

Aurelie Peyrefitte^{1,2}, A. Guillen¹, I. Panet^{2,3}, G. Pajot-Métivier³, G. Martelet¹,

M. Diament², S. Bonvalot⁴

African geology

Geological structures

- Cratons
- Orogenics belts
- Sedimentary basins
- Oceanic margins
- From a tectonic point of view
 - Intraplate volcanism
 - Rifting
 - Hot spots

Deeper phenomena

- African Superplume
- Geodynamical processes

This complex geology finds expression in density variations inside the lithosphere

Scientific objectives

- Improve the knowledge of these large geological domains and their implications on the upper mantle structures
 - Study the density variations in the African mantle using gravity data
- Characterize the geometry and nature of the main crustal domains of the Africa

Scientific objectives

- Improve the knowledge of these large geological domains and their implications on the upper mantle structures
 - Study the density variations in the African mantle using gravity data
- Characterize the geometry and nature of the main crustal domains of the Africa

Working Guidelines

Two-scale study : Continental and Regional

- A lithospheric-scale study requires the availability of consistent data on a large scale
- Using data from space missions dedicated to the study of the Earth gravity field
- Three space missions were dedicated to the study of the Earth gravity field: CHAMP, GRACE and GOCE

We choose to use data from the space mission GOCE

- The most recent
- Aimed to provide an homogeneous and global model of the static gravity field with unprecedented high resolution and accuracy
- For the first time, GOCE provides measurements of gravity gradients at a global scale

3D density modeling of the African plate

- Combination of two global models mainly based upon seismology
 - The Global Digital Map of Sediment Thickness¹
 - CRUST2.0²

- We combine two models because:
 - They were obtained independently from gravity data
 - GDMST more precise than CRUST2.0 for sedimentary layers
 - · We used density variations converted from these seismological velocity models
- 3 sedimentary and 3 cristalline crust layers

- Discretization using spherical prisms
 - To consider the Earth curvature
 - Spatial resolution 1°x1°
- Computation using Tesseroid software ³

Observed Bouguer anomaly map

Observed Bouguer anomaly -Computed Bouguer anomaly map = Residual Anomaly

Residual anomaly

The mantle component

Mantle Bouguer anomaly

Tomographic image (S-wave velocity [Vs]) of Africa,

100 to 175 km depth slice 1

Gravity effect of the African mantle

Comparison

- Good consistency for a large part of Africa
 - Rift / West African craton / Mid-Atlantic ridge / Arabia
- Significant discrepancies over:
 - Congo craton and South Africa
- Seismology and gravity do not have the same investigation depth
 - Interferences between deep and shallow mantellic sources in gravity data

Mantle Bouguer anomaly

Gravity effect of the African mantle

Simplified geological map of Africa*

- Main results:
 - Positive anomaly associated to the West African craton
 - Signature associated to Jurassic margins different from younger margins

What about the crust? ... shorter wavelengths

Short wavelength component of the Residual anomaly map

- represents differences between our crustal model and the "real" African crust
- Sedimentary basins and oceanic margins clearly contribute to this residual
- started using the gradient data of GOCE mission

Gravity gradients more sensitive to shallow structures than gravity data

The regional scale study

Selection criteria

- Oceanic and continental domain
- Reflect the complexity of the African geology
- Area where the GOCE gravity model significantly improves the existing EGM2008.

Difference between EGM2008 and GOCE models

The regional scale study

Selection criteria

- Oceanic and continental domain
- Reflect the complexity of the African geology
- Area where the GOCE gravity model significantly improves the existing EGM2008.

Difference between EGM2008 and GOCE models

3D density modeling

- Combination of the same two global models
 - The Global Digital Map of Sediment Thickness
 - CRUST2.0
- Modeling and computation using 3D Geomodeller software (©Intrepidgeophysics,BRGM)
 - Allowed gravity and gradiometric forward modeling and inversion processes
 - Software dedicated to geological cartography
 - Planar geometry approximation
- Geomodeller frame is different from LNOF

Geomodeller frame (E,N,D)

X = north orientedY = west orientedZ = up oriented

Local North Oriented Frame (X,Y,Z)

Tdd gradient component

Tdd

Gradiometric effect of 3D density model

GOCE gravity tensor components

Topographic and bathymetric reduction for GOCE gravity tensor components

GOCE Bouguer anomaly tensor

Tdd

Comparison between observed and computed gradients

Good consistency between these two gradients

 We can introduce GOCE gradients in inversion processes in order to improve our crustal model

Summary of the different results presented

- We compute the gravity anomaly of a spherical crustal 3D model of the entire African plate
- We derive the first map of the African mantle gravity response
 - New gravity information on the African mantle is compatible and complementary to previous seismological results
 - We observe interesting mantellic signatures for West African and Jurassic oceanic margins
- We computed the gradiometric effects of a planar 3D model of the craton and the sedimentary basin of Congo
- We derived from GOCE gravity tensor the different Bouguer gradients
 - Currently improve the 3D model through inversion processes
 - Using gravity data
 - Using gradiometric data
 - Gradiometric data should allowed us to better characterize the poorly known geometry of the Congo sedimentary basin

Thank you for your attention

