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ABSTRACT 

New ESA missions dedicated to the observation of the 
Earth from space, like the gravity-gradiometry mission 
GOCE and the radar altimetry mission CRYOSAT 2, 
foster research, among other subjects, also on inverse 
gravimetric problems and on the description of the 
nature and the geographical location of gravimetric 
signals. 
In this framework the GEMMA project (GOCE 
Exploitation for Moho Modeling and Applications), 
funded by the European Space Agency and Politecnico 
di Milano, aims at estimating the boundary between 
Earth's crust and mantle (the so called Mohorovičić 
discontinuity or Moho) from GOCE data in key regions 
of the world. 
In the project a solution based on a simple two layer 
model in spherical approximation is proposed. This 
inversion problem based on the linearization of the 
Newton's gravitational law around an approximate mean 
Moho surface will be solved by exploiting  
Wiener-Kolmogorov theory in the frequency domain 
where the depth of the Moho discontinuity will be 
treated as a random signal with a zero mean and its own 
covariance function. The algorithm can be applied in a 
numerically efficient way by using the Fast Fourier 
Transform.  
As for the gravity observations, we will consider grids 
of the anomalous gravitational potential and its second 
radial derivative at satellite altitude. In particular this 
will require first of all to elaborate GOCE data to obtain 
a local grid of the gravitational potential field and its 
second radial derivative and after that to separate the 
gravimetric signal due to the considered discontinuity 
from the gravitational effects of other geological 
structures present into the observations. The first 
problem can be solved by applying the so called space-
wise approach to GOCE observations, while the second 
one can be achieved by considering a priori models and 
geophysical information by means of an appropriate 
Bayesan technique. Moreover other data such as ground 
gravity anomalies or seismic profiles can be combined, 
in an efficient way, to gridded satellite data in order to 
obtain better results. The research has to be firstly 
performed on case studies where existing data allow the 
calibration of the approach. 
Among other things this project represents a careful 
study of the prior weighting of different information 

sources, including the rather qualitative geological 
information. 
 
1. INTRODUCTION 

The Mohorovičić discontinuity (from the name of the 
Croatian seismologist who discovered it in 1909) is the 
boundary between the crust and mantle. It separates 
rocks having Vp (P-wave) velocities of 6 km/s from 
those having velocities of about 7-8 km/s. 
Since the upper part of the mantle is denser than the 
crust the Moho depth can be inferred also from gravity 
data. The main aim of the GOCE Exploitation for Moho 
Modeling and Applications (GEMMA) project, funded 
by ESA and Politecnico di Milano, is to map the crust-
mantle discontinuity in key regions of the world by 
means of observation coming from the innovative 
satellite mission GOCE. This will permit, for the first 
time, to estimate a Moho model without any need for 
geophysical interpretation (avoiding the uncertainties 
connected with this operation). Moreover since the main 
input are gravimetric data collected by the satellite 
mission GOCE it will be possible to estimate the Moho 
almost worldwide (also where gravity or seismic 
observations are not available for political or 
economical reasons).  
Usually, in literature, global and local models 
describing the Earth crust and the Moho are based on 
seismic refraction data, for example CRUST 2.0 (see 
Bassin et. al. [1]) a global model of USGS (United 
States Geological Survey) is based on 360  
one-dimensional seismic refraction profiles. This model 
consists of 2° x 2° tiles in which the crust and 
uppermost mantle are described. Topography and 
bathymetry are adopted from a standard database 
(ETOPO5). Compressional wave velocity in each layer 
is based on field measurements, and shear wave velocity 
and density are estimated using empirical VP-VS and 
VP-density relationships. Statistics are used to predict 
crustal structures in areas without field measurements. 
In these unsurveyed areas, the thickness of ice, water 
and sediments is taken from published compilations, 
and the velocity structure of the crystalline crust and 
uppermost mantle is estimated from the statistical 
average of regions with a similar crustal age and 
tectonic setting. 
Another example of Moho estimation from seismic data 
is the new Moho map of the European plate (see Grad et 
al. [2]). This model is based on several one-dimensional 
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seismic profiles taken from 1970 to present years. Even 
if a huge number of observations have been considered, 
the dishomogeneity (in time and space) of the different 
data sets implies large errors in the final result. 
A further problem of this kind of models is that 
refraction and reflection of seismical waves, from which 
these models are inferred, need to be interpreted. This 
operation is usually done in a subjective way and 
implies great uncertainties that lead to large errors in the 
final Moho model (i.e. errors in the European Moho 
map go up to 10 km). A possible alternative solution for 
the Moho estimation avoiding the interpretation of 
seismic profiles is the one based on gravimetric 
information. 
This problem, based on the inversion of Netwon’s laws 
of gravitation, is called in general inverse gravimetric 
problem and consists of the determination of the internal 
density distribution of a body ρ from its exterior gravity 
field V. Different approaches to solve this problem can 
be found in literature, see among the others Parker [3], 
Oldenburg [4], or the more recent works of Shin et al. 
[5] and Shin et al. [6] and the reference therein. 
Another thorny issue to face in order to solve the 
inverse gravimetric problem is how to separate the 
various signals, coming from different geological 
structures, mixed up into the observed gravimetric data. 
As a matter of fact this can be achieved only with the 
help of additional geological information by modeling 
crustal dishomogeneities, as well as unwrapping the 
contributions of large deep features from those closer to 
the surface. In general this can be done by simple 
stripping from the gravity data a reference (global) 
model and the effects of know geological structures 
(Ioane et al. [7] or Simeoni and Brückl [8]). 
 
2. THE PROPOSED APPROACH 

If we consider the inversion of Newton’s gravitational 
potential it turns out that each of Hadamard’s criteria for 
a well-posed problem (existence, uniqueness and 
stability of the solution) is violated, in particular if the 
problem is solvable, then the space of all solutions ρ(Q) 
corresponding to a fixed potential V(P) is  
infinite-dimensional. This non-uniqueness of the 
solution can, for instance, be treated by considering very 
simplifying hypotheses. Among other the uniqueness of 
the solution has been proved (Sampietro and Sansò 
[10]) for three simple cases:  
1. the recovery of the interface between two layers of 
known density;  
2. the recovery of the density distribution, in a two 
layers model, given the geometry of the problem 
(topography and depth of compensation);  
3. the recovery of the distribution of the vertical 
gradient of density, in a two layers model, given the 
geometry of the problem (topography and depth of 
compensation) and the density distribution at sea level.  

Even if this three cases are very rough hypothesis, in 
principle one can think that it is better to use one of 
these geophysical approximation and find a unique 
solution rather than accepting a solution that can be very 
far from reality because it corresponds to a purely 
mathematical criterion (Sansò et al. [10]). Once the 
uniqueness is guaranteed, we are entitled to apply to the 
corresponding inverse problem a regularization method 
and we know from literature (e.g. Schock [11]) that in 
this way we can approximate the true solution, 
dominating the inherent instabilities. 
In the proposed approach the first hypothesis has been 
considered: we neglect the effect due to the atmosphere, 
we consider a mean reference Moho (computed for 
example from an isostatic model or from the CRUST 
2.0 model) and we suppose to know (and subtract from 
the observations) the gravitational effect of the layers 
from the center of the Earth to the bottom of the 
lithosphere (e.g. using a preliminar reference Earth 
model). In this way the reduced observations contain the 
effect of only two layers: the first one from the bottom 
of the lithosphere to the reference Moho and the second 
one from the reference Moho to the top of the 
topography. 
The main problem related to this two-layer 
approximation is connected to the regularity of the 
Moho. In fact in the areas of collision between 
continental plates subduction zones are often present: 
this involve doubling or fragmentation of the Moho (and 
as a consequence the two layer hypothesis does not hold 
anymore). However it can be notice that in these areas 
the concept of Moho itself becomes meaningless since 
there is no more a net division between mantle and 
crust.  
A second problem is that if real data are considered the 
effect of anomalous masses can be present in the 
observations as well. These local anomalies such as 
intrusion of granites, or the presence of sedimentary 
basins, etc., can cause significant distortions in the 
prediction of the depth of the Moho. To solve this 
problem a simple solution can be implemented. First of 
all the effect, in terms of potential and second radial 
derivatives, due to the known anomalies should be 
removed from the observations. After that a 
spatial-frequency analysis should be carried out. In fact, 
since in general these anomalies are due to well 
localized phenomena, it can be expected that the field 
generated by such anomalies is different (from the 
spatial-frequency spectral point of view) from the one 
due to the Moho. 
The last problem is related to the heterogeneities present 
in the mantle. In this case however we know, from  
high-resolution seismic tomography and mantle 
convection modeling, that the convective flow involve 
the whole mantle. This means that large-scale mantle 
heterogeneities especially those formed early in Earth 
history are unlikely to have been preserved (van Keken 



 

et al. [12]). Moreover, since these heterogeneities are 
deeper than the Moho (and therefore the distance 
between the heterogeneity and the observation point is 
greater than the one from the Moho and the observation 
point), their effect on the gravitational potential and its 
second radial derivative are small and can probably be 
disregarded. 
Once the uniqueness of the solution is guaranteed the 
inverse gravimetric problem can be solved using a 
proper regularization method. 
In the proposed approach we consider the gravitational 
potential observed at point P (e. g. at satellite altitude). 
According to the notation presented in Fig. 1 we can 
write: 
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where )(QDδ  is the unknown depth of the Moho with 

respect to R . Note that since every term in the first 
integral of Eq. 2 is known it can be numerically 
computed and subtracted from the original potential 
obtaining: 
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An analogous reasoning can be applied to the second 
radial derivative of the gravitational potential. 
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To estimate the Moho we have to solve the system 
obtained by inverting Eqs. 3-4 degraded with the 
corresponding observation noise. This can be achieved 
by means of collocation, treating )(QDδ  as a random 
signal: 
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Fig e 1 Geometry and notation used. 
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N t if some simplifications are introduced in
problem i.e. we neglect the Earth curvature, we 
introduce a Cartesian coordinates system, we suppose 
observations on a regular sampled grid and we estimate 
the Moho on the same gridded points, Eq. 5 can be 
efficiently computed in terms of Multiple Input Single 
Output (MISO) Wiener filter in the frequency domain 
(Papoulis [13]; Sideris [14], Reguzzoni and Sampietro 
[15]). In addition a more complex approximation to 
reduce the observation equation to convolution integral 
taking into account the sphericity of the Earth has been 
studied and implemented. 
 

. INPUT DATA AND T3
MODEL 

As for the gr
considered are the potential and its second derivatives 
collected from GOCE mission. It is important to 
underline that these observations have complementary 
spectral characteristics: the potential carries the low 
frequencies of the signal while its second derivatives 
contains the medium-high frequencies. Note that none 
of the two quantities is a direct observation of the 
GOCE mission: in fact the potential T is derived from 
GPS tracking data, for example by applying the so 
called energy integral approach (Visser et al. [16]), 



 

while the second radial derivatives Tzz are obtained by 
preprocessing the gradiometer observations taken in the 
instrumental reference frame (Pail [17]). 
In this work the two grid of potential and its second 
radial derivative are computed as by-product of the so 
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called space-wise approach: a multi-step collocation 
procedure, developed in the framework of the GOCE 
HPF data processing for the estimation of the spherica
harmonic coefficients of the Earth gravitational field 
and their error covariance matrix (Migliaccio et al. 
[18]). 
As for the noise in Eqs. 3-4 the resulting potenti
known
radial derivatives have a time-correlated error with 
spectral characteristics almost identical to the original 
observations (Migliaccio et al. [19]). 
 
4. SOME NUMERICAL EXPERI

The method has been tested using the first two
of GOCE observations for a numerical exam
region of 45°x65° in the centre of Europe (latitude 
between 30° and 75° North and longitude between 20° 
West and 45° East). This area presents a complex 
geology characterized among the other by the presence 
of the Alps and of the Fennoscandian Shield. 
In this experiment, the noise is derived by Montecarlo 
algorithm with 400 samples (Reguzzoni an
[20]). 
The inverse problem has been solved using three 
differe
solution (obtained with a collocation procedure) and 
two solutions that allow to solve the problem exploiting 
the properties of the FFT in planar and almost spherical 
approximations have been tried. 
Considering the FFT solutions, in order to avoid edge 
effects, a proper border area f
potential and its second radial derivative) has to be 
considered. In order to determine the dimension of this 
border area, a numerical experiment has been 
performed: first a small area of 3°x3° has been 
considered and the inverse gravimetric problem has 
been solved at the center of that region. Then larger 
regions are considered until the convergence of the 
solution (always in the center of the region) is reached. 
The experiment has been repeated in different areas of 
the world (central Europe, Tibetan region, Australian 
plate). Results for the different areas are very similar 
and are shown in Fig. 2 where it can be seen that the 
stability of the solution is reached only when a border 
area of about 15° is considered. Note that the edge 
effect (and consequently the size of the border area) 
depends on the correlation of the signal: in regions 
where an appropriate geological a priori knowledge 
exists the original signal can be properly reduced (e.g 
removing an isostatic Moho model and removing the 
effects of all the other known geological structures) and 

as a consequence also the border area can be 
considerably reduced (Fig. 3).  

 
Figure 2 Convergence of the solution of the inverse 

 
problem for the Alpine region. 

 
Figure 3 Convergence of the solution of the inverse 
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exploiting the properties of the FFT transform.  

roblem for the Tibetan region removing an isostatic 
Moho model from the observations. 

A
order to study the differences between the planar and 
almost spherical solutions (that make use of the FFT) 
and the solution of the inverse problem obtained with 
the collocation procedure (that consider the right 
geometry of the problem). 
In Fig. 4 the differences bet
and the collocation solution has been computed for 
areas with different dimension.  
It can be notice that the standa
differences are practically the same for the planar and 
almost spherical approximation. Moreover results show 
that for relative small region (area smaller than 10°) the 
mean of the differences between the two FFT solutions 
and the collocation solutions are practically the same 
(and smaller than 0.5 km). As expected for bigger 
regions the planar approximation introduce an error in 
the low frequencies of the signal that cannot be 
neglected.  
Finally a nu
central Europe has been performed. The inversion has 
been carried out in almost spherical approximation, 



 

The normal potential, the topography (i.e. the effects of 
ocean/sea, ice, sediments and bedrocks) as well as an 
isostatic Moho model have been removed from the 
observations. Lateral density variations according to the 
Crust 2.0 model have been considered. 
 

 
Figure 4 Differences between collocation and different 

FFT solutions 
 
All in all, the estim ee Fig. 5) presents 

ifferences with respect to the Moho depth of the 

 Fennoscandian Shield where the isostatic 

ated Moho (s
d
European plate (here considered as reference model) of 
less than 5 km (with a mean value of only -0.4 km and a 
rms of 1.64 km) on a grid of 0.5°x0.5° resolution under 
the Alps. 
Larger differences (up to more than 10 km) are obtained 
under the
assumption and the two-layer approximation used to 
solve the inverse problem are known to be too rough to 
describe the complexity of the actual crust. 

 

 
Figure 5 Estimated Moho model (up) and reference 

model (down) [km]. 

5. CONCLUSIONS 

A method based on collocation and FFT has been 
implemented to evaluate the contribution of GOCE data 
in the Moho estimation. The method has been 
implemented both in planar and in spherical 
approximation. It has been shown by means of 
numerical experiments that if no reduction of the signal 
is applied a border area of about 15° is required in order 
to avoid edge effects in the solution of the inverse 
problem. If the signal can be reduced (i.e by means of a 
proper model of the crust) the border area can be 
reduced to 5°.  
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 revealed by 3D gravity 

8.  S
ng on the resolution of deep crustal 

egarding the different solution it has been shown that
the resulting area is larger than 10°, spherica

s to be used.  approximation ha
Finally the Moho in cent
using the GOCE data grids. The differences with respect 
to the present Moho model are of less than 5 km in the 
Alpine region and are principally due to the different 
resolution between the estimated Moho and the 
reference model. Larger discrepancies can be found 
under Fennoscandian Shield where it is known that the 
isostatic assumption is no satisfied. 
In order to improve the solution also in this area, the 
fundamental problem of the isolation of the gravimetric 
signal due to the Moho discontinuity has to be treated in 
detail.  
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