Multi-Track InSAR Time Series of Plate Boundaries: The Zagros Mountains and Makran Subduction Zone Southern Iran

William Barnhart Rowena Lohman

Cornell University Ithaca, NY, USA

ornell University

ornell University

Orogen-Wide InSAR Time Series

Motivation for generating large-scale time series

- Spatial distribution of strain in broadly deforming zones
- UFOs (Unrecognized Folding/moving/deforming Objects)

Deriving Displacement History

Some **Results**

Identifying UFOs: The Hazards Perspective

"Our attention should now focus on the threat posed by unanticipated quakes located in the continental interiors" - England and Jackson, Nature 2011

"...scientific priority should instead lie with identifying regions of the highest hazards where we have ... data on known active faults" - John McCloskey, Nature 2011

Potential Solution: InSAR Time Series

Zagros Overview

Collision between Arabia and Eurasia

Salt detached fold and thrust belt

High seismicity rates

80-90% accommodated aseismically

Rare surface rupturing earthquakes

Identifying UFOs: Zagros Anticlinal Uplift

Large Spatial Scale InSAR Observations

Southern California

South America

Cornell University

Southern Iran A Natural Laboratory

Tuesday, September 20, 2011

Iran Time Series

2003-2010 18 Tracks Envisat and ALOS (bold) **13-38** Acquisitions per track

948 igrams

Cornell University

Problems

Non Stationary, Correlated Noise

- Incomplete Tracks
- Unwrapping Errors
- Orbital Errors

Deriving Displacement History From Igram Tree Full-Rank Inversion

ornell University

Synthetic Test

Deriving Displacement History From Igram Tree Full-Rank Inversion

ornell University

Synthetic Test

Deriving Displacement History From Igram Tree Rank Deficient Case

Cornell University

Synthetic Test

Time Series

Cornell University

Unrecognized Folding Object

Cornell University

Unrecognized Folding Object

Cornell University

Conclusions

- InSAR time series analysis allows detection of unrecognized strain features

- Linear aseismic signals with rates of 5 mm/yr are detectable in the Zagros Fold and Thrust Belt

- Unconnected subsets require careful treatment in regions with inconsistent data acquisitions and low correlation