UNIVERSITY OF TWENTE.

GRAVITY AND SEISMOLOGY IS THERE ANY RELATION?

MARK VAN DER MEIJDE

WITH CONTRIBUTIONS FROM:

ANDY NYBLADE (PENNSTATE, AFRICAARRAY)

JORDI JULIA (UNIV FED RIO GRANDE NORTE, BRAZIL)

MARCELO ASSUMPCAO (UNIV SAO PAOLO, BRAZIL)

FABIO CAMMARANO (UNIV. COPENHAGEN, DENMARK

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

ESTIMATING CRUSTAL THICKNESS

Starting point:

"simple" models that do not rely on *a priori* constraints or knowledge of area

Why gravity:

- Complete coverage
- Through validation at known crustal structure, reliability for other parts can be estimated

Validation through:

- Comparison with receiver function results (local estimates under seismic station)
- Comparison with global CRUST2
- Tomography based models

Oldenburg-Parker defined (1974) the equation to compute the depth to the undulating interface from the gravity anomaly profile by means of an iterative process and is given by:

$$F[h(x)] = -\frac{F[\Delta g(x)]e^{(-kz_0)}}{2\pi G\rho} - \sum_{n=2}^{\infty} \frac{k^{n-1}}{n!} F[h^n(x)]$$

This expression allows us to determine the topography of the interface density by means of an iterative inversion procedure.

First, the first term is computed by assigning h(x)=0 and its inverse Fourier transform provides the first approximation of the topography interface, h(x).

h(x) is then used in the 2nd part to evaluate a new estimate of h(x).

This process is continued until a reasonable solution is achieved.

UNIVERSITY OF TWENTE

CRUSTAL MODEL SOUTH AMERICA

Input layers:

- Gravity anomaly
- Bouguer correction
- Sediment correction
 - Fixed contrast of 200 kg/m³
 - no depth dependence

Final output for further processing

COMPARISON WITH SEISMOLOGICAL OBSERVATIONS

- Overall >70% similar
- Stable part 88%
- Andes 60% (especially underestimation)
- Caribbean orogenic zone shows scatter

UNIVERSITY OF TWENTE.

COMPARISON

- good correlation with Assumpcao2012 and CRUST2.0 on the extent and thickness of the Andes region
- Brazilian shield is rather uniform for all models
- Thin crust behind Andes only partly seen in other models
- Thin crust in Venezuela in all models except Assumpcao

DIFFERENCES

- Best comparison with latest seismol. model
- CRUST2 shows largest differences
- Regions with few wavepaths and/or stations show largest differences
- Indication that satellite gravity data can be used for 1st order interpolation?

MISFITS OF SEISMOLOGICAL MODELS

SIMILAR FOR AFRICA

- Good correlation
- (very) simple model
- Over 85% of data points significantly similar
- Small features not well imaged (Afar, ocean-continent boundaries)

COMPARISON WITH CRUST2

- Maybe some trend of geoid left?
- Overall better fit with seismological observations for satellite based model
- Larger discrepancies in areas without observations, meaning?

TOMOGRAPHY AND GRAVITY

- To use gravity as a constraint in a combined inversion with seismic waves we need to establish the impact of composition on velocity and density
- Conversion of tomographic velocity model into densities using 3 different compositions
- Forward response calculated
- Differences is significant

DIFFERENCES BETWEEN MODELS

- Variations significant, few hundreds of mgals, also spatially
- Using gravity field should provide better constraints
- Testing of more models will tell how much better it can be

SUMMARIZING

- 3D modelling of gravity data provides unprecedented insights in African and South American crust → new structures found that deserve follow-up
- Comparison with seismological velocity models shows good general correlation
 - → Does GOCE data provide details that are beyond seismological models, especially in spatial coverage?
- Integration with local tomography looks promising but more work is required

More info:

Mark van der Meijde (<u>vandermeijde@itc.nl</u>) UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

SPARE SLIDES

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

DIFFERENCE WITH CRUST2 GLOBAL MODEL

Crust2: No thinning behind Andes, thin Guyana shield/Venezuela, thinner eastern part of craton

UNIVERSITY OF TWENTE.

Crust2: Bassin et al, EOS, 2000

DIFFERENCE WITH MODEL FENG (2007)

Feng: partly thinning behind Andes (especially along wavepaths), thicker Guyana shield/Venezuela, thinner craton

UNIVERSITY OF TWENTE.

Feng et al, JGR, 2007

DIFFERENCE WITH MODEL LLOYD(2010)

Lloyd: partly thinning behind Andes (especially along wavepaths), much thicker Guyana shield, thinner craton

UNIVERSITY OF TWENTE.

→ overall: thinning seems to be there, need for more strategically located seismic stations Lloyd et al, JGR, 2010

50.6

39.6

31.1

23.8

17.8

12.4

2.1

-3.2

-8.4

-14.0

-20.7

-28.2

-38.0

-51.4

-70.4

mGal

Source: Tedla et al, in prep, 2011

PROFILE AT EQUATOR

Density model at equator

Good fit with GOCE observations

Misfits at sides of craton at boundary with rift

Standard velocity – density relation valid?

Sharp edges along craton creates problems

UNIVERSITY OF TWENTE.

Source: Tedla et al, in prep, 2011

COMPARISON AT EQUATOR

Source: Tedla et al, in prep, 2011

SUMMARIZING

- 3D modelling of GOCE data provides unprecedented insights in African and South American crust → new structures found that deserve follow-up
- Comparison of GOCE with seismological velocity models shows good general correlation
 - → GOCE data provides details that are beyond seismological models, especially in spatial coverage

More info: Mark van der Meijde (<u>vandermeijde@itc.nl</u>)

Mark v

UNIVERSITY OF TWENTE

PROOF OF METHODOLOGY

Assumption for horizontal layered earth (index 0.5) is correct

By far best fit, most points within 5 km other index nonrealistic results

Window size 20x20 also best, best fit with point constraints

PROFILE AT 6 DEGREES SOUTH

- Chaos inside craton
- Almost no fit except outside rift valley
- Maybe velocity-density relation doesn't always work?
- Will modifications solve this misfit...

COMPARISON AT 6 DEGREES SOUTH

Source: Tedla et al, in review, 2011

- Does not rely on field observations, seismic stations, path coverage, etc → no instruments need to be installed.
- Has complete coverage → better than any other method
- Through validation at known crustal structure, reliability for other parts can be estimated

ESTIMATING CRUSTAL THICKNESS

Starting point:

"simple" models that do not rely on *a priori* constraints or knowledge of area

- 2 Different models:
- Euler Deconvolution
- 3D inversion

Validation through:

- Comparison with receiver function results (local estimates under seismic station)
- Comparison with global CRUST2
- Tomography based models UNIVERSITY OF TWENTE.

EULER DECONVOLUTION

 the gravity field due to a point source such as a pole at a position (x₀, y₀, z₀) is of the form:

$$\Delta T(x, y) = f((x - x_0), (y - y_0), z_0)$$

 If a function f is homogeneous of degree N then it satisfies Euler equation

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = nf$$

Which leads to (in 2D case, with structure homogeneous along y):

$$x_0 \frac{\partial T}{\partial x} + z_0 \frac{\partial T}{\partial z} + N \cdot B = x \frac{\partial T}{\partial x} + N \cdot T.$$

UNIVERSITY OF TWENTE

after: Reid et al., Geophysics, 1990

CRUST GRACE – EULER DECONVOLUTION

345 15 0 Combination of GOCE-**GRACE** data No a priori information 30 Structural index= $0.5 \rightarrow$ horizontal contrast 15 Result: 0 Good relation with tectonic provinces 50 -15 45 - 40 New satellite based findings - .30 -35 interesting locations 30 km

UNIVERSITY OF TWENTE

45

VALIDATION AND COMPARISON

estimates of Moho depth agree < 5 km of the seismic estimates at 86% of locations → <u>model</u> <u>reliable!</u>

Large variations with respect to CRUST2 model - many places improved

INTERESTING NEW FEATURE IN AFRICAN CRUST

Anomalous feature in southern part of Congo craton not supported by any other study. Tomographic models have no coverage for this area. Follow-up scheduled for 2012.

- Requires some data manipulation
 - Method gives also unrealistic values (too shallow, too deep)
 - These are manually removed
 - Requires a-priori knowledge
 - not feasible in areas with large contrast (shallow and deep values in one dataset)
- No optimal use of spatial content
 - Only strict x,y (east-west and north-south)
 - Better to use radial spatial information (3D analysis!)

