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Preface

GOCE was launched on 17 March 2009, with various first-of-its-kind technologies on board.
Some months after launch, it was discovered that some of these technologies, for example the
along-track drag-free control, were performing much better than expected pre-launch. In partic-
ular, the performance of the gravity gradiometer was not entirely as expected pre-launch. While
the gravity gradients were more accurate than expected at lower frequencies, the measurement
noise in the gravity gradient Vzz was worse than expected from pre-launch simulations. For
these reasons, it was decided to revisit the algorithms for the gradiometer level 1b processing
and to investigate the performance of the gradiometer including its calibration. It started from
earlier ideas applied to simulated data before launch. Major improvements were necessary when
dealing with real data. The investigations showed that significant improvements in GOCE level
1b and level 2 products could be achieved due to a different way of calibrating the gradiometer
data and processing of level 1b data. The research fellowship contributed, together with the
work of Claudia Stummer of the Technische Universität München, to the upgrade of the official
GOCE level 1b processor, bringing the GOCE mission 10–20% closer to reaching its mission
goals.
The results presented in this report are submitted for publication in two journal papers:
[Siemes et al.(2011)] and [Stummer et al.(2011)]. The contents of the papers is reorganized
for better reading and extended for completeness. Naturally, this means that large parts of this
report are identical to parts of the papers.
It is worth noting that the original idea for the research fellowship is related to the time series
analysis of Swarm magnetic field models for a fast quality check with special emphasis on vector
field magnetometer and absolute scalar magnetometer data. A few months after the start of the
research fellowship, it became clear that the launch of the Swarm satellites, originally foreseen
in mid 2011, would be delayed. At the same time, the performance of the GOCE gradiometer
was not entirely as expected pre-launch. Since the cause of this behaviour was unknown, it
was agreed to change the focus of the research fellowship to investigating the performance of
the GOCE gradiometer. It should be mentioned that many software modules developed during
the research fellowship for GOCE data analysis can be easily adapted for Swarm data analysis.
One example is the module for deriving a gradiometer-only GOCE level 2 product from level
1b data, which was in fact originally developed for Swarm mission data at the beginning of
the research fellowship and then adapted for GOCE mission data. Another example is that
every software module (and analysis) related to the attitude measurements can be used for the
GOCE and the Swarm mission since in both cases each satellite carries three star sensors as
payload.
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1 Introduction

The mission objectives of the Gravity field and steady-state Ocean Circulation Explorer
(GOCE) are the determination of the gravity anomaly field with an accuracy of 1 mGal and
the geoid with an accuracy of 1–2 cm, and achieving both at a spatial resolution of 100 km half
wavelength [Drinkwater et al.(2007)].

The GOCE satellite is equipped with innovative instruments. The electrostatic gravity gra-
diometer measures the medium to short wavelength signal of the gravity field and the non-
gravitational accelerations acting on the satellite. The satellite-to-satellite tracking instrument
determines the position and velocity of the satellite and is used for the estimation of the long
wavelength signal of the gravity field. Three star sensors provide the satellite attitude while
three magnetic torquers are used for attitude control. The ion thruster assembly compensates
for non-gravitational accelerations in the along-track direction. The above mentioned sensors
and actuators form the drag-free and attitude control system, which is together with the thermal
control responsible for providing the quiet environment necessary for the optimal performance of
the gradiometer. Furthermore, the satellite is equipped with eight cold-gas thrusters, which are
used during the execution of the procedure for the calibrating the gradiometer. The spacecraft
has no moving parts and its shape is optimized for minimizing the effect of aerodynamic drag.
An overview over the accommodation of the instruments is provided in Fig. 1 [Fehringer(2008)].

Figure 1: Top-down view on the GOCE satellite showing the accommodation of instruments.
The acronyms in the figure stand for: star tracker (STR), coarse Earth-Sun sensor (CESS),
magneto-torquers (MTR), magnetometers (MGM), satellite-to-satellite tracking instrument
(SSTI), command and data management unit (CDMU), power conditioning and distribution
unit (PCDU), and laser retro-reflector (LRR). The Xenon tank contains the fuel for the ion
propulsion module while the Nitrogen tank contains the fuel for the cold-gas thrusters.
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The most important instrument for achieving the mission objectives is the electrostatic gravity
gradiometer, consisting of three pairs of ultra-sensitive accelerometers. The pairs are mounted
at the ends of three orthogonal gradiometer arms, whereas the accelerometers forming one
pair are separated by half a meter. Each accelerometer consists of a proof-mass levitated at
the centre of the accelerometer cage. The levitation is achieved by applying control voltages
to electrodes located at the inner walls of the accelerometer cage. The control voltages are
representative for the experienced accelerations of the proof-mass relative to the cage.

The linear accelerations measured by the individual accelerometers do not directly yield grav-
ity gradients. They reflect the combined effect of the linear acceleration acting on the satellite
center-of-mass (COM) caused by e.g. winds, the angular velocity and angular acceleration
of the satellite about its COM caused by e.g. the attitude control of the satellite, and the
gravity gradient between the satellite COM and the centre of the individual accelerometer.
Due to the geometric configuration of the six accelerometers, the gradiometer measures the
linear and angular acceleration of the satellite directly. The angular velocity is obtained by
combining the integrated angular acceleration measurements of the gradiometer with the dif-
ferentiated attitude measurements of the star sensors. The computation of gravity gradients
from the accelerometer and star sensor measurements is called gradiometer level 1b processing
[SERCO/DATAMAT Consortium(2008)], which also includes the calibration of the gradiome-
ter.

The accurate calibration of the gradiometer is a prerequisite for achieving the mission objec-
tives. Since the gradiometer is designed to operate under micro-g conditions, the calibration,
which comprises two parts, must be performed in-flight [Frommknecht et al.(2011)]. The first
part is the determination of the quadratic factors of the transfer functions that relate the
control voltages to the accelerations by means of a proof-mass shaking procedure. After the
determination, the quadratic factors are zeroed by adjusting the position of the proof-masses
relative to their cages. The second part is the determination of three so-called inverse calibra-
tion matrices (ICMs), one for each gradiometer arm. The ICMs account for scale factors of the
transfer functions as well as for instrument imperfections such as non-orthogonal accelerometer
axes and accelerometer misalignments. The ICMs are applied to the accelerometer data in the
ground processing. In the following we refer to the determination of the ICMs when using the
term calibration.

A dedicated calibration procedure called satellite shaking is executed every two months and
lasts one day. During the execution of this procedure, the ion thrusters and cold-gas thrusters
are used to generate pseudo-random linear and angular accelerations in the frequency band
50–100 mHz, in which we can assume that the gravity gradient signal is much smaller than the
noise level of the gradiometer. In addition, pseudo-random angular accelerations are generated
at 1.3 mHz, where both star sensor and gradiometer measurements have a large signal-to-noise
ratio [Frommknecht et al.(2011)]. For convenience, we refer to data collected during a satellite
shaking as shaking data. Data collected during a measurement cycle is referred to as nominal
data. Table 1 gives an overview over the shakings performed since the beginning of nominal
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Table 1: Availability of nominal and shaking data in the period from October 2009 to June

2011.
Satellite shaking Satellite anomaly

08/10/2009 12/02/2010 – 01/03/2010

11/01/2010 08/07/2010 – 01/09/2010

04/03/2010 01/01/2011 – 19/01/2011

07/05/2010

05/10/2010

07/12/2010

27/01/2011

04/04/2011

07/06/2011

data acquisition on 31 October 2009, including satellite anomalies.

We distinguish between internal and external calibration methods. Internal calibration methods
make use of data collected by the sensors on-board the GOCE satellite only, in particular the
gradiometer and the star sensor measurements. They can be further subdivided into methods
that rely on shaking data [Frommknecht et al.(2011)] and methods that work with shaking as
well as nominal data [Kern et al.(2007)]. External calibration methods make use of additional
data that are not measured by the sensors on-board GOCE. [Rispens and Bouman(2011)] as
well as [Visser(2008)] use a global gravity field model and star sensor data for computing
reference accelerations, which are used to estimate calibration parameters for the accelerometer
data. [Bouman et al.(2009), Bouman et al.(2011)] use global gravity field models and terrestrial
gravity data for estimating calibration parameters for gravity gradients. All of these external
calibration methods make use of nominal data.

In order to assess the impact of the upgraded gradiometer level 1b processing and the calibration
of the gradiometer, we validate the gravity gradients. This is a complex task since GOCE was
designed to deliver the best ever set of gravity gradients. We use the gravity field model
ITG-Grace2010s [Mayer-Gürr et al.(2011)], which is based on data of the Gravity Recovery
and Climate Experiment (GRACE) mission [Tapley et al.(2004)], to compute reference gravity
gradients along the GOCE orbit. The limitation of this approach is that GRACE measures the
short wavelength signal of the gravity field less accurately than GOCE. Thus, reference gravity
gradients validate only the long and middle wavelengths. Another way to assess impact is to
compute the trace of the gravity gradient tensor. Here, we have no limitations with respect to
the wavelengths. However, the trace is invariant against the attitude of the satellite and checks
only the sum of diagonal components of the 3 × 3 gravity gradient tensor instead of checking
all gravity gradients individually.
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In addition to validating gravity gradients, we also validate the gravity field computed from
the gravity gradients. Here, we compare against the gravity field models ITG-Grace2010s
and EGM2008 [Pavlis et al.(2008)]. Both gravity fields have their pros and cons. As already
mentioned, the ITG-Grace2010s can serve as a reference for the low and middle wavelength
signal of the gravity field, but not for the short wavelength signal. EGM2008 is based on
GRACE mission data, terrestrial gravity data, satellite altimetry derived gravity data, airborne
gravity data, and marine gravity data. In comparison to gravity fields derived from GOCE
gradiometer data, it can serve as a reference for the long and short wavelength signal. The
middle wavelength signal of the EGM2008 appear to suffer from gaps in Africa, South-America
and Antarctica in the terrestrial gravity data sets, which needs to be taken into account in the
validation.
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2 Reference frames

Throughout this report we make use of different coordinate reference frames. In this section,
we provide an overview over these reference frames and clarify the transformations between
them. Detailed information can be found in [European GOCE Gravity Consortium(2008)] and
[Petit and Luzum(2010)]. The reference frames of interest are

• the gradiometer reference frame (GRF)

• the star sensor reference frame of star sensor x (SSRFx),

• the inertial reference frame (IRF),

• the Earth-fixed reference frame (EFRF), and

• the local north-oriented reference frame (LNOF).

All of these reference frames define orthogonal, right-handed systems.

The GRF is the instrument reference frame of the gradiometer. The attitude of the GOCE
satellite is controlled such that the x, y and z axes of the GRF coincide with flight, cross-track
and nadir direction, respectively, within a few degrees. The gradiometer arms are precisely
aligned with the coordinate axes of the GRF. The origin of the GRF is precisely located in the
centre of the gradiometer, i.e. the point where the gradiometer arms cross each other. The
COM of the satellite is by construction very close to the origin of the GRF: x

(GRF)
COM within a few

centimetres, y
(GRF)
COM and z

(GRF)
COM within a few millimetres (cf. the mass property file available on

http://earth.esa.int).

Each of the three star sensors has its own instrument reference frame, i.e. the SSRF. The z-axis
of the SSRF is the boresight of the star sensor while the x and y axes lie in the focal plane.
The relative orientation of the SSRFs and the GRF is provided by so-called mounting matrices
RSSRF→GRF which are provided in the AUX EGG DB product:

RSSRF1→GRF =





0.99999195396400 −0.00385545306786 0.00110792125081
−0.00287527613216 −0.49628568537300 0.86815450887500
−0.00279728350732 −0.86815070925200 −0.49629277773300



 (1)

RSSRF2→GRF =





0.99986843913500 0.01572679351300 −0.00397144656483
0.01614931208110 −0.94226871687900 0.33446803272000
0.00151793982847 −0.33448816594600 −0.94239872808700



 (2)

RSSRF3→GRF =





0.01184624278020 −0.76918392877300 0.63891763964500
−0.49141129308600 0.55199930411200 0.67365548263700
−0.87084706324300 −0.32195162987100 −0.37144655128900



 (3)
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Figure 2: Relative orientation of the GRF and the SSRFs. Note that zSSRF1 and zSSRF2 lie in

the yGRF-zGRF-plane and that xSSRF1 and xSSRF2 are parallel to xGRF.

The columns of the mounting matrices contain unit vectors representing the coordinate axes of
the SSRFs expressed in GRF coordinates. For example the y axis of SSRF1 is

y
(GRF)
SSRF1 =





−0.00385545306786
−0.49628568537300
−0.86815070925200



 (4)

in the GRF. Fig. 2 indicates the pointing of the axes of the SSRFs with respect to the GRF.
Note that the angle between two boresight directions is at least 40◦.

The IRF is a celestial reference frame which is fixed in space. It defines the quasi-absolute
orientation in space which is measured by the star sensors. The origin of the IRF is located in
the geocentre, i.e. the centre of mass of the Earth. The x axis points into the direction of the
vernal equinox while the z axis points towards the celestial pole.
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The EFRF is a terrestrial reference frame which is fixed to the Earth’s surface and, therefore,
a rotating reference frame. The origin of the EFRF is located in the geocentre, i.e. the centre
of mass of the Earth. The z axis is pointing towards the North Pole. The x and y axes lie in
the equatorial plane, with the x axis intersecting the Greenwich Meridian.

The transformation between the IRF and EFRF is a rotation reflecting Earth’s diurnal rotation
as well as the precession, nutation and polar motion of the Celestial Intermediate Pole (CIP).
The transformation parameters are provided by the IERS and contained in the SST PRM 2
dataset of the SST PSO 2 product in form of quaternions.

The LNOF is a local reference frame, which means that its origin is located in a point of interest
and the pointing of its axes depends on that origin: The z axis points radially outwards, the
y axis points westwards, and the x axis points northwards. The axes expressed in the EFRF
read

x
(EFRF)
LNOF =





cosλ cosφ
sinλ cosφ

sinφ



 , y
(EFRF)
LNOF =





sinλ
− cosλ

0



 , and z
(EFRF)
LNOF =





− cosλ sinφ
− sinλ sinφ

cosφ



 (5)

where λ, φ and r are the spherical longitude, latitude and radius of the point of interest in the
EFRF. The gravity potential field is usually expressed in dependence of λ, φ and r. When we
compute functionals of the gravity field, such as gravity gradients, we do so in the LNOF and
then rotate the results into the target reference frame. Fig. 3 provides an overview over the
IRF, EFRF, LNOF and GRF.
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Figure 3: Overview over the IRF, EFRF, LNOF and GRF.
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3 Gravity gradiometry

In this section we show how gravity gradients are determined from the accelerometer and star
sensor measurements. First, we explain the principles assuming an ideal instrument. Then, we
introduce the calibration of the gradiometer which is needed due to instrument imperfections.
Finally, we discuss the impact of fact the accelerometers have two ultra-sensitive axes and one
less sensitive axis.

3.1 Gravity gradiometry assuming an ideal gradiometer

Let us assume that the accelerometer axes are aligned with the GRF and that the quadratic
factors are successfully zeroed and the scale factors are perfectly known and applied in the
conversion of electrode control voltages to accelerations. Furthermore, let us assume that
accelerations due to other satellite masses (self-gravity) and the coupling of accelerometer proof-
masses to the magnetic field can be neglected. Then, each of the six accelerometers measures
accelerations

ai = −(V −Ω2 − Ω̇)ri + d, (6)

where i is the identifier of the accelerometer (cf. Fig. 4), ri is the vector from the satellite’s
centre of mass (COM) to the centre of the i-th accelerometer, V contains the gravity gradients,
Ω2ri are centrifugal accelerations due to the rotation of the satellite about its COM, Ω̇ri are
linear accelerations due to satellite angular accelerations about its COM, and d are linear
accelerations of the satellite’s COM [Cesare(2008)]. The matrices V , Ω, Ω̇ and Ω2 are defined
as follows:

V ≡





Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz



 (7)

Ω ≡





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 (8)

Ω̇ ≡





0 −ω̇z ω̇y

ω̇z 0 −ω̇x

−ω̇y ω̇x 0



 (9)

Ω2 ≡





−ω2
y − ω2

z ωxωy ωxωz

ωxωy −ω2
x − ω2

z ωyωz

ωxωz ωyωz −ω2
x − ω2

y



 (10)

The accelerations ai are transformed into common mode (CM) accelerations

ac,ij =
1

2
(ai + aj) (11)
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y
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Figure 4: Arrangement of the six accelerometers in the gradiometer reference frame (GRF).

Thick lines indicate the ultra-sensitive axes of the accelerometers. Dotted lines indicate the

less-sensitive axis of the accelerometers.

and differential mode (DM) accelerations

ad,ij =
1

2
(ai − aj) (12)

for each accelerometer pair ij = 14, 25, 36. Let us replace vector ri by

ri = pi − c, (13)

where pi is the vector from the origin of the GRF to the centre of the i-th accelerometer and
c is the vector from the origin of the GRF to satellite’s COM. Then, inserting Eq. (6) into
Eqs. (11) and (12) gives

ac,ij = −1

2
(V −Ω2 − Ω̇)(pi + pj) + (V −Ω2 − Ω̇)c+ d (14)

and

ad,ij = −1

2
(V −Ω2 − Ω̇)(pi − pj). (15)

Let us assume that the accelerometers occupy their nominal position. Then, the following
holds:

p1 + p4 =





0
0
0



 ,p2 + p5 =





0
0
0



 ,p3 + p6 =





0
0
0



 , (16)

p1 − p4 =





Lx

0
0



 ,p2 − p5 =





0
Ly

0



 ,p3 − p6 =





0
0
Lz



 (17)
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The gradiometer arm lengths Lx = 0.5140135 m, Ly = 0.4998900 m and Lz = 0.5002010 m are
given in the AUX EGG DB product. We can simplify Eq. (14) to

ac,ij = (V −Ω2 − Ω̇)c+ d ≈ d (18)

because the satellite COM is very close to the origin of the GRF, i.e. c is in the order of a few
centimetres [Bigazzi and Frommknecht(2010)], and the term V −Ω2 − Ω̇ is about 1000 times
smaller than the linear acceleration of the satellite COM d, which we know from the analysis
of GOCE mission data. Thus, we can determine the linear acceleration of the satellite COM
by building CM accelerations.

We can derive the angular accelerations Ω̇ of the satellite about its COM in the following way.
From Eqs. (15) and (17) we can deduce

Ad = −1

2
(V −Ω2 − Ω̇)L (19)

where
Ad =

[

ad,14 ad,25 ad,36

]

(20)

and

L =





Lx 0 0
0 Ly 0
0 0 Lz



 . (21)

Since V and Ω2 are symmetric matrices, i.e. V T = V and (Ω2)T = Ω2, and Ω̇ is a skew-
symmetric matrix, i.e. Ω̇T = −Ω̇, we find

AdL
−1 − (AdL

−1)T = −1

2
(V −Ω2 − Ω̇) +

1

2
(V −Ω2 − Ω̇)T = Ω̇. (22)

From Eq. (22) we can extract

ω̇x =
ad,25,z
Ly

− ad,36,y
Lz

, (23)

ω̇y =
ad,36,x
Lz

− ad,14,z
Lx

(24)

and
ω̇z =

ad,14,y
Lx

− ad,25,x
Ly

. (25)

Thus, the gradiometer measures the angular acceleration of the satellite about its COM.

For deriving the gravity gradients from the DM accelerations, we need not only the angular
acceleration components ω̇x, ω̇y and ω̇z but also the angular velocity components ωx, ωy and ωz.
The latter are determine from star sensor and gradiometer measurements in the following way.
The star sensor attitude, given in form of a rotation matrix R relating the inertial reference
frame (IRF) to the GRF, is differentiated using Poisson’s equations

Ṙ = −ΩR (26)
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to obtain the star sensor angular velocity

Ω = −ṘRT . (27)

In addition, the gradiometer angular acceleration is integrated to obtain the angular acceleration

ω =

∫

ω̇ dt+ ω0 (28)

where
ω =

[

ωx ωy ωz

]T
, (29)

ω̇ =
[

ω̇x ω̇y ω̇z

]T
(30)

and ω0 is the integration constant. Due to the noise characteristics of the star sensors and the
gradiometer and the noise propagation due to the differentiation and integration, the angular
velocity derived from the star sensor is more accurate in the low frequencies while the angular
velocity of the gradiometer is more accurate in the high frequencies. Therefore, the final
angular velocity is obtained by a combination of the star sensor and gradiometer angular
velocities, taking the noise characteristics into account. In a simplified way, we can regard
this combination as adding the low-pass filtered angular velocity of the star sensor to the
complementary high-pass filtered angular velocity of the gradiometer:

ω = low-pass(ω(star sensor)) + high-pass(ω(gradiometer) − ω0) (31)

Note that the highpass filter should be designed to eliminate the integration constant ω0.
Finally, we can compute the gravity gradients from

AdL
−1 + (AdL

−1)T = −V +Ω2. (32)

This leads to the diagonal gravity gradient components

Vxx = −2
ad,14,x
Lx

− ω2
y − ω2

z , (33)

Vyy = −2
ad,25,y
Ly

− ω2
x − ω2

z (34)

and
Vzz = −2

ad,36,z
Lz

− ω2
x − ω2

y , (35)

and the off-diagonal gravity gradient components

Vxy = −ad,25,x
Ly

− ad,14,y
Lx

+ ωxωy, (36)

Vxz = −ad,14,z
Lx

− ad,36,x
Lz

+ ωxωz (37)

and
Vyz = −ad,36,y

Lz

− ad,25,z
Ly

+ ωyωz. (38)
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3.2 Model for instrument imperfections

Even though the manufacturing was following strict requirements, the gradiometer is subject
to small instrument imperfections such as [Cesare(2008)]:

• Accelerometers do not exactly occupy their nominal positions

• Accelerometer axes are not fully aligned with the GRF

• Accelerometer axes are not perfectly orthogonal to each other

• Accelerations are obtained with a scale factor due to the uncertain knowledge of the
electrostatic gains and the read-out gain for the conversion of the electrode control voltages
to accelerations

• Imperfections could slightly change over time

In order to account for these imperfections, the method presented in this paper uses the cali-
bration model

ai = Miãi (39)

where i is the identifier of the accelerometer, ãi are measured accelerations, ai are calibrated
accelerations and Mi is the calibration matrix. The calibration matrix

Mi =





si,x αi + ζi βi − ǫi
αi − ζi si,y γi + δi
βi + ǫi γi − δi si,z



 (40)

composes of scale factors si,x, si,y and si,z, shear parameters αi, βi and γi, and rotation pa-
rameters δi, ǫi and ζi assuming small shear and rotation angles. We can also formulate the
calibration model in terms of CM and DM accelerations.

[

ac,ij

ad,ij

]

= Mij

[

ãc,ij

ãd,ij

]

(41)

Herein, ac,ij and ad,ij are calibrated CM and DM accelerations, respectively, ãc,ij and ãd,ij are
their measured counterparts, and Mij is the ICM for the gradiometer arm ij. The latter is
related to the calibration matrices Mi and Mj by

Mij =
1

2

[

Mi +Mj Mi −Mj

Mi −Mj Mi +Mj

]

=

[

Cij Dij

Dij Cij

]

, (42)

where

Cij =





s̄ij,x ᾱij + ζ̄ij β̄ij − ǭij
ᾱij − ζ̄ij s̄ij,y γ̄ij + δ̄ij
β̄ij + ǭij γ̄ij − δ̄ij s̄ij,z



 (43)
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contains common scale factors s̄ij,x, s̄ij,y and s̄ij,z, common shear parameters ᾱij, β̄ij and γ̄ij,
and common rotation parameters δ̄ij, ǭij and ζ̄ij , and

Dij =





∆sij,x ∆αij +∆ζij ∆βij −∆ǫij
∆αij −∆ζij ∆sij,y ∆γij +∆δij
∆βij +∆ǫij ∆γij −∆δij ∆sij,z



 (44)

contains differential scale factors ∆sij,x, ∆sij,y and ∆sij,z, differential shear parameters ∆αij,
∆βij and ∆γij, and differential rotation parameters ∆δij, ∆ǫij and ∆ζij.

3.3 Impact of less sensitive accelerometer axes on gravity gradients

Each accelerometer has two ultra-sensitive axes and one less sensitive axis, which is less accurate
by a factor of 100. Due to the way in which the less sensitive axes are arranged (cf. Fig. 4), the
gravity gradients Vxx, Vyy, Vzz and Vxz are very accurate while Vxy and Vyz suffer from the low
accuracy of the less sensitive axes. This can be clearly seen in Fig. 5 where we compare GOCE
gravity gradients to gravity gradients computed on the basis of the ITG-Grace2010s gravity
field model along the GOCE orbit.

The main cause for the larger noise in the gravity gradients Vxy and Vyz is most likely the larger
noise in the DM accelerations ad,14,y, ad,36,y and ad,25,z, which are the measurements of less
sensitive axes. This assumption is supported by the decomposition of the gravity gradients into
terms containing DM accelerations and terms containing centrifugal accelerations according to
Eqs. (33)–(38). For example, Vxx composes of the term −2

ad,14,x
Lx

and the term −ω2
y −ω2

z . Fig. 5
shows that the contribution of the terms containing centrifugal accelerations to Vxy and Vyz is
negligible for frequencies 10–100 mHz.

The fact that Vxy and Vyz are much less accurate than the other gravity gradients needs to
be considered when performing reference frame transformations. The transformation of the
gravity gradients from the GRF to another reference frame, e.g. the EFRF, is defined by the
rotation of the gravity gradient tensor

V (EFRF) = RGRF→EFRFV (GRF)(RGRF→EFRF)T (45)

where V (GRF) and V (EFRF) are the gravity gradient tensor in the GRF and EFRF, respectively,
and RGRF→EFRF is the rotation matrix from the GRF to the EFRF. Eq. (45) shows that the
larger noise in Vxy and Vyz propagates to all gravity gradients due to the rotation of the gravity
gradient tensor. For this reason, we compare gravity gradients in this report always in the
GRF. Note that in case of spatial plots, we need to separate ascending and descending orbital
arcs due to the different orientation of the GRF.
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Figure 5: Comparison of GOCE gravity gradients to gravity gradients computed from the

ITG-Grace2010s gravity field model. The gravity gradients have been de-composed into terms

containing DM accelerations and terms containing centrifugal accelerations.
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4 Combining data of star sensors

The GOCE satellite is equipped with three star sensors pointing in different directions
[Drinkwater et al.(2007)]. The data of at least two star sensors are down-linked at a time.
The star sensors provide the inertial attitude of the satellite, from which we can derive by
numerical differentiation the rotational part of the satellite motion, represented by the angular
velocity ω and the angular acceleration ω̇. The latter can also be computed from accelerome-
ter data and, therefore, we can use star sensor angular accelerations for the calibration of the
gradiometer.

A property of the star sensors is that the angular velocity about the boresight, which is per-
pendicular to the star sensor’s focal plane and points into the direction of the field-of-view
[Liebe(2002)], is less accurately measured than angular velocities about axes that are perpen-
dicular to the boresight [Jørgensen(2003)]. The star sensor reference frame (SSRF) is defined
as follows. The z-axis is the boresight while the x- and y-axis are lying in the focal plane of
the star sensor, perpendicular to the boresight and forming a right-handed system. Therefore,
when expressing the angular velocity in the SSRF, as indicated by the superscript, ω

(SSRF )
z is

less accurate than ω
(SSRF )
x and ω

(SSRF )
y . In order to relate the star sensor data to accelerometer

data, we transform the angular velocity from the SSRF to the GRF. In this transformation,
the errors of the less accurate ω

(SSRF )
z propagate to errors in ω

(GRF )
x , ω

(GRF )
y and ω

(GRF )
z in the

GRF depending on the orientation of the star sensor with respect to the gradiometer. The
propagation of errors in the reference frame transformation is demonstrated in Fig. 6.
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Figure 6: Square-roots of the PSDs of angular velocities measured by star sensor one in the

SSRF1 (top panel) and in the GRF (bottom panel). The square-roots of the PSDs largely reflect

measurement noise above 10 mHz. The noise in the less accurate ωz in the SSRF1 propagates

to ωy and ωz in the GRF because the transformation from the SSRF1 to the GRF is mainly a

rotation about the x-axis of the SSRF1. We used data of 23 Nov 2009 for this plot.
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The angle between the boresights of two star sensors is at minimum 40◦

[Bigazzi and Frommknecht(2010)]. Thus, the less accurately measured component of the
angular velocity of one star sensor is measured with a better accuracy by another. For this
reason, the combination of the angular velocities from different star sensors can prevent the
propagation of the less accurate component due to the reference frame transformation.

We consider two methods of combining star sensor data, which are both performed by means of a
least-squares adjustment. The first method is based on the combination of attitude quaternions.
It is used for the attitude determination of the GRACE satellites, which have each two star
sensors onboard [Romans(2003)]. The second method is based on the combination of angular
velocities. It should be mentioned that the angular velocities calculated by one or the other
method are of equal quality. Thus, if only angular velocities are needed, both methods may be
used. In order to maximize the comparability of our results to those of ESA’s baseline method
for estimating gradiometer calibration parameters, we use the same method for combining star
sensor data, namely the method that combines angular velocities. However, if also the attitude
is needed, which is the case for level 1b processing, we use the method that combines the star
sensor data on attitude level.

4.1 Combination of attitude quaternions

The following presents the mathematical background of the attitude quaternion combina-
tion provided by [Romans(2003)] in the notation we use for the GOCE mission. Let
qmeasured IRF→SSRFx be a quaternion describing the rotation from IRF to SSRFx as measured
by STRx. It can be related to the true rotation from IRF to SSRFx by

qmeasured IRF→SSRFx = qtrue IRF→SSRFxqnoise STRx (46)

In words, we model the measured quaternion as the true quaternion rotated by

qnoise STRx =









1
0.5eSTRx

1

0.5eSTRx
2

0.5eSTRx
3









(47)

where eSTRx
1 , eSTRx

2 and eSTRx
3 represent small angles. The factor 0.5 is introduced such that

qnoise STRx is equivalent to the rotation matrix

Rnoise STRx =





1 eSTRx
3 −eSTRx

2

−eSTRx
3 1 eSTRx

1

eSTRx
2 −eSTRx

1 1



 . (48)

Furthermore, let qSSRFx→GRF be a quaternion describing the rotation from SSRFx to GRF,
i.e. being the equivalent to the mounting matrix RSSRFx→GRF (we assume that the mounting
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information is correct). Now, the following condition holds:

qGRF→SSRFxqtrue SSRFx→IRFqtrue IRF→SSRFyqSSRFy→GRF =









1
0
0
0









(49)

For the measured quaternions of two star sensors, however, we observe a small relative error

qGRF→SSRFxqmeasured SSRFx→IRFqmeasured IRF→SSRFyqSSRFy→GRF =









1

0.5dSTRxy
1

0.5dSTRxy
2

0.5dSTRxy
3









, (50)

which is related to the star sensors’ noise by





dSTRxy
1

dSTRxy
2

dSTRxy
3



 = RSSRFy→GRF





eSTRy
1

eSTRy
2

eSTRy
3



−RSSRFx→GRF





eSTRx
1

eSTRx
2

eSTRx
3



 (51)

We obtain the optimal quaternion by minimizing the weighted square-sum

S =
∑

x

(eSTRx)TP STRxeSTRx (52)

where

eSTRx =





eSTRx
1

eSTRx
2

eSTRx
3



 (53)

contains the star sensor noise and

P STRx =





1 0 0
0 1 0
0 0 0.01



 (54)

is the weighting matrix. The element being equal to 0.01 reflects that the attitude about the
boresight is 10 times less accurate than the attitude about the axes in the focal plane of the
star sensor. For convenience, we express S by

S =
∑

x

(ẽSTRx)T P̃ STRxẽSTRx (55)

where
ẽSTRx = RSSRFx→GRFeSTRx (56)

is the star sensor noise transformed to the GRF and

P̃ STRx = RSSRFx→GRFP STRx(RSSRFx→GRF)T (57)
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is obtained by variance propagation. By rearranging Eq. (51) to

ẽSTRy = dSTRxy + ẽSTRx, (58)

where

dSTRxy =





dSTRxy
1

dSTRxy
2

dSTRxy
3



 , (59)

we find that all ẽSTRy depend one single ẽSTRx because the dSTRxy are defined by the measure-
ments. Therefore, we can choose ẽSTRx as the parameters of this least-squares problem. Next,
we express S in dependence of the parameters ẽSTRx:

S =
∑

x

(ẽSTRx)T P̃ STRxẽSTRx (60)

= (ẽSTRx)T P̃ STRxẽSTRx +
∑

y 6=x

(ẽSTRy)T P̃ STRyẽSTRy (61)

= (ẽSTRx)T P̃ STRxẽSTRx +
∑

y 6=x

(dSTRxy + ẽSTRx)T P̃ STRy(dSTRxy + ẽSTRx) (62)

The first derivative of S with respect to ẽSTRx is

∂S

∂ẽSTRx
= 2P̃ STRxẽSTRx + 2

∑

y 6=x

P̃ STRy(dSTRxy + ẽSTRx) (63)

= 2(
∑

y

P̃ STRy)ẽSTRx + 2
∑

y 6=x

P̃ STRydSTRxy (64)

Setting the first derivative to zero and solving for ẽSTRx gives

ẽSTRx = −(
∑

y

P̃ STRy)−1(
∑

y 6=x

P̃ STRydSTRxy). (65)

By inserting this estimate of ẽSTRx into Eq. (46), we obtain the optimal quaternion

qoptimal IRF→SSRFx = qmeasured IRF→SSRFx(qnoise STRx)∗ (66)

= qmeasured IRF→SSRFx

[

1
−0.5eSTRx

]

(67)

= qmeasured IRF→SSRFx

[

1
−0.5RGRF→SSRFxẽSTRx

]

. (68)

where qoptimal IRF→SSRFx replaces qtrue IRF→SSRFx.
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4.2 Combination of angular velocities

Let Rk be the so-called mounting matrix describing the rotation from the GRF to the SSRFk,
where k is the identifier of the star sensor. The transformation for the k-th star sensor reads

ω
(SSRF )
k = Rkω

(GRF )
k . (69)

The accuracy of the angular velocities in the SSRFk is represented by the covariance matrix

Σk ≡ Σ(ω
(SSRF )
k ) = σ2





qx 0 0
0 qy 0
0 0 qz



 . (70)

The top panel of Fig. 6 shows the power spectral densities (PSDs) of the angular velocities of
a single star sensor in the associated SSRF. Assuming that PSDs largely reflect measurement
noise above 10 mHz, we can conclude that the noise level of ωz is ten times larger than the
noise level of ωx and ωy in the SSRF. For this reason, we choose qx = qy = 1 and qz = 102.
Since the choice of σ2 has no influence on the least-squares estimate of the angular velocities,
we set σ2 = 1 for convenience. Because the true angular velocities of the three star sensors are
equal in the GRF, we assume that

ω(GRF ) ≡ E(ω
(GRF )
1 ) = E(ω

(GRF )
2 ) = E(ω

(GRF )
3 ), (71)

where E is the expectation operator. Then, we obtain from Eq. (69)

E(ω
(SSRF )
k ) = Rkω

(GRF ). (72)

Assuming that the data of different star sensors are uncorrelated, the least-squares estimate of
the angular velocities in the GRF is

ω(GRF ) = (
∑

k

RT
kΣ

−1
k Rk)

−1
∑

k

RT
kΣ

−1
k ω

(SSRF )
k . (73)

Fig. 7 shows that the angular velocities resulting from the star sensor combination do not suffer
from the less accurately measured boresight component of the individual star sensors as it was
the case in the lower plot of Fig. 6.
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Figure 7: Angular velocities in the GRF resulting from the combination of star sensor one and

two. The PSDs reflect measurement noise above 10 mHz. We used data of 23 Nov 2009 for

this plot.
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5 Redundancy

Eqs. (14) and (15) contain in total eleven independent unknowns per epoch: three linear accel-
erations d, three angular velocities Ω, from which angular accelerations Ω̇ follow by differenti-
ation, and five independent gravity gradients V , taking the trace condition

trace(V ) = Vxx + Vyy + Vzz = 0 (74)

into account. These unknowns are determined from 21 measurements per epoch: 18 accelerome-
ter measurements ai, i = 1, . . . , 6, and three angular velocities ΩS measured by the star sensors,
from which angular accelerations Ω̇S follow by differentiation. Thus, accelerometer and star
sensor measurements are redundant and it is possible to find 21 - 11 = 10 conditions, which we
derive in the following.

From Eq. (14) follow six are linear independent conditions

ac,ij − ac,kl
!
= 0, ij 6= kl, (75)

where E denotes the expectation operator. From Eq. (15) follows

AdL
−1 −L−1AT

d = Ω̇
!
= Ω̇S, (76)

which gives three conditions since both the left and right-hand side of the equations are skew-
symmetric matrices with zeros on the diagonal. Further, Eq. (15) gives

AdL
−1 +L−1AT

d = −V +Ω2 !
= −V +Ω2

S, (77)

from which the last condition follows in combination with the trace condition trace(V ) = 0.

trace(AdL
−1 +L−1AT

d ) = trace(Ω2)
!
= trace(Ω2

S) (78)

Eqs. (75)–(78) are used by several authors in different ways. In the following, we provide a
short overview.

5.1 Approach of [Rispens and Bouman(2011)]

[Rispens and Bouman(2011)] use a (non-GOCE) gravity field model for calculating V and
star sensor measurements Ω̇S and Ω2

S in combination with Eq. (15) for estimating calibration
parameters, which is in principal equivalent to using Eqs. (76) and (77). Further, they employ
a stochastic model that accounts for temporal correlations in the conditions’ misclosures. They
demonstrate that this approach works well with nominal data. However, the validation of their
results by gravity field models such as ITG-Grace2010s is limited by the model that was used
for calculating V .
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5.2 Approach of [Kern et al.(2007)]

[Kern et al.(2007)] propose to filter Eqs. (75) and (77) to the frequency band 50–100 mHz and
assume that V = 0, both for shaking and nominal data. They use a stochastic model that
accounts for correlations between the misclosures of different conditions. It should be noted
that star sensor data is only used for determining the long wavelength part (frequencies lower
than 10 mHz) of the angular velocities, which makes it difficult to estimate common scale
factors reliably with this method, in particular from nominal data.

5.3 ESA’s baseline method

ESA’s baseline method described in [Frommknecht et al.(2011)], which we use as reference
in Sect. 7 and 7.1, is tailored to the signals generated in a satellite shaking. These signals
are the linear and angular accelerations in the frequency band 50–100 mHz and the angular
accelerations at 1.3 mHz. The baseline method assumes that when shaking data is filtered to
50–100 mHz, Eq. (15) can be approximated by

Ad =
1

2
Ω̇L, (79)

which simplifies Eq. (77) to

AdL
−1 +L−1AT

d = 0. (80)

Then, the calibration parameters are estimated in a two-step approach. In the first step, the
baseline method uses Eqs. (75) and (80), filtered to the frequency band 50–100 mHz. Any
deviation of the ICMs in Eq. (41) from a priori assumed values leads to misclosures in the
conditions that are equal to linear combinations of the accelerations dx, dy, dz, ω̇x, ω̇y and ω̇z,
from which the calibration parameters are estimated. Since it is not possible to estimate all
calibration parameters from the accelerometer data alone, the conditions are complemented by
28 additional conditions. For example, one of the additional conditions is that the average of
the scale factors equals one. Consequently, the calibration parameters determined in the first
step are regarded as relative calibration parameters. In the second step of the baseline method,
the absolute scale factor of the gradiometer and the relative orientation of the gradiometer and
star sensors are determined by fitting the angular velocities of gradiometer to those of the star
sensors, both filtered to a frequency band that is 1 mHz wide and centred at 1.3 mHz. While
the absolute scale factor is used to scale the relative calibration parameters obtained in the first
step, the relative orientation is not further used.
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5.4 Ideal approach

From a methodological point of view, Eqs. (75)–(78) should be used directly to determine
calibration parameters. In the following, we outline how this works and where one encounters
numerical problems. It should be pointed out that, as a side effect, one determines also adjusted
accelerometer and star sensor measurements, from which gravity gradients can be calculated.
Thus, the purpose of the method described in the following is not only to determine calibration
parameters, but also to calculate gravity gradients. The later is currently performed in the
gradiometer Level 1b processing as described in Sect. 8.

Let us first consider measurement noise ñi in the uncalibrated accelerations ãi. Then, Eq. (39)
changes to

ai + ni = Mi(ãi + ñi), (81)

where ni is measurement noise in the calibrated accelerations ai. Further, let us denote noise
in the star sensor angular rates ωS,x, ωS,y, and ωS,z by φS,x, φS,y, and φS,z, respectively. Then,
inserting Eq. (81) into Eq. (75) gives

1

2
(Mi(ãi + ñi) +Mj(ãj + ñj))−

1

2
(Mk(ãk + ñk) +Ml(ãl + ñl)) = 0, ij 6= kl. (82)

Further, Eq. (76) changes to

AdL
−1 −L−1AT

d = Ω̇S + Φ̇S, (83)

where

Ad =
1

2

[

M1(ãd,1 + ñd,1) M2(ãd,2 + ñd,2) M3(ãd,3 + ñd,3)
]

−1

2

[

M4(ãd,4 + ñd,4) M5(ãd,5 + ñd,5) M6(ãd,6 + ñd,6)
]

. (84)

Finally, Eq. (78) becomes

trace(Ad)L
−1 +L−1AT

d ) = trace((ΩS +ΦS)
2), (85)

where Ad is defined as in Eq. (84).

The conditions in Eqs. (82)–(85) are non-linear functions of observations and calibration param-
eters. Therefore, the calibration parameters should be estimated in a mixed model least-squares
adjustment from the statistical point of view. We discuss later on the problems ones encounters
when implementing this approach. The linearized conditions have the general form

0 = f(x,v) ≈ f(x0,v0) +A(x− x0) +BT (v − v0). (86)

The covariance matrix Σ of the observations can be modelled as block-diagonal matrix, where
each block is symmetric Toeplitz matrix. The least-squares estimates of the parameters and
residuals read

x = x0 + (AT (BTQB)−1A)−1AT (BTQB)−1(BTv0 − f(x0,v0)) (87)
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and
v = −QB(BTQB)−1(f(x0,v0) +A(x− x0)−BTv0), (88)

respectively.

Since Eqs. (83) and (85) contain star sensor angular accelerations and star sensor anguler

velocities. These can be related by ω̇S,x(n) =
ωS,x(n+1)−ωS,x(n−1)

2∆t
, which needs to be taken into

account when determining matrix B.

Let us define I+1 and I−1 as shift matrices, for example

I+1
3×3

=





0 1 0
0 0 1
0 0 0



 I−1
3×3

=





0 0 0
1 0 0
0 1 0



 . (89)

Then, matrix B has the following structure.

BT

10N×21N
=























H1
6×18

⊗ I
N×N

0
6N×N

0
6N×N

0
6N×N

H2
1×18

⊗ I
N×N

1
2∆t

(I+1 − I−1)
N×N

0
N×N

0
N×N

H3
1×18

⊗ I
N×N

0
N×N

1
2∆t

(I+1 − I−1)
N×N

0
N×N

H4
1×18

⊗ I
N×N

0
N×N

0
N×N

1
2∆t

(I+1 − I−1)
N×N

H5
1×18

⊗ I
N×N

diag(ωS,x)
N×N

diag(ωS,y)
N×N

diag(ωS,z)
N×N























(90)

Note that this structure assumes that ωS,x(0), ωS,y(0), ωS,z(0), ωS,x(N+1), ωS,y(N+1), ωS,z(N+
1) are estimated as additional parameters.

MatrixBTQB is symmetric and positive definite, but has no Toeplitz structure, mainly because
the last N rows of BT contain diagonal matrices with non-constant diagonals. Further, N
should be at least in the order of 105 in case of a sampling rate of 1 Hz, such that the stochastic
model utilized for matrix Q can capture the increase in the noise PSD below the measurement
band. Thus, the calculation of AT (BTQB)−1A is numerically very demanding and cannot be
performed on a single PC in praxis. For this reason, we do not pursue this approach.

Note that alternatively one can treat ωx, ωy and ωz as parameters. Then, matrix BTQB is a
block-matrix, where each block is a symmetric Toeplitz matrix. This allows for using vector-
autoregressive (VAR) filters (cite Hamilton and Whittle) to efficiently apply (BTQB)−1 to a
vector or matrix with not too many columns. Since in this case, A would have more than
3N columns due to the angular velocities, a direct computation of AT (BTQB)−1A is not
an option. One could use the pre-conditioned conjugate gradient (PCG) algorithm to solve
AT (BTQB)−1A(x − x0) = AT (BTQB)−1(BTv0 − f(x0,v0)) since matrix-vector products
of type Ax and ATy are easily calculated due to the sparseness of matrix A. A good pre-
conditioner is a must in this case because matrix (AT (BTQB)−1A) has a bad conditioner
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number (tests showed it is in the order of 107). However, we did not find a matrix that can
be implemented in praxis while approximating (AT (BTQB)−1A) well enough to improve the
condition number of the problem significantly.
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6 Calibration of the gradiometer measurements

During the research fellowship, a method for estimating calibration parameters from nominal
as well as shaking data was developed on the basis of [Kern et al.(2007)]. The method is based
on twelve conditions for accelerometer and star sensor data as well as a stochastic model for
the misclosures in these conditions. The latter is the new and unique feature of the method due
to which it is possible to estimate calibration parameters not only from shaking data but also
from nominal data. Moreover, we made important modifications to the conditions presented in
[Kern et al.(2007)]. In Sect. 6.1, we outline the method before providing a detailed description
of the conditions and the stochastic model, in Sect. 6.2 and Sect. 6.3, respectively. Results
of the calibration for November 2009 to May 2010 are presented in Sect. 7. The validation of
these results is documented in Sect. 7.1.

6.1 Outline of the estimation method

An overview over the method is provided by the flowchart in Fig. 8. In the following, we explain
the individual boxes in the flowchart. We start by writing the conditions in the form

0 = f(x) + e (91)

where 0 = f(x) are the conditions, x contains the calibration parameters, and e are the
misclosures in the conditions. The conditions are described in detail in Sect. 6.2. Because f(x)
is non-linear in our case, we linearize it by means of a Taylor series expansion truncated after
the linear term:

f(x) = f(x0) + J(x0)(x− x0) (92)

Here, J(x0) is the Jacobian matrix, i.e. the matrix of the first derivatives of f(x). Inserting
Eq. (92) into Eq. (91) yields the linearized conditions

Jx0 − f = Jx+ e, (93)

where J ≡ J(x0) and f ≡ f(x0). The calibration parameters are estimated by minimizing
~eTΣ−1~e, where Σ ≡ Σ(e) is the covariance matrix. It is described in detail in Sect. 6.3. The
estimated calibration parameters are obtained by

x = (JTΣ−1J)−1JTΣ−1(Jx0 − f)

= x0 − (JTΣ−1J)−1JTΣ−1f . (94)

The computation of the calibration parameters according to Eq. (94) involves the inverse of
the covariance matrix. In our application, we compute 90 sets of calibration parameters for the
period 1 Nov 2009 to 17 May 2010. Since each set is based on two days of nominal data, the
size of Σ is 2073600× 2073600 where 2073600 = 12 conditions × 172800 seconds (the sampling
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(ideal gradiometer)

error time series e
(i)
n linearized conditions

Jx0 − f = Jx

filter coefficients f
(i)
m

filtered error

time series ē
(i)
n

variances σ2
i

covariances σi,j

transformed conditions

J̃x0 − f̃ = J̃x

J̄x0 − f̄ = J̄x

filtered conditions

new parameters x

x0 = x

max(|x−x0|)
max(|x|)

< 10−10?

yes

final parameters x

no

initial parameters x0

Figure 8: Flowchart of the method for the estimation of calibration parameters, using the same

symbols as in Sect. 6.1 to 6.3.
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period is one second). Furthermore, the computation of one set of calibration parameters
involves approximately 30 iterations due to the linearization and the stochastic model (cf.
Fig. 8). For all these reasons, it is in our application practically impossible to compute Eq. (94)
in a straight forward way on a single PC in a reasonable time. However, we can tremendously
reduce the complexity of the computation by factorizing the inverse covariance matrix according
to

(Σ(e))−1 = F TGTGF . (95)

Here, F models the temporal correlations of the misclosure time series in the individual con-
ditions while G models the variances of and covariances between the misclosure time series of
the different conditions. A detailed derivation of F and G is provided in Sect. 6.3.1 and 6.3.2,
respectively. We use the factorization in Eq. (95) for transforming the linearized conditions in
Eq. (93) in to steps. The first step yields

J̄x0 − f̄ = J̄x+ ē, (96)

where J̄ = FJ , f̄ = Ff and ē = Fe. The second steps gives

J̃x0 − f̃ = J̃x+ ẽ, (97)

where J̃ = GJ̄ , f̃ = Gf̄ and ẽ = Gē. Since the covariance matrix of the transformed
misclosures is

Σ(ẽ) = GF (F TGTGF )−1(GF )T = I, (98)

the calibration parameters are computed by

x = x0 − (J̃T J̃)−1J̃T f̃ . (99)

This equation needs to be computed several times, each time x0 being x of the previous
computation, until the truncation error in Eq. (92) becomes sufficiently small. A good choice
for the initial x0 are calibration parameters corresponding to an ideal gradiometer, i.e. all scale
factors are equal to one and all other calibration parameters are equal to zero. Using a good
initial x0 is particularly important for the modelling of temporal correlations in the conditions.

6.2 Conditions for gradiometer and star sensor data

The twelve conditions comprise of six conditions for CM accelerations and six conditions for
DM accelerations similar to those in [Kern et al.(2007)]. They result from linear combinations
of Eq. (14) and (15). The conditions are formulated in terms of calibrated CM and DM
accelerations, which we regard as a linear function of the calibration parameters according
to Eq. (41). In the following, we list the function f(x) of the conditions in Eq. (91). The
conditions for CM accelerations are given by

f (1) = (ac,36,x − ac,25,x)(
1

s3,x
+

1

s6,x
+

1

s2,x
+

1

s5,x
), (100)
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f (2) = (ac,36,x − ac,14,x)(
1

s3,x
+

1

s6,x
+

1

s1,x
+

1

s4,x
), (101)

f (3) = (ac,14,z − ac,36,z)(
1

s1,z
+

1

s4,z
+

1

s3,z
+

1

s6,z
), (102)

f (4) = (ac,25,y − ac,14,y)(
1

s2,y
+

1

s5,y
+

1

s1,y
+

1

s4,y
), (103)

f (5) = (ac,25,z − ac,14,z)(
1

s2,z
+

1

s5,z
+

1

s1,z
+

1

s4,z
) (104)

and

f (6) = (ac,36,y − ac,25,y)(
1

s3,y
+

1

s6,y
+

1

s2,y
+

1

s5,y
), (105)

where the superscript serves as an identifier for the condition. The conditions are composed
of two parts: The first part containing a difference of CM accelerations is based on Eq. (14).
The second part containing a sum of reciprocal scaling factors is required for the following
reason. If the condition was only the difference of CM accelerations, it would be fulfilled when
all calibration parameters are equal to zero. Thus, the least-squares estimate of the calibration
parameters would be biased towards zero. This contradicts in particular our expectation that
the scaling factors are approximately equal to one. The purpose of the second factor is to
counteract such a biased estimation. The conditions hold for all frequencies.

Three of the six conditions for DM accelerations use angular accelerations ω̇ measured by the
star sensors:

f (7) =
1

Ly

ad,25,z −
1

Lz

ad,36,y − ω̇x (106)

f (8) =
1

Lz

ad,36,x −
1

Lx

ad,14,z − ω̇y (107)

f (9) =
1

Lx

ad,14,y −
1

Ly

ad,25,x − ω̇z (108)

The conditions are based on linear combinations of Eq. (15). The angular accelerations ω̇

are computed by first using Eq. (73) to obtain angular velocities ω, then applying numerical
differentiation. The conditions hold for all frequencies.

The final three conditions are different for nominal and shaking data. In both cases the con-
ditions are based on Eq. (15). The conditions hold only in the upper measurement bandwidth
(UMB) ranging from 50–100 mHz, in which the gravity gradient signal is much smaller than
the DM acceleration noise [Cesare and Catastini(2008)]. Therefore, we assume V = 0 in the
UMB.

In case of nominal data, we assume that also the centrifugal accelerations are much smaller
than the DM acceleration noise in the UMB. This means that Ω2 = 0 in addition to V = 0 in
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Eq. (15), leading to the following conditions:

f (10) = 2ad,14,x(
1

s1,x
+

1

s4,x
) (109)

f (11) = 2ad,25,y(
1

s2,y
+

1

s5,y
) (110)

f (12) = 2ad,36,z(
1

s3,z
+

1

s6,z
) (111)

These conditions are composed of two parts: Differential mode accelerations and sums of re-
ciprocal scaling factors. The latter have the same purpose as in Eqs. (100)–(105).

The satellite shaking is designed to generate pseudo-random linear and angular accelerations in
the UMB and angular accelerations at 1.3 mHz. Thus, the centrifugal accelerations Ω2(pi−pj)
are non-zero in the UMB in case of shaking data. Consequently, we assume only V = 0 in
Eq. (15), leading to the following conditions:

f (10) = 2ad,14,x + Lx(ω
2
y + ω2

z) (112)

f (11) = 2ad,25,y + Ly(ω
2
x + ω2

z) (113)

f (12) = 2ad,36,z + Lz(ω
2
x + ω2

y) (114)

Here, the angular velocities ω are computed from star sensor data according to Eq. (73).

The accelerometer and star sensor data are recorded at a fixed sampling rate. This means that
accelerations, angular velocities and angular accelerations are available in form of time series.
This gives us the options to sort the elements of f in Eq. (91) either by condition or by time.
Because it supports the factorization in Eq. (95), we arrange the conditions in the following
way:

f =







f (1)

...
f (12)






, where f (i) =







f
(i)
1
...

f
(i)
N






(115)

Then, the vector f comprises of twelve time series f
(i)
n , where the superscript i is the identifier

of the condition and the subscript n corresponds to the time.

6.3 Covariance matrix

The measured CM and DM accelerations as well as the angular velocities computed from star
sensor data contain measurement noise. The measurement noise propagates to the misclosure
e in Eq. (91). When setting up the covariance matrix Σ(e), we need to take into account that
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• misclosures in the different conditions are correlated,

• misclosures in the individual conditions are correlated in time and

• the variance of the misclosures is different for each condition.

Correlations between the misclosures in different conditions result from the fact that the condi-
tions use the same accelerometer and star sensor data. Correlations in time result from e.g. the
numerical differentiation when deriving angular accelerations from star sensor attitude data.
Different variances can be justified by the fact that e.g. the accelerometers have ultra-sensitive
and less-sensitive axes.

The arrangement of the conditions as indicated in Eq. (115) implies that the vector e comprises

of twelve misclosure time series e
(i)
n . According to this arrangement, the covariance matrix can

be written as

Σ(e) =











σ2
1Q1,1 σ1,2Q1,2 . . . σ1,12Q1,12

σ2,1Q2,1 σ2
2Q2,2 . . . σ2,12Q2,12

...
...

. . .
...

σ12,1Q12,1 σ12,2Q12,2 . . . σ2
12Q12,12











, (116)

where Qi,j ≡ Q(e(i), e(j)) is the covariance matrix of the misclosure time series e
(i)
n and e

(j)
n ,

which models the correlations in time. The variances σ2
i and the covariances σi,j model the cor-

relations between the misclosures in the different conditions and the variances of the misclosures
in the individual conditions.

In our application, the blocks Qi,j are huge in size. As already mentioned, we use two days
of nominal data recorded at a sampling rate of 1 Hz, which results in blocks Qi,j of size
172800 × 172800. However, we assume that the misclosure time series are stationary which
seems justified from the analysis of misclosures in the conditions (see Fig. 9– 12). Note that
we require stationarity only for a period of two days. Then, the diagonal blocks are symmetric
Toeplitz matrices

Qi,i =











γ
(i)
0 γ

(i)
1 . . . γ

(i)
N−1

γ
(i)
1 γ

(i)
0 . . . γ

(i)
N−2

...
...

. . .
...

γ
(i)
N−1 γ

(i)
N−2 . . . γ

(i)
0











, (117)

where γ
(i)
0 , . . . , γ

(i)
N−1 are the autocovariances of the misclosure time series e

(i)
n . Furthermore, the

off-diagonal blocks are Toeplitz matrices

Qi,j =











γ
(i,j)
0 γ

(i,j)
1 . . . γ

(i,j)
N−1

γ
(i,j)
−1 γ

(i,j)
0 . . . γ

(i,j)
N−2

...
...

. . .
...

γ
(i,j)
1−N γ

(i,j)
2−N . . . γ

(i,j)
0











, (118)
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where γ
(i,j)
1−N , . . . , γ

(i,j)
N−1 are the cross-covariances of the misclosure time series e

(i)
n and e

(j)
n .

In the following, we derive the matrices F and G in Eq. (95) from the covariance matrix Σ(e),
assuming that it has the structure in Eq. (116). Moreover, we show how the multiplication by
these matrices can be implemented efficiently.

6.3.1 Derivation of matrix F

The Toeplitz structure of the blocks Qi,i allows for the modelling of the correlations in time of

the individual misclosure time series e
(i)
n by a whole range of numerical efficient operators, confer

[Schuh(1996)] for an overview. We choose symmetric moving-average (SMA) decorrelation
operators, which are defined by

ē(i)n =
M
∑

m=−M

f (i)
m e

(i)
n−m, f

(i)
−m = f (i)

m , (119)

where f
(i)
m are the coefficients of the decorrelation operator, e

(i)
n is the correlated misclosure time

series, ē
(i)
n is the decorrelated misclosure time series and M is the order of the decorrelation

operator. We show examples of the decorrelated misclosure time series ē
(i)
n in Fig. 9– 12. The

effect of the decorrelation becomes particularly visible for i = 4, . . . , 9. The coefficients of the
decorrelation operator can be derived in the following way.

The power spectral density (PSD) of the misclosure time series P
(i)
e (ω) is the Fourier transform

of the autocovariances γ
(i)
n :

P (i)
e (ω) = F (γ(i)

n ) (120)

The PSD of the decorrelated misclosure time series P
(i)
ē (ω) is related to P

(i)
e (ω) by

P
(i)
ē (ω) = P

(i)
f (ω)P (i)

e (ω), (121)

where P
(i)
f (ω) is the PSD of the SMA decorrelation operator. The objective is that the time

series ē
(i)
n corresponds to white noise, which implies P

(i)
ē (ω) = const. Thus, we choose the

coefficients f
(i)
m such that

P
(i)
f (ω) =

1

P
(i)
e (ω)

. (122)

The PSD of the SMA decorrelation operator is related to the coefficients f
(i)
m by

|F (f (i)
m )|2 = P

(i)
f (ω), (123)

where F (f
(i)
m ) denotes the Fourier transform of the coefficients. Note that the sign of F (f

(i)
m )

is irrelevant. The only restriction is that F (f
(i)
m ) is a real and even function, because the

Page 43/108

GOCE gradiometer calibration and Level 1b data processing

Date 06/01/2012



ESA UNCLASSIFIED - For Official Use

2000 4000 6000 8000 10000
−3

−2

−1

0

1

2

3

4

5
x 10

−5

Time (seconds)

 

 

2000 4000 6000 8000 10000
−3

−2

−1

0

1

2

3

4

Time (seconds)

 

 

misclosure e
(1)
n decorrelated misclosure ē
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Figure 9: Misclosures e
(i)
n and decorrelated misclosures ē

(i)
n for i = 1, 2, 3.
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Figure 10: Misclosures e
(i)
n and decorrelated misclosures ē

(i)
n for i = 4, 5, 6.
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Figure 11: Misclosures e
(i)
n and decorrelated misclosures ē

(i)
n for i = 7, 8, 9.
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n and decorrelated misclosures ē

(i)
n for i = 10, 11, 12.
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coefficients f
(i)
m are real and f

(i)
−m = f

(i)
m . Therefore, the coefficients can be obtained by

f (i)
m = F−1(

√

P
(i)
f (ω)), (124)

where F−1 denotes the inverse Fourier transform.

The coefficients f
(i)
m enter the matrix F in the following way. Eq. (119) for filtering a single

misclosure time series can be written in matrix notation as

ē(i) = Fie
(i), (125)

where

Fi =























f
(i)
0 f

(i)
1 . . . f

(i)
M

f
(i)
1 f

(i)
0

. . . . . .
...

. . . . . . . . . f
(i)
M

f
(i)
M

. . . . . . . . .
. . . . . . f

(i)
0 f

(i)
1

f
(i)
M . . . f

(i)
1 f

(i)
0























. (126)

Then, decorrelating all misclosure time series can be written as

ē = Fe, (127)

where ē contains the decorrelated misclosure time series and

F =







F1

. . .

F12






. (128)

Let us investigate the effect of the decorrelation operator on the covariance matrix. By covari-
ance propagation we find

Σ(ē) = FΣ(e)F T

=







σ2
1F1Q1,1F

T
1 . . . σ1,12F1Q1,12F

T
12

...
. . .

...
σ12,1F12Q1,12F

T
12 . . . σ2

12F12Q12,12F
T
12






. (129)

We have computed coefficients for which P
(i)
ē (ω) = const. Since the autocovariances γ̄

(i)
n of

the filtered time series ē
(i)
n are related to the PSD by the inverse Fourier transform γ̄

(i)
n =

F−1(P
(i)
ē (ω)), it follows that

γ̄(i)
n =

{

const, n = 0

0, n 6= 0
. (130)
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Therefore, the diagonal blocks are

Q(ē(i), ē(i)) = FiQi,iF
T
i ∝ I. (131)

The off-diagonal blocks Q(ē(i), ē(j)) reflect the cross-covariances γ
(i,j)
n between the time series

ē
(i)
n and ē

(j)
n . Since ē

(i)
n and ē

(j)
n have no correlations in time, we assume that also their cross-

covariances shows no correlations in time. Based on this assumption we find

γ̄(i,j)
n =

{

const, n = 0

0, n 6= 0
, (132)

which leads to
Q(ē(i), ē(j)) = FiQi,jF

T
j ∝ I. (133)

Thus, the covariance matrix of the decorrelated misclosure time series is

Σ(ē) =







σ2
1 . . . σ1,12
...

. . .
...

σ12,1 . . . σ2
12






⊗ I, (134)

where ⊗ denotes the Kronecker product.

6.3.2 Derivation of matrix G

The next step is to choose matrix G in

ẽ = GFe = Gē (135)

such that
Σ(ẽ) = GΣ(ē)GT = I. (136)

Let U be the upper triangular matrix resulting from the Cholesky factorization

UTU =







σ2
1 . . . σ1,12
...

. . .
...

σ12,1 . . . σ2
12






. (137)

Then, the covariance matrix of the decorrelated time series can be expressed by

Σ(ē) = UTU ⊗ I = (U ⊗ I)T (U ⊗ I), (138)

where the right-hand side is the Cholesky factorization of Σ(ē). Therefore, we set

G = (U ⊗ I)−T = U−T ⊗ I. (139)
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For the covariance matrix of ẽ we find

Σ(ẽ) = GΣ(ē)GT

= (U−T ⊗ I)(UTU ⊗ I)(U−T ⊗ I)T

= U−TUTUU−1 ⊗ III

= I. (140)

6.3.3 Practical implementation

The PSD of the misclosure time series is obtained in the following way. Based on the calibration
parameters we compute the misclosure time series e

(i)
n . Then, we estimate the PSD of the

misclosure time series P
(i)
e (ω) by Welch’s method [Welch(1967)] using a Hanning window for

reducing spectral leakage [Harris(1978)]. Next, we set the PSD of the SMA decorrelation
operators equal to the inverse PSD of the misclosure time series according to Eq. (122). Before
we proceed with the computation of the coefficients of the SMA decorrelation operators, we
need to consider that

• the accelerometer biases cause biases in the misclosure time series,

• different de-aliasing filters have been applied to accelerometer and star sensor data, and

• a subset of the conditions hold only in the UMB.

In order to avoid any influence of biases, we set Pf (ω) = 0 for ω = 0Hz. In this way, we obtain
SMA decorrelation operators which remove any biases from the misclosure time series. Different
de-aliasing filters were applied to accelerometer and star sensor data, which causes systematic
differences in the high frequencies. For this reason, we set Pf (ω) = 0 for ω > 0.2Hz. In case of
the conditions which hold only for the UMB, we set Pf (ω) = 0 for ω 6∈ [0.05Hz, 0.1Hz]. The
effect of the latter is that the SMA decorrelation operators model the correlations inside the
UMB and, at the same time, are bandpass filters with the UMB as passband.

The next step is the computation of the decorrelation operator coefficients according to
Eq. (124). Applying the SMA decorrelation operator to the misclosure time series yields the

decorrelated misclosure time series ē
(i)
n . Based on the latter, we estimate variances and covari-

ances by

σ2
i =

1

N

N
∑

n=1

(ē(i)n )2 (141)

and

σi,j =
1

N

N
∑

n=1

ē(i)n ē(j)n , (142)
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respectively. Finally, we compute new calibration parameters based on the decorrelation op-
erator coefficients, variances and covariances. This procedure is repeated until the calibration
parameters converge (cf. Fig. 8).

The matrix J̃ and the vector f̃ in Eq. (99) are computed in two steps. The first step is the
computation of

J̄ = FJ =







F1J1
...

F12J12






and f̄ = Ff =







F1f1
...

F12f12






. (143)

The products FiJi and Fifi correspond to the convolution of the columns of the matrices Ji

and vectors fi with the decorrelation operator coefficients f
(i)
m according to Eq. (119). The

convolution can be implemented efficiently using fast Fourier transform (FFT) techniques. The
second step is the computation of

J̃ = GJ̄ = (U−T ⊗ I)J̄ =







∑1
i=1 U

−T
1,i J̄i

...
∑12

i=1 U
−T
12,iJ̄i






(144)

and

f̃ = Gf̄ = (U−T ⊗ I)f̄ =







∑1
i=1 U

−T
1,i f̄i

...
∑12

i=1 U
−T
12,if̄i






, (145)

where U−T
m,n is the element of the matrix U−T in the m-th row and n-th column.

6.3.4 Example for correlations in time

In order to show that in particular the modelling of temporal correlations is vital for the
developed method, we show in Fig. 13 an example of the PSDs of the misclosure time series
e
(i)
n . Depending on the noise characteristic, we can subdivide the misclosure time series into four
groups: The misclosure time series e

(1)
n , e

(2)
n and e

(3)
n are computed according to Eqs. (100)–(102)

from data of the ultra-sensitive accelerometer axes only. The computation of the misclosure time
series e

(4)
n , e

(5)
n and e

(6)
n according to Eqs. (100)–(102) involves data of less sensitive accelerometer

axes, leading to a higher noise level in comparison to the misclosure time series e
(1)
n , e

(2)
n and e

(3)
n .

Furthermore, the misclosure time series e
(7)
n , e

(8)
n and e

(9)
n are based angular accelerations which

are obtained by double numerical differentiation of the star sensor attitude data, resulting in
coloured noise whose PSD is approximately proportional to f 4, where f is the frequency. The
misclosure time series e

(10)
n , e

(11)
n and e

(12)
n are computed according to Eqs. (109)–(111) using

only accelerometer data of ultra-sensitive axes. In comparison to the misclosure time series
e
(1)
n , e

(2)
n and e

(3)
n , half the number of accelerations are used in the conditions, leading to lower

noise level.
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Figure 13: PSDs of the misclosure time series. The PSDs show that the conditions can be

subdivided into four groups based on the noise characteristics. We plotted a different legend

box for each group. We used data of 19 and 20 Nov 2009 for this plot. It should be noted that

P
(7)
e , P

(8)
e and P

(9)
e are shown in the unit 10−12s−2/

√
Hz while the other PSDs are shown in

the unit 10−12ms−2/
√
Hz.
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7 Results of calibration parameter estimation

Using the method presented in this report, we computed time series of calibration parameters
for the period from 1 Nov 2009 to 17 May 2010. Each element of the time series is based on
two days of nominal data. We used the following Level 1b products as input for the method.

• EGG NOM 1b (EGG NCD DS dataset)
nominal CM and DM accelerations

• STR VC2 1b, STR VC3 1b
star sensor inertial attitude quaternions

• AUX EGG DB
lengths of the gradiometer arms,
rotation matrices relating the SSRFs to the GRF

Details on these products can be found in the GOCE L1b products user handbook
[SERCO/DATAMAT Consortium(2008)]. The data of the star sensors are combined using
the method described in App. 4.

In addition to the time series based on nominal data, we computed calibration parameters from
shaking data of 8/9 Oct 2009, 11/12 Jan 2010, 4/5 Mar 2010 and 6/7 May 2010. Each satellite
shaking lasted one day.

In Fig. 14 we show time series of three elements of the ICMs together with the results from
four satellite shakings. For comparison, we also show the elements of the ICMs computed by
the baseline method of the ground processing, which are shown in [Frommknecht et al.(2011)],
too. The input data for the baseline method was exactly the same data that we used, i.e. the
same CM and DM accelerations as well as the same angular velocities of the combination of
the star sensors.

The time series shown in Fig. 14 reveal that the calibration parameters change over time, which
can be seen most clearly in the top panel of Fig. 14. These changes can be characterized as slow
drifts. In order to assess the magnitude of the drifts in a simple way, we approximate the time
series of the elements of the ICMs by a linear trend (red line in Fig. 14). Note that the purpose
of the trend is thus not to provide the best possible description of the temporal evolution.
Because the time series contain some outliers, which result from outliers in the accelerometer
and star sensor data, we use a robust estimator (cf. App. A). Table 2 lists the slopes of the
linear trends, which we interpret as a measure for the drifts in the calibration parameters. The
drifts are in the order of 10−4 to 10−5 for scale factors (diagonal elements of Mij) and 10−5 to
10−6 for shear and rotation parameters (off-diagonal elements of Mij). This indicates a very
stable behaviour of the gradiometer over time.

Page 53/108

GOCE gradiometer calibration and Level 1b data processing

Date 06/01/2012



ESA UNCLASSIFIED - For Official Use

01−11−2009 01−12−2009 01−01−2010 01−02−2010 01−03−2010 01−04−2010 01−05−2010
0.0175

0.0176

0.0177

0.0178

0.0179

 

 
linear trend
nominal science mode
satellite shaking (presented method)
satellite shaking (baseline method)

01−11−2009 01−12−2009 01−01−2010 01−02−2010 01−03−2010 01−04−2010 01−05−2010

−4

−2

0

2

4

6

x 10
−4

 

 
linear trend
nominal science mode
satellite shaking (presented method)
satellite shaking (baseline method)

01−11−2009 01−12−2009 01−01−2010 01−02−2010 01−03−2010 01−04−2010 01−05−2010
5.3

5.4

5.5

5.6

5.7
x 10

−3

 

 
linear trend
nominal science mode
satellite shaking (presented method)
satellite shaking (baseline method)

Figure 14: Time series of selected elements of the ICMs. The top panel shows the element in

row four and column one of M14 (related to mapping of linear acceleration dx onto calibrated

DM acceleration ad,14,x) as an example of significant drifts. The middle panel shows the element

in row four and column six of M14 (related to mapping of uncalibrated DM acceleration ãd,14,z

onto calibrated DM acceleration ad,14,x) as an example of systematic differences. The bottom

panel shows the element in row five and column two of M25 (related to mapping of linear

acceleration dy onto calibrated DM acceleration ad,25,y) as an example of the smaller standard

deviation of results based on data recorded during the satellite shakings. The error bars reflect

±2σ, where σ is the standard deviation estimated in the least-squares adjustment.
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Table 2: Drifts of calibration parameters (slope of red lines in Fig. 14) in 10−6/month.

ICM M14, rows 4–6

D14 C14

37 ± 2 2 ± 2 -1 ± 1 -11 ± 14 0 ± 5 -19 ± 7

2 ± 34 75 ± 20 1 ± 10 -54 ± 53 -121 ± 64 2 ± 8

-7 ± 5 3 ± 3 43 ± 2 -8 ± 17 1 ± 2 -76 ± 20

ICM M25, rows 4–6

D25 C25

-20 ± 2 59 ± 2 0 ± 1 -44 ± 14 0 ± 5 -18 ± 7

0 ± 34 -29 ± 20 -4 ± 10 -34 ± 53 -52 ± 64 1 ± 8

-27 ± 5 2 ± 3 2 ± 2 -1 ± 17 -1 ± 2 -149 ± 20

ICM M36, rows 4–6

D36 C36

-3 ± 2 0 ± 2 3 ± 1 -62 ± 14 0 ± 5 -20± 7

0 ± 34 -3 ± 20 44 ± 10 -12 ± 53 -169 ± 64 35± 8

-10 ± 5 0 ± 3 1 ± 2 -8 ± 17 1 ± 2 -125± 20

When we compare the time series based on nominal data with the results from shaking data
in Fig. 14, we observe for some elements of the ICMs systematic differences. This can be most
clearly seen in the middle panel of Fig 14. One source of these differences is the different
characteristics of nominal and shaking data, due to which we use different conditions in the
method (cf. Sect. 6). Furthermore, we observe some systematic differences between the results
of the presented method and the baseline method for shaking data. Since the input data for
both methods have been the same, the conclusion is that also the methodology itself contributes
to the systematic differences. Whether the systematic differences have a significant impact on
the calibrated gravity gradients is discussed in Sect. 7.1.

Another interesting feature in Fig. 14 is that the results based on shaking data have smaller
formal errors than the time series based on nominal data. This indicates that the pseudo-
random signals generated in the course of the satellite shaking improve the precision of the
estimated calibration parameters.

7.1 Validation

The validation of the estimated calibration parameters is subdivided into four steps. In Sect. 7.2,
we verify the drifts of the calibration parameters by investigating the gravity gradient trace com-
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puted for each day in November and December 2009. In Sect. 7.3, we compare the performance
of the different calibration methods on the basis of the gravity gradient trace and differences of
calibrated gravity gradients to the ITG-Grace2010s gravity field model. In Sect. 7.4, we analyze
the sensitivity of gravity gradients to biases in the ICMs. The purpose of this is to identify the
ICM elements that are responsible for the differences in the performance of the gravity gradi-
ents. In Sect. 7.5, we highlight the connection between a prominent signature in the cross-track
CM accelerations ac,25,y and the gravity gradient Vyy that we observe near the magnetic poles.
Moreover, we discuss the relation of that signature and the calibration parameters.

7.2 Verification of drifts in the calibration parameters

The quality of the gravity gradients is degraded when the slow drifts in the calibration param-
eters are not taken into account. In order to demonstrate this, we calibrate nominal data from
November and December 2009 in two different ways.

The first way is using the nearest ICM in the past, which means in our case using the ICMs
of October 2009. This is equivalent to the implementation of the gradiometer calibration in
the ground processing that was used for the first official release of GOCE data. Meanwhile,
the ground processing was upgraded [Stummer et al.(2011)]. In particular, the gradiometer
calibration was upgraded such that the nearest ICMs in the past and future are linearly in-
terpolated. This is the second way in which we calibrate nominal data, which means that we
linearly interpolate the ICMs of October 2009 and January 2010. In this report, we refer to the
first way of calibrating gradiometer data as the old implementation in the ground processing
and to the second way as the current implementation in the ground processing.

It should be noted that the work presented in this paper as well as the work of
[Bouman et al.(2010)], who study the linear interpolation of one ICM element, namely the
differential scale factor ∆s25,y, and the work of [Stummer et al.(2011)], who suggest a different
reconstruction of the angular velocities from gradiometer and star sensor data, triggered the
upgrade of the ground processing.

We compute gravity gradients from both sets of calibrated nominal data. Fig. 15 shows the
square-roots of the power spectral densities (PSDs) of the gravity gradient trace computed for
each day in November and December 2009. We may note that the gravity gradient trace should
be equal to zero in case of perfect gravity gradients. We can clearly see that it worsens over
time in the frequency band 1–10 mHz when the ICM of October 2009 is used. In contrast, we
do not see any worsening over time when the ICMs are interpolated. This motivates studying
the linear interpolation of the ICMs further.
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Figure 15: Square-roots of the PSDs of the gravity gradient trace computed for each day of

November and December 2009. Top panel: Square-roots of the PSDs are computed using the

ICM of the baseline method from October 2009 (old implementation in the ground processing).

Bottom panel: Square-roots of the PSDs are computed based on the linear interpolation of the

ICMs of the baseline method from October 2009 and January 2010 (current implementation in

the ground processing). Vertical thick black lines indicate the measurement band 5–100 mHz.

7.3 Performance of the calibration methods

In this section, we compare the performance of the calibration methods indicated in Fig. 14, i.e.
(a) the baseline method (blue circles), the method presented in this paper based on (b) shaking
data (green diamonds) as well as on (c) nominal data (black dots), and (d) using the linear
trend estimated from results for nominal data (red lines). As discussed in Sect. 7.2, we linearly
interpolate the ICMs of the methods using shaking data between the nearest shakings in the
past and future in order to account for the drifts in the calibration parameters. In case of the
presented method using nominal data (black dots), we apply each set of calibration parameters
to the same data of two days, from which that set was estimated. Finally, using the linear trend
(red lines) for the calibration means using ICMs that change linearly with time according to
Fig. 14.

The comparison is based on the gravity gradient trace as well as differences of calibrated gravity
gradients to gravity gradients computed along the GOCE orbits from the ITG-Grace2010s
model, the inertial attitude quaternions in the EGG NOM 1b product, the reduced-dynamic
orbits and the quaternions relating the Earth-fixed reference frame to the inertial reference
frame in the SST PSO 2 product [European GOCE Gravity Consortium(2008), Visser(2009)].
ITG-Grace2010s is a satellite-only model calculated from 7 years of GRACE data up to spherical
harmonic degree and order 180. We perform the comparison for nominal data from November
to December 2009.
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The gradiometer is designed to have the lowest noise level in the measurement band 5–100
mHz. Below the measurement band, the noise level strongly increases as the frequency de-
creases. These features are clearly visible in the gravity gradient trace shown in Fig. 16. The
GRACE mission is designed to perform best for low to middle frequencies [Tapley et al.(2004)].
Therefore, we expect that the gravity gradients computed from the ITG-Grace2010s model can
serve as a reference up to some frequency within the measurement band of the gradiometer.
We show the differences ∆Vxx, ∆Vyy and ∆Vzz of calibrated gravity gradients with respect to
the ITG-Grace2010s model in Fig. 16. For ∆Vxx and ∆Vzz, we observe a small peak between
25–40 mHz. Since the peaks coincide with the frequency corresponding to 180 cycles-per-
revolution, we assume that they reflect noise in the higher spherical harmonic degrees of the
ITG-Grace2010s model.

The comparison in Fig. 16 shows that all considered calibration methods perform well within the
measurement band. We can see this in particular, when we compare calibrated and uncalibrated
gravity gradients. Larger differences between the considered calibration methods are only visible
below the measurement band. Judging on the gravity gradient trace, ∆Vxx and ∆Vzz, we obtain
the following ranking of the methods: the baseline method (solid blue line) performs best, the
method using nominal data (dashed black line) performs worst, and the methods using shaking
data (solid green line) and linearly approximating the results from nominal data (dashed red
line) are in between. For ∆Vyy, however, we observe that the method linearly approximating the
results from nominal data (dashed red line) performs better than the other methods between
2–9 mHz. We analyze in Sect. 7.4 which elements of the ICMs could be responsible for this.

7.4 Sensitivity of gravity gradients to biases in the elements of the

ICMs

In Sect. 7.3, we observed that the method linearly approximating the results from nominal data
performs better than the baseline method for Vyy. This indicates that we can use the method
presented in this paper to find corrections for the ICMs of the baseline method. Fig. 15 provides
no indication that drifts in the calibration parameters are not properly taken into account by
the linear interpolation of the ICMs. Thus, we consider only corrections that are constant over
time, i.e. biases in the ICM elements. This means, for example, that the correction for the
ICMs in October 2009 is the same as in January 2010.

In order to identify which ICM elements may need to be corrected, we analyze the sensitivity
of the gravity gradients to biases in the individual ICM elements. As benchmark, we use
the standard deviations in the measurement band 5–100 mHz of differences ∆Vxx, ∆Vyy and
∆Vzz of calibrated gravity gradients with respect to the ITG-Grace2010s model. The standard
deviations σ

(ref)
xx = 3.6 mE for ∆Vxx, σ

(ref)
yy = 3.2 mE for ∆Vyy and σ

(ref)
zz = 6.5 mE for ∆Vzz

obtained by using the ICMs of the baseline method serve as the reference.
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Figure 16: Square-roots of the PSDs for November to December 2009: gravity gradient trace

(top left panel), differences of gravity gradients Vxx (top right panel), Vyy (bottom left panel)

and Vzz (bottom right panel) with respect to the ITG-Grace2010s model. For reference, the

signal of the ITG-Grace2010s model is plotted in dashed-dotted cyan lines. Vertical thick black

lines indicate the measurement band 5–100 mHz. The vertical dashed black line indicates the

frequency corresponding to 180 cycles-per-revolution.
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Table 3: Change of the standard deviation of the gravity gradients in the measurement band

5–100 mHz due to random biases in ICM elements. The random biases are normal distributed

with zero mean and standard variation 10−4. Not listed changes of standard deviations are

equal to 0.0% when rounded to one decimal place.

Vxx, ICM M14, row 4

(M1 −M4)/2 (M1 +M4)/2

+0.2% +21.9% +4.1% 0.0% 0.0% +0.1%

Vyy, ICM M25, row 5

(M2 −M5)/2 (M2 +M5)/2

+0.2% +27.0% +4.4% 0.0% 0.0% +0.3%

Vzz, ICM M36, row 6

(M3 −M6)/2 (M3 +M6)/2

+0.1% +7.3% +1.0% 0.0% +0.1% 0.0%

Then, we perform the following Monte Carlo simulation. We add a random bias to a single ICM
element, where the random bias is normal distributed with zero mean and standard deviation
10−4. We use the biased ICMs to compute calibrated gravity gradients. The standard deviations
σ
(bias)
xx , σ

(bias)
yy and σ

(bias)
zz are computed in the same way as σ

(ref)
xx , σ

(ref)
yy and σ

(ref)
zz , except that

we use the gravity gradients computed using the biased ICMs. In this way, we generate 100
samples of σ

(bias)
xx , σ

(bias)
yy and σ

(bias)
zz , from which we first compute the mean variances and, then,

the standard deviations σ̄
(bias)
xx , σ̄

(bias)
yy and σ̄

(bias)
zz as the square-roots of the mean variances.

Table 3 lists the change of these standard deviations with respect to the reference standard
deviations.

Table 3 shows that the gravity gradients Vxx, Vyy and Vzz are most sensitive to ICM elements
that are used to calibrate the accelerations ad,14,x, ad,25,y and ad,36,z, respectively. The gravity
gradients are computed by

Vxx = − 2

Lx

ad,14,x − ω2
y − ω2

z , (146)

Vyy = − 2

Ly

ad,25,y − ω2
x − ω2

z (147)

and

Vzz = − 2

Lz

ad,36,z − ω2
x − ω2

y , (148)

where ωx, ωy and ωz do not depend on ad,14,x, ad,25,y and ad,36,z. This means that the gravity
gradients have a linear relationship to the DM accelerations ad,14,x, ad,25,y and ad,36,z. The
second and third column of Table 3 show the largest changes. According to Eq. (41), these
columns correspond to calibration parameters that describe the mapping of uncalibrated CM
accelerations ac,ij,y and ac,ij,z onto calibrated DM accelerations ad,ij and, thus, on the gravity
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gradients. These calibration parameters cause larger changes because the CM accelerations
ac,ij,y and ac,ij,z reflect the linear accelerations of the satellite COM in the cross-track and radial
directions, respectively, which are the largest signals contained in the accelerations ai. The CM
accelerations ac,ij,x contain a much smaller signal since the drag-free system compensates the
linear accelerations in along-track direction acting on the satellite COM. This is reflected by
the lower changes in the first column of Table 3.

7.5 Effect of bias correction

Table 3 shows that the gravity gradient Vyy is most sensitive to a bias in the element in row 5
and column 2 of the ICM M25. According to Eqs. (42) and (44), this particular ICM element
is the differential scale factor ∆s25,y. In the bottom panel of Fig. 14, we observe a bias between
the results from shaking data and nominal data for ∆s25,y. By taking the median of the
differences between the linear interpolation of the baseline method (blue circles in Fig. 14) and
the results of our method for nominal data (black dots in Fig. 14), we estimate that the bias
is equal to −36 × 10−6, which appears to be in good agreement with the plots presented in
[Rispens and Bouman(2011)].

As discussed in Sect. 7.4, a bias in ∆s25,y will result in a mapping of CM accelerations onto
the gravity gradient Vyy. In order to study this effect in more detail, we show maps of the CM
acceleration ac,25,y and differences ∆Vyy of calibrated gravity gradients with respect to the ITG-
Grace2010s model for November and December 2009 in Fig. 17. We filtered all data in the maps
to the frequency band 3–50 mHz in order to remove the long and short wavelength noise in the
calibrated gravity gradients that would obscure the effect we want to study. Furthermore, we
only show the data of ascending orbital tracks because the data is expressed in the GRF, whose
cross-track axis has a completely different orientation for ascending and descending orbital
tracks.

For ∆Vyy, we consider three scenarios. The first is using the ICMs of October 2009, which corre-
sponds to the old implementation in the ground processing. The second is linearly interpolating
the ICMs of the baseline method as suggested in Sect. 7.2, which corresponds to the current
implementation in the ground processing. The third is linearly interpolating the ICMs of the
baseline method and correcting ∆s25,y for the bias of −36× 10−6. The CM accelerations ac,25,y
in Fig. 17 show a distinct pattern near the magnetic poles. This pattern is most likely caused by
large variations of the cross-track winds in the polar zones [Peterseim et al.(2011), Lühr(2007)].
Under the assumption that the differential scale factor ∆s25,y needs to be corrected, the same
pattern should be visible in ∆Vyy. In Fig. 17, we can see clearly that this is the case when
using the ICM of October 2009, for which we expect ∆s25,y to be farthest away from its correct
value (cf. Fig. 14). Though the linear interpolation of the ICMs removes the largest part of
the pattern in ∆Vyy, it is still clearly visible. When we linearly interpolate the ICMs and apply
the estimated correction for the bias in ∆s25,y, the pattern is further reduced, which indicates
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that the bias correction improves the quality of the gravity gradients Vyy.

Table 4 provides standard deviations for the maps shown in Fig. 17. In case of using the
ICMs of October 2009 (column A), the standard deviations of the magnetic poles are larger
than the global ones, in particular the one of the magnetic south pole for ascending orbits.
Further, the difference between the standard deviations of ascending and descending orbits is
rather large, which might be a result of the difference in the respective flight directions of the
satellite. When linearly interpolating the ICMs (column B), the standard deviations of the
magnetic poles are almost cut in half while the global standard deviation is reduced by one
third. Linearly interpolating the ICMs and correcting ∆s25,y (column C) further reduces the
standard deviations of the magnetic south pole by one half for ascending orbits and one quarter
for descending orbits while the global standard deviations and the ones of the magnetic north
pole show only very small changes. Even though the standard deviations have reduced a lot,
the ones of the magnetic poles for ascending orbits remain slightly above the level of the global
standard deviations.

We also studied maps of the gravity gradient trace (not shown) in order to assess the effect
independently of the ITG-Grace2010s model, which confirmed the presented results for ∆Vyy.
Further, it should be mentioned that other authors have noted the pattern near the magnetic
poles, too. [Bouman et al.(2010)] write that the pattern does not represent a gravity signal
and hypothesize that it is related to drifts in the differential scale factors. They show that lin-
early interpolating ∆s25,y between the shaking events in October 2009 and January 2010, while
otherwise using the calibration parameters of the shaking event in October 2009, improves
the gravity gradient trace. [Bouman et al.(2011)] show that the pattern is present in differ-
ences ∆Vyy of GOCE gravity gradients to the EIGEN-5C [Foerste et al.(2008)] and EGM2008
[Pavlis et al.(2008)] gravity field models. They, too, write that the pattern does not represent
a gravity signal and hypothesize that it is related to drifts in the differential scale factors.
Further, they write that the pattern can be largely reduced by adjusting the calibration param-
eters. Thus, our findings are in good agreement with the work of the above mentioned authors
and show that their hypotheses are correct.

7.6 Error analysis for increased drag conditions

The analysis in Sect. 7.1 revealed that the gravity gradients are very sensitive to ICM errors
which map CM accelerations onto DM accelerations. In particular, we found that a correction
of −36 × 10−6 for the differential scale factor ∆s25,y improves the performance of the gravity
gradients. These results were obtained for data in November and December 2009, when CM
accelerations were rather small due to a low solar activity. Fig. 18 shows that the solar activity
increased considerable at the beginning of 2011.

The increase in solar activity results in larger CM accelerations. Fig. 19 shows that the CM
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Figure 17: CM accelerations ac,25,y and differences ∆Vyy of calibrated gravity gradients to the

ITG-Grace2010s model for ascending orbital tracks in November and December 2009, filtered

to frequency band 3–50 mHz, and expressed in the GRF: ac,25,y (top left panel), ∆Vyy using the

same calibration as implemented in the old ground processing (top right panel), ∆Vyy using

the linearly interpolated ICMs of the baseline method as implemented in the current ground

processing (bottom left panel), ∆Vyy using the linearly interpolated ICMs of the baseline method

that are corrected for the bias −36× 10−6 in ∆s25,y (bottom right panel). The locations of the

magnetic north and south pole are indicated by black triangles. The dashed black lines mark

15◦ spherical caps centered at the locations of magnetic north and south pole. Table 4 lists

associated standard deviations.
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Table 4: Standard deviations (mE) of differences ∆Vyy of calibrated gravity gradients to the

ITG-Grace2010s model in November and December 2009, filtered to frequency band 3–50 mHz,

and expressed in the GRF: Column A uses the same calibration as implemented in the old

ground processing, column B uses the linearly interpolated ICMs of the baseline method as

implemented in the current ground processing, column C uses the linearly interpolated ICMs

of the baseline method that are corrected for the bias −36× 10−6 in ∆s25,y. In addition to the

global standard deviations, the standard deviations of the regions near the magnetic north and

south pole that are indicated by the dashed black lines in Fig. 17 are listed.

region tracks A B C

all 3.8 2.6 2.4

global ascending 4.2 2.8 2.5

descending 3.2 2.4 2.3

magnetic

north pole

all 4.4 2.6 2.6

ascending 4.6 2.7 2.8

descending 4.1 2.5 2.5

magnetic

south pole

all 9.4 4.8 2.7

ascending 11.8 6.1 3.1

descending 6.0 3.0 2.3
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Figure 18: Solar activity, retrieved from http://www.swpc.noaa.gov/SolarCycle/ on 3 Au-

gust 2011.
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Figure 19: CM accelerations for ascending orbital tracks in November and December 2009 (top

left panel) as well as in March and April 2011 (top right panel), both filtered to 5–100 mHz.

The increase in the CM accelerations from 2009 to 2011 correlates with the increase in solar

activity.

accelerations in March and April 2011 are approximately three times larger than in November
and December 2009, when filtered to the measurement band 5–100 mHz. This is clearly visible
near the magnetic poles, in particular near the magnetic north pole. This implies that the drag
conditions are less quiet for the GOCE satellite, at least near the magnetic poles.

Fig. 20 shows the PSD of the gravity gradient trace in November and December 2009 and in
March and April 2011. The latter is 2–3 times worse than the first between 1 and 10 mHz. This
is most likely due to the larger CM accelerations because the maps of CM accelerations and
the gravity gradient trace in Fig. 19 and Fig. 21, respectively, both show prominent signatures
near the magnetic poles, in particular the magnetic north pole. Since the gravity gradients are
much more sensitive to ICM errors when CM accelerations are larger, it is likely that more
than one calibration parameter needs a correction. For this reason, we investigate the effects
of all calibrations parameters on the gravity gradient trace. In case of the differential scale
factor ∆s25,y, we saw a clear match of the geographical signature in maps of CM accelerations
and differences ∆Vyy to the ITG-Grace2010s model(cf. Fig. 17). A similar match was found
in the gravity gradient trace (not shown). In the following, we create one map for each ICM
element in order to assess the magnitude of the effect of an error in that ICM element and
identify its correlations to the gravity gradient trace. If we find that the effect of an error in
a ICM element has a large magnitude and correlates with the geographical signature that we
see in the gravity gradient trace, then we have identified a candidate for correction. Once all
candidates are identified, we try to estimate the corrections to those calibration parameters.

Tables 7.6 – 7.6 list all possible effects of errors in the ICMs. Let us derive the effect of an
error ε in row 2 and column 6 of the ICM M25. This serves as an example of how to derive the
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Figure 20: The trace of the gravity gradients worsens from 2009 to 2011 as a result of larger,

dynamic CM accelerations.
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Figure 21: Gravity gradient trace for ascending (left panel) and descending (right panel) orbital

tracks in March and April 2011, filtered to 5–100 mHz. Note the prominent signature near the

magnetic north pole.

effect of an error in any of the ICM elements. We use the formulas presented in Sect. 3. First
of all, the element of the ICM would change, i.e.

M25(2, 6) −→ M25(2, 6)+ε, (149)

while all other elements of the ICMs remain unchanged. Note that we highlight all changes
due to the error ε in red. The error in the ICM element causes an error in the calibrated DM
acceleration ad,25,y:

ad,25,y −→ ad,25,y+εãc,25,z (150)

This in turn changes the gravity gradient Vyy:

Vyy −→ Vyy−
2ε

Ly

ãc,25,z (151)

Finally, the effect on the trace is

Vxx + Vyy + Vzz −→ Vxx + Vyy + Vzz−
2ε

Ly

ãc,25,z. (152)

This example shows the effect of an error ε via the DM acceleration terms in Eqs. (33)–(38).
Since the propagation of an error ε via the centrifugal acceleration terms in Eqs. (33)–(38) is
more complex, we study the effect of an error in row 3 and column 5 of ICM M25 as another
example. Again, the ICM element changes, i.e.

M25(3, 5) −→ M25(3, 5)+ε, (153)

while all other ICM elements remain unchanged. This leads to a change in the DM acceleration:

ad,25,z −→ ad,25,z+εãc,25,y (154)
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The effect on the angular velocity needs to take the combination of star sensor and gradiometer
data into account. First, the effect on the gradiometer angular velocity is

ω(GRAD)
x −→ ω(GRAD)

x +
ε

Ly

∫

ãc,25,y. (155)

Then, the effect in the combined angular velocity reads

ωx −→ ωx+high-pass(
ε

Ly

∫

ãc,25,y). (156)

The highpass-filtering is a linear operation. Therefore, we can move the factor ε
Ly

in front of

the filter operation:

ωx −→ ωx+
ε

Ly

high-pass(

∫

ãc,25,y) (157)

Since we consider only small errors, i.e. ε << 1, we can assume that ε2 ≈ 0 and neglect
quadratic terms O(ε2) in the centrifugal accelerations:

ω2
x −→ ω2

x+
2ε

Ly

ωxhigh-pass(

∫

ãc,25,y) +O(ε2) (158)

Next, we find the error in the gravity gradient

Vyy −→ Vyy−
2ε

Ly

ωxhigh-pass(

∫

ãc,25,y) +O(ε2). (159)

and, finally, in the gravity gradient trace

Vxx + Vyy + Vzz −→ Vxx + Vyy + Vzz−
4ε

Ly

ωxhigh-pass(

∫

ãc,25,y) +O(ε2). (160)

In this way, we derived all possible effects on the gravity gradient trace due to errors in the
ICMs. These effects are listed in Table 7.6–7.6. We also list the magnitude O(ε) that the error
must have to be a candidate for correction and whether the effect has a prominent signature
near the magnetic poles as another criterion for identifying candidates for correction. This
information was determined by manual inspection of maps of all effects (not shown). During
the inspection, we found the following:

• The accelerations ãc,ij look the same for ij = 14, 25, 36 since the linear accelerations d

acting on satellite are the dominating signal.

• The accelerations ãd,ij are different for ij = 14, 25, 36 because uncalibrated DM accel-
erations contain a fraction of the linear accelerations d depending on the differential
parameters in the ICM sub-matrices Dij . This means that one element of ãd,ij may
contain a combination of elements of d).
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• If the acceleration ãd,ij is judged to be a candidate for explaining the signature in the
trace, then the fraction of the linear acceleration is the dominating signal in ãd,ij .

Taking these points into account, only five different signatures remain as candidates for ex-
plaining the signature in the trace near the magnetic poles:

• CM accelerations ac,x, ac,y and ac,z which affect Vxx, Vyy and Vzz

• Terms ωy high-pass(
∫

ac,y) and ωy high-pass(
∫

ac,z) which affect Vxx and Vzz

These five signatures were fitted to the trace in order to check whether a correction of the ICM
could remove the peaks from the trace that we see in Fig. 22. This was done one time globally
for all data of 27/03/2011 – 04/04/2011, and another time for each pass over a magnetic pole
separately. The latter is not very practical, but shows how much the peaks can be removed at
maximum. Fig. 22 shows that the also for the latter case it is not possible to remove all peaks.

In this section, we showed that the performance of the gravity gradients may worsen when
the non-gravitational accelerations acting on the satellite increase. This is the case for the
period March/April 2011 in comparison to the period November/December 2009. We high-
lighted that an error in an ICM element maps CM or DM accelerations onto the gravity gra-
dients. In Sect. 7.1, we showed that such a mapping was caused by the differential scale
factor ∆s25,y, resulting in a prominent geographical signature near the magnetic south pole in
November/December 2009. Correcting the differential scale factor ∆s25,y largely reduced that
signature. Applying the same logic to the gravity gradient trace in March/April 2011, we tried
to identify the ICM elements that may need to be corrected. For that purpose, we analyzed the
geographical signatures caused by an hypothetical error in each individual ICM element. We
identified five signatures tat may cause the signature that we see in the gravity gradient trace
in Fig. 21. By fitting these signatures to the signature in the gravity gradient trace, we checked
whether correcting ICM elements could remove the signature in the trace. Even though the
geographical signature in the gravity gradient trace could be reduced in this way, a significant
part of the signature remained visible. This means that besides correcting ICM elements, at
least one other unidentified problem exists. Further research is required.

Page 70/108

GOCE gradiometer calibration and Level 1b data processing

Date 06/01/2012



ESA UNCLASSIFIED - For Official Use

0 1 2 3 4 5 6 7 8

x 10
5

−0.5

0

0.5

x 10
−10

Time (s)

F
ilt

er
ed

 tr
ac

e 
(m

E
)

 

 
trace(V)
fitted combination of signatures
trace(V) − fitted combination of signatures

0 1 2 3 4 5 6 7 8

x 10
5

−0.5

0

0.5

x 10
−10

Time (s)

F
ilt

er
ed

 tr
ac

e 
(m

E
)

 

 
trace(V)
fitted combination of signatures
trace(V) − fitted combination of signatures

Figure 22: Fit of five candidate signatures to the trace for all data of 27/03/2011 – 04/04/2011

(top panel) and to data near the magnetic poles (bottom panel), both filtered to 5–50 mHz.
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affected ICM magnitude signature

gradients via sub-matrix effect O(ε) mag. poles candidate

Vxx − 2
Lx
ad,14,x D − 2ε

Lx
ãc,14,x 10−3 yes yes

Vxx − 2
Lx
ad,14,x D − 2ε

Lx
ãc,14,y 10−4 yes yes

Vxx − 2
Lx
ad,14,x D − 2ε

Lx
ãc,14,z 10−4 yes yes

Vxx − 2
Lx
ad,14,x C − 2ε

Lx
ãd,14,x 10−1 no no

Vxx − 2
Lx
ad,14,x C − 2ε

Lx
ãd,14,y 10−3 yes yes

Vxx − 2
Lx
ad,14,x C − 2ε

Lx
ãd,14,z 10−2 no no

Vyy − 2
Ly
ad,25,y D − 2ε

Ly
ãc,25,x 10−3 yes yes

Vyy − 2
Ly
ad,25,y D − 2ε

Ly
ãc,25,y 10−4 yes yes

Vyy − 2
Ly
ad,25,y D − 2ε

Ly
ãc,25,z 10−4 yes yes

Vyy − 2
Ly
ad,25,y C − 2ε

Ly
ãd,25,x 10−3 yes yes

Vyy − 2
Ly
ad,25,y C − 2ε

Ly
ãd,25,y 10−2 yes no

Vyy − 2
Ly
ad,25,y C − 2ε

Ly
ãd,25,z 10−2 no no

Vzz − 2
Lz
ad,36,z D − 2ε

Lz
ãc,36,x 10−3 yes yes

Vzz − 2
Lz
ad,36,z D − 2ε

Lz
ãc,36,y 10−4 yes yes

Vzz − 2
Lz
ad,36,z D − 2ε

Lz
ãc,36,z 10−4 yes yes

Vzz − 2
Lz
ad,36,z C − 2ε

Lz
ãd,36,x 10−1 no no

Vzz − 2
Lz
ad,36,z C − 2ε

Lz
ãd,36,y 10−3 no no

Vzz − 2
Lz
ad,36,z C − 2ε

Lz
ãd,36,z 10−2 no no
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affected ICM magnitude signature

gradients via sub-matrix effect O(ε) mag. poles candidate

Vyy, Vzz −ω2
x D − 2ε

Ly
ωxhigh-pass(

∫

ãc,25,x) 101 no no

Vyy, Vzz −ω2
x D − 2ε

Ly
ωxhigh-pass(

∫

ãc,25,y) 10−1 yes no

Vyy, Vzz −ω2
x D − 2ε

Ly
ωxhigh-pass(

∫

ãc,25,z) 10−1 no no

Vyy, Vzz −ω2
x C − 2ε

Ly
ωxhigh-pass(

∫

ãd,25,x) 100 no no

Vyy, Vzz −ω2
x C − 2ε

Ly
ωxhigh-pass(

∫

ãd,25,y) 101 no no

Vyy, Vzz −ω2
x C − 2ε

Ly
ωxhigh-pass(

∫

ãd,25,z) 100 no no

Vyy, Vzz −ω2
x D − 2ε

Lz
ωxhigh-pass(

∫

ãc,36,x) 101 no no

Vyy, Vzz −ω2
x D − 2ε

Lz
ωxhigh-pass(

∫

ãc,36,y) 10−1 yes no

Vyy, Vzz −ω2
x D − 2ε

Lz
ωxhigh-pass(

∫

ãc,36,z) 100 no no

Vyy, Vzz −ω2
x C − 2ε

Lz
ωxhigh-pass(

∫

ãd,36,x) 101 no no

Vyy, Vzz −ω2
x C − 2ε

Lz
ωxhigh-pass(

∫

ãd,36,y) 101 no no

Vyy, Vzz −ω2
x C − 2ε

Lz
ωxhigh-pass(

∫

ãd,36,z) 101 no no
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affected ICM magnitude pattern

gradients via sub-matrix effect O(ε) mag. poles candidate

Vxx, Vzz −ω2
y D − 2ε

Lx
ωyhigh-pass(

∫

ãc,14,x) 10−1 yes no

Vxx, Vzz −ω2
y D − 2ε

Lx
ωyhigh-pass(

∫

ãc,14,y) 10−3 yes yes

Vxx, Vzz −ω2
y D − 2ε

Lx
ωyhigh-pass(

∫

ãc,14,z) 10−2 yes no

Vxx, Vzz −ω2
y C − 2ε

Lx
ωyhigh-pass(

∫

ãd,14,x) 100 no no

Vxx, Vzz −ω2
y C − 2ε

Lx
ωyhigh-pass(

∫

ãd,14,y) 10−1 yes no

Vxx, Vzz −ω2
y C − 2ε

Lx
ωyhigh-pass(

∫

ãd,14,z) 100 no no

Vxx, Vzz −ω2
y D − 2ε

Lz
ωyhigh-pass(

∫

ãc,36,x) 10−1 yes no

Vxx, Vzz −ω2
y D − 2ε

Lz
ωyhigh-pass(

∫

ãc,36,y) 10−3 yes yes

Vxx, Vzz −ω2
y D − 2ε

Lz
ωyhigh-pass(

∫

ãc,36,z) 10−2 yes no

Vxx, Vzz −ω2
y C − 2ε

Lz
ωyhigh-pass(

∫

ãd,36,x) 100 no no

Vxx, Vzz −ω2
y C − 2ε

Lz
ωyhigh-pass(

∫

ãd,36,y) 100 no no

Vxx, Vzz −ω2
y C − 2ε

Lz
ωyhigh-pass(

∫

ãd,36,z) 100 no no
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affected ICM magnitude pattern

gradients via sub-matrix effect O(ε) mag. poles candidate

Vxx, Vyy −ω2
z D − 2ε

Lx
ωzhigh-pass(

∫

ãc,14,x) 101 yes no

Vxx, Vyy −ω2
z D − 2ε

Lx
ωzhigh-pass(

∫

ãc,14,y) 10−1 yes no

Vxx, Vyy −ω2
z D − 2ε

Lx
ωzhigh-pass(

∫

ãc,14,z) 10−1 yes no

Vxx, Vyy −ω2
z C − 2ε

Lx
ωzhigh-pass(

∫

ãd,14,x) 101 no no

Vxx, Vyy −ω2
z C − 2ε

Lx
ωzhigh-pass(

∫

ãd,14,y) 100 yes no

Vxx, Vyy −ω2
z C − 2ε

Lx
ωzhigh-pass(

∫

ãd,14,z) 101 no no

Vxx, Vyy −ω2
z D − 2ε

Ly
ωzhigh-pass(

∫

ãc,25,x) 101 yes no

Vxx, Vyy −ω2
z D − 2ε

Ly
ωzhigh-pass(

∫

ãc,25,y) 10−1 yes no

Vxx, Vyy −ω2
z D − 2ε

Ly
ωzhigh-pass(

∫

ãc,25,z) 10−1 yes no

Vxx, Vyy −ω2
z C − 2ε

Ly
ωzhigh-pass(

∫

ãd,25,x) 100 yes no

Vxx, Vyy −ω2
z C − 2ε

Ly
ωzhigh-pass(

∫

ãd,25,y) 100 yes no

Vxx, Vyy −ω2
z C − 2ε

Ly
ωzhigh-pass(

∫

ãd,25,z) 100 yes no
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8 Gradiometer level 1b processing

The processing scheme implemented in the GOCE payload data ground segment (PDGS) was
designed pre-launch based on performance studies and simulations. The analysis of GOCE
data showed that the actual performance of the gradiometer differs in some points from the
one assumed pre-launch: The noise above 10 mHz is larger than expected while it is much
lower than expected bellow 10 mHz. For this reason, the gradiometer processing scheme was
revisited. The investigations showed that several steps in the processing could be improved,
which lead to the upgrade of the gradiometer processing in the GOCE PDGS. In Sect. 8.1, we
compare the old and the upgraded gradiometer processing. Then, we demonstrate the impact
of the upgraded processing steps in Sect. 8.2.

8.1 Comparison of old and upgraded gradiometer processing

The gradiometer level 1b processing performs the computation of gravity gradients from ac-
celerometer and star sensor data. We described the mathematical background of the gradiome-
ter processing in Sect. 3.1. The main steps are

• the computation of the CM and DM accelerations,

• the calibration of the CM and DM accelerations,

• the computation of angular accelerations from calibrated DM accelerations,

• the rotation of star sensor data from the SSRFs to the GRF,

• the reconstruction of the angular rate and attitude of the satellite, and

• the computation of gravity gradients.

Fig. 23 provides an overview over the old and new processing scheme. Four processing steps are
either upgraded or added in the new processing. These are the combination of star sensor data,
the calibration of CM and DM accelerations, the reconstruction of the angular rate, and the
reconstruction of the attitude. The latter two are performed in one step in the old processing
while in the new processing they are performed in two separate steps. In the following, we
discuss the differences in these processing steps and provide the mathematical background
where needed.
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Figure 23: Overview over the old (top panel) and new (bottom panel) GOCE gradiometer level

1b processing. Upgraded processing steps are highlighted in blue.
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8.1.1 Combination of star sensor data

In the old processing it was not foreseen to combine star sensors. Thus, this is completely new
step in the processing. The combination is performed on the level of attitude quaternions. The
mathematical background is provided in Sect. 4.1.

8.1.2 Calibration of accelerometer data

In Sect. 6 we discussed the calibration extensively. We showed that the calibration parameters
were subject to linear drifts over time. Since pre-launch simulations suggested that these drifts
would be negligible, the calibration in the old processing uses always the ICMs of the previous
shaking event. This has the practical advantage that the final gravity gradients are available
shortly after the respective gradiometer and star sensor data is down-linked. However, we
demonstrated in Sect. 7.1 that the drifts cause a significant degradation of the gravity gradients
if they are not taken into account. Therefore, the new gradiometer processing uses a linear
interpolation of the ICMs of the previous and next shaking event. This implies that the final
gravity gradients are only available up to the previous shaking event.

8.1.3 Reconstruction of the angular rate

The angular rate and attitude reconstruction were performed in one step by a Kalman filter
approach in the old processing. In the new processing, the angular rate and attitude recon-
struction are preformed in two separate steps. The angular rate reconstruction uses the Wiener
filter approach described in [Stummer et al.(2011)]. The principle of the Wiener filter is to
combine the angular rates from the gradiometer and star sensor based on their accuracy. As
discussed in Sect. 3.1, the accuracy of gradiometer and star sensor angular rates is frequency
dependent. In this case, a suitable representation of the accuracy is the PSD, which we can
interpret as variance-per-frequency. This means that a value P (f) of the PSD indicates the
accuracy at the frequency f . The weights of the Wiener filters are defined in the spectral
domain and depend on the PSDs of the angular rates from the gradiometer P (GRAD)(f) and
the star sensor P (STR)(f):

H(STR)(f) =
P (GRAD)(f)

P (GRAD)(f) + P (STR)(f)
(161)

H(GRAD)(f) =
P (STR)(f)

P (GRAD)(f) + P (STR)(f)
(162)

Herein, H(GRAD)(f) and H(STR)(f) are the weights for gradiometer and star sensor angular
rates, respectively. The Wiener filters are implemented by symmetric moving-average filters in
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Figure 24: PSD of the noise in the angular rates of the gradiometer and star sensor (left panel)

and resulting weights of the Wiener filter (right panel).

the time domain. The coefficients of these filters are obtained from the Wiener weights by the
discrete inverse Fourier transform:

h(STR)
n = IDFT(H(STR)(fk)) (163)

h(GRAD)
n = IDFT(H(GRAD)(fk)) (164)

The filter coefficients for the gradiometer and star sensor angular rates are h
(GRAD)
n and h

(STR)
n ,

respectively, while the indices n and k indicate the discretization. The reconstructed angular
rate is obtained by a convolution in the time domain:

ωn = h(GRAD)
n ∗ ω(GRAD)

n + h(STR)
n ∗ ω(STR)

n (165)

[Stummer et al.(2011)] suggest to use the following values for P (GRAD)(f) and P (STR)(f):

√

P (GRAD)(f) =











f−2 behavior < 5 mHz

1× 10−8 for ωx and ωz, 1× 10−9 for ωx 5–100 mHz

f 2 behavior > 100 mHz

(166)

√

P (STR)(f) =











f 1 behavior < 3 mHz

4× 10−6 for ωx, 4× 10−5 for ωy and ωz 3–30 mHz

f 1 behavior > 30 mHz

(167)

Fig. 24 illustrates that this choice effectively leads to high-pass and low-pass filters for gra-
diometer and star sensor angular rates, respectively. The length of the Wiener filters is chosen
as 8401 epochs.
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8.1.4 Reconstruction of the attitude

The attitude is obtained by an integration process of the reconstructed angular rates. In the
following, we describe the principle of this integration process. The mean of the angular rates
of the previous and current epoch is

w̄k =
wk +wk−1

2
. (168)

The mean angular rate w̄k describes the rotation of the satellite from the previous to the current
epoch. Thus, we can obtain the attitude of the current epoch by rotating the attitude of the
previous epoch about w̄k. This rotation can be written in terms of quaternions as

q
(INT)
k = q

(INT)
k−1

[

cos(0.5φk)
sin(0.5φ)ek

]

, (169)

where

φ = ||w̄k|| (170)

is the rotation angle and

ek =
w̄k

||w̄k||
(171)

is the rotation axis according to Euler’s rotation theorem. Eq. (169) is used to integrate

the quaternions. The integration starts at an initial quaternion q
(INT)
0 , which we take from the

attitude quaternions q
(STR)
k of the star sensor combination, i.e. q

(INT)
0 = q

(STR)
0 . Any integration

has the property to decrease noise in high frequencies and increase noise in low frequencies.
For this reason, we combine the integrated quaternions with the attitude quaternions of the
combined star sensors by the convolutions

qn(i) = h(GRAD)
n ∗ q(INT)

n (i) + h(STR)
n ∗ q(STR)

n (i), i = 1, 2, 3, 4 (172)

using the same Wiener filters in Eqs. (163) and (164 that we used in the angular rate reconstruc-
tion. The index i indicates that the convolution is performed independently for each element
of the quaternion while index n represents the epoch.

Since small errors in the reconstructed angular rates accumulate in the integration over time,
we restart the integration for each step of the convolution. This means that the integrated
quaternions q

(INT)
k in Eq. (172) are computed for each epoch n by evaluating Eq. (169) for

k = n− floor(L
2
), . . . , n+ floor(L

2
) where L denotes the length of the Wiener filter. The initial

quaternion is set to q
(INT)

n−floor(L
2
)
= q

(STR)

n−floor(L
2
)
. In this way, we avoid the error accumulation over

time.
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Table 5: Five cases of gradiometer level 1b processing. Case A represents the old processing

while case E represents the new processing.

Case
Angular rate Star sensor Calibration Attitude

reconstruction combination of accelerations reconstruction

A old old old old

B new old old old

C new new old old

D new new new old

E new new new new

8.2 Impact of upgraded processing steps

We investigate the impact of the upgraded level 1b gradiometer processing step-by-step, be-
ginning with the old processing and ending with the new processing. This means that we
investigate five cases: Case A represents the old processing where none of the upgraded steps
are used. From case B to E we subsequently replace the old processing steps by the new angular
rate reconstruction, the combination of the star sensors’ attitude quaternions, the interpolation
of the corrected ICMs within the calibration of DM and CM accelerations, and the new attitude
reconstruction. Thus, case E represents the new processing. Table 5 provides an overview over
these case.

The investigations are based on the same data that we used in Sect. 7, i.e.

• EGG NOM 1b (EGG NCD DS dataset)
nominal CM and DM accelerations

• STR VC2 1b, STR VC3 1b
star sensor inertial attitude quaternions

• AUX EGG DB
lengths of the gradiometer arms, rotation matrices relating the SSRFs to the GRF

• AUX ICM 1b
ICMs

In addition, we correct the differential scale factor ∆s25,y of the ICMs by −36 × 10−6, as
suggested in Sect. 7.1.

The comparison of case A–E is performed on the level of gravity gradients and gravity field
models. This means that we analyze the improvement of GOCE level 1b products as well
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as GOCE level 2 products. On the level of gravity gradients we investigate the gravity gra-
dient trace as well as the differences to the ITG-Grace2010s model. Thus, we perform two
independent checks. However, it should be noted that the gravity gradient trace is invariant
with respect to the attitude. Therefore, the improvement due to the upgrade of the attitude
reconstruction (case E) is not assessed by analyzing the gravity gradient trace. On the level of
gravity field models, we analyze differences of case A–E to the ITG-Grace2010s and EGM2008
models.

8.2.1 Impact on gravity gradients

We analyze the impact of the upgraded processing step-by-step. Fig. 25 shows PSDs of the
gravity gradient trace and the differences of GOCE gravity gradients to the ITG-Grace2010s
model for case A–E. It should be noted that the gravity gradient trace is invariant with respect
to the attitude. Thus, the impact of the upgraded attitude reconstruction cannot be assessed
by investigating the gravity gradient trace. When investigating Fig. 25, we see that the up-
graded processing affects mainly low frequencies f : f < 20 mHz for the trace, f < 9 mHz for
Vxx, f < 30 mHz for Vyy, f < 8 mHz for Vxz, and f < 6 for Vzz. Bellow these frequencies, the
angular rate reconstruction (case A vs. B, red vs. blue lines) causes the largest improvement for
the gravity gradient trace, Vxx and Vzz. The interpolation of the ICMs in the calibration of DM
and CM accelerations (case C vs. D, cyan vs. magenta lines) causes the largest improvements
in Vyy. Note that also the gravity gradient trace shows a similar improvement. We discussed
the effect of this interpolation in Sect. 7.1. In comparison to the angular rate reconstruction
and interpolation of the ICMs, the attitude reconstruction provides a rather small improvement
(case E vs. D, green vs. magenta lines). The exception is Vxz, for which the attitude recon-
struction is clearly the most important processing step. This can be explained by the fact that
Vxz is very sensitive to the attitude. The combination of star sensor data leads only to small
direct improvements. However, it should be noted that the attitude reconstruction benefits
from the combination of star sensor data. Therefore, the improvement in Vxz may be partly
attributed also to the combination of the star sensors.

Fig. 26–30 shows maps of the gravity gradient trace and the the gravity gradient trace and
the differences of the gravity gradients Vxx, Vxz, Vyy and Vzz to the ITG-Grace2010s model,
respectively, for case A–E. In order to enhance the visibility of interesting features, we filtered
the data in the time domain to 1–50 mHz bevor creating the map.

The gravity gradient trace in Fig. 26 shows large errors in case of the nominal processing (see
1st row). The analysis in time domain (not shown here) shows that these errors could be caused
by systematic errors in star sensor data with an correlation length of a few days. This indicates
that these errors might be dependent on the field-of-view of the star sensors. The fact that the
errors in the trace might be caused by systematic errors in the star sensor data is supported by
the observation that they are largely reduced due to the upgraded angular rate reconstruction
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Figure 25: PSDs of the gravity gradient trace and differences of gravity gradients to the ITG-

Grace2010s model for case A–E (see Table 5). Note that the trace is invariant with respect to

the attitude.
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(compare maps in 1st and 2nd row). However, we see for case B (2nd row) large, systematic
signatures which appear to correlate with Earth’s magnetic field, in particular with the magnetic
equator and the magnetic poles. In case C (3rd row), where we combine the data of two star
sensors instead of just one star sensor, the signatures along the magnetic equator are largely
reduced. This implies that these signatures are caused by systematic errors in the star sensor
attitude data which are reduced in the combination of star sensors. The special structure of the
errors may result from the fact that the attitude is controlled by magnetic torquers. Because the
magnetic torquers are not able to control the attitude about the direction of the magnetic field
lines, the attitude of the satellite changes slightly within a couple of degrees with respect to the
flight direction. This leads to a systematic yaw motion at poles and a systematic role motion
at magnetic equator. Further investigations are needed to confirm this hypothesis. When we
also interpolate the ICMs in the calibration of CM and DM accelerations (case D, 4th row),
also the signature near the magnetic poles is largely reduced. As discussed in Sect. 7.1, this
particular signature is caused by the false mapping of CM accelerations onto DM acceleration.
However, we still see a small signature along the magnetic equator in the trace for case D.
This implies that even after all efforts to improve the processing, further improvements might
still be possible. Future investigations will have to identifiy the mechanism which causes this
signature.

Similar discussions can be made for the gravity gradients Vxx, Vyy and Vzz shown in Fig. 27– 30,
respectively. The gravity gradient Vxz is special due to its high sensitivity to the attitude. Note
that we see the signature along the magnetic equator most clearly for Vxz. This hints that
investigating attitude related issues such as systematic star sensor errors, errors in the relative
alignment of the star sensors and the gradiometer and so on, could be a good starting point
for future investigations.

8.2.2 Impact on gravity field model

In this Section, we analyze the impact of the upgrades on the level gravity field models. We
compare the spherical harmonic coefficients of the gravity field models case A–E to those of
the ITG-Grace2010s and EGM2008 gravity field models which serve as reference models. Note
that the reference models are independent of GOCE data. Since the GOCE satellite has an
inclination of 96.7◦, a small area around the geographic poles is not covered by orbital tracks.
We call these areas the polar gaps. Within the polar gaps, the gravity field models case A–E
are not supported by measurements, which leads to large errors in the zonal and near zonal
coefficients [ESA(2000)]. For this reason, we compare the degree standard deviation as well as
the degree median. The latter is largely unaffected by the large errors in the zonal and near
zonal coefficients and, therefore, reflects the accuracy of the models case A–E outside the polar
gaps more realistically. The degree standard deviation is affected by the large errors in zonal
and near zonal coefficients. Thus, degree standard deviations reflect partly the errors of the
models case A–E inside the polar gaps.
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Figure 26: Gravity gradient trace for case A–E, filtered to 1–50 mHz.
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Figure 27: Differences of gravity gradient Vxx to the ITG-Grace2010s model for case A–E,

filtered to 1–50 mHz.
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Figure 28: Differences of gravity gradient Vxz to the ITG-Grace2010s model for case A–E,

filtered to 1–50 mHz.
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Figure 29: Differences of gravity gradient Vyy to the ITG-Grace2010s model for case A–E,

filtered to 1–50 mHz.
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Figure 30: Differences of gravity gradient Vzz to the ITG-Grace2010s model for case A–E,

filtered to 1–50 mHz.
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Fig. 31 shows the reference signal (black solid lines and plus signs) and its formal errors (black
dots and circles). Furthermore, it shows the absolute difference of the signal between the
reference models and cases A–E (coloured solid lines and plus signs) and the formal errors of
cases A–E (coloured dots and circles).

When we compare the degree median of the formal errors of the reference models (black dots)
with that of case A–E (coloured dots) in Fig. 31, we observe that EGM2008 has larger formal
errors than case A–E for spherical harmonic degrees 50-150. For ITG-Grace2010s, we observe
larger errors than those of case A–E above degree 140. Therefore, we use EGM2008 as a
reference above degree 160 and ITG-Grace2010s bellow degree 120, such that our reference is
several times more accurate than cases A–E. This implies that the degrees 120–160 of cases A–E,
which are based on only two months of gradiometer data, are already so accurately determined
by GOCE that it is very difficult to validate these with independent data.

The degree standard deviation of the formal errors (coloured circles) of cases A–E shows a large
bulge between degrees 20–190, which reflects the polar gap problem. An interesting feature is
that the polar gap problem is slightly smaller for case E than for the other cases. This is
confirmed by the degree standard deviation of signal differences (coloured plus signs). Thus,
the upgrade of the attitude reconstruction helps to reduce the polar gap problem.

When comparing the degree median of the formal errors (coloured dots) of cases A–E, we see
that every upgraded step of the processing reduces the formal errors. Comparing case A and
B (red vs. blue dots) shows the improvement due to the upgraded angular rate reconstruction,
which causes a large improvement in the degrees 2–80. The combination of star sensor (case
C vs. B, blue vs. cyan dots) data gives another small improvement in the same range of
degrees. The interpolation of the ICMs in the calibration of DM and CM acceleration improves
all degrees (case D cs. C, cyan vs. magenta dots). This can be explained in the following way.
By interpolating the ICMs, we remove a local signature near the magnetic poles (cf. Sect. 7.1).
Since a local signature in the spatial domain spreads almost evenly over all degrees in the
domain of spherical harmonics, we see an improvement for all degrees. The upgraded attitude
reconstruction gives another minor improvement (case E vs. D, green vs. magenta dots). The
degree median of the absolute signal differences confirms these observations, which indicates
that the formal errors represent the real errors well. In summary, Fig. 31 demonstrates the
largest improvements are due to the upgraded angular rate reconstruction and the interpolation
of the ICMs in the calibration of DM and CM accelerations.

Another valuable tool for the analysis of gravity field models case A–E is the cumulative error
per degree. Fig. 32 shows the cumulative errors per degree in terms of geoid heights and gravity
anomalies. The cumulation has been performed starting at the highest degree, which is not
according to common practice. However, this provides a better inside since the largest errors
of models A–E are in the low degrees. Thus, if we started the cumulation at the lowest degree,
the cumulative error would increase dramatically at the lower degrees and, therefore, we would
not see any differences between the models A–E at higher degrees. Moreover, gravity gradient
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Figure 31: Comparison of the gravity field models case A–E to the EGM2008 (top row) and

ITG-Grace2010s models (bottom row). The black solid lines and the black plus signs show the

degree median and the degree standard deviation, respectively, of the signal in the EGM2008

and ITG-Grace2010s models. Other solid lines and plus signs reflect the degree median and

degree standard deviation, respectively, of the signal differences of case A–E to EGM2008 and

ITG-Grace2010s. Dots and circles show the degree median and the degree standard deviation,

respectively, of the formal errors in the models. Note that the degree median of signal differences

has been scaled by 1.4826 to match the corresponding degree standard deviations.
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Figure 32: Cumulative formal geoid height errors (left panel) and cumulative formal gravity

anomaly errors (right panel). The cumulation starts at degree 200 and ends at degree 2. The

basis for the cumulation is the degree median of the standard deviations.

data is usually complemented by satellite-to-satellite tracking (SST) data, from which the long
wavelength part of the gravity field model is estimated. Thus, by starting the cumulation at
the highest degree, we can draw some conclusions for gravity field models based on gravity
field models based on gravity gradient and SST data. The cumulative errors in Fig. 32 confirm
the observation in Fig. 31 that the interpolation of the ICMs has the largest effect on the
higher degrees (magenta vs. cyan line). Moreover, the upgraded angular rate reconstruction
mainly affects the degrees bellow 80 (red vs. blue line). Surprisingly, the upgraded attitude
reconstruction (green vs. magenta line) has the second largest impact on the cumulative errors,
starting at degree 170 and continuing downwards. This could not be seen in Fig. 31, which
can be explained by the fact that the differences between the models D and E are small but
significant and within that range of degrees where neither ITG-Grace2010s or EGM2008 can
serve as a reference.

Fig. 33 and 34 show maps of the differences of case A–E to the EGM2008 model in terms of
geoid heights and gravity anomalies, respectively. In the creation of these maps, we omitted
the spherical harmonic degrees 2–9 because the errors of case A–E in these degrees are so large
that they would obscure every other error. Furthermore, it is emphasized that gravity gradient
data will be ultimately combined with GPS-SST data, from which the low degree spherical
harmonic coefficients are determined much more accurately. Therefore, omitting degrees 2–9
allows us to focus on those wavelengths which are more important in view of a gravity field
model based on gravity gradient and GPS SST data.

In the top row of Fig. 33, we see the difference of case A to EGM2008. The most prominent
feature is the north-south striping between ±60◦ degrees latitude in the order of ±60 cm. The
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striping is caused by large errors in the sectorial and near sectorial coefficients of spherical
harmonic degree 16. These coefficients suffer from large errors in the gravity gradients at
the orbital harmonic frequency and multiples thereof, i.e. 1, 2, 3, . . . cycles-per-revolution
corresponding to 0.186, 0.372, 0.558, . . .mHz. These errors are clearly visible in Fig. 20. The
left panel of the second row shows the differences of case B to EGM2008. The north-south
striping is not visible any more, which indicates that the errors in the gravity gradients at the
orbital harmonic frequency and multiples thereof are largely reduced by the upgraded angular
rate reconstruction. The largest remaining differences are in the Amazon basin and the Andes
in South America, Central Africa, and the Himalayas in Asia. Since these are regions where
EGM2008 is either not supported by terrestrial gravity data or supported by terrestrial data
of lower quality, we consider these differences to be errors in EGM2008. The right panel in the
second row shows the differences between case A and B. Apart from the north-south striping,
the differences are very smooth, which is in accordance to our observation in Fig. 31 that
improvements due to the upgraded angular rate reconstruction are in the degree 2–60.

The left and right panel of the third row show the differences of case C to EGM2008 and case
B, respectively. The latter shows a signature along the magnetic equator with a magnitude of
±6 cm. When we look closely at the Atlantic Ocean between South America and Africa, we
can see that the signature is present in the differences of case B to EGM2008, despite the fact
that it is largely obscured by short wavelength errors. In the differences of case C to EGM2008,
it is even more difficult to spot the signature, which means that the combination of star sensor
data removes large part of this particular error.

In the right panel of the fourth row of Fig. 20, we see the differences of case D to case C. The
largest differences are near the magnetic south pole, which is located south of Australia. From
Table 6, we can see that the magnitude of these differences is approximately ±40 cm. The
comparison to EGM2008 reveals that the differences are present for case C but not for case
D. Thus, we conclude that the interpolation of the ICMs remove a large local error near the
magnetic south pole.

Finally, the fifth row shows the differences of case E to EGM2008 and case D. The latter
show a north-south striping similar to the one that we observed in the differences of case
A to B. However, the magnitude of the striping is only ±4 cm this time. Furthermore, we
see systematically negative differences of -4 cm near the geographic north pole and positive
differences of +6 cm near the geographic south pole. The comparison to EGM2008 shows
that these differences are present for case D but not for case E. Since such differences can be
attributed to the polar gap problem, we can conclude that in particular the upgraded attitude
reconstruction reduces the polar gap problem.

Fig. 34 shows the same differences as Fig. 33 expressed in gravity anomalies instead of geoid
heights. Since short wavelengths are emphasised by gravity anomalies in comparison to geoid
heights, we can see some features in Fig. 34 that are not easily spotted in Fig. 33. In particular,
the differences of case C to B as well as E to D show many short wavelength features. When
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Table 6: WRMS of the geoid height differences in Fig. 33. The weights are set to zero outside

±80◦ latitude in order to exclude large error in and near the polar gap.

WRMS Min. Max. WRMS Min. Max.

(cm) (cm) (cm) (cm) (cm) (cm)

Case A vs. EGM2008 26.6 -274.7 326.1

Case B vs. EGM2008 17.0 -287.0 318.4 Case B vs. A 19.0 -71.8 77.3

Case C vs. EGM2008 16.9 -281.8 320.0 Case C vs. B 2.6 -17.4 15.6

Case D vs. EGM2008 15.9 -283.8 325.5 Case D vs. C 5.2 -41.6 42.1

Case E vs. EGM2008 15.7 -292.2 320.9 Case E vs. D 2.9 -18.2 17.0

closely inspected, we see that these features follow the 16 regularly spaced ground tracks of
GOCE’s orbit. This indicates that this feature is related to the geographic sampling. This is
supported by the fact that we truncate about one day of the input data due to the filtering in
the angular rate and attitude reconstruction as well as in the gravity field model estimation.
The inspection of the ground tracks (not shown here) reveals that the feature occurs in places
the sampling density is lower due to the truncation of data. Thus, many of the short wavelength
features in the differences of case B to C and D to E should vanish if we used one more day of
data to compensate for the truncation. Note that this discussion does not apply to the short
wavelength features in the differences of case C and D. Otherwise, the discussion for Fig. 33
applies to Fig. 34, too.

Tables 6 and 7 provide some statistics of the maps shown in Fig. 33 and 34, respectively.
The statistics are the weighted root-mean-squares (WRMS), the minimum and maximum of
the differences. In the computation of the statistics, we omitted all data outside ±80 degrees
latitude in order to exclude the polar gap. The WRMS of the differences to of cases A–E to
EGM2008 shows that each step gives a further improvement. The minimum and maximum
values of the differences of cases A–E to EGM2008 reflect the errors in EGM2008 in South
America, Africa and Asia. Thus, they are not useful for assessing the impact of the upgraded
processing. The WRMS of the differences between the cases shows that for geoid heights the
upgraded angular rate reconstruction gives the largest improvements (19 cm WRMS) while for
gravity anomalies the interpolation of the ICMs gives the largest improvements. The latter are
1.4 mGal in terms of the global wrms and 11 mGal locally, which we can see from the minimum
and maximum differences.
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Figure 33: Improvements due to upgraded processing steps in terms of geoid heights for spher-

ical harmonic degrees 10–200. The left column shows the differences of the models A–E to

the EGM2008 model (case A–E from top to bottom). The right columns show the differences

between cases A and B, B and C, C and D, as well as D and E from top to bottom.
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Figure 34: Improvements due to upgraded processing steps in terms of gravity anomalies for

spherical harmonic degrees 10–200. The left column shows the differences of the models A–E to

the EGM2008 model (case A–E from top to bottom). The right columns show the differences

between cases A and B, B and C, C and D, as well as D and E from top to bottom.
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Table 7: WRMS of the gravity anomaly differences in Fig. 34. The weights are set to zero

outside ±80◦ latitude in order to exclude large error in and near the polar gap.

WRMS Min. Max. WRMS Min. Max.

(mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

Case A vs. EGM2008 4.303 -60.009 67.277

Case B vs. EGM2008 4.261 -60.023 67.275 Case B vs. A 0.589 -2.814 3.022

Case C vs. EGM2008 4.257 -59.517 66.317 Case C vs. B 0.600 -3.957 3.797

Case D vs. EGM2008 3.967 -60.057 66.409 Case D vs. C 1.418 -11.511 11.111

Case E vs. EGM2008 3.942 -61.701 66.512 Case E vs. D 0.608 -4.012 3.607
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9 Summary

We reported on two main developments for the GOCE mission: 1) the method for monitoring
calibration parameters during nominal science mode and validation of the baseline, 2) the
upgrade of the gradiometer level 1b processor. For both developments, we presented results for
real mission data, which we validated by investigating the trace condition and comparing to
non-GOCE gravity field models.

Though the calibration method also works with data of dedicated shaking events, it was de-
veloped with focus on estimating calibration parameters from data recorded during nominal
science mode. The key feature of the method is the stochastic model for taking correlations into
account. We estimated time series of calibration parameters for monitoring of their temporal
evolution during nominal science mode. In addition, we validated the baseline’s calibration pa-
rameters. A major finding from the results for data of 11/2009–5/2010 is that some calibration
parameters show significant drifts between shaking events, which can be well approximated
by linear interpolation. Further, we found a correction for the differential scale factor ∆s25,y,
which largely reduces artefacts in the gravity gradient Vyy near the magnetic poles. The global
RMS of the difference of Vyy to ITG-Grace2010s could be reduced from 3.88 mE to 3.26 mE,
when filtered to the measurement band.

Based on that experience, we analyzed data of 3/2011–4/2011. Since the beginning of 2011,
solar activity increased, leading to worse drag conditions, which in turn cause larger artefacts
near the magnetic poles. The increased drag is reflected by CM accelerations, which have
increased by a factor of three. We found that correcting ∆s25,y alone does not reduce the arte-
facts satisfactorily. A systematic analysis of all possible error sources related to the calibration
parameters identified four additional calibration parameters as candidates for correction. How-
ever, we were still not able to find corrections for these calibration parameters, which would
reduce the artefacts satisfactorily. Thus, we conclude that the calibration parameters are not
the only source leading to artefacts in the gradients near the magnetic poles. Future research
will focus on identifying other sources which could cause these artefacts.

The gradiometer processing was designed based on pre-launch simulations. However, the actual
performance of the gradiometer differs from the one assumed pre-launch. The gradiometer noise
is larger than expected in the measurement band 5–100 mHz while it is lower than expected
bellow 5 mHz. For this reason, the gradiometer level 1b processing was revisited. In particular,
the finding that the interpolation of calibration parameters leads to a significant improvement
of the gradients, triggered the investigations. We found that three steps in the processing could
be improved and added one new step:

• The combination of data from two or three star sensors was introduced as a new step in
the processing. While a single star sensor measures the attitude about the boresight less
accurate by a factor of 10, the combined attitude does have this weakness.
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• The calibration of accelerations is improved by linearly interpolating the ICMs between
two shaking events. This prevents largely the leakage of CM accelerations into gravity
gradients. Whether the correction of the differential scale factor ∆s25,y of −36×10−6 will
be used in the reprocessing of level 1b data is currently in discussion.

• The reconstruction of the angular rates is improved. We now use a Wiener filter to
reconstruct the angular rates from the gradiometer and star sensor data. The advantage
is that it makes use of the full noise characteristics of the gradiometer and star sensor
data while its filter transient is very short (1.5 orbital revolutions) compared to that of
the Kalman filter which is used in the old processing (8 orbital revolutions).

• The reconstruction of the attitude is improved. In the old processing, a Kalman filter
performed the reconstruction of the angular rates as well as the attitude. In the new
processing, we integrate the reconstructed angular rates to obtain integrated attitude
quaternions. We use quaternions of the star sensor combination to initialize the integra-
tion. Then, we use the Wiener filter of the angular rate reconstruction for merging the
integrated quaternions with the quaternions of the star sensor data combination.

The impact of these steps was analyzed step-by-step on the level of gravity gradients as well
as gravity field models (level 1b and level 2). We found that for the gravity gradients Vxx and
Vzz the angular rate reconstruction, for Vyy the interpolation of ICMs, and for Vxz the attitude
reconstruction and star sensor combination are the most important steps. All improvements
in the gravity gradients are bellow 30 mHz in the PSD. For Vyy, the improvement is related
to reducing artefacts near the magnetic poles. The maps of the differences of the gravity
gradients to ITG-Grace2010s show that some systematic effects remain in the gravity gradients.
This indicates that further improvements of the level 1b gradiometer processing might be
possible. Further, we compared gravity field models estimated from the gravity gradients to
the EGM2008 and ITG-Grace2010s models. In the comparison in the spatial domain, we
excluded the spherical harmonics degrees 2–9, which are not accurately determined from the
gravity gradient data. The differences to EGM2008 in terms of geoid heights were reduced from
26.6 cm for the old processing to 15.7 cm for the upgraded processing. However, the largest
part of that improvement is found in the long wavelengths. This means that for a gravity field
model estimated from gravity gradients and GPS-SST data, we expect the improvement to be
much smaller. Nevertheless, it should be emphasized there are users who work with gravity
gradients directly rather than gravity field models.

It should be noted that the investigations contributed to an upgrade of the gradiometer level 1b
processor and a subsequent reprocessing of gradiometer level 1b data. Today (21st November
2011), the upgrade of the gradiometer level 1b processor is integrated into the level 1b processor
and the reprocessing is ongoing.
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A Robust trend estimation

In this section we explain the robust trend estimation method, which be can considered as a
variant of the Danish method [Crüger Jørgensen et al.(1984)]. Let

l + v = Ax (173)

be the observation equations of the trend estimation problem, where l are the observations, v
are residuals, A is the design matrix and x are the parameters. The parameters are estimated
by

x = (ATPA)−1ATPl, (174)

where P is a diagonal weighting matrix. The diagonal elements of P are computed according
to

Pn,n = exp(−v2
n/s

2
MAD), (175)

where sMAD is a robust estimate of the standard deviation based on the median absolute
deviation (MAD) [Venables and Ripley(2002), pp 121–122],

sMAD = 1.4826×MAD(v)

= 1.4826×median(|v −median(v)|) (176)

of the residuals v. The factor 1.4826 makes the MAD consistent with the standard deviation
of normal distributed residuals. The estimation of the parameters x are initialized by P = I,
and then iterated using in each iteration the new weighting matrix according to Eq. (175). The
covariance matrix of the final parameters is obtained by

x = (ATPA)−1s2MAD. (177)
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