

GOCE: Mission Overview and Early Results

R.Rummel, <u>D.Muzi</u>, M.Drinkwater, R.Floberghagen and M.Fehringer

www.esa.int

Gravity field and steady-state Ocean Circulation Explorer: GOCE

First Earth Explorer
 Core Mission of ESA's
 Living Planet Program

 First ESA Mission dedicated to the exploration of the Earth Gravity Field

GOCE Mission Objectives

- Determine the Earth's gravity field with an accuracy of 1 mgal (i.e. 1 millionth of the Earth gravity)
- Determine the geoid (i.e. the equipotential surface for a hypothetical ocean at rest) with a radial accuracy of 1 to 2 cm
- Achieve this at length scales down to 100 km

The Launch

GOCE successfully launched from Plesetsk on 17 March

lift-off at 15:21:13 CET

Mission History

- 17 20 March
- > 30 March 3 April
- ▶ 6 9 April
- > 7 May
- > May June
- > July mid Sept
- > 13 September
- ▶ 14 18 Sept
- > 29 September

launch and LEOP IPA commissioning gradiometer commissioning first time in drag-free mode gradiometer calibration orbit decay to 255 km back to drag-free mode orbit stabilisation

and gradiometer calibration

start of science operations

Overall status of satellite

- Satellite and payloads are in a very good state
- Orbit control strategy is mature and verified
- > The required ground repeat pattern is achieved
- Satellite is indeed very "quiet" allowing operations in eclipse period
- Overall mission objectives are expected to be met within nominal mission duration
- > Big margin in consumables at the end of nominal mission

Level 1b data products

EGG_NOM_1b	 Control voltages, linear/angular accelerations, common/ differential accelerations Angular rates and attitude 6 gravity gradients (xx,yy,zz,xz,xy,yz) Transformation matrix instrument frame to inertial frame Quality parameters, data gap information Includes all steps/corrections (reversible)
SST_NOM_1b	 Carrier phases, pseudo-ranges Orbit solution (Earth-fixed) Quality parameters, noise level estimates, data gap information Includes all steps/corrections (reversible)
SST_RIN_1b	 Sub-set of SST_NOM_1b information Follows RINEX 2.20

Level 2 data products

EGG_NOM_2	 Externally calibrated and corrected gravity gradients in GRF Corrections to gradients for temporal gravity variations Flags for outliers and data gaps, fill-ins for gaps Statistical information
EGG_TRF_2	 Externally calibrated gradients in Earth-fixed reference frame Including error estimates for transformed gradients Transformation parameters to Earth-fixed reference frame
SST_PSO_2	 Precise science orbit Quality report
EGM_GOC_2	 Final gravity field model in spherical harmonic series Grids of geoid heights, gravity anomalies and geoid slopes (Propagated) error estimates for all quantities Quality report
EGM_GVC_2	 Variance-covariance matrix of final gravity field model

GOCE Data Handbook

GOCE High Level Processing Facility

GOCE Level 2 Product Data Handbook

Doc. No.:	GO-MA-HPF-GS-0110
Issue:	4
Revision:	1
Date:	30 / 04 / 2009

Prepared by: The European GOCE Gravity Consortium EGG-C

- GOCE Mission Overview
- GOCE Data Processing Overview
- Reference Frames and Time

Systems

- Mathematical Conventions
 - Quaternions and Interpolation,
 - Spherical Harmonic Series,
 - Error Propagation
- Gravity Field Conventions
 - Approximations for derived quantities
 - Accurate Formulations
- Level 2 Product Definitions
 - Gradients & Orbits
 - Gravity Fields & Covariance

Matrix

European Space Agency

Format Descriptions (XML, other)

GOCE Standards

GOCE High Level Processing Facility

GOCE Standards

Doc. No.:	GO-TN-HPF-GS-0111
Issue:	3
Revision:	1
Date:	30 / 04 / 2009

Prepared by: The European GOCE Gravity Consortium EGG-C

Issue 3.1 in April 2009:

- Numerical Standards
- Time Systems
- Reference Systems Definitions
- Transformation between
 Reference
- Systems
- Geometrical Models
- Dynamical Models
- Height, Gravity & Tide Systems
- GOCE Reference & Time Systems

Future outlook

26 December 2009

Completion of first global mapping of the Earth with uniform longitude spacing at the equator of < 0.4 deg

Sept 2009 – April 2011

Uninterrupted science measurement phase until end of nominal mission, including eclipse periods.

It is expected that the current altitude of 255 km can be maintained throughout 2010.

Data release

- Release of first set of Level 1b data planned for Spring 2010 (around EGU)
- First official gravity field and release of first set of Level 2 data at ESA's Living Planet Symposium in Bergen, Norway, 28 June – 02 July 2010
- > Thereafter, regular release through standard ESA user services

http://earth.esa.int/goce