subsetNumLines	H5T_IEEE_F64LE	$\begin{aligned} & \text { Argument of } \\ & \text { latitude } \end{aligned}$	Argument of latitude of observation time is stored $0 \leqq$ satArgLat<360	deg	10	-	There is no dataset if subsetNumLines is 0 .
	satOrbitPrecision	Forward, Backward	OBS, CAL	1	subsetNumLines	hti_string	$\left\lvert\, \begin{aligned} & \text { Precision of } \\ & \text { satellite orbit }\end{aligned}\right.$		-	-	-	There is no dataset if subsetNumLines is 0 .
	satAtt	Forward, Backward	OBS, CAL	2	subsetNumL ines, 4	H5T_IEEE_F64LE			-	10	-	There is no dataset if subsetNumL ines is 0.
	satRPY	Forward, Backward	OBS, CAL	2	subsetNumL ines, 3	H5T_IEEE_F64LE	Satellite Attitude Roll/Pitch/Yaw	```Satellite attitude for each sample and line exposure time is stored as roll, pitch, and yaw angles atRPY[subsetNumLines] [b] \(b=0\) : roll \(b=2\) : yaw```	deg	10	-	$\begin{aligned} & \text { There is no dataset if } \\ & \text { subsetNumLines is } 0 \text {. } \end{aligned}$
	yauSteer ingFlag	Forward, Backward	OBS, CAL	1	subsetNumLines	H5T_STD_18LE	Yaw steer ing flag	Yaw steer ing flag indicates the operation of yaw steer ing. yawSteer ingF lag[subsetNumLines] o: Not execute (OFF) 1: Execute (ONN 2: Inval lid due to data loss and so on	-	-	2	$\left.\begin{array}{\|l\|} \text { There is no dataset if } \\ \text { subsentumbines is } 0 . \end{array} \right\rvert\,$
	satAttInterpol at ionMethodF lag	Forward, Backward	OBS, CAL	1	subsetNumL ines	H5T_STD_18LE	$\begin{aligned} & \text { Satel lite attitude } \\ & \text { interoolation } \\ & \text { method flag } \end{aligned}$	Interpolation method for calculating satellite attitude is stored. : Interpolation 1: Extrapolation	-	-	-	$\begin{aligned} & \text { There is no dataset if } \\ & \text { subsetNumLines is } 0 \text {. } \end{aligned}$
	satAttInterpol ationoual i tyF lag	Forward, Backward	OBS, CAL	1	subsetNumL ines	H5T_STD_18LE	$\begin{aligned} & \text { Satell lite atti itude } \\ & \text { Interpolation } \\ & \text { aual ity flag } \end{aligned}$		-	-	-	$\begin{aligned} & \text { There is no dataset if } \\ & \text { subsetNumLines is } 0 \text {. } \end{aligned}$
	satToECR_Matr ix	Forward, Backward	OBS, CAL	2	subsetNumL ines, 9	H5T_IEEE_F64LE	vCoordinate transformation matrix from satelinte-fixed to ECR (WGS84)	Coordinate transformation matrix convert from satellite-fixed oordinate to ECR(WGS84) are stored in the following order: (0, 1, 2) $(3,4,5)$ $(6,7,8)$	-	10	-	There is no dataset if subsetNumL ines is 0.
	solarPos_ECR	Forward, Backward	OBS, CAL	2	subsetNumLines, 3	H5T_IEEE_F64LE	$\left\lvert\, \begin{aligned} & \text { Apparent solar } \\ & \text { position at the } \\ & \text { line exposure point } \\ & \text { lin }\end{aligned}\right.$ (ECR (WGS84))	Apparent solar position in ECR(IGS884) for each sample line is stored.	km	10	(0, 0, 0)	There is no dataset if subsetNumLines is 0.
	solarvel_ECR	Forward, Backward	OBS, CAL	2	subsetNumL ines, 3	H5T_IEEE_F64LE	$\begin{aligned} & \text { Apparent solar } \\ & \text { Aelocity at tre } \\ & \text { line exposur } \\ & \text { point (CCR (IGS844)) } \end{aligned}$	Apparent solar velocity in ECR(MGS844) for each sample line is stored.	km/s	10	(0, 0, 0)	There is no dataset if subsetNumLines is 0 .
	solarPos_ECI	Forward, Backward	OBS, CAL	2	subsetNumLines, 3	H5T_IEEE_F64LE	Apparent solar position at the line exposure point (ECI (TOD)	Apparent solar position in ECI (TOD) for each sample line is stored.	km	10	(0, 0, 0)	There is no dataset if subsetNumLines is 0 .
	solarvel I_EI	Forward, Backward	OBS, CAL	2	subsetNumL ines, 3	H5T_IEEE_F64LE	$\begin{aligned} & \text { Apparent solar } \\ & \text { velocitity at the } \\ & \text { line exposure point } \\ & \text { (ECI (TOD)) } \end{aligned}$	Apparent solar velocity in ECI (TOO) for each sample line is stored.	kn/s	10	(0, 0, 0)	$\begin{aligned} & \text { There is no dataset if } \\ & \text { subsetNumLines is } 0 \text {. } \end{aligned}$

Table 6-2 Dataset definition of CAI-2 L1A forward/backward looking band file (HDF5) (7/7)

Group Path/Dataset Name		Forward/Backward	Observation/Cal i ration mode	ensi	$\frac{\text { Data size }}{\text { Size }}$	Data Type	Dataset Name	Explanation (Format)	Unit	$\xlongequal[\substack{\text { Signif icant } \\ \text { digit }}]{ }$	$\begin{array}{\|l\|l\|} \hline \text { Invalid } \\ \text { Value } \end{array}$	Notes
\square Lunargeometry												
	IunarPos_ECR	Forward, Backward	OBS, CAL	2	subsetNumL ines, 3	H5T_IEEE_F64LE		True lunar position in ECR(VGS84) for each sample line is stored.	km	10	(0, 0, 0)	There is no dataset if subsetNumLines is 0.
	Iunarvel_ECR	Forvard, Backward	OBS, CAL	2	subsetNumL ines, 3	H5T_IEEE_F64LE	True lunar velocity at the line exposure point (ECR (WGS84))	True lunar velocity in ECR(VGS84) for each sample line is stored.	km/s	10	(0, 0, 0)	$\begin{aligned} & \text { There is no dataset if } \\ & \text { subsetNumL ines is } 0 \text {. } \end{aligned}$
	IunarPos_ECI	Forward, Backward	OBS, CAL	2	subsetNumL ines, 3	H5T_IEEE_F64LE		True lunar position in ECI (TOD) for each sample line is stored.	km	10	(0, 0, 0)	There is no dataset if subsetNumLines is 0.
	Iunarvel_ECI	Forward, Backward	OBS, CAL	2	subsetNumLines, 3	H5T_IEEE_F64LE	True lunar velocity at the line atposure point (EC ($T 00$) $)$	True lunar velocity in ECI (TOO) for each sample line is stored.	km/s	10	(0, 0, 0)	$\begin{array}{\|l\|} \hline \text { There is no datasest if } \\ \text { subsetNumLines is } 0 \text {. } \end{array}$

