ENVISAT-1

GROUND SEGMENT

MERIS
 MEdium Resolution Imaging Spectrometer

Specification of the Contents of the MERIS Radiative Transfer Tools used to Generate the Level-2 Auxiliary Data Products

Document Number: PO-RS-PAR-GS-0003

Issue:
Issue Date:

4

December 16, 2010

Revision:
Filenames:
PO-RS-PAR-GS-0003 4A - Code_Spec_Part1-Theory.doc PO-RS-PAR-GS-0003 4A - Code_Spec_Part2-Appendices.doc

	Function (Company)	Name	Signature	Date
Prepared by:	Scientist (PARBLEU)	Francis Zagolski		
Checked by:	Scientist (LISE-Wimereux)	Richard Santer		
Checked by:	Scientist (FUB-Berlin)	Juergen Fischer		
Approved by:	Project Manager (ESA/ESTEC)	Jean-Paul Huot		
Released by:	Project Manager (ESA/ESRIN)	Philippe Goryl		

Par Bleu t echnolog i es	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } \end{aligned}$	2

TABLE OF CONTENTS

TABLE OF CONTENTS 2
LIST OF FIGURES 5
LIST OF TABLES 6
DOCUMENT CHANGE RECORD 7

1. INTRODUCTION 8
1.1 Purpose of document 8
1.2 SCOPE 8
1.3 DOCUMENT OVERVIEW 8
1.4 References 8
1.4.1 Applicable documents 8
1.4.2 Reference documents 9
1.5 ACRONYMS AND ABBREVIATIONS 13
1.5.1 Acronyms. 13
1.5.2 Scientific units 14
1.6 DEFINITIONS 15
1.6.1 Radiometry. 15
1.6.2 Physical principles 15
1.7 GLOSSARY 16
1.8 LIST OF SYMBOLS 17
1.8.1 Operator symbols 17
1.8.2 Vector symbols 17
1.8.3 Matrix symbols 18
1.8.4 Other symbols 18
2. PHYSICAL BASES 22
2.1 EXTINCTION, SCATTERING AND ABSORPTION COEFFICIENTS 22
2.2 Single SCATTERING ALBEDO AND OPTICAL DEPTH 23
2.3 SCATTERING PHASE FUNCTION 23
2.3.1 Definition. 23
2.3.2 Truncation of phase function. 24
2.4 IrRadiance, RADIANCE AND REFLECTANCE 26
2.5 Stokes parameters 28
2.6 Phase matrix 30
2.7 RAYLEIGH SCATTERING 31
2.8 Mie scattering 34
2.8.1 Mie theory 34
2.8.1.1 Computation of complex functions $\left(a_{n}, b_{n}\right)$ 34
2.8.1.2 Computation of the Ricatti-Bessel function 35
2.8.1.3 Computation of functions $\left(D_{n}, G_{n}\right)$ 38
2.8.1.4 Computation of functions $\left(\pi_{n}, \tau_{n}\right)$ 38
2.8.2 Optical properties 40
2.8.3 Phase matrix. 41
2.8.4 Forward scattering proportion 41
2.9 GASEOUS ABSORPTION 42
2.10 Fresnel Laws 44

Par Bleu t ech nolog i es	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } \end{aligned}$	3

3. ATMOSPHERIC OPTICAL PROPERTIES 47
3.1 DRY AIR (MOLECULAR ATMOSPHERE) 47
3.1.1 Inherent optical properties 47
3.1.1.1 Scattering coefficient 47
3.1.1.2 Scattering phase function 48
3.1.2 Vertical distribution 48
3.1.2.1 Molecular scale height 48
3.1.2.2 Vertical profile 50
3.2 AEROSOLS 50
3.2.1 Inherent optical properties 50
3.2.1.1 Sample of identical particles 50
3.2.1.2 Mixing of different particles 51
3.2.1.3 Convergence criterion 52
3.2.2 Particle size distribution 53
3.2.3 Aerosol models 53
3.2.4 Vertical distribution 55
3.3 Clouds 55
3.3.1 Inherent optical properties 55
3.3.2 Particle size distribution 55
3.3.3 Cloud models 55
3.3.4 Vertical distribution 55
4. WATER OPTICAL PROPERTIES 57
4.1 PURE SEA WATER 57
4.2 PHYTOPLANKTON 58
4.2.1 Inherent optical properties 58
4.2.2 Vertical distribution 60
4.3 YELLOW SUBSTANCE 60
4.3.1 Inherent optical properties 60
4.3.2 Vertical distribution 60
4.4 SUSPENDED PARTICULATE MATTER AND GELBSTOFF 60
4.4.1 Inherent optical properties 60
4.4.2 Vertical distribution 61
5. SEA SURFACE STATE 62
6. RADIATIVE TRANSFER 63
6.1 GEOMETRY 63
6.2 GENERAL FORMULATION 64
6.2.1 Radiative Transfer Equation (RTE) 64
6.2.2 Solving the RTE 65
6.2.2.1 Single and multiple scattering 67
6.2.2.2 Fourier series expansion of the radiation field 68
7. DESCRIPTION OF RTC/UDL 72
7.1 SCAMAT MODULE 72
7.1.1 Description 72
7.1.2 Tool. 72
7.1.3 Mie processing 73
7.2 UPRAD MODULE 74
7.2.1 Description 74
7.2.2 Tools 75
7.2.3 RTC/GAME 75
7.2.4 RTC/SO. 76
7.2.5 RTC/SOAO 80

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } \end{aligned}$	4

7.3 OTHER MODULE: RTC/MOS 86
7.3.1 Description 86
7.3.2 Tools 86
7.3.3 RTC/lut_alb_gddv 86
7.3.4 RTC/lut_rhob_agddv 87
7.3.5 RTC/lut_rhob_Rgddv 88
7.3.6 RTC/lut rhob aR 88
8. DESCRIPTION OF RTC/FUB 90
8.1 MIE MODULE 90
8.1.1 Description 90
8.1.2 Tool. 90
8.1.3 Mie processing 91
8.2 MOMO MODULE 91
8.2.1 Description 91
8.2.2 Tools 91
8.2.3 RTC/MOMO 92
8.2.3.1 Matrix-Operator Method. 92
8.2.3.2 Numerical method. 96
8.2.3.3 Air-sea interface 96

LIST OF FIGURES

Figure 1: Schematic representation of a radiant flux propagation within a scattering and absorbing medium 22
Figure 2: Schematic representation of scattered radiant flux within a particulate layer. 24
Figure 3: Illustration of the phase function truncation technique which substitutes the forward scattering peak by a linear extrapolation. Area below the phase function $p(\theta)$ (solid line) is replaced by the hatched area (modified scattering function $p^{\prime}(\theta)$). The amount α of forward scattered light is considered as not being scattered 25
Figure 4: Same legend as Figure 3 but using a second order polynomial curve to substitute the forward scattering peak 26
Figure 5: Illumination configuration of an elementary ground surface $d S$ 26
Figure 6: Viewing and illumination configuration of an elementary ground surface $d S$ 27
Figure 7: Representation of the elliptic polarization of an electromagnetic wave describing the temporal variation of the amplitude $A(t)$ of the electric field in the perpendicular plane to the propagation direction 29
Figure 8: Illustration of Rayleigh scattering: (a) parallel (//) and perpendicular (\perp) components of the incident ($\vec{E}, \vec{s}_{\mathrm{o}}$) and emitted $\left(\vec{E}_{s}, \vec{s}\right)$ electric field, (b) molecule dipole emission. 32
Figure 9: Samples of $a_{n}(\kappa, n)$ and $b_{n}(\kappa, n)$ curves computed for a refractive index $n=1.33-i 0.001$ with $\kappa=10$ and $\kappa=50$ 36
Figure 10: Samples of spherical Bessel functions, (a) $j_{n}(x)$ and (b) $n_{n}(x)$, for $\kappa=10$ and $\kappa=50$ 36
Figure 11: Samples of $D_{n}(n \kappa$ or $\kappa)$ and $G_{n}(\kappa)$ curves computed for a refractive index $n=1.33-i 0.001$ with $\kappa=10$ and $\kappa=50$ 39
Figure 12: Samples of $\pi_{n}(\theta)$ and $\tau_{n}(\theta)$ functions for several n values (n varying from 1 to 0). 39
Figure 13: Reflexion and transmission of the incident electric field \vec{E}_{i} through the air-water interface characterized by their refractive index, respectively n_{a} and n_{w} : (a) for the parallel component of the electric field $\left(\vec{E}_{i, / /}, \vec{E}_{r, / /}, \vec{E}_{t, / /}\right)$, and (b) for the perpendicular component of the electric field $\left(\vec{E}_{i, \perp}, \vec{E}_{r, \perp}, \vec{E}_{t, \perp}\right)$. Subscripts i, r and t stand for incidence, reflection and transmission. 46
Figure 14: Illumination and viewing configuration for MERIS sensor 63
Figure 15: Schematic representation of radiative transfer problem. 65
Figure 16: Flowchart of the MIE processing 73
Figure 17: Schematic representation of the «3 aerosol-layers» atmosphere over ocean 78
Figure 18: Flowchart of the RTC/UdL 83
Figure 19: Flowchart of the RTC/SO 84
Figure 20: Description of the primary scattering for the atmospheric upwelling radiance: 85
Figure 21: Description of the primary scattering for the in-water downwelling radiance: 85
Figure 22: Interaction principle within an elementary layer $\left[\tau_{0} ; \tau_{1}\right]$ 93

LIST OF TABLES

Table 1: Definition of some physical quantities useful for remote sensing data. 15
Table 2: Rayleigh optical thickness $\left(\tau^{R}\right)$ for a barometric pressure of 1013.25 hPa derived from [RD 13], ozone optical thickness $\left(\tau^{O_{3}}\right)$ derived from line-by-line computations using HITRAN-2000 and an amount of 1 cm -atm, and gaseous transmittivities in the 15 MERIS spectral bands computed with GAME and $6 S$ for a MLS profile, a solar zenith angle of 45 degrees and a nadir viewing (extracted from [RD 17]). 43
Table 3: Microphysical characteristics of the aerosol types (dry particles) from WCRP-1986 [RD 34] 52
Table 4: Percentage density of particles from WCRP-1986 [RD 34]. 52
Table 5: Complex refractive indices of the aerosol types (dry particles) from WCRP-1986 [RD 34] 52
Table 6: Aerosol components and their respective contributions (as percent of the volume (Vol.), or as percent of the number of particles (Pcl.)) in the composition of the aerosol models 54
Table 7: Pure water absorption coefficient σ_{a}^{w} for 10 MERIS spectral bands. 57
Table 8: Values of A_{λ} and B_{λ} coefficients for 10 MERIS spectral bands useful to compute $\sigma_{a}^{c h l}(\lambda)$ 58
Table 9: Petzold phase function $P_{p}(\theta)$ derived from [RD 44] 59
Table 10: Values of C_{λ} coefficients in 10 MERIS spectral bands useful to compute $\sigma_{s}^{\text {spm }}(\lambda)$ 61

MERIS/ ENVISAT-1
MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: 16-Dec-10 Page: 7

DOCUMENT CHANGE RECORD

Issue	Rev.	Date	Chapter/Paragraph Number, Change Description (and Reasons)
Draft	-	Nov. 18, 1997	- Draft release of the document
1	-	Feb. 20, 1998	- Release of the first issue of the document
2	-	Apr. 28, 1998	- Updated issue following the discussions and comments from the FUB and LISE institutes. The document was completely restructured and a new section was added.
2	A	Jan. 31, 2000	- Updated issue for the latest revision of FUB and LISE
3	-	May 7,2001	- New version of the document with an attached data dictionary devoted to the use of the radiative transfer tools
3	A	Dec. 20, 2001	- Reviewed version by the FUB and LISE institutes - Update of the data dictionary
3	B	Sep. 16, 2002	- Overview of the radiative transfer tools (RTC / FUB \& RTC / UdL) - ABB internal release only
4	$-\quad$	July 21, 2009 reviewed version by the FUB and LISE institutes	

1. INTRODUCTION

1.1 PURPOSE OF DOCUMENT

The purpose of this document is to describe the radiative transfer processes simulated within a coupled 'Atmosphere-Land/Ocean' system by two different codes developed by «Freie Universität Berlin» (FUB) in Germany and "Laboratoire Interdisciplinaire en Sciences de l'Environnement - Université du Littoral» (LISE/UdL) in France. In the framework of the MERIS project, these two radiative transfer codes (RTCs), referred as MOMO and UPRAD for the FUB and LISE institutes respectively, have been intervalidated for a set of representative test cases (see [AD-8] for more details) before to be used to generate MERIS lookup tables (LUTs) for the level-2 processing. A complete list of tools/modules used in each of the two RTCs (FUB \& UdL) for providing these MERIS LUTs is given in [AD-5].

1.2 SCOPE

This work is essential for the level-2 processing of MERIS ground segment data. Some parts of this report have been written with the help of scientific documents provided by the two institutes (FUB \& LISE).

1.3 DOCUMENT OVERVIEW

This document contains an overview of physical bases useful for the radiative transfer computations within a coupled 'Atmosphere-Land/Ocean' system, a complete description of the optical properties for the atmospheric and oceanic compounds as well as for the sea surface state, the radiative transfer equation within the coupled 'Atmosphere-Land/Ocean'system, and a detailed presentation of the two RTCs (FUB \& UdL) used for the MERIS LUTs generation with an attached data dictionary in the appendices.

Warning: The inherent optical properties (IOPs) of oceanic components presented in Section 4 of this document are only samples used for the RTC/Intervalidation [AD-8]. The formulations given in this section provide from [AD-4] (Issue3, Rev.1) and are not the reference model for the MERIS LUTs generation.

1.4 REFERENCES

This section presents a list of applicable and reference documents. The reader must refer to the Software Transfer Document [AD-6] for obtaining the issue number of each reference pertinent to the current MERISAT (MERIS Auxiliary data Tool) software release.

1.4.1 Applicable documents

No	Document	Title
[AD-1]	PO-TN-MEL-GS-0003	"MERIS Input/Output Data Definition"
[AD-2]	PO-TN-MEL-GS-0005	"MERIS Level-2 ATBD: Algorithm Theoretical Basis Document"
$[$ [AD-3]	PO-TN-MEL-GS-0002	"MERIS Level-2 Detailed Processing Model \& Parameter Data List"
$[$ [AD-4]	PO-TN-MEL-GS-0026	"Reference model for MERIS level-2 processing"

	D D Q C O	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAI } \\ & 4 \quad \underline{\text { Rev.: }} \\ & \text { 16-Dec-10 } \end{aligned}$	-0003 Page:	
[AD-5]	PO-RS-PAR-GS-0002	"Specification of the Scientific Contents of the MERIS Level-2 Auxiliary Data Products"				
[AD-6]	PO-MA-BOM-GS-0003	"Software Transfer Document for MERIS Level-2 Auxiliary Data Tool S/W"				
[AD-7]	PO-MA-BOM-GS-0008	"Software User's Manual for MERIS Level-2 Auxiliary Data Tool Software"				
[AD-8]	PO-RP-BOM-GS-0024	"Radiative Transfer Code Intervalidation Report for MERIS level-2 processing"				

1.4.2 Reference documents

No Reference (authors, title, journal)

[RD-1] Bohren, C.F., and D.R. Huffman, 1983. "Absorption and scattering of light by small particles", Academic Press, Wiley (NY).
[RD-2] Mie, G., 1908. "Beitraege zur optik trüber medien, speziell kolloidaler metallösungen", Annalen der Physik.: 25, 377-445.
[RD-3] Johnson, W.R., and F.D. Feiock, 1968. "Rayleigh scattering and the electromagnetic susceptibility of atoms", Physical Review: 168, 22-31.
[RD-4] Fell, F., and J. Fischer, 2001. "Numerical simulation of the light field in the atmosphereocean system using the matrix-operator method", Journal of Quantitative Spectroscopy \& Radiative Transfer: 69 (3), 351-388.
[RD-5] Chandrasekhar, S., 1950. "Radiative transfer", Oxford University Press, Oxford (England).
[RD-6] Lenoble, J., 1993. "Atmospheric radiative transfer", A. Deepak Publishing, Hampton (VA).
[RD-7] Van de Hulst, H.C., 1981. "Light scattering by small particles", Dover Publications, New York (NY).
[RD-8] Aden, A.L., 1951. "Electromagnetic scattering from spheres with sizes comparable to the wavelength", Journal of Applied Physics: 22 (5), 601-605.
[RD-9] Deirmendjian, D., R. Clasen, and W. Viezee, 1961. "Mie scattering with complex index of refraction", Journal of Optical Society of America: 51 (6), 620-633.
[RD-10] Wyatt, P.J., 1962. "Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects", Physical Review: 127 (5), 1837-1843.
[RD-11] Kattawar, G.W., and G.N. Plass, 1967. "Electromagnetic scattering from absorbing spheres", Applied Optics: 6 (8), 1377-1382.
[RD-12] Dave, J.V., 1969. "Scattering of visible light by large water spheres", Applied Optics: 8 (1), 155-164.
[RD-13] Hansen, J.E., and L. Travis, 1974. "Light scattering in planetary atmospheres", Space Science Reviews: 16, 527-610.
[RD-14] Liou, K.N., 1980. "An introduction to atmospheric radiation", Academic Press, San Diego (CA).
[RD-15] Corbato, F.J., and J.L. Uretsky, 1959. "Generation of spherical Bessel functions in digital computers", Journal of the Association for Computing Machinery: 6, 366-375.

[RD-16] McClatchey, R.A., R.W. Fenn, J.E.A. Selby, F.E. Voltz, and J.S. Garing, 1972. "Optical properties of the atmosphere", AFCRF-72-0497 report, Hanscom Air Force Base, Bedford (Mass.): 98 p .
[RD-17] Santer, R., V. Carrère, P. Dubuisson, and J.C. Roger, 1999. "Atmospheric correction over land for MERIS", International Journal of Remote Sensing: 20 (9), 1819-1840.
[RD-18] Lacis, A.A., and V. Oinas, 1991. "A description of the correlated k-distribution method for modeling non-grey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres", Journal of Geophysical Research: 96, 9027-9074.
[RD-19] Malkmus, W., 1967. "Random Lorentz band models with exponential tailed S^{-1} line intensity distribution function", Journal of Optical Society of America: 21, 323-329.
[RD-20] Rothman, L.S., K.V. Chance, J. Schroeder, and A. Goldman, 2001. "A new edition of the HITRAN database", Proceedings of $11^{\text {th }}$ Atmospheric Research Modelling Science Team Meeting, Atlanta (GA).
[RD-21] Dubuisson, P., J-C. Buriez, and Y. Fouquart, 1996. "High spectral resolution solar radiative transfer in absorbing and scattering media: Application to the satellite simulation", Journal of Quantitative Spectroscopy \& Radiative Transfer. 55 (1), 103-126.
[RD-22] Clough, S.A., F.X. Kneizys, and R. Davies, 1989. "Line shape and the water vapor continuum", Journal of Atmospheric Research: 23, 229-241.
[RD-23] Clough, S.A., M.J. Iacono, and J.L. Moncet, 1992. "Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor", Journal of Geophysical Research: 97, 15761-15785.
[RD-24] Kneizys, F.X., E.P. Shettle, W.O. Gallery, J.H. Chetwynd, Jr. L.W. Abreu, J.E.A. Selby, R.W. Fenn, and R.A. McClatchey, 1980. "Atmospheric transmittance/radiance: Computer code LOWTRAN 5", AFGL-TR-80-0067 report, Air Force Geophysics Laboratory, Bedford (Mass.).
[RD-25] Peck and Reeder, 1972. "Formulation of air refraction index", Journal of Optical Society of America: 62.
[RD-26] Bucholtz, 1995. "Formulation of the molecular depolarization factor", Applied Optics: $\mathbf{3 4}$ (15).
[RD-27] Young, A.T., 1980. "Revised depolarization corrections for atmospheric extinction", Applied Optics: 19, 3427-3428.
[RD-28] D'Almeida, G.A., P. Koepke, and E.P. Shettle, 1991. "Atmospheric aerosols global climatology and radiative characteristics", A. Deepak Publishing, Hampton (VA).
[RD-29] Davies, C.N., 1974. "Size distribution of atmospheric particles", Journal of Aerosol Science: 5, 293-300.
[RD-30] Junge, C.E., 1952. "Gesetzmäßigkeiten in der droßenverteilung atmosphärischer aerosole über dem kontinent", Berd. Deirsch Wetterdienst U.S. -Zone: 35, 261-277.
[RD-31] Deirmendjian, D., 1964. "Scattering and polarization properties of water clouds and hazes in the visible and infrared", Applied Optics: 3, 187-196.
[RD-32] Deirmendjian, D., 1969. "Electromagnetic scattering on spherical polydispersion", Elsevier Eds., New-York (NY).
[RD-33] Shettle, E.P., and R.W. Fenn, 1979. "Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties", Environmental Research Papers, AFGL-TR-79-0214, Hanscom (Mass.).

[RD-34] World Climate Research Program, 1986. "A preliminary cloudless standard atmosphere for radiation computation", International Association for Meteorology \& Atmospheric Physics, Radiation Commission, March 1986, WCP-112, WMO/TD-No 24.
[RD-35] Moulin, C., H.R. Gordon, V.F. Banzon, and R.H. Evans, 2001. " Assessment of Saharan dust absorption in the visible from SeaWiFS imagery", Geophysical Research Letters: 106D (18), 239-249.
[RD-36] Brogniez, G., J-C Buriez, V. Giraud, F. Parol, and C. Vanbauce, 1995. Monthly Weather Review: 123, 1025.
[RD-37] Stephen, G.L., 1979. "Optical properties of eight water cloud types", CSIRO Aust. Div. Atmospheric Physics, Technical Paper. (36), 1-35.
[RD-38] Pope, R.M., and E.S. Fry, 1997. "Absorption spectrum (380-700nm) of pure water: II. Integrating cavity measurements", Applied Optics: 36, 8710-8723.
[RD-39] Hale, G.M., and M.R. Querry, 1973. "Optical constants of water in the 200 nm to $200 \mu \mathrm{~m}$ wavelength region", Applied Optics: 12, 555-563.
[RD-40] Morel, A., 1974. "Optical properties of pure water and sea water", In: Optical Aspects of Oceanography, N.G. Jerlov and E. Steemann-Nielsen Eds, Academic Press: 1-24.
[RD-41] Morel, A., 1966. "Etude expérimentale de la diffusion de la lumière par l'eau, les solutions de chlorure de sodium et l'eau de mer optiquement pure", Journal of Chemical Physics: 10, 1359-1366.
[RD-42] Bricaud, A., A. Morel, M. Badin, K. Allali and H. Claustre, 1998. "Variations of light absorption by suspended particles with chlorophyll-a concentration in oceanic waters: Analysis and implications for bio-optical models", Journal of Geophysical Research: 103, 31033-31044.
[RD-43] Loisel, H., and A. Morel, 1998. "Light scattering and chlorophyll concentration in waters: A re-examination", Limnology \& Oceanography: 43 (5), 847-858.
[RD-44] Petzold, T.L., 1972. "Volume scattering functions for selected ocean waters", Scripps Institute of Oceanography, Ref. 72-78, San Diego (CA): 79 p.
[RD-45] Platt, T., and S. Sathyendranath, 1988. "Oceanic primary production: Estimation by remote sensing at local and regional scales", American Journal of Science: 241, 16131620.
[RD-46] Cox, C., and W. Munk, 1954. "Measurements of roughness of the sea surface from photographs of the sun glitter", Journal of Optical Society of America, 44 (11): 838-888.
[RD-47] Vermote, E., D. Tanré, J.L. Deuzé, M. Herman, and J.J. Morcrette, 1997. "Second simulation of the satellite signal in the solar spectrum, 6S: An overview", I.E.E.E. Transaction on Geoscience \& Remote Sensing: 35 (3), 675-687.
[RD-48] Lenoble, J., 1985. "Radiative transfer in scattering and absorbing atmospheres: Standard computational procedures", A. Deepak Publishing, Hampton (Virginia).
[RD-49] Preisendorfer, R.W., 1961. "Application of radiative transfer theory to light measurements in the sea", Monograph International Union of Geodynamics \& Geophysics, Paris (France): 10, 11-30.
[RD-50] Kattawar, G.W., and G.N. Plass, 1976. "Assymptotic radiance and polarization in optically thick media: Ocean and clouds", Applied Optics: 15 (12), 3166-3178.
[RD-51] Van de Hulst, H., 1980. "Multiple light scattering: Tables, formulas and applications", Academic Press, New-York (NY).

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0003 Issue: 4 Rev.: A Date: $\quad 16$-Dec-10 Page:

[RD-52] Stamnes, K., S. Tsay, W. Wiscombe, and K. Jayaweera, 1988. "Numerically stable algorithm for discrete ordinates method radiative transfer in multiple scattering and emitting layered media", Applied Optics: 27 (12).
[RD-53] Deuzé, J.L., M. Herman, and R. Santer, 1989. "Fourier series expansions of the transfer equation in the atmosphere-ocean system", Journal of Quantitative Spectroscopy \& Radiative Transfer: 41 (6), 483-494.
[RD-54] Lenoble, J., M. Herman, J.L. Deuzé, B. Lafrance, R. Santer and D. Tanré, 2007. "A successive order of scattering code for solving the vector equation of transfer in the Earth's atmosphere with aerosols", Journal of Quantitative Spectroscopy \& Radiative Transfer, 107, pp. 479-507 (doi: 10.1016/j.jqsrt.2007.03.010).
[RD-55] Hapke, B., 1981. "Bidirectional reflectance spectroscopy - 1: Theory", Journal of Geophysical Research: 86, 3039-3054.
[RD-56] Plass, G., G. Kattawar, and F. Catchings, 1973. "Matrix-operator theory of radiative transfer-1: Rayleigh scattering", Applied Optics: 12 (2), 314-329.
[RD-57] Potter, J., 1970. "The delta function approximation in radiative transfer theory", Journal of the Atmospheric Sciences: 27, 943-949.
[RD-58] Kattawar, G., T. Humphreys, and G. Plass, 1978. "Radiative transfer in an atmosphereocean system: A matrix-operator approach", SPIE proceedings: 160, 123-131.
[RD-59]] Nakajima, T., and M. Tanaka, 1983. "Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system", Journal of Quantitative Spectroscopy \& Radiative Transfer: 29 (6), 521-537.
[RD-60] Fischer, J., and H. Grassl, 1991. "Detection of cloud-top height from backscattered radiances within the oxygen-A band. Part 1: Theoretical study", Journal of Applied Meteorology: 30 (9), 1245-1259.
[RD-61] Fischer, J., and U. Kronfeld, 1990. "Sun stimulated chlorophyll fluorescence. 1: Influence of oceanic properties", International Journal of Remote Sensing: 11 (12), 2125-2147.
[RD-62] Böttger, U., 1997. "Zur ableitbarkeit von aerosoleigenschaften aus polarisation messun-gen", Ph.D. Thesis, Freie Universität Berlin, Fachbereich Geowissenschaften, Berlin (Germany).
[RD-63] Fell, F., and Preusker R., 1996. "Effects of the wind direction on the light field reflected from a wind roughened sea surface", In Ocean Optics XIII, SPIE proceedings: 2963.
[RD-64] Fischer, J., and H. Grassl, 1984. "Radiative transfer in an atmosphere-ocean system: An azimuthally dependent matrix-operator approach", Applied Optics: 23, 1031-1039.
[RD-65] Scott, N.S., 1974. "A direct method of computation of the transmission function of an homogeneous gaseous medium. I: Description of the method", Journal of Quantitative Spectroscopy \& Radiative Transfer: 14, 691.
[RD-66] Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, 1992. "Numerical recipes in C: The art of scientific computing", Second Edition, Cambridge University Press, Cambridge (Mass.): 994p.
[RD-67] Burden, R.L., and J.D. Faires, 1988. "Numerical analysis", Fourth Edition, PWS-KENT Publishing Company, Boston (Mass.).
[RD-68] Caceci, M.S., and W.P. Cacheris, 1984. "Fitting curves to data: The simplex algorithm is the answer", BYTE Magazine: 340-362.
[RD-69] Beer, R., 1994. "Cross with your spectra? Cross-correlate instead!", $5^{t h}$ Workshop on Atmospheric Science from Space using Fourier Transform Spectroscopy, Proceedings of the ASSFTS, Nov 30-Dec 2, 1994: 311-329.

[RD-70] Nelder, J.A., and R. Mead, 1965. "A simple method for function minimization", Computer Journal: 7, 308-313.
[RD-71] Bevington, P.R., and D.K. Robinson, 1992. "Data reduction and error analysis for the physical sciences", Second Edition, McGraw-Hill Inc., New-York (NY): 328p.
[RD-72] Hair, J.F., Jr. R.E. Anderson, R.L. Tatham, 1987. "Multivariate data analysis, with readings", Second Edition, Macmillan Publishing Company, London: 449p.
[RD-73] Kreyszig, E., 1993. "Advanced Engineering Mathematics", Seventh Edition, John Wiley \& Sons Inc., New-York (NY): 1400p.

1.5 ACRONYMS AND ABBREVIATIONS

1.5.1 Acronyms

6S
AOT
BOA Bottom Of the Atmosphere
BRDF Bidirectional Reflectance Distribution Function
CESBIO Centre d'Etudes Spatiales de la BIOsphere, (Toulouse - France)
CDOM Coloured Dissolved Organic Matter
DDV Dense Dark Vegetation
DOM Discrete Ordinates Method
ESFT Exponential Sum Fitting Technique (for computing gaseous transmittivity)
FUB Freie Universität Berlin, Institute for Space Science, (Berlin - Germany)
GAME Global Absorption ModEl
I/O Inputs/Outputs
IOP Inherent Optical Properties
LBL Line By Line computation
LISE/UdL Laboratoire Interdisciplinaire en Sciences de l'Environnement, Université du Littoral, (Wimereux - France)
LUT Look-Up Table
MERIS MEdium Resolution Imaging Spectrometer
MERISAT MERIS Auxiliary data Tool software
MLS Mid-Latitude Summer (atmospheric profile)
MOMO Matrix-Operator MethOd
OTC Optical Thickness Code
RH Relative Humidity
RTC Radiative Transfer Code
RTE Radiative Transfer Equation
SAM Standard Aerosol Model
SO Successive Orders method for the atmosphere
SOAO Successive Orders method for the coupled 'Atmosphere-Ocean'system
SPM Suspended Particulate Matter
STP Standard Temperature and Pressure ($T_{\mathrm{o}}=273.5 \mathrm{~K} ; P_{\mathrm{o}}=1013.25 \mathrm{hPa}$)
TOA Top Of the Atmosphere
WCRP World Climate Research Program

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.:Issue:	PO-RS-PAR-GS-0003		
- ar			4 Rev.:		
t e ch n ologies		Date:	16-Dec-10	Page:	14

1.5.2 Scientific units

deg	degree (angle unit)
$D U$	Dobson Unit ($10^{-3} \mathrm{~cm}$-atm)
Fm^{-1}	Farad per meter (dielectric constant unit) (Note: $1 \mathrm{Fm}^{-1}=1 \mathrm{Cb}^{2} . N^{-1} . \mathrm{m}^{-2}$ with $C b$ the Coulomb unit, and N the Newton unit)
$h P a$	hecto Pascal or $10^{2} \mathrm{~Pa}$ (pressure unit) (Note: $1 \mathrm{~atm}=760.31$ torr $=1013.25 \mathrm{hPa} ; 1$ torr $=1 \mathrm{mmHg}=1.333 \mathrm{mbar}$)
J	Joule (energetic unit)
μm	micrometer (wavelength unit)
n.u.	non unit (unitless)
$s r$	steradian (solid angle unit)
W	watt (power unit)

MERIS/ ENVISAT-1
MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003

Issue: 4 Rev.: A
Date: 16-Dec-10
Page: 15

1.6 DEFINITIONS

Some definitions of energetic quantities and physical principles currently used in radiometry are given in this section to make more easier the comprehension of physical bases useful to compute radiative transfer within the coupled 'Atmosphere-Land/Ocean'system.

1.6.1 Radiometry

Analysis of remote sensing measurements requires the well knowledge of some physical quantities summarized in Table 1. Note that the spectral irradiance and radiance will be expressed as μm^{-1}.

Table 1: Definition of some physical quantities useful for remote sensing data.

Quantity	Symbol	Units (SI)	Comments
Wavelength	λ	$[\mu \mathrm{m}]$	Electromagnetic wave frequency
Wavenumber	k	$\left[\mathrm{~cm}^{-1}\right]$	Quantity defined as $2 \pi / \lambda$
Radiant energy	W	$[\mathrm{~J}]$	Energy emitted, transmitted or received in electromagnetic wave form
Radiant flux or energetic power	Φ	$[\mathrm{W}]$	Radiant energy emitted, transmitted or received per time unit $\left[J . \mathrm{s}^{-1}\right]$
Radiant flux density	F	$\left[\mathrm{Wm}^{-2}\right]$	Radiant flux crossing an area unit
Irradiance	E	$\left[\mathrm{Wm}^{-2}\right]$	Radiant flux density incident on an area
Radiant exitance	M	$\left[\mathrm{Wm}^{-2}\right]$	Radiant flux density emerging from an area
Radiant intensity	I	$\left[\mathrm{Wrr}^{-1}\right]$	Radiant flux per solid angle unit
Radiance	L	$\left[\mathrm{Wm}^{-2} \mathrm{sr}^{-1}\right]$	Radiant flux density per unit solid angle

1.6.2 Physical principles

- Geometrical optics:
- Mie theory:

Useful to describe the light scattering by a particle (approximated by a sphere) the size of which is large compared to the wavelength of the incident radiation. Reflexion, refraction and absorption of the light at the scatterer interface are well computed by this theory for a large Mie's parameter value (κ) which is expressed as the ratio of the particle circumference to the incident wavelength ($\kappa=2 \pi r / \lambda$).

Typical values: $\kappa>50$ for the cloud drops, drizzle and raindrops.
The interaction of the solar radiation with all the hydrometeor types falls in this regime. A wide variety of optical phenomena such as raindrops and halos can be explained by the geometrical optics.

Analytical solutions using the Maxwel/'s equations for the light scattering by an isotropic sphere embedded in an homogeneous medium (see [RD-1] \& [RD-2]). This theory is of particular interest for particles with an intermediate size which would be too large to be considered as being entirely comprised in an homogeneous periodic electric field, and too small to neglect the curvature

radius of a surface element in so far as such an element is also large enough to contain an optical ray.

Typical values: $0.1<\kappa<50$ for the aerosols (i.e., smoke, dust and haze).

- Rayleigh scattering:

Process which describes the scattering of photons without changing their initial wavelength. This is opposed to the Compton's scattering where the wavelength of the scattered photons is shifted from its initial value. The Rayleigh dispersion occurs when the air molecules are small compared to the wavelength of the incoming sunlight, which makes the Rayleigh scattering insensitive to the particle shape [RD-3].

Typical values: $0.001<\kappa<0.1$ for the molecules.
Molecular scattering varies as λ^{-4} (incident radiation wavelength), making it negligible for $\kappa<0.001$.

1.7 GLOSSARY

Absorbance: The ratio of the absorbed radiant flux to the incident radiant flux

Aerosols:

Albedo:

Clouds.

Drizzle:

Irradiance:

Optical depth:

Small suspended particles in the air (e.g., smoke, dust and haze).

The spectral albedo of a surface is expressed as the ratio of the upwelling spectral radiant flux $\left(\Phi_{\lambda}^{\uparrow}\right)$ to the downwelling spectral radiant flux $\left(\Phi_{\lambda}^{\downarrow}\right)$ within the upper and lower semi-hemisphere respectively:

$$
A_{\lambda}=\frac{\Phi_{\lambda}^{\uparrow}}{\Phi_{\lambda}^{\downarrow}} \quad \text { (n.u.) }
$$

Surface albedo can be also defined as the ratio of the radiant exitance M (due to reflection) to the irradiance E and is ranged within [0;1]. This quantity is independent of incoming and outgoing scattering angles.

Single scattering albedo $\left(\omega_{\mathrm{o}}\right)$: This quantity represents the ratio of scattered radiant flux in all the directions to the extinct radiance flux (absorbed plus scattered radiant fluxes). It can be expressed as the ratio of the scattering coefficient (σ_{s}) to the extinction coefficient $\left(\sigma_{e}\right)$

Clouds consist of water droplets or ice crystals with approximately $10 \mu \mathrm{~m}$ radii. Droplet concentration in clouds is of the order of $10^{8} \mathrm{~m}^{-3}$ which means droplets stand around $10^{-3} \mathrm{~mm}$ apart.

Drops caracterized by $100 \mu \mathrm{~m}$ radii with a significant fall speed.

Mean value of the radiant energy during some finite interval of time expressed as $W \cdot m^{-2}$. This is proportional to the square of the amplitude of the electric field.

Integral of the scattering coefficient $\left(\sigma_{s}\right)$ within a layer defined by its depth $d z$:

$$
\tau=\int_{z_{2}}^{z_{1}} \sigma_{s}(z) \cdot d z
$$

Optical thickness:

Rain drops:

Raman effect:

Reflectance:

Reflexion:

Sun glint:
Scattering:

Transmittance: The ratio of the transmitted radiant flux to the incident radiant flux.

1.8 LIST OF SYMBOLS

1.8.1 Operator symbols

```
l unit operator (n.u.)
J spectral source operator (W.m
R reflection operator (n.u.)
F transmission operator (n.u.)
```


1.8.2 Vector symbols

```
\widetilde{E}
I}\quad\mathrm{ Stokes vector (I,Q,U,V) of radiation beam (W.m-. . }\mp@subsup{m}{}{-l}\mathrm{ )
\widetilde{L}}\quad\mathrm{ Stokes vector (I,Q,U,V) of radiance (W.m
```


1.8.3 Matrix symbols

$\mathbf{0}$	matrix for which all elements are equal to 0 (n.u.)
$\mathbf{1}$	matrix for which all elements are equal to 1 (n.u.)
\mathbf{C}	Gaussian atmospheric weights matrix (n.u.)
\mathbf{C}^{*}	Gaussian oceanic weights matrix (n.u.)
\mathbf{F}	transmission matrix for direct solar radiation (n.u.)
$\mathbf{F}_{\mathbf{p}}(\theta)$	scattering matrix for one type of particles (or molecules) (n.u.)
\mathbf{M}	scattering phase matrix (n.u.)
$\tilde{M}(\theta)$	phase matrix for a given scattering direction(n.u.)
$\mathbf{M u}$	incidence angles matrix (n.u.)
\mathbf{P}_{m}^{R}	scattering phase matrix for the reflection (n.u.)
\mathbf{P}_{m}^{T}	scattering phase matrix for the transmission (n.u.)
R	Fresne/ reflection matrix on the sea water surface (n.u.)
T	Fresne/transmission matrix at the air-water interface (n.u.)

1.8.4 Other symbols

a, b	parameters of the particle size distribution (n.u.)
a_{v}	weights associated with monochromatic absorption coefficients used in ESFT (n.u.)
$d N(r)$	number of particle per volume unit with a radius between r and $r+d r\left(\mathrm{~cm}^{-3}\right)$
E	spectral irradiance (W. $\mathrm{m}^{-2} \cdot \mu m^{-1}$)
$E_{\text {o }}$	spectral solar irradiance at TOA (W.m $\left.{ }^{-2} \cdot \mu m^{-1}\right)$
$F_{\text {o }}$	spectral solar radiance ($W \cdot m^{-2} \cdot s r^{-1} \cdot \mu m^{-l}$)
$f_{s p}$	forward scattering proportion (n.u.)
H_{a}	aerosol scale height (km)
H_{m}	Rayleigh (molecular) scale height (km)
ind	index for selecting the type of particle size distribution (n.u.)
I_{s}	maximum order of the Legendre polynomial decomposition of the phase function and the radiance (n.u.)
k	either imaginary part of the refractive index (n.u.) or wavenumber $\left(\mathrm{cm}^{-1}\right)$
k_{a}	absorption efficiency (n.u.)
k_{e}	extinction efficiency (n.u.)
k_{s}	scattering efficiency (n.u.)
k_{v}	monochromatic absorption coefficients ($\mathrm{cm}^{2} . \mathrm{g}^{-1}$)

L	spectral radiance ($W \cdot m^{-2} \cdot s r^{-1} \cdot \mu m^{-1}$)
m	real part of the refractive index (n.u.)
M	either the number of Fourier terms (n.u.) or the airmass (defined as $\left[1 / \cos \vartheta_{s}+1 / \cos \vartheta_{v}\right]$ or $\left[1 / \mu_{s}+1 / \mu_{v}\right]$) (n.u.)
n	index for selecting a MERIS spectral band (n.u.) or complex refractive index (n.u.)
n_{a}	refractive index of air (n.u.)
n_{w}	refractive index of pure water (n.u.)
$n(r)$	particle size distribution $\left(\mathrm{cm}^{-3} \cdot \mu \mathrm{~m}^{-1}\right)$
N	either number of size distributions used in the Mie's computation (n.u.) or number of discrete atmospheric zenithal angles (n.u.)
N^{*}	number of discrete oceanic zenithal angles (n.u.)
n_{2}	number of scattering angles in the Mie's computation (n.u.)
n_{i} / n	component mixing ratio (i.e., volume percentage of particles characterized by the $i^{\text {th }}$ size distribution) (n.u.)
p	normalized scattering phase function ($s r^{-1}$)
P_{s}	surface pressure (mbar or $h P a$)
Q_{a}	absorption cross section (m^{-2})
Q_{e}	extinction cross section (m^{-2})
Q_{s}	scattering cross section (m^{-2})
r	geometrical radius of a scatterer ($\mu \mathrm{m}$)
$r_{\text {min }}, r_{\text {max }}, d r$	minimum and maximum radius (μm), and radius increment (μm) of the particles in a given size distribution
$r_{/ /}, r_{\perp}$	Fresne/reflection coefficients in the // and \perp direction to the incidence plane (n.u.)
$t_{/ /}, t_{\perp}$	Fresne/ transmission coefficients in the // and \perp direction to the incidence plane (n.u.)
$T(u)$	spectrally integrated transmission function for an absorber amount u (n.u.)
$U_{\mathrm{H}_{2} \mathrm{O}}$	total water vapor content (g.cm ${ }^{-2}$)
$U_{O_{2}}$	total oxygen vapor content (g.cm ${ }^{-2}$)
$U_{O_{3}}$	total ozone content (cm-atm)
w_{i}	Gaussian weigths (n.u.)
w_{s}	wind speed above sea level ($\mathrm{m} \cdot \mathrm{s}^{-1}$)
$\delta_{i, j}$	Dirad's delta function (n.u.)
$\Delta \phi$	relative azimuthal angle, noted also as $\Delta \varphi$ (deg.)


```
\Deltav
\varphi
\varphis solar azimuthal angle (deg.)
\varphiv
\lambda wavelength ( }\mum\mathrm{ or nm)
\mu cosine of zenithal angle (n.u.)
\mu
\sigmaa
\sigma
\sigmaa
\sigma
\sigma
\sigma
\sigma
\sigma
\sigma
\sigma
\sigma
\sigma
\sigmas
\sigma
| scattering angle (deg.)
0p}\quad\mathrm{ phase function truncation angle (deg.)
\varthetac critical zenithal angle for total internal reflection (deg.)
\varthetao illumination zenithal angle (deg.)
\varthetas solar zenithal angle (deg.)
\varthetav viewing zenithal angle (deg.)
\rhos}\quad reflectance of ground surface or ocean bottom assumed to be Lambertian (n.u.)
\rho
\rhoF
```


$\rho_{D D V}$	ground DDV albedo (n.u.)
$\bar{\rho}_{a G}$	aerosol-ground DDV coupling bidirectionality term (n.u.)
$\bar{\rho}_{a R}$	aerosol-molecule coupling bidirectionality term (n.u.)
$\bar{\rho}_{R G}$	Rayleigh-ground DDV coupling bidirectionality term (n.u.)
τ	optical thickness (n.u.)
τ^{a}	aerosol optical thickness (n.u.)
τ^{c}	cloud optical thickness (n.u.)
τ^{R}	Rayleigh (molecular) optical thickness (n.u.)
$\tau^{O_{3}}$	ozone optical thickness (n.u.)
ω_{0}	single scattering albedo (n.u.)
ω_{0}^{p}	single scattering albedo for phytoplankton(n.u.)
$\omega_{0}^{s p m}$	single scattering albedo for SPM(n.u.)
ω_{o}^{w}	single scattering albedo for pure sea water(n.u.)
Ω	solid angle (sr)

2. PHYSICAL BASES

2.1 EXTINCTION, SCATTERING AND ABSORPTION COEFFICIENTS

Let us consider an elementary layer $d z$ of homogeneously distributed absorbing and scattering spherical particles which receives a perpendicular monochromatic incident radiant flux ϕ_{o} at the top of its interface (Figure 1). This radiant flux which propagates along z axis within the layer is then attenuated by the scatterers and absorbers encountered. The outgoing radiant flux ($\phi_{0}+d \phi_{0}$) at the bottom interface is then lower than the incoming radiant flux.

Figure 1: Schematic representation of a radiant flux propagation within a scattering and absorbing medium.

Assuming an isotropic medium, the variation of the radiant flux $d \phi_{\mathrm{o}}$ is directly proportional to the incoming radiant flux ϕ_{o} and it can be expressed as:
or

$$
\begin{gather*}
d \phi_{\mathrm{o}}=-\sigma_{e} \cdot \phi_{\mathrm{o}} \cdot d z \tag{1}\\
\frac{d \phi_{\mathrm{o}}}{\phi_{\mathrm{o}}}=-\sigma_{e} \cdot d z \tag{2}
\end{gather*}
$$

where $d z$ is the geometrical thickness of the layer and $\sigma_{e}\left(m^{-1}\right)$ the extinction coefficient.

Note that all the quantities mentioned above and hereafter are monochromatic, and to simplify the notation the subscript λ corresponding to the wavelength is omitted.

The energy loss in the layer $d z$ relies on two physical processes:

- absorption: photons are purely absorbed then re-emitted at a frequency which differs to the initial incident wavelength (e.g., in the thermal region of the solar spectrum),
- scattering: photons are scattered in all the directions of the space.

The propagation medium is then characterized by an absorption coefficient σ_{a} and a scattering coefficient σ_{s} expressed as m^{-1}. These two coefficients verify the following relationship:

$$
\begin{equation*}
\sigma_{e}=\sigma_{a}+\sigma_{s} \tag{3}
\end{equation*}
$$

2.2 SINGLE SCATTERING ALBEDO AND OPTICAL DEPTH

The previous layer can be optically described by the two following parameters:

- the single scattering albedo ω_{o} which is defined as:

$$
\begin{equation*}
\omega_{\mathrm{o}}=\frac{\sigma_{s}}{\sigma_{e}} \text { with } 0 \leq \omega_{\mathrm{o}} \leq 1 \tag{4}
\end{equation*}
$$

- the layer optical depth τ which represents the total extinction coefficient σ_{e} integrated between its upper $\left(z_{1}\right)$ and lower $\left(z_{2}\right)$ interfaces:

$$
\begin{equation*}
\tau=\int_{z_{2}}^{z_{1}} \sigma_{e}(z) \cdot d z \tag{5}
\end{equation*}
$$

2.3 SCATTERING PHASE FUNCTION

2.3.1 Definition

Similarly to Equation (1) the radiant flux loss $d^{2} \phi_{0}^{\mathrm{s}}(\theta, \Omega)$ in the layer $d z$, due to the scattering process only, along a particular scattering direction θ within a solid angle $d \Omega$ (Figure 2), can be written as:

$$
\begin{equation*}
d^{2} \phi_{\mathrm{o}}^{\mathrm{s}}(\theta, d \Omega)=f(\theta) \cdot \phi_{\mathrm{o}} \cdot d z \cdot d \Omega \tag{6}
\end{equation*}
$$

where $f(\theta)$ represents the angular distribution function of the scattered photons in all the directions of the space, expressed as $m^{-1} s r^{-1}$.

Integration of Equation (6) over $d \Omega$ for all the directions of the space yields to:

$$
\begin{equation*}
d \phi_{\mathrm{o}}^{\mathrm{s}}=-\sigma_{s} \cdot \phi_{\mathrm{o}} \cdot d z \tag{7}
\end{equation*}
$$

where,

$$
\begin{equation*}
\sigma_{s}=2 \pi \cdot \int_{0}^{\pi} f(\theta) \cdot \sin \theta \cdot d \theta \tag{8}
\end{equation*}
$$

It is more convenient to introduce a normalized phase function $p(\theta)$ related to the scattering function as follows:

$$
\begin{equation*}
p(\theta)=\frac{4 \pi}{\sigma_{s}} \cdot f(\theta) \quad\left(s r^{-1}\right) \tag{9}
\end{equation*}
$$

where the normalization is given by:

$$
\begin{equation*}
\iint_{\text {space }} p(\theta) \cdot d \Omega=4 \pi \tag{10}
\end{equation*}
$$

The scattering phase function depends on the physical characteristics of the scatterers (i.e., the refractive index and the particle size distribution) and does not take into account their density number which reflects on σ_{s} only.

Figure 2: Schematic representation of scattered radiant flux within a particulate layer.

2.3.2 Truncation of phase function

Large particles present a strong forward scattering peak which makes very difficult the angular integration of their phase function. Several approaches have been developed to overcome this difficulty. The latters consist in substituting the phase function by a similar function more accessible to numerical treatment. These methods, referred as the phase function truncation techniques, rely on the assumption that the scattered light into the forward direction cannot be distinguished from unscattered light. Consequently, this phase function $p(\theta)$ can be approximated by a linear combination of Dirads delta function representing a certain amount α of forward scattering and a modified phase function $p^{\prime}(\theta)$ with a reduced proportion of forward scattering for angles smaller than a certain threshold value θ_{p} (Figure 3):

$$
\begin{equation*}
p(\theta)=\alpha \cdot \delta_{1, \cos \theta}+(1-\alpha) \cdot p^{\prime}(\theta) \tag{11}
\end{equation*}
$$

with $p^{\prime}(\theta)$ defined as:

$$
\left\{\begin{array}{l}
p^{\prime}(\theta)=a \cdot \theta+b \text { for } \theta \in\left[0 ; \theta_{\mathrm{p}}\right] \tag{12}\\
p^{\prime}(\theta)=p(\theta) \quad \text { otherwise }
\end{array}\right.
$$

where a and b are determined by the following conditions:

$$
\left\{\begin{array}{l}
p^{\prime}\left(\theta_{\mathrm{p}}\right)=p\left(\theta_{\mathrm{p}}\right) \tag{13}\\
\left(\frac{d p^{\prime}}{d \theta}\right)_{\theta_{\mathrm{p}}}=\left(\frac{d p}{d \theta}\right)_{\theta_{\mathrm{p}}}
\end{array}\right.
$$

The fraction α represents the amount of radiation considered as being scattered exactly into the forward direction. The modified phase function $p^{\prime}(\theta)$ is then normalized according to Equation (10).

Consequently, the extinction of the incident radiant flux ϕ_{0} within the layer is smaller and the new scattering $\left(\sigma_{s}{ }^{\prime}\right)$ and extinction $\left(\sigma_{e}{ }^{\prime}\right)$ coefficients become:

$$
\left\{\begin{array}{l}
\sigma_{s}^{\prime}=\sigma_{s} \cdot(1-\alpha) \tag{14}\\
\sigma_{e}^{\prime}=\sigma_{e} \cdot\left(1-\omega_{\mathrm{o}} \cdot \alpha\right)
\end{array}\right.
$$

Keeping a constant absorption coefficient, the modified single scattering albedo ($\omega_{\mathrm{o}}{ }^{\prime}$) can be deduced by including Equations (3) and (4) into Equation (12):

$$
\begin{equation*}
\omega_{\mathrm{o}}^{\prime}=\frac{\omega_{\mathrm{o}} \cdot(1-\alpha)}{1-\omega_{\mathrm{o}} \cdot \alpha} \tag{15}
\end{equation*}
$$

Note that certain authors prefer to replace the forward scattering peak by a second order polynomial (Figure 4). In this case, $p^{\prime}(\theta)$ is expressed as follows [RD-4]:

$$
\begin{cases}p^{\prime}(\theta)=a . \theta^{2}+c & \text { for } \theta \in\left[0 ; \theta_{\mathrm{p}}\right] \tag{16}\\ p^{\prime}(\theta)=p(\theta) & \text { otherwise }\end{cases}
$$

where a and c are derived from the following conditions:

$$
\left\{\begin{array}{l}
p^{\prime}\left(\theta_{\mathrm{p}}\right)=p\left(\theta_{\mathrm{p}}\right) \tag{17}\\
\left(\frac{d p^{\prime}}{d \theta}\right)_{\theta_{\mathrm{p}}}=\left(\frac{d p}{d \theta}\right)_{\theta_{\mathrm{p}}} \\
\left(\frac{d p^{\prime}}{d \theta}\right)_{0}=0
\end{array}\right.
$$

Figure 3: Illustration of the phase function truncation technique which substitutes the forward scattering peak by a linear extrapolation. Area below the phase function $p(\theta)$ (solid line) is replaced by the hatched area (modified scattering function $p^{\prime}(\theta)$). The amount α of forward scattered light is considered as not being scattered.

Figure 4: Same legend as Figure 3 but using a second order polynomial curve to substitute the forward scattering peak.

2.4 IRRADIANCE, RADIANCE AND REFLECTANCE

Let us consider an horizontal elementary ground surface $d S$ enlightened by an incident parallel sun beam from direction ϑ_{o} (Figure 5), the irradiance E_{s} received by $d S$ is then expressed as:

$$
\begin{equation*}
E=E_{\mathrm{o}} \cdot \cos \vartheta_{\mathrm{o}} \quad\left(W \mathrm{~m}^{-2}\right) \tag{18}
\end{equation*}
$$

where E_{o} is the radiant flux density on the elementary surface $d \Sigma$ perpendicular to the incident beam and ϑ_{0} the zenithal angle of the illumination source.

Figure 5: Illumination configuration of an elementary ground surface $d S$.

This relationship is currently used to define the solar irradiance E_{s} at the top of the atmosphere (TOA) for which the incident direction is determined by the solar zenithal angle θ_{s} and the solar azimuthal angle φ_{s}. The geographic north direction refers to $\varphi_{s}=0$ and θ_{s} is ranged within $[0 ; \pi / 2]$.

The incident solar radiance L_{s} on the surface $d S$ is defined as the incident radiant flux density E_{s} (or irradiance) per unit of solid angle $d \Omega$ (Figure 6):

$$
\begin{equation*}
L_{s}=\frac{d E_{s}}{d \Omega} \quad\left(W m^{-2} s r^{-1}\right) \tag{19}
\end{equation*}
$$

where $d \Omega$ represents the solid angle $(s r)$ under which is viewed the surface $d S$ from the solar illumination.

$$
\begin{equation*}
d \Omega=\sin \vartheta_{s} \cdot d \vartheta_{s} \cdot d \varphi_{s} \tag{20}
\end{equation*}
$$

Similarly, the upwelling radiance L leaving the surface $d S$ is defined as the reflected or emitted radiant flux density E per unit of solid angle $d \omega$:

$$
\begin{equation*}
L=\frac{d E}{d \omega} \quad\left(W m^{-2} s r^{-1}\right) \tag{21}
\end{equation*}
$$

where $d \omega$ is the solid angle under which is viewed the surface $d S_{\mathrm{d}}$ from the ground surface $d S$.
or

$$
\begin{gather*}
d \omega=\sin \vartheta_{v} \cdot d \vartheta_{v} \cdot d \varphi_{v} \tag{22}\\
d \omega=d \mu_{v} \cdot d \varphi_{v} \quad \text { with } \quad \mu_{v}=\cos \vartheta_{v}
\end{gather*}
$$

where ϑ_{v} and φ_{v} stand for the viewing zenithal and azimuthal angles, respectively.

Figure 6: Viewing and illumination configuration of an elementary ground surface $d S$.

The elementary irradiance $d E$ included within $d \omega$ can be written as:

$$
\begin{equation*}
d E=L \cdot \mu_{v} \cdot d \mu_{v} \cdot d \varphi_{v} \tag{23}
\end{equation*}
$$

where μ_{v} corresponds to the cosine projection of the elementary surface $d S$.

The total upwelling radiance E^{\uparrow} in the upper semi-hemisphere over the ground surface $d S$ is then computed as:

$$
\begin{equation*}
E^{\uparrow}=\int_{0}^{2 \pi} \int_{0}^{1} L\left(\mu_{v}, \varphi_{v}\right) \cdot \mu_{v} \cdot d \mu_{v} \cdot d \varphi_{v} \tag{24}
\end{equation*}
$$

For a Lambertian surface (i.e., an isotropic surface) the radiance L is independent of ϑ_{v} and φ_{v}, and the total upwelling radiance above the surface is then: $E^{\uparrow}=\pi L$

The surface reflectance ρ_{s} is then defined as the ratio between the total upwelling (E^{\uparrow}) to downwelling $\left(E^{\downarrow}\right)$ radiances:

$$
\begin{equation*}
\rho_{s}=\frac{E^{\uparrow}}{E_{\downarrow}} \tag{25}
\end{equation*}
$$

For a Lambertian reflector enlightened by the direct solar irradiance only, the surface reflectance is deduced from Equations (18) and (25):

$$
\begin{equation*}
\rho_{s}=\frac{\pi L}{\mu_{s} E_{s}} \tag{26}
\end{equation*}
$$

2.5 STOKES PARAMETERS

Let a plane electromagnetic wave propagates along z axis with a wavenumber k ($k=2 \pi / \lambda$, with λ the wavelength) and an angular frequency ω ($\omega=k . c$, with c the light velocity). The electric field vector \vec{E} may be decomposed into two components $E_{/ /}$and E_{\perp} (complex and oscillating functions) which represent the electric field in the parallel (//) and perpendicular (\perp) directions in the plane (x, y) through the propagation direction:

$$
\left\{\begin{array}{l}
E_{/ /}=A_{/ /} \cdot e^{-i \varphi_{/ /}} \cdot e^{-i(k . z+\omega . t)} \tag{27}\\
E_{\perp}=A_{\perp} \cdot e^{-i \varphi_{\perp}} \cdot e^{-i(k . z+\omega . t)}
\end{array}\right.
$$

where $A_{/ /}$and A_{\perp} are respectively the amplitudes of each of the two electric field components ($E_{/ /}$and $\left.E_{\perp}\right)$, and $\varphi_{/ /}, \varphi_{\perp}$ the associated phases. Note that a plane electromagnetic wave is characterized by a constant phase.

Since the intensity of the electromagnetic wave is proportional to the square of the electric field, four Stokes parameters (I, Q, U, V) are then introduced:

$$
\left\{\begin{array}{l}
I=E_{/ /} E_{/ /}^{*}+E_{\perp} E_{\perp}^{*} \tag{28}\\
Q=E_{/ /} E_{/ /}^{*}-E_{\perp} E_{\perp}^{*} \\
U=E_{/ /} E_{\perp}^{*}+E_{\perp} E_{/ /}^{*} \\
V=-i\left(E_{/ /} E_{\perp}^{*}-E_{\perp} E_{\| /}^{*}\right)
\end{array}\right.
$$

where the asterisk denotes the complex conjugate value of the electric field. These Stokes parameters define an elliptically polarized wave and verify the following relationship:

$$
\begin{equation*}
I^{2}=Q^{2}+U^{2}+V^{2} \tag{29}
\end{equation*}
$$

Note that the ellipse, corresponding to the polarization form of the electromagnetic wave, describes the temporal variation of the wave amplitude in the perpendicular plane to the propagation direction.

Introducing Equation (27) into (28) yields to:

$$
\left\{\begin{array}{l}
I=\left(A_{/ /}\right)^{2}+\left(A_{\perp}\right)^{2} \tag{30}\\
Q=\left(A_{/ /}\right)^{2}-\left(A_{\perp}\right)^{2} \\
U=2 A_{/ /} \cdot A_{\perp} \cdot \cos \delta \\
V=2 A_{/ /} \cdot A_{\perp} \cdot \sin \delta
\end{array}\right.
$$

with $\delta=\varphi_{/ /}-\varphi_{\perp}$.

The intensities $I_{/ /}$and I_{\perp} observed respectively along the parallel and perpendicular directions are expressed as:

$$
\left\{\begin{array}{l}
I_{/ /}=\left(A_{/ /}\right)^{2} \tag{31}\\
I_{\perp}=\left(A_{\perp}\right)^{2}
\end{array}\right.
$$

Assuming that α is the inclinaison of the principal axes of the ellipse with the directions of the polarization plane ($A_{/ /}, A_{\perp}$) and β the angle corresponding to the excentricity (Figure 7), the Stokes parameters can be formulated with the intensities $I, I_{/ /}, I_{\perp}$ and the angles α and β :

$$
\left\{\begin{array} { l }
{ I = I _ { / / } + I _ { \perp } } \tag{32}\\
{ Q = I \cdot \operatorname { c o s } 2 \alpha \cdot \operatorname { c o s } 2 \beta } \\
{ U = I \cdot \operatorname { s i n } 2 \alpha \cdot \operatorname { c o s } 2 \beta } \\
{ V = I \cdot \operatorname { s i n } 2 \beta }
\end{array} \Rightarrow \left\{\begin{array}{l}
I=I_{/ /}+I_{\perp} \\
Q=I_{/ /}-I_{\perp} \\
U=\left(I_{/ /}-I_{\perp}\right) \cdot \tan 2 \alpha \\
V=\left(I_{/ /}-I_{\perp}\right) \cdot \tan 2 \beta / \cos 2 \alpha
\end{array}\right.\right.
$$

Figure 7: Representation of the elliptic polarization of an electromagnetic wave describing the temporal variation of the amplitude $A(t)$ of the electric field in the perpendicular plane to the propagation direction.

Due to the high frequency of the light beam there exists millions of successive waves with independent phases within a very short time. Thus each measurement of the light integrates millions of wave intensities. Introducing a time average and the apparent intensities in the parallel and perpendicular directions, the Stokes parameters become:

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0003 Issue: $4 \quad$ Rev.: A Date: $16-$ Dec-10 \quad Page: 30			

$$
\left\{\begin{array}{l}
I=\left(\bar{A}_{/ /}\right)^{2}+\left(\bar{A}_{\perp}\right)^{2} \tag{33}\\
Q=\left(\bar{A}_{/ /}\right)^{2}-\left(\bar{A}_{\perp}\right)^{2} \\
U=2 \bar{A}_{/ /} \cdot \bar{A}_{\perp} \cdot \overline{\cos \delta} \\
V=2 \bar{A}_{/ /} \cdot \bar{A}_{\perp} \cdot \overline{\sin \delta}
\end{array}\right.
$$

Note that for a natural (or unpolarized) radiation, the light is unaffected by the different wave phases, and consequently $\overline{\cos \delta}$ and $\overline{\sin \delta}$ are equals to zero. Moreover, amplitudes are the same whatever the direction $\left(A_{/ /}=A_{\perp}\right)$. In fact, as mentioned by Chandrasekhar, Natural light is equivalent to any two independent oppositely polarized streams $\{(\beta, \alpha)$ and $(-\beta, \alpha+\pi / 2)\}$ of half the intensity [RD-5]. Thus, using Equations (33) it can be easily shown that:

$$
\left\{\begin{array}{l}
Q(\alpha)+Q(\alpha+\pi / 2)=0 \tag{34}\\
U(\alpha)+U(\alpha+\pi / 2)=0 \\
V(\beta)+V(-\beta)=0
\end{array}\right.
$$

Finally, for a natural light such as sunlight the Stokes parameters become: $(I, Q, U, V)=\left(I_{\text {unpol }}, 0,0,0\right)$.

Note that:

- For a totally polarized light, the parameter δ is constant and Equation (29) remains right. The wave state is described by the following Stokes parameters:

$$
(I, Q, U, V)=\left(I_{\mathrm{pol}}, Q, U, V\right) \text { with } I_{\mathrm{pol}} \text { the polarized intensity }
$$

- For a partially polarized light, Equation (29) becomes:

$$
I^{2} \geq Q^{2}+U^{2}+V^{2}
$$

and the wave state is described by the following Stokes parameters:

$$
(I, Q, U, V)=\left(I_{\mathrm{unpol}}, 0,0,0\right)+\left(I_{\mathrm{pol}}, Q, U, V\right)
$$

2.6 PHASE MATRIX

On the basis of Stokes parameters, the intensity of electromagnetic waves I at each point of a given propagation direction can be related to the natural incident wave $\left(I_{0}, 0,0,0\right)$ by the following relationship:

$$
\left[\begin{array}{l}
I \tag{35}\\
Q \\
U \\
V
\end{array}\right]=\mathbf{M}(\theta) \cdot\left[\begin{array}{c}
I_{\mathrm{o}} \\
0 \\
0 \\
0
\end{array}\right]
$$

where $\mathbf{M}(\theta)$ represents the phase matrix and θ the scattering angle.

The scattering phase matrix is defined as:

$$
\begin{equation*}
\mathbf{M}(\theta)=\frac{\sigma_{s}}{4 \pi r^{2}} \cdot \mathbf{F}_{\mathrm{p}}(\theta) \tag{36}
\end{equation*}
$$

where $\mathbf{F}_{\mathrm{p}}(\theta)$ is the scattering matrix for one type of particles (or molecules).

Each term of the matrix corresponds to the angular distribution of the scattered intensity by a sphere. For a single isotropic and homogeneous sphere, the phase matrix $\mathbf{F}_{\mathrm{p}}(\mu)$ is defined as:

$$
\mathbf{F}_{\mathrm{p}}(\mu)=\left[\begin{array}{cccc}
P_{11}(\mu) & P_{12}(\mu) & 0 & 0 \tag{37}\\
P_{12}(\mu) & P_{11}(\mu) & 0 & 0 \\
0 & 0 & P_{33}(\mu) & -P_{34}(\mu) \\
0 & 0 & P_{34}(\mu) & P_{33}(\mu)
\end{array}\right] \text {, with } \mu=\cos \theta
$$

2.7 RAYLEIGH SCATTERING

The Rayleigh (or molecular) scattering theory presented below is extracted from [RD-6]. The latter is based on the assumption that the electric field (\vec{E}) of the incident electromagnetic wave induces the presence of an electric dipole moment (\vec{P}) within the molecule oscillating at the incident wave frequency. This oscillating dipole always emits at the same frequency according to the classical electromagnetic theory.

The Rayleigh theory is only applied to molecules and particles the size of which is much smaller than the radiation wavelength, i.e., for which the electric field can be assumed to be constant around the particle. The induced moment \vec{P} and the incident electric field \vec{E} are related by the polarizability tensor which is reduced to a constant polarizability coefficient α for an isotropic molecule:

$$
\begin{equation*}
\vec{P}=\alpha \cdot \vec{E} \tag{38}
\end{equation*}
$$

From the electromagnetic theory, the total radiant energy (W) emitted by the dipole is defined as:

$$
\begin{equation*}
W=\frac{c k^{4}}{12 \pi \varepsilon_{\mathrm{o}}} \cdot\left(P P^{*}\right) \tag{39}
\end{equation*}
$$

with ε_{0} the dielectric constant in vacuum $\left(\varepsilon_{0}=8.85 .10^{-12} \mathrm{Fm}^{-1}\right), c$ the light velocity in vacuum ($c=2.99810^{8} \mathrm{~m} \mathrm{~s}^{-1}$) , k the wavenumber ($k=2 \pi / \lambda$, with λ the wavelength of the incident radiation), and P_{o} the amplitude of moment \vec{P}; the asterisk denotes the complex conjugate value.

The incident radiant flux density F (irradiance) on the spherical particle (molecule) is expressed as:

$$
\begin{equation*}
F=\frac{c \varepsilon_{0}}{2} \cdot\left(E E^{*}\right) \tag{40}
\end{equation*}
$$

If W is interpreted as the radiant flux (or energetic power) scattered by the spherical particle (molecule) in all the directions, the scattering cross section $Q_{s}^{m o l}\left(\mathrm{~m}^{-2}\right)$ of the particle is then written as:

$$
\begin{equation*}
Q_{s}^{m o l}=\frac{W}{F} \tag{41}
\end{equation*}
$$

or with Equations (38), (39) and (40):

$$
\begin{equation*}
Q_{s}^{m o l}=\frac{k^{4} \alpha^{2}}{6 \pi \varepsilon_{\mathrm{o}}^{2}} \tag{42}
\end{equation*}
$$

For a propagation medium with N molecules per unit volume $\left(m^{-3}\right)$, the resulting scattering coefficient σ_{s} is given by:

$$
\begin{equation*}
\sigma_{s}=N \cdot Q_{s}^{\text {mol }} \tag{43}
\end{equation*}
$$

The electric field \vec{E}_{s} emitted at a distance d from the dipole (Figure 8 a) which is much larger than the wavelength is defined as:

$$
\begin{equation*}
\vec{E}_{s}=\frac{k^{2} \vec{P}}{4 \pi \varepsilon_{0} d} \cdot \sin \gamma \cdot e^{-i k \cdot d} \tag{44}
\end{equation*}
$$

where γ is the angle between the dipole moment \vec{P} and the viewing direction \vec{S}. The vibration of \vec{E} is in the plane (\vec{P}, \vec{s}).

Considering the scattering plane defined by \vec{S}_{o} and \vec{s}, the incident and scattering directions respectively, and the scattering angle $\theta=\left(\vec{s}, \vec{s}_{\mathrm{o}}\right.$), the scattered electric field (\vec{E}_{s}, \vec{s}) can be splitted up into its parallel $\left(\vec{E}_{s, / /}\right)$ and perpendicular ($\vec{E}_{s, \perp}$) components to the scattering plane (Figure 8b):

- the parallel component $\vec{E}_{s, / /}$ corresponds to a scattered field in the scattering plane with $\gamma=\pi / 2-\theta$,

$$
\begin{equation*}
E_{s, / /}=\frac{k^{2} \alpha A_{/ /}}{4 \pi \varepsilon_{0} d} \cdot \cos \theta \cdot e^{-i k . d} \tag{45}
\end{equation*}
$$

with $A_{/ /}$the amplitude of $\vec{E}_{s, / /}$.

- the perpendicular component $\vec{E}_{s, \perp}$ corresponds to a scattered field in a perpendicular direction to the scattering plane with $\gamma=\pi / 2$,

$$
\begin{equation*}
E_{s, \perp}=\frac{k^{2} \alpha A_{\perp}}{4 \pi \varepsilon_{0} d} \cdot e^{-i k . d} \tag{46}
\end{equation*}
$$

with A_{\perp} the amplitude of $\vec{E}_{s, \perp}$.

Figure 8: Illustration of Rayleigh scattering: (a) parallel (//) and perpendicular (\perp) components of the incident $\left(\vec{E}, \vec{s}_{\mathrm{o}}\right)$ and emitted $\left(\vec{E}_{s}, \vec{s}\right)$ electric field, (b) molecule dipole emission.

The two components of the irradiance $\left(F_{s, / /}, F_{s, \perp}\right)$ at a distance d from the molecule in the plane perpendicular to \vec{S} can be expressed as:

$$
\left\{\begin{array}{l}
F_{s, / /}=\frac{c \varepsilon_{0}}{2} \cdot\left(E_{s, / /} E_{s, / /}^{*}\right) \tag{47}\\
F_{s, \perp}=\frac{c \varepsilon_{0}}{2} \cdot\left(E_{s, \perp} E_{s, \perp}^{*}\right)
\end{array}\right.
$$

This corresponds to the radiant flux density $d^{2} \varphi_{s}(\theta, d \Omega)$ scattered within a solid angle $d \Omega=1 / d^{2}$.

Two scattering functions $f_{/ /}(\theta)$ and $f_{\perp}(\theta)$ can then be deduced from Equations (6), (27), (40), (45), (46) and (47) for each of two polarization cases of the incident beam:

$$
\left\{\begin{array}{l}
f_{/ \prime}(\theta)=\frac{k^{4} \alpha^{2}}{16 \pi^{2} \varepsilon_{\mathrm{o}}^{2}} \cdot \cos ^{2} \theta \tag{48}\\
f_{\perp}(\theta)=\frac{k^{4} \alpha^{2}}{16 \pi^{2} \varepsilon_{0}^{2}}
\end{array}\right.
$$

For a natural (unpolarized) incident radiation the two components of \vec{E} are incoherent. Consequently the radiant amplitudes $A_{/ /}$and A_{\perp} verify:

$$
\begin{equation*}
\left(A_{/ /}\right)^{2}=\left(A_{\perp}\right)^{2}=\frac{A^{2}}{2} \tag{49}
\end{equation*}
$$

According to Equation (48), the scattered radiation is then partially linearly polarized with a vibration perpendicular to the scattering plane. The radiant intensities (defined as $d^{2} \phi(\theta, d \omega) / d \omega$) for each of the two polarization states $\left(I_{/ /}(\theta)\right.$ and $\left.I_{\perp}(\theta)\right)$ are expressed as:

$$
\left\{\begin{array}{l}
I_{/ /}(\theta)=\frac{k^{4} \alpha^{2}}{32 \pi^{2} \varepsilon_{\mathrm{o}}^{2}} \cdot A^{2} \cdot \cos ^{2} \theta \tag{50}\\
I_{\perp}(\theta)=\frac{k^{4} \alpha^{2}}{32 \pi^{2} \varepsilon_{\mathrm{o}}^{2}} \cdot A^{2}
\end{array}\right.
$$

Thus, for the total radiant intensity (defined as $I=I_{/ /}+I_{\perp}$) the scattering function is expressed as:

$$
\begin{equation*}
f(\theta)=\frac{k^{4} \alpha^{2}}{32 \pi^{2} \varepsilon_{0}^{2}} \cdot\left(1+\cos ^{2} \theta\right) \tag{51}
\end{equation*}
$$

The normalized molecular phase function $p(\theta)$ can then be deduced from Eqs (8), (9), (10) and (51):

$$
\begin{equation*}
p(\theta)=\frac{3}{4} \cdot\left(1+\cos ^{2} \theta\right) \tag{52}
\end{equation*}
$$

2.8 MIE SCATTERING

The Mie's theory is based on the assumption that the aerosols and hydrosols can be considered as spherical particles. This allows one to compute the optical properties (extinction and scattering coefficients, and phase function) for a mixing of scattering particles using their physical characteristics (i.e., their particle size distributions and their refractive indices).

The interaction of an electromagnetic wave with an absorbing sphere is fully described and expressed by the Mie's theory [RD-1]. The latter has been particularly detailed in [RD-7] and largely discussed by many other authors (see [RD-8], [RD-9], [RD-10], [RD-11], [RD-12], [RD-13] \& [RD-14]). In this section, the basic equations used for the computation procedures of the Mie's scattering are outlined.

2.8.1 Mie theory

Let us consider λ the incident wavelength, r the radius of the scatterer (assumed to be a sphere), κ the Mie's parameter $(\kappa=2 \pi r / \lambda), n$ the complex refractive index $(n=m-i k)$, and θ the scattering angle, two complex functions $S_{1}(\kappa, n, \theta)$ and $S_{2}(\kappa, n, \theta)$ related to the amplitude of the incident $\left(E_{i, / /}, E_{i, \perp}\right)$ and scattered $\left(E_{s, / /}, E_{s, \perp}\right)$ electric fields decomposed into parallel and perpendicular components are then derived from the Maxwel/s equations as follows:

$$
\left\{\begin{array}{l}
\mathrm{S}_{1}(\kappa, n, \theta)=\sum_{n=1}^{\infty} \frac{(2 n+1)}{n(n+1)} \cdot\left[a_{n}(\kappa, n) \cdot \pi_{n}(\cos \theta)+b_{n}(\kappa, n) \cdot \tau_{n}(\cos \theta)\right] \tag{53}\\
\mathrm{S}_{2}(\kappa, n, \theta)=\sum_{n=1}^{\infty} \frac{(2 n+1)}{n(n+1)} \cdot\left[a_{n}(\kappa, n) \cdot \tau_{n}(\cos \theta)+b_{n}(\kappa, n) \cdot \pi_{n}(\cos \theta)\right]
\end{array}\right.
$$

where the complex functions $a_{n}(\kappa, n)$ and $b_{n}(\kappa, n)$, which represent the contributions of oscillating electromagnetic dipoles to the scattered field, derive from the Ricatti-Bessel functions $\psi_{n}(\kappa$ or $n \kappa)$ and $\xi_{n}(\kappa)$. The functions π_{n} and τ_{n}, which depend on the scattering angle θ only, are related to the associated Legendre polynomials of the first kind $P_{n}^{1}(\cos \theta)$.

2.8.1.1 Computation of complex functions (a_{n}, b_{n})

The complex functions $a_{n}(\kappa, n)$ and $b_{n}(\kappa, n)$ are expressed as:

$$
\left\{\begin{array}{l}
a_{n}(\kappa, n)=\frac{\psi_{n}^{\prime}(n \kappa) \cdot \psi_{n}(\kappa)-n \psi_{n}(n \kappa) \cdot \psi_{n}^{\prime}(\kappa)}{\psi_{n}^{\prime}(n \kappa) \cdot \xi_{n}(\kappa)-n \psi_{n}(n \kappa) \cdot \xi_{n}^{\prime}(\kappa)} \tag{54}\\
b_{n}(\kappa, n)=\frac{n \psi_{n}^{\prime}(n \kappa) \cdot \psi_{n}(\kappa)-\psi_{n}(n \kappa) \cdot \psi_{n}^{\prime}(\kappa)}{n \psi_{n}^{\prime}(n \kappa) \cdot \xi_{n}(\kappa)-\psi_{n}(n \kappa) \cdot \xi_{n}^{\prime}(\kappa)}
\end{array}\right.
$$

where the prime denotes the derivative of the function with respect of the argument (κ or $n \kappa$).
The Ricatti-Besse/ functions $\psi_{n}(\mathrm{z}), \chi_{n}(\mathrm{z})$ and $\xi_{n}(z)$ are given by:

$$
\left\{\begin{array}{l}
\psi_{n}(z)=\sqrt{(1 / 2) \cdot \pi z} \cdot J_{n+(1 / 2)}(z)=z \cdot j_{n}(z) \tag{55}\\
\chi_{n}(z)=-\sqrt{(1 / 2) \cdot \pi z} \cdot N_{n+(1 / 2)}(z)=-z \cdot n_{n}(z) \\
\xi_{n}(z)=\sqrt{(1 / 2) \cdot \pi z} \cdot H_{n+(1 / 2)}^{(2)}(z)=z \cdot h_{n}^{(2)}(z)=\psi_{n}(z)+\mathrm{i} \chi_{n}(z)
\end{array}\right.
$$

where $J_{n+(1 / 2)}(z), N_{n+(1 / 2)}(z)$ and $H_{n+(1 / 2)}^{(2)}(z)$ are respectively the Besse/functions of first, second, and third kind, with the corresponding spherical Bessel functions $j_{n}(z), n_{n}(z)$ and $h_{n}^{(2)}(z) . N_{n+(1 / 2)}(z)$ is also called the Neumann functions and $H_{n+(1 / 2)}^{(2)}(z)$ the half integral order Hankel function of the second kind.

In order to make the computational work more convenient, it is useful to introduce the logarithmic derivative of the Ricatti-Besse/ functions ([RD-8] and [RD-11]):

$$
\left\{\begin{array}{l}
D_{n}(z)=\frac{d}{d z}\left[\ln \psi_{n}(z)\right] \tag{56}\\
G_{n}(z)=\frac{d}{d z}\left[\ln \xi_{n}(z)\right]
\end{array}\right.
$$

The functions $a_{n}(\kappa, n)$ and $b_{n}(\kappa, n)$ can then be rewritten as:

$$
\left\{\begin{array}{l}
a_{n}(\kappa, n)=\frac{\psi_{n}(\kappa)}{\xi_{n}(\kappa)} \cdot \frac{D_{n}(n \kappa)-n D_{n}(\kappa)}{D_{n}(n \kappa)-n G_{n}(\kappa)} \tag{57}\\
b_{n}(\kappa, n)=\frac{\psi_{\mathrm{n}}(\kappa)}{\xi_{n}(\kappa)} \cdot \frac{n D_{n}(n \kappa)-D_{n}(\kappa)}{n D_{n}(n \kappa)-G_{n}(\kappa)}
\end{array}\right.
$$

These expressions are now reduced to a ratio of Ricatti-Bessel functions involving real arguments and a ratio of $D_{n}(\kappa$ or $n \kappa)$ and $G_{n}(\kappa)$ functions which are easily computable. Some examples of $a_{n}(\kappa, n)$ and $b_{n}(\kappa, n)$ values are depicted on Figure 9 for $n=1.33-i 0.001$ and two values of $\kappa, 10$ and 50 respectively which means r is around $0.8 \mu \mathrm{~m}$ and $4 \mu \mathrm{~m}$ respectively at the 500 nm wavelength.

In order to save more computational time, the criterion defined by Deirmendjian (see [RD-9]) is then used:

$$
\text { "The computation of } a_{n}(\kappa, n) \text { and } b_{n}(\kappa, n) \text { is completed when }\left(a_{n} a_{n}^{*}+b_{n} b_{n}^{*}\right) / n<10^{-14} \text { " }
$$

2.8.1.2 Computation of the Ricatti-Bessel function

The ratio of Ricatti-Besse/ functions can be reduced to a ratio of spherical Bessel functions with a real argument x as follows:

$$
\begin{equation*}
\frac{\psi_{n}(\kappa)}{\xi_{n}(\kappa)}=\frac{j_{n}(x)}{h_{n}^{2}(x)}=\frac{j_{n}(x)}{j_{n}(x)-i n_{n}(x)} \tag{58}
\end{equation*}
$$

The spherical Bessel functions $j_{n}(x), n_{n}(x)$ and $h_{n}^{(2)}(x)$ have different behaviors following they are below or above the transition line defined by $x^{2}=n(n+1)$. Below the transition line $\left(n(n+1)<x^{2}\right)$, they behave as oscillating functions of both order and argument, whereas the behavior becomes monotonic above the transition line (i.e., for $n(n+1)>x^{2}$).

It has been shown by many authors that $n_{n}(x)$ and $h_{n}^{(2)}(x)$ can be processed using an upward recurrence whatever the values of n and x. Functions $n_{n}(x)$ and $j_{n}(x)$ are computed using the following relationship (see Figure 10):

(a)

(b)

(c)

(d)

Figure 9: Samples of $a_{n}(\kappa, n)$ and $b_{n}(\kappa, n)$ curves computed for a refractive index $n=1.33-i 0.001$ with $\kappa=10$ and $\kappa=50$.

Figure 10: Samples of spherical Bessel functions, (a) $j_{n}(x)$ and (b) $n_{n}(x)$, for $\kappa=10$ and $\kappa=50$.

$$
\left\{\begin{array}{l}
n_{n+1}(x)=\frac{2 n+1}{x} \cdot n_{n}(x)+n_{n-1}(x) \tag{59}\\
j_{n+1}(x)=\frac{2 n+1}{x} \cdot j_{n}(x)+j_{n-1}(x)
\end{array}\right.
$$

with

$$
\left\{\begin{array}{lll}
n_{0}(x)=-\frac{\cos x}{x} & \text { and } & n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x} \\
j_{0}(x)=-\frac{\cos x}{x} & \text { and } & j_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x}
\end{array}\right.
$$

but as it is explained [RD-15], the function $j_{n}(x)$ cannot be computed by an upward recurrence "since an upward recursion (except in the region of the $x-n$ plane where $j_{n}(x)$ oscillates) would bring about a rapid loss of accuracy". Then a downward recurrence is called for, but we have to define the starting value of n, and for that purpose we use the work of Corbato and Uretsky (see [RD-15]) which is summarized hereafter.

Let N be the starting order of the recursion with $N(N+1)>x^{2}$, they show in their paper that "rather than accurately evaluate $j_{N}(x)$ and $j_{N-1}(x)$ to start the process, a very approximately starting the recursion at a higher order will give a set of numbers which are accurately proportional to the j_{n} over the desired range of n from 0 to N ". Let \bar{j}_{n} be one of these numbers.

They propose to define the higher order v as follows:

$$
\begin{equation*}
v=N^{\prime}-\frac{\ln \varepsilon_{N}}{\ln 2} \cdot\left[A+\frac{B u^{\prime}\left(2-u^{\prime 2}\right)}{2\left(1-u^{\prime 2}\right)}\right] \tag{60}
\end{equation*}
$$

with $A=0.10, B=0.35, \varepsilon_{N}=2^{-30}$ (this value comes from the fact that generally computers can store floating numbers with a 30 binary digit mantissa), and u^{\prime} defined as:

$$
u^{\prime}=\frac{2 x}{\left(2 N^{\prime}+1\right)} \quad \text { with } \quad N^{\prime}=N \text { or } N^{\prime}=x-\frac{1}{2}+\sqrt{-\frac{\ln \varepsilon_{N}}{\ln 2} \cdot B \cdot x}
$$

such as v be the lower with however $N^{\prime} \geq N$.

Note that in the SCAMAT module from RTC/UdL package, u^{\prime} is defined as $2 n \kappa /\left(2 N^{\prime}+1\right)$ in order to better take the highest radii and the particular absorption into account.

To avoid computational difficulties above the transition line, Corbato and Uretsky worked with the ratio $\bar{r}_{n}=\bar{j}_{n+1} \bar{j}_{\mathrm{n}}$ using the recurrence relation:

$$
\begin{equation*}
\bar{r}_{n-1}(x)=\frac{x}{2 n+1-x \bar{r}_{n}(x)} \tag{61}
\end{equation*}
$$

with the starting point $\bar{r}_{v}=0$. The recurrence continues downward until a ratio \bar{r}_{n} which exceeds 1 is reached. Then, they set $\bar{j}_{n+1}=\bar{r}_{\mathrm{n}}$ and $\bar{j}_{n}=1$ and continue downward using the following recurrence relationship:

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0003 Issue: 4 Rev.: A Date: 16-Dec-10 Page: 38			

$$
\begin{equation*}
\bar{j}_{n-1}(x)=\frac{2 n+1}{x} \cdot \bar{j}_{n}(x)+\bar{j}_{n+1}(x) \tag{62}
\end{equation*}
$$

The positive number \bar{j}_{n} is defined as $\bar{j}_{n}(x)=\alpha \cdot j_{n}(x)$ with α a constant of proportionality derived from:

$$
\begin{equation*}
\alpha=\left[\bar{j}_{0}(x)-x \cdot \bar{j}_{1}(x)\right] \cdot \cos x+x \cdot \bar{j}_{0}(x) \cdot \sin x \tag{63}
\end{equation*}
$$

2.8.1.3 Computation of functions $\left(D_{n}, G_{n}\right)$

As pointed out by Kattawar and Plass [RD-11], the computation of $D_{n}(\mathrm{z})$ with an upward recurrence is unstable. A downward process is then needed and $D_{n}(\mathrm{z})$ is defined as:

$$
\begin{equation*}
D_{n-1}(z)=\frac{n}{z}-\frac{1}{D_{n}(z)+(n / z)} \tag{64}
\end{equation*}
$$

Calculations have to be started at an order $n=v^{\prime} \gg|z|$ with a starting point value of which is not crucial due to the fast convergence of the series towards the exact value. Consequently $D_{v}(\mathrm{z})=0$ is a convenient starting value. For $n<|z|, D_{n}(\mathrm{z})$ becomes oscillatory and there is then no problem for the computation in using the recurrence relation. For practical reasons, $v^{\prime}=v$ is selected as defined for j_{n}. The authors have also shown that $G_{n}(x)$ can always be calculated using an upward process with a starting value $G_{0}(x)=-i$ as follows:

$$
\begin{equation*}
G_{n}(x)=-\frac{n}{x}-\frac{1}{G_{n-1}(x)+(n / x)} \tag{65}
\end{equation*}
$$

Some samples of $D_{n}(n \kappa$ or $\kappa)$ and $G_{n}(\kappa)$ are depicted on Figure 11 for $n=1.33-i 0.001$ and two values of $\kappa, 10$ and 50 respectively.

2.8.1.4 Computation of functions $\left(\pi_{n}, \tau_{n}\right)$

Functions π_{n} and τ_{n} are related to the associated Legendre polynomials of the first kind $P_{n}^{1}(\cos \theta)$:

$$
\left\{\begin{align*}
\pi_{n}(\cos \theta) & =\frac{1}{\sin \theta} \cdot P_{n}^{1}(\cos \theta) \tag{66}\\
\tau_{n}(\cos \theta) & =\frac{d}{d \theta}\left[P_{n}^{1}(\cos \theta)\right]
\end{align*}\right.
$$

and they are computed from the following upward recurrence relations:

$$
\left\{\begin{array}{l}
n \cdot \pi_{n+1}(\cos \theta)=(2 n+1) \cdot \cos \theta \cdot \pi_{n}(\cos \theta)-(n+1) \cdot \pi_{n-1}(\cos \theta) \tag{67}\\
\tau_{n+1}(\cos \theta)=(n+1) \cdot \cos \theta \cdot \pi_{n+1}(\cos \theta)-(n+2) \cdot \pi_{n}(\cos \theta)
\end{array}\right.
$$

with the starting values $\pi_{0}(\cos \theta)=0$ and $\pi_{1}(\cos \theta)=1$.

In Figure 12 are displayed some examples of $\pi_{n}(\cos \theta)$ and $\tau_{n}(\cos \theta)$ for several n values (i.e., $n \in[1 ; 6])$ and a scattering angle θ within $\left[0^{\circ} ; 90^{\circ}\right]$.

(a)

(c)

(b)

(d)

Figure 11: Samples of $D_{n}(n \kappa$ or $\kappa)$ and $G_{n}(\kappa)$ curves computed for a refractive index $n=1.33-i 0.001$ with $\kappa=10$ and $\kappa=50$.

Figure 12: Samples of $\pi_{n}(\theta)$ and $\tau_{n}(\theta)$ functions for several n values (n varying from 1 to 0).

2.8.2 Optical properties

The continuity equations of the electric fields at the interface of the spherical particle allow one to compute the extinction, absorption and scattering efficiencies as well as the phase function of the sphere. The latter are expressed as infinite series which slowly converge.

- Extinction cross section Q_{e} : this parameter represents the amount of energy removed (scattered and absorbed) from the incident beam by the particle, and it can be computed by considering a point in the forward direction $(\theta=0)$ in the far field. With the assumption of an isotropic homogeneous sphere the extinction cross section is expressed as,

$$
\begin{equation*}
Q_{e}(\lambda, r, n)=\frac{4 \pi}{(2 \pi / \lambda)^{2}} \cdot \mathfrak{R}_{\mathrm{e}}[\mathrm{~S}(\kappa, n, \theta=0)] \tag{68}
\end{equation*}
$$

- Extinction efficiency k_{e} : this is defined as the ratio of the extinction cross section to the geometrical section of the spherical particle,

$$
\begin{equation*}
k_{e}(\lambda, r, n)=\frac{Q_{e}(\lambda, r, n)}{\pi r^{2}}=\frac{2}{\kappa^{2}} \cdot \sum_{\mathrm{n}=1}^{\infty}(2 n+1) . \mathfrak{R}_{\mathrm{e}}\left[a_{n}(\kappa, n)+b_{n}(\kappa, n)\right] \tag{69}
\end{equation*}
$$

- Scattering cross section Q_{s} : similarly to the extinction cross section definition, but by considering only the scattered light in an arbitrary direction, this parameter is defined as,

$$
\begin{equation*}
Q_{s}(\lambda, r, n)=\frac{\pi}{(\kappa / r)^{2}} \cdot \int_{0}^{\pi}\left[S_{1}(\kappa, n, \theta) S_{1}^{*}(\kappa, n, \theta)+S_{2}(\kappa, n, \theta) S_{2}^{*}(\kappa, n, \theta)\right] \cdot \sin \theta \cdot \mathrm{d} \theta \tag{70}
\end{equation*}
$$

Owing of π_{n} and τ_{n} functions, products of the associated Legendre polynomials must be integrated. Using the orthogonal and recurrence properties of these polynomials, the scattering cross section can be written as:

$$
\begin{equation*}
Q_{s}(\lambda, r, n)=\frac{2 \pi}{(\kappa / r)^{2}} \cdot \sum_{n=1}^{\infty}(2 n+1) \cdot\left[a_{n}(\kappa, n) a_{n}^{*}(\kappa, n)+b_{n}(\kappa, n) b_{n}^{*}(\kappa, n)\right] \tag{71}
\end{equation*}
$$

where the asterisk denotes the complex conjugate value.

- Scattering efficiency k_{s} : this is determined by the scattering cross section to the geometrical section of the spherical particle ratio as follows,

$$
\begin{equation*}
k_{s}(\lambda, r, n)=\frac{Q_{s}(\lambda, r, n)}{\pi r^{2}}=\frac{2}{\kappa^{2}} \cdot \sum_{n=1}^{\infty}(2 n+1) \cdot\left[a_{n}(\kappa, n) a_{n}^{*}(\kappa, n)+b_{n}(\kappa, n) b_{n}^{*}(\kappa, n)\right] \tag{72}
\end{equation*}
$$

- Absorption cross section Q_{a} and aborption efficiency k_{a} : these two quantities can be directly deduced from Q_{e}, Q_{s}, k_{e} and k_{s} as follows,

$$
\begin{align*}
& Q_{a}(\lambda, r, n)=Q_{e}(\lambda, r, n)-Q_{s}(\lambda, r, n) \tag{73}\\
& k_{a}(\lambda, r, n)=k_{e}(\lambda, r, n)-k_{s}(\lambda, r, n)
\end{align*}
$$

- Another useful quantity is the asymmetry factor g which is also the first moment of the phase function:

$$
g=\int_{4 \pi} P_{11}(\lambda, r, n, \theta) \cdot \sin \theta \cdot \mathrm{d} \Omega
$$

The asymmetry factor describes the shape of the phase function: $g>1$ indicates that forward scattering is favoured while $g<1$ means that the backscattering is favoured. It is a useful parameter for characterizing the phase function independent of the scattering angle. The Mie's asymmetry factor can be expressed as:

$$
g=2 \cdot \sum_{\mathrm{n}=1}^{\infty} \frac{n(n+2)}{(n+1)} \cdot \mathfrak{R}_{\mathrm{e}}\left[a_{n}(\kappa, n) \cdot a_{n+1}^{*}(\kappa, n)+b_{n}(\kappa, n) \cdot b_{n+1}^{*}(\kappa, n)\right]+\frac{2 n+1}{n(n+1)} \cdot \mathfrak{R}_{\mathrm{e}}\left[a_{n}(\kappa, n)+b_{n}^{*}(\kappa, n)\right]
$$

2.8.3 Phase matrix

Phase matrix $\mathbf{F}_{\mathrm{p}}(\lambda, r, n, \theta)$: for a scatterer (aerosol or droplet of cloud) assuming as an isotropic homogeneous sphere, the four independent elements of the phase matrix are computed as follows,

$$
\left\{\begin{array}{l}
P_{11}(\lambda, r, n, \theta)=\frac{2 \pi}{(\kappa / r)^{2} \cdot Q_{s}(\lambda, r, n)} \cdot\left[S_{1}(\kappa, n, \theta) S_{1}^{*}(\kappa, n, \theta)+S_{2}(\kappa, n, \theta) S_{2}^{*}(\kappa, n, \theta)\right] \tag{74}\\
P_{12}(\lambda, r, n, \theta)=\frac{2 \pi}{(\kappa / r)^{2} \cdot Q_{s}(\lambda, r, n)} \cdot\left[S_{2}(\kappa, n, \theta) S_{2}^{*}(\kappa, n, \theta)-S_{1}(\kappa, n, \theta) S_{1}^{*}(\kappa, n, \theta)\right] \\
P_{33}(\lambda, r, n, \theta)=\frac{2 \pi}{(\kappa / r)^{2} \cdot Q_{s}(\lambda, r, n)} \cdot\left[S_{2}(\kappa, n, \theta) S_{1}^{*}(\kappa, n, \theta)+S_{1}(\kappa, n, \theta) S_{2}^{*}(\kappa, n, \theta)\right] \\
P_{34}(\lambda, r, n, \theta)=\frac{2 \pi}{(\kappa / r)^{2} \cdot Q_{s}(\lambda, r, n)} \cdot\left[S_{2}(\kappa, n, \theta) S_{1}^{*}(\kappa, n, \theta)-S_{1}(\kappa, n, \theta) S_{2}^{*}(\kappa, n, \theta)\right]
\end{array}\right.
$$

where $S_{1}(\kappa, n, \theta)$ and $S_{2}(\kappa, n, \theta)$ are the scattering functions described above.
Of course, each element of the phase matrix $P_{i, j}(\lambda, r, n, \theta)$ must verify:

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{\pi} P_{i, j}(\lambda, r, n, \theta) \cdot \sin \theta \cdot d \theta \cdot d \varphi=4 \pi \tag{75}
\end{equation*}
$$

2.8.4 Forward scattering proportion

The forward scattering proportion $\left(f_{s p}\right)$ of a scatterer is computed using its phase function $p(\theta)$. The latter corresponds to the upper left element $P_{11}(\theta)$ of the phase matrix $\mathbf{F}_{\mathrm{p}}(\theta)$, and can be developed into a series of Legendre polynomials $p_{l}(\mu=\cos \theta)$ as follows:

$$
p(\theta)=\sum_{l=0}^{L} \beta_{l} p_{l}(\mu)
$$

where the normalization of the phase function imposes $\beta_{0}=1$ (β_{l} being the coefficients of the Legendre polynomials expansion). The order L of the development depends on the Mie's parameter ($\kappa=2 \pi r / \lambda$). For large particles, L increases very fast mainly to represent the strong forward peak. A delta truncature is then applied on $p(\theta)$ (see Section 2.3.2) and L is usually limited to 80.

Using the Legendre polynomials expansion of the phase function, the forward scattering proportion $f_{s p}(\mu=0)$ is then computed as:

$$
f_{s p}(\mu=0)=\frac{1}{2} \cdot \sum_{l=0}^{L}\left(\beta_{l} p_{l}(\mu=0) \cdot \sum_{i=1}^{N} w_{i} \cdot p_{l}\left(\mu_{i}\right)\right)
$$

where N represents the total number of directions used in the Gauss quadrature to describe the angular variation of the phase function, μ_{i} the cosine of Gaussian angle and w_{i} the associated weight.

2.9 GASEOUS ABSORPTION

The main absorbers in the MERIS spectral range are defined in Table 2 and the transmittivity values are given for a Mid-Latitude Summer (MLS) atmospheric profile [RD-16]. We have to account for the line absorption $\left(\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{O}_{2}\right)$ with strong spectral variations as well as the continuum absorption $\left(\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{O}_{3}\right)$ which have smooth spectral variations.

The absorption effects are accurately treated from the correlated k-distribution method [RD-18] to account for the interactions between the scattering and molecular absorption. The spectrally integrated transmission function $T(u)$ for an homogeneous path, over the spectral interval Δv between v_{1} and v_{2}, can be written as:

$$
\begin{equation*}
T(u)=\frac{1}{\Delta v} \cdot \int_{v_{1}}^{v_{2}} e^{-k_{v} \cdot u} \cdot d v \tag{76}
\end{equation*}
$$

with u the absorber amount and k_{v} the absorption coefficient. This transmission function becomes a transmission integral over the density distribution of absorption coefficient strengths:

$$
\begin{equation*}
T(u)=\int_{0}^{\infty} f(k) \cdot e^{-k \cdot u} \cdot d k \tag{77}
\end{equation*}
$$

The function $f(k)$ defines the fraction of the spectral interval Δv for which the absorption coefficient k_{v} is between k and $k+d k$. Likewise, the transmission integral over the inverse cumulative density distribution yields to:

$$
\begin{equation*}
T(u)=\int_{0}^{1} e^{-k \cdot u} \cdot d g(k) \tag{78}
\end{equation*}
$$

with $g(k)$ the cumulative frequency distribution. $T(u)$ can then be approximated by an exponential sum fitting technique (ESFT):

$$
\begin{equation*}
T(u)=\sum_{l=1}^{N} a_{l} \cdot e^{-k_{l} \cdot u} \quad \text { with } a_{l}=\int_{k_{l}-1}^{k_{l}} f(k) \cdot d k \tag{79}
\end{equation*}
$$

The transmission formula in Equation (76) has the standard form of a Laplace transform. The probability density distribution of the absorption coefficient strengths $f(k)$ can be formally identified as the inverse Laplace transform of the transmission function $T(u)$:

$$
\begin{equation*}
f(k)=L^{-1}(T(u)) \tag{80}
\end{equation*}
$$

Par Bleu
t ech holog i es

MERIS/ ENVISAT-1
MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: 16-Dec-10
Page: 43

Table 2: Rayleigh optical thickness (τ^{R}) for a barometric pressure of 1013.25hPa derived from [RD-13], ozone optical thickness ($\tau^{O_{3}}$) derived from line-by-line computations using HITRAN-2000 and an amount of 1 cm -atm, and gaseous transmittivities in the 15 MERIS spectral bands computed with GAME and 6 S for a MLS profile, a solar zenith angle of 45 degrees and a nadir viewing (extracted from [RD-17]).

Band	$\lambda(n m)$	$\Delta \lambda(n m)$	$\tau^{O_{3}}$	τ^{R}	Absorbers	$T_{H_{2} O}^{(\text {line })}$	$T_{H_{2} O}^{(\text {line cont. })}$	$T_{O_{2}}$	$T_{O_{3}}$
1	412.50	10	2.178510^{-4}	3.152810^{-1}	-	1.000	1.000	1.000	0.99983
2	442.50	10	2.813610^{-3}	2.359110^{-1}	O_{3}	1.000	1.000	1.000	0.99783
3	490.00	10	2.005710^{-2}	1.551610^{-1}	O_{3}	1.000	1.000	1.000	0.98462
4	510.00	10	4.080910^{-2}	1.317110^{-1}	$\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{3}$	0.993	0.987	1.000	0.96897
5	560.00	10	1.039910^{-1}	8.991210^{-2}	$\mathrm{H}_{2} \mathrm{O}^{*}+\mathrm{O}_{3}$	1.000	0.992	1.000	0.92281
6	620.00	10	1.090310^{-1}	5.943310^{-2}	$\mathrm{H}_{2} \mathrm{O}^{*}+\mathrm{O}_{3}$	1.000	0.988	1.000	0.91922
7	665.00	10	5.050410^{-2}	4.473010^{-2}	$\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{3}$	0.995	0.981	1.000	0.96173
8	681.25	7.5	3.525810^{-2}	4.056210^{-2}	$\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{3}$	0.998	0.982	1.000	0.97313
9	708.75	10	1.880810^{-2}	3.455810^{-2}	$\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{3}$	0.906	0.888	1.000	0.98558
10	753.75	7.5	8.896610^{-3}	2.694410^{-2}	$\mathrm{H}_{2} \mathrm{O}^{*}+\mathrm{O}_{3}$	1.000	0.978	1.000	0.99315
11	761.875	3.75	6.634210^{-3}	2.580210^{-2}	$\mathrm{H}_{2} \mathrm{O}^{*}+\mathrm{O}_{2}+\mathrm{O}_{3}$	1.000	0.978	0.380	0.99489
12	778.75	15	7.693310^{-3}	2.361710^{-2}	$\mathrm{H}_{2} \mathrm{O}^{*}+\mathrm{O}_{2}$	1.000	0.977	0.994	0.99407
13	865.00	20	2.192210^{-3}	1.545910^{-2}	$\mathrm{H}_{2} \mathrm{O}^{*}$	1.000	0.970	1.000	0.99831
14	885.00	10	1.210710^{-3}	1.409910^{-2}	$\mathrm{H}_{2} \mathrm{O}$	0.945	0.911	1.000	0.99907
15	900.00	10	1.516710^{-3}	1.317610^{-2}	$\mathrm{H}_{2} \mathrm{O}$	0.647	0.601	1.000	0.99883

$\mathrm{H}_{2} \mathrm{O}$ denotes the water vapor continuum absorption only.
O3 transmittivity (T_{03}) is computed with an ozone amount of 0.32 cm -atm.
Band models provide convenient analytical expressions for computing the transmission function. In so far as the Malkmus band model [RD-19] uses an inverse Laplace transform, this is particularly well mathematically suited for the computation of this transmission function:

$$
\begin{equation*}
T(u)=\exp \left[-\frac{B}{2} \cdot\left(\sqrt{1+\frac{4 S u}{B}}-1\right)\right] \tag{81}
\end{equation*}
$$

which depends on the two parameters B and S defined as:

$$
\begin{equation*}
B=\frac{4}{\Delta v} \cdot \frac{\left(\sum_{j=1}^{N_{\mathrm{o}}} \sqrt{S_{j}(T) \cdot \alpha_{j}(P, T)}\right)^{2}}{\sum_{j=1}^{N_{\mathrm{o}}} S_{j}(T)} ; S=\frac{1}{\Delta v} \cdot \sum_{j=1}^{N_{\mathrm{o}}} S_{j}(T) \tag{82}
\end{equation*}
$$

where N_{o} is the total line number in the frequency interval Δv, and α_{j} and S_{j} respectively the Lorentz half width $\left(\mathrm{cm}^{-1}\right)$ and the strength $\left(\mathrm{cm}^{-1} /\left(\right.\right.$ molec. $\left.\left.\mathrm{cm}^{-2}\right)\right)$ of the $j^{\text {th }}$ spectral line. These values can be directly retrieved from a spectroscopic database with the reference conditions.

B and S depend on temperature T and pressure P. In practice, these parameters are computed using a spectroscopic database for a limited set of temperatures and a standard pressure P_{o}. The determination of S is performed through interpolations according to the temperature of the atmospheric model used for calculations. Assuming that $B(P)$ varies with the pressure according to a Lorentz dependence, it can then be accounted for the half width α_{j} of the line as follows:

$$
\begin{equation*}
B(P)=B\left(P_{\mathrm{o}}\right) \cdot \frac{P}{P_{\mathrm{o}}} \cdot\left(\frac{T_{\mathrm{o}}}{T}\right)^{n} \tag{83}
\end{equation*}
$$

where $B\left(P_{\mathrm{o}}\right)$ is the reference value for the standard pressure P_{o}, and T_{o} the standard temperature.

For the case of the stratosphere, this approximation can certainly lead to some errors due to the fact that the shape of absorption lines follows a Voigt profile (i.e., the width of a spectral line corresponds to the convolution product of the Lorentz and Doppler shapes).

Note that both for the two radiative transfer codes (RTCs) used to generate the MERIS LUTs for the level2 processing [AD-3], the parameters B and S are derived from the HITRAN-2000 spectroscopic database [RD-20]. Moreover, in the troposphere typical errors are in the order of $10-20 \%$ using the Malkmus band model with the line data [RD-18]. These errors are only due to the use of the spectroscopic database, and can be minimized by using line-by-line (LBL) calculations. The LBL model allows one to perform accurate computations of absorption with a very high spectral resolution $\left(\sim 10^{-7} \mu \mathrm{~m}\right)$, accounting for the line shape from the spectroscopic database. Thus, B and S are estimated by least-squares fitting the MERIS band model with a LBL model [RD-21] and the HITRAN2000 database. Water vapor absorption is included in the calculations from the parameterization developed in [RD-22].

In practice, transmittivities are computed for a standard pressure with a limited set of temperatures and realistic absorber amounts. From these results, the parameters B and S are estimated by least-squares fitting the band model. Pressure and temperature variations are taking into account through interpolations for which the line shape is assumed to be Lorentzian.

The continuum for O_{3} absorption is also considered in the transmittivity computations. Data derive from the correlated k-distribution algorithm (see [RD-23] for more details) including continuum for all the major atmospheric gases. By considering that the maximum of O_{3} absorption occurs in the stratosphere, interactions between O_{3} and other atmospheric constituents can be neglected in the computations. This assumption leads to the following satellite reflectance (ρ^{*}):

$$
\begin{equation*}
\rho^{*} \approx \rho_{n a} \cdot T_{\mathrm{O}_{3}} \tag{84}
\end{equation*}
$$

where $\rho_{n a}$ is the satellite signal without any gaseous absorption and $T_{\mathrm{O}_{3}}$ the ozone transmittivity. The latter is expressed as a function of the total ozone content $U_{\mathrm{O}_{3}}(\mathrm{~cm}-\mathrm{atm})$ and the airmass (M) :

$$
\begin{equation*}
T_{\mathrm{O}_{3}}=\exp \left(-U_{\mathrm{O}_{3}} \cdot M \cdot \tau^{O_{3}}\right) \tag{85}
\end{equation*}
$$

with pre-computed values of $\tau^{O_{3}}$ coefficients for the ozone absorption [RD-24].

2.10 FRESNEL LAWS

The Snellius-Fresne/ laws are used to describe the interaction of the incident electric field at the boundary conditions through the air-water interface (Figure 13). Assuming a flat surface, the reflection and

transmission coefficients of the amplitude of the incident electric field in the parallel ($r_{/ /}, t_{/ /}$) and perpendicular (r_{\perp}, t_{\perp}) directions to the incidence plane are given by Fresne/formulas:

$$
\left\{\begin{array}{l}
r_{\perp}=-\frac{\sin \left(\vartheta_{a}-\vartheta_{w}\right)}{\sin \left(\vartheta_{a}+\vartheta_{w}\right)} ; t_{\perp}=\frac{2 \cos \vartheta_{a} \cdot \sin \vartheta_{w}}{\sin \left(\vartheta_{a}+\vartheta_{w}\right)} \tag{86}\\
r_{/ /}=-\frac{\tan \left(\vartheta_{a}-\vartheta_{w}\right)}{\tan \left(\vartheta_{a}+\vartheta_{w}\right)} ; t_{/ /}=\frac{2 \cos \vartheta_{a} \cdot \sin \vartheta_{w}}{\sin \left(\vartheta_{a}+\vartheta_{w}\right) \cdot \cos \left(\vartheta_{a}-\vartheta_{w}\right)}
\end{array}\right.
$$

where ϑ_{a} and ϑ_{w} are the zenithal angles in the air and the water respectively.
The Snellius law of the refraction relates the directions of light propagation at both sides of the dielectric interface:

$$
\begin{equation*}
n_{a} \cdot \sin \left(\vartheta_{a}\right)=n_{w} \cdot \sin \left(\vartheta_{w}\right) \tag{87}
\end{equation*}
$$

where n_{a} and n_{w} are respectively the refractive index of the air and the water.

The radiation which propagates into the direction of an optically less dense medium (i.e., from water to air) will be totally reflected at the interface for the incident angles larger than the critical angle ϑ_{c} defined as:

$$
\vartheta_{c}=\arcsin \left(n_{a} / n_{w}\right)
$$

The reflection matrix (R) on the water surface and the transmission matrix (T) from air to water are derived from Equations (86) and (87):

$$
\left\{\begin{array}{l}
R=\frac{1}{2} \cdot\left(\begin{array}{ccc}
r_{/ /}^{2}+r_{\perp}^{2} & r_{/ /}^{2}-r_{\perp}^{2} & 0 \\
r_{/ /}^{2}-r_{\perp}^{2} & r_{/ /}^{2}+r_{\perp}^{2} & 0 \\
0 & 0 & 2 r_{\perp} \cdot r_{/ /}
\end{array}\right) \tag{88}\\
T=\frac{1}{2} \cdot \frac{n_{w} \cdot \cos \theta_{w}}{\cos \theta_{a}} \cdot\left(\begin{array}{ccc}
t_{/ /}^{2}+t_{\perp}^{2} & t_{/ /}^{2}-t_{\perp}^{2} & 0 \\
t_{/ /}^{2}-t_{\perp}^{2} & t_{/ /}^{2}+t_{\perp}^{2} & 0 \\
0 & 0 & 2 t_{\perp} \cdot t_{/ /}
\end{array}\right)
\end{array}\right.
$$

Thus, a part of the incident atmospheric (resp., oceanic) radiance $L_{a}\left(\mu_{a}, \varphi\right)$ (resp., $L_{w}\left(\mu_{w}, \varphi\right)$) will be reflected at the air-sea interface, and the other transmitted through this interface. The refracted radiance in the water (optically more denser) will be increased due to the fact that photons are concentrated into a smaller solid angle. Using the energetic conservation considerations, these boun-dary conditions for an incident atmospheric radiance on the air-sea interface will be expressed as:

$$
\left\{\begin{array}{l}
L_{a}\left(-\mu_{a}, \varphi\right)=R\left(\mu_{a}, n_{w} / n_{a}\right) \cdot L_{a}\left(\mu_{a}, \varphi\right) \tag{89}\\
L_{w}\left(\mu_{w}, \varphi\right)=\left(\frac{n_{w}}{n_{a}}\right)^{2} \cdot T\left(\mu_{a}, n_{w} / n_{a}\right) \cdot L_{a}\left(\mu_{a}, \varphi\right)
\end{array}\right.
$$

with μ_{a} and μ_{w} the cosine of zenithal angles in the air and the water respectively, and $-\mu_{a}$ denotes the upwelling atmospheric radiance.

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0003			
		Issue	4 Rev.:		
t e ch n ologies		Date:	16-Dec-10	Page:	46

Figure 13: Reflexion and transmission of the incident electric field \vec{E}_{i} through the air-water interface characterized by their refractive index, respectively n_{a} and n_{w} : (a) for the parallel component of the electric field ($\vec{E}_{i, / /}, \vec{E}_{r, / /}, \vec{E}_{t, / /}$), and (b) for the perpendicular component of the electric field $\left(\vec{E}_{i, \perp}, \vec{E}_{r, \perp}, \vec{E}_{t, \perp}\right)$. Subscripts i, r and t stand for incidence, reflection and transmission.

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0003 Issue: 4 Rev.: A Date: 16-Dec-10 Page: 47			

3. ATMOSPHERIC OPTICAL PROPERTIES

The atmosphere is considered as composed of air (molecular scattering: $N_{2}, \mathrm{O}_{2}, \mathrm{Ar}$), gases (mainly $\mathrm{H}_{2} \mathrm{O}$, O_{2} and O_{3} absorption), aerosols and clouds (scattering and absorption). All other atmospheric constituents are neglected.

3.1 DRY AIR (MOLECULAR ATMOSPHERE)

3.1.1 Inherent optical properties

3.1.1.1 Scattering coefficient

The scattering coefficient σ_{s} of the dry air medium is given by (see Section 2.7):

$$
\begin{equation*}
\sigma_{s}=N \cdot Q_{s}^{m o l}=N \cdot \frac{k^{4} \alpha^{2}}{6 \pi \varepsilon_{\mathrm{o}}^{2}} \tag{90}
\end{equation*}
$$

According to the Lorentz model, the general expression relying the total polarisability α and the dielectric constant for the medium is expressed as,

$$
\begin{equation*}
\alpha \cdot N=3 \varepsilon_{0} \cdot \frac{n^{2}-1}{n^{2}+2} \tag{91}
\end{equation*}
$$

with n the refractive index of the gas which contains N molecules per volume unit.

By substituting Equation (91) into (90) with $k=2 \pi / \lambda$, the scattering coefficient of the dry air medium becomes:

$$
\begin{equation*}
\sigma_{s}=\frac{24 \pi^{3}}{\lambda^{4}} \cdot\left(\frac{n^{2}-1}{n^{2}+2}\right)^{2} \cdot \frac{1}{N} \tag{92}
\end{equation*}
$$

It is more convenient to introduce the refractive index in standard temperature and pressure (STP) conditions. This yields to:

$$
\begin{equation*}
\sigma_{s}=\frac{24 \pi^{3}}{\lambda^{4}} \cdot\left(\frac{n_{a}^{2}-1}{n_{a}^{2}+2}\right)^{2} \cdot \frac{N}{N_{\mathrm{o}}^{2}} \tag{93}
\end{equation*}
$$

where n_{a} is the air refractive index and N_{0} the molecular density in STP conditions (i.e., $N_{\text {o }}=2.5414310^{19}$).

Now, the consideration of the molecular anisotropy needs to introduce a molecular depolarization factor δ in Equation (93) to correct the expression of the scattering coefficient of the dry air medium:

$$
\begin{equation*}
\sigma_{s}=\frac{24 \pi^{3}}{\lambda^{4.05}} \cdot\left(\frac{n_{a}^{2}-1}{n_{a}^{2}+2}\right)^{2} \cdot\left(\frac{6+3 \delta}{6-7 \delta}\right) \cdot \frac{N}{N_{\mathrm{o}}^{2}} \tag{94}
\end{equation*}
$$

Because of small variations of n_{a} with λ, σ_{s} varies as $\lambda^{-4.05}$.

In fact, the spectral dependence of the air refractive index $\left(n_{a}\right)$ is given by [RD-25]:

$$
\begin{equation*}
n_{a}=1+\left(\frac{5791817}{238.0185-\frac{1}{\lambda^{2}}}+\frac{167909}{57.362-\frac{1}{\lambda^{2}}}\right) \cdot 10^{-8} \tag{95}
\end{equation*}
$$

where the wavelength λ is expressed as $n m$.
The molecular depolarization factor δ can be estimated as a polynomial function of λ (nm) according to [RD-26]:

$$
\begin{equation*}
\delta=0.033133-1.215 \quad 10^{-5} \lambda+6.306910^{-9} \lambda^{2} \tag{96}
\end{equation*}
$$

In practice, the molecular density is computed with a pressure (P) and temperature (T) profile as:

$$
\begin{equation*}
N=\frac{N_{A}}{R} \cdot \frac{P}{T} \tag{97}
\end{equation*}
$$

where N_{A} is the Avogadro number $\left(6.02210^{23} \mathrm{~mole}^{-1}\right)$ and R_{g} the gas constant $\left(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mole}^{-1}\right)$.

Thus, the scattering coefficient σ_{s} of the dry air medium is computed as:

$$
\begin{equation*}
\sigma_{s}=\frac{24 \pi^{3}}{\lambda^{4.05}} \cdot\left(\frac{n_{a}^{2}-1}{n_{a}^{2}+2}\right)^{2} \cdot\left(\frac{6+3 \delta}{6-7 \delta}\right) \cdot \frac{R_{g}}{N_{\mathrm{A}}} \cdot \frac{T_{\mathrm{o}}^{2}}{P_{\mathrm{o}}^{2}} \cdot \frac{P}{T} \tag{98}
\end{equation*}
$$

3.1.1.2 Scattering phase function

By taking the molecular anisotropy into account, the Rayleigh scattering phase function $P(\Theta)$ is expressed as:
or

$$
\begin{gather*}
P(\theta)=\frac{3}{2(2+\delta)} \cdot\left[(1-\delta) \cdot \cos ^{2} \theta+(1+\delta)\right] \tag{99}\\
P(\theta)=\frac{3}{4(1+2 \gamma)} \cdot\left[(1-\gamma) \cdot \cos ^{2} \theta+(1+3 \gamma)\right] \text { with } \gamma=\frac{\delta}{2-\delta} \tag{100}
\end{gather*}
$$

with δ the molecular depolarization factor.
Note that both in the two RTCs (FUB \& LISE/ UdL), δ is taken to be equal to 0.0279 (see [RD-27]) in the atmosphere and 0.0906 in the water ocean whatever the wavelength.

3.1.2 Vertical distribution

3.1.2.1 Molecular scale height

The molecular scale height $\left(H_{m}\right)$ represents the vertical distance upwards, over which the atmospheric pressure decreases by a factor of e. The latter remains constant for a particular temperature and can be computed as:

$$
H_{m}=\frac{k \cdot T}{M \cdot g}
$$

with:
k the Boltzmann's constant (1.38 $10^{-23} \mathrm{~J} . \mathrm{K}^{-1}$)
T the mean surface temperature (K),
M the mean molecular mass of dry air (kg),
g the acceleration due to the gravity on the Earth's surface $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
In the atmosphere the pressure is the force per unit area exerted against a surface by the weight of air above that surface. In most circumstances, this is closely approximated by the hydrostatic pressure caused by the weight of air above the measurement point. Low pressure areas have less atmospheric mass above their location, whereas high pressure areas have more atmospheric mass above their location. Similarly, as elevation increases there is less overlying atmospheric mass, so that pressure decreases with increasing elevation. Consequently, if at a given altitude (z) the atmosphere has an air density (ρ) and a pressure (P), then moving upwards at an infinitesimally small height $d z$ will decrease the pressure by an amount of $d P$, equal to the weight of a layer of atmosphere of thickness $d z$:

$$
\frac{d P}{d z}=-g \cdot \rho
$$

For small $d z$ it is possible to assume g to be constant. Therefore, by using the equation of state for an ideal gas of mean molecular mass M at temperature T, the density can be expressed as:

$$
\rho=\frac{M \cdot P}{k \cdot T}
$$

This yields to:

$$
\frac{d P}{P}=-\frac{M \cdot g}{k \cdot T} \cdot d z
$$

which can then be expressed as function of the molecular scale height $\left(H_{m}\right)$ as follows:

$$
\frac{d P}{P}=-\frac{d z}{H_{m}} .
$$

This will not change unless the temperature does. By assuming that P_{o} corresponds to the surface pressure at the sea level $(z=0)$, then the pressure $P(z)$ at any altitude z can be determined with a decreasing exponential as:

$$
P(z)=P_{\mathrm{o}} \cdot \exp \left(-z / H_{m}\right) .
$$

In the Earth's atmosphere, the surface pressure at the sea level $\left(P_{o}\right)$ averages about $1013.25 h P a$, with a mean mass of dry air (M) of $4.80810^{-26} \mathrm{~kg}$ and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. As a function of temperature the molecular scale height $\left(H_{m}\right)$ is therefore around $29.26 \mathrm{~m} / \mathrm{K}$, yielding to these tabulated H_{m} values for representative air temperatures (T) at surface level.

$T(K)$	$H_{m}(m)$
290	8500
273	8000
260	7610
210	6000

Notes: 1. The air density is related to the pressure by the law of ideal gases. Therefore, with some departures caused by varying temperature density will also decrease exponentially with height from a sea level value of ρ_{0} roughly equal to $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
2. At altitudes over 100 km , the atmospheric scattering means that each molecular atomic species has its own scale height.

3.1.2.2 Vertical profile

About 80-85\% of the atmospheric mass is located in the troposphere. The three major constituents are the nitrogen ($\mathrm{N}_{2}=75 \%$), the oxygen ($\mathrm{O}_{2}=23 \%$) and the argon ($\mathrm{Ar}=1.3 \%$). Assuming the average vertical equilibrium of the atmosphere as hydrostatic, the vertical distribution follows an exponential law with a molecular scale height H_{m} of about 8 km :

$$
\begin{equation*}
\sigma_{s}(z)=\sigma_{s}(0) \cdot e^{-z / H_{m}} \tag{101}
\end{equation*}
$$

The Rayleigh (or molecular) optical thickness τ^{R} is then expressed as:

$$
\begin{equation*}
\tau^{R}=\int_{0}^{\infty} \sigma_{s}(z) \cdot d z \tag{102}
\end{equation*}
$$

For the MERIS LUTs generation, τ^{R} is estimated with the formula from [RD-13]:

$$
\begin{equation*}
\tau^{R}=\frac{P_{s}}{P_{\mathrm{o}}} \cdot\left[8.52410^{-3} \cdot \lambda^{-4}+9.6310^{-5} \cdot \lambda^{-6}+1.110^{-6} \cdot \lambda^{-8}\right] \tag{103}
\end{equation*}
$$

where P_{s} is the surface pressure $(h P a), P_{\mathrm{o}}$ the pressure in the STP conditions, and λ the wavelength expressed as μm.

3.2 AEROSOLS

3.2.1 Inherent optical properties

The Mie's theory presented in Section 2.8 allows one to compute the inherent optical properties (IOPs) of a spherical particle characterized by its complex refractive index n (i.e., $n=m-i k$) and its geometrical radius r.

3.2.1.1 Sample of identical particles

Let us consider in the atmosphere a simple aerosol model composed of a uniquetype of particles for which the particle size distribution is characterized by $n(r)$ expressed as $\mathrm{cm}^{-3} \mu \mathrm{~m}^{-1}$ such as:

$$
\begin{equation*}
\int_{0}^{\infty} n(r) \cdot d r=\int_{0}^{\infty} \frac{d N(r)}{d r} \cdot d r=1 \tag{104}
\end{equation*}
$$

where $d N(r)$ represents the number of particles per volume unit with a radius between r and $r+d r$.

Assuming the particles are sufficiently far from each other compared with the wavelength of the incident electromagnetic wave in order to consider only one scattering, it is then possible to add scattered

intensities independently of the wave phase. Thus, the radiative characteristics upon the particle size distribution can be defined:

- Extinction, scattering and absorption coefficients

The extinction (e), scattering (s) and absorption (a) coefficients of this simple aerosol model are then defined as:

$$
\begin{equation*}
\sigma_{e, s, a}(\lambda, m)=\int_{r_{\min }}^{r_{\max }} k_{e, s, a}(\lambda, r, m) \cdot \pi r^{2} \cdot \frac{d N(r)}{d r} \cdot d r \tag{105}
\end{equation*}
$$

with the single scattering albedo: $\omega_{\mathrm{o}}(\lambda, m)=\frac{\sigma_{s}(\lambda, m)}{\sigma_{e}(\lambda, m)}$

- Scattering phase function

By including Equation (105) into (36) the normalized scattering phase function $P(\lambda, m, \theta)$ for the sample of identical particles characterized by its size distribution $n(r)$ is given by:

$$
\begin{equation*}
P(\lambda, m, \theta)=\frac{1}{\sigma_{s}(\lambda, m)} \cdot \int_{r_{\min }}^{r_{\max }} P_{11}(\lambda, r, m, \theta) \cdot 4 \pi \cdot r^{2} \cdot \frac{d N(r)}{d r} \cdot d r \tag{106}
\end{equation*}
$$

Computationally, $\sigma_{e, s, a}(\lambda, m)$ and $P(\lambda, m, \theta)$ are integrated step by step as follows:

$$
\begin{equation*}
\sigma_{e, s, a}(\lambda, m)=\sum_{r_{\min }}^{r_{\max }} k_{e, s, a}(\lambda, r, m) \cdot \pi r^{2} \cdot \frac{d N(r)}{d r} \cdot \Delta r \tag{107}
\end{equation*}
$$

and

$$
\begin{equation*}
P(\lambda, m, \theta)=\frac{1}{k_{s}(\lambda, m)} \cdot \sum_{r_{\min }}^{r_{\max }} P_{11}(\lambda, r, m, \theta) \cdot 4 \pi r^{2} \cdot \frac{d N(r)}{d r} \cdot \Delta r \tag{108}
\end{equation*}
$$

where Δr is the particle size increment.
The Δr value of 0.001 is recommended in order to preserve a good accuracy with a reasonable computational time. For example D'Almeida used a very small step width 0.011 for the computations (see [RD-28]).

3.2.1.2 Mixing of different particles

For an atmosphere with a mixing of aerosols originating from N different sources, IOPs are computed as previously (i.e., for a simple aerosol model) by introducing the percentage density of particles (n_{i} / n) for each type i of aerosols. The mixing of individual components (or type) of an aerosol is then characterized by its own size distribution $n_{i}(r)$ (then by its microphysical identity: $r_{M_{i}}$ and σ_{i} see Table 3 and Table 4 for some examples) and its own complex refractive index m_{i} (Table 5). For the size distribution the Log-Normal is well adapted to emphasize the individual components of a mixture (see [RD-28] \& [RD-29]).

The scattering phase matrix $P(\lambda, \theta)$ of a typical aerosol mixing is computed as the sum of each independant phase matrix $P\left(\lambda, m_{i}, \theta\right)$ for each constituent i weighted by its volume percentage n_{i} / n (or component mixing ratio) and its scattering coefficient $\sigma_{s}\left(\lambda, m_{i}\right)$:

MERIS/ ENVISAT-1
MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: 16-Dec-10

$$
\begin{equation*}
P(\lambda, \theta)=\frac{N_{p}}{\sigma_{s}(\lambda, m)} \cdot \sum_{i=1}^{N} \frac{n_{i}}{n} \cdot P\left(\lambda, m_{i}, \theta\right) \cdot \sigma_{s}\left(\lambda, m_{i}\right) \tag{109}
\end{equation*}
$$

with

$$
\begin{equation*}
N_{p}=\frac{1}{\sum_{i=1}^{N} \frac{n_{i}}{n} \cdot \sigma_{e}\left(550, m_{i}\right)} \quad \text { and } \quad \sigma_{s}(\lambda, m)=\sum_{i=1}^{N} \frac{n_{i}}{n} \cdot \sigma_{s}\left(\lambda, m_{i}\right) \tag{110}
\end{equation*}
$$

where N_{p} is the equivalent number of particles, $\sigma_{s}(\lambda, m)$ the scattering coefficient of the mixing, and $\sigma_{e}\left(550, m_{i}\right)$ the extinction coefficient of the constituant i at 550 nm wavelength.

3.2.1.3 Convergence criterion

In order to save computational time the following criterion on the summation is commonly used:

$$
\begin{equation*}
\frac{n_{i}}{n} \cdot \pi r^{2} \cdot \frac{d N(r)}{d r} \cdot \Delta r<\sqrt{\lambda} \cdot 10^{-8} \tag{111}
\end{equation*}
$$

where n_{i} / n is the percentage density of particles.

Table 3: Microphysical characteristics of the aerosol types (dry particles) from WCRP-1986 [RD-34].

Parameters	Oceanic $($ RH=90\% $)$	Water soluble	Dust-Like	Soot-like
$r_{M_{i}}(\mu m)$	0.3803	0.0050	0.5000	0.0118
σ_{i}	2.5119	2.9900	2.9900	2.0000

Table 4: Percentage density of particles from WCRP-1986 [RD-34].

Aer. Model	Oceanic $($ RH=90\% $)$	Water soluble	Dust-Like	Soot-like
Continental	-	0.938299	2.2649010^{-6}	0.0616987
Maritime	4.2082310^{-4}	0.999579	-	-
Urban	-	0.592507	1.6512510^{-7}	0.4074920

Table 5: Complex refractive indices of the aerosol types (dry particles) from WCRP1986 [RD-34].

$\lambda(\mu m)$	Oceanic ($\mathrm{RH}=90 \%$)		Water soluble		Dust-Like		Soot-like	
	m	k	m	k	m	k	m	k
0.400	1.385	9.9010^{-9}	1.530	5.0010^{-3}	1.530	8.0010^{-3}	1.750	0.460
0.488	1.382	6.4110^{-9}	1.530	5.0010^{-3}	1.530	8.0010^{-3}	1.750	0.450
0.515	1.381	3.7010^{-9}	1.530	5.0010^{-3}	1.530	8.0010^{-3}	1.750	0.450
0.550	1.381	4.2610^{-9}	1.530	6.0010^{-3}	1.530	8.0010^{-3}	1.750	0.440
0.633	1.377	1.6210^{-8}	1.530	6.0010^{-3}	1.530	8.0010^{-3}	1.750	0.430
0.694	1.376	5.0410^{-8}	1.530	7.0010^{-3}	1.530	8.0010^{-3}	1.750	0.430

Oceanic (RH=90\%)		Water soluble		Dust-Like		Soot-like		
		k	m	k	m	k	m	k
0.860	1.372	1.0910^{-6}	1.520	1.2010^{-2}	1.520	8.0010^{-3}	1.750	0.430
1.536	1.359	2.4310^{-4}	1.510	2.3010^{-2}	1.400	8.0010^{-3}	1.770	0.460
2.250	1.334	8.5010^{-4}	1.420	1.0010^{-2}	1.220	9.0010^{-3}	1.810	0.500
3.750	1.398	2.9010^{-3}	1.452	4.0010^{-3}	1.270	1.1010^{-2}	1.900	0.570

3.2.2 Particle size distribution

Three models of aerosol size distribution are proposed hereafter:

- a Junge power-law function (see [RD-30]) for the size distributions the radii (r) of which are larger than $0.1 \mu \mathrm{~m}$ described by,

$$
\begin{equation*}
\frac{d N(r)}{d \log r}=\ln (10) \cdot c \cdot r_{\mathrm{o}}^{\alpha} \cdot\left(\frac{1}{r}\right)^{\alpha-1} \text { or } \frac{d N(r)}{d r}=c \cdot r_{\mathrm{o}}^{\alpha} \cdot\left(\frac{1}{r}\right)^{\alpha} \tag{112}
\end{equation*}
$$

with α an exponent varying between 3 and 5, and c the number density of particles with an arbitrary radius r_{o}. The Model C defined by [RD-32] is commonly used as the size distribution function: $c . r_{\mathrm{o}}^{\alpha}=1$ and $\alpha=4$.

- a Modified Gamma distribution function (see [RD-31]) to compute the scattering properties of water haze and to fit the aerosol measurements,

$$
\begin{equation*}
\frac{d N(r)}{d r}=A \cdot\left(\frac{r}{r_{\mathrm{o}}}\right)^{\alpha} \cdot \exp \left[-b \cdot\left(\frac{r}{r_{\mathrm{o}}}\right)^{\gamma}\right] \text { with } r_{\mathrm{o}}=1 \mu m \tag{113}
\end{equation*}
$$

where A, b, α, γ represents the four parameters of the distribution. A and γ are generally taken to be equal to 1 (see [RD-32]).

- a Log-Normal distribution function (see [RD-29]) based on the Junge power-law function introduced to take the large particles into account,

$$
\begin{equation*}
\frac{d N(r)}{d \log r}=\frac{N}{\sqrt{2 \pi} \log \sigma} \cdot \exp -\left(\frac{\log r-\log r_{m}}{\sqrt{2} \log \sigma}\right)^{2} \tag{114}
\end{equation*}
$$

where r_{m} is the mean radius of the particle, and σ the standard deviation of r. This distribution is particularly well adapted to emphasize the individual components of the aerosol mixture (see [RD-28] and [RD-29]).

3.2.3 Aerosol models

The aerosol models are defined as an homogeneous mixing of the basic constituents which are assumed to be spherical particles characterized by their complex refractive index at all the wavelengths and their particle size distribution with the microphysical characteristics (see Section 3.2.2 for more details). Numerous samples of refractive indices for various aerosol components in all the MERIS spectral bands and several examples of particle size distributions for various aerosol models are given in [AD-4].

MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: 16-Dec-10
Page: 54

For atmospheric corrections of MERIS data, two sets of aerosol models have been defined:

- Over land, the aerosol models are considered as homogeneous in terms of composition and the particles size distribution follows a Junge's power law function.
- Over ocean, basic constituents are homogeneously mixed to build-up models. The particle size distribution is usually defined as a sum of Log-Normal distributions associated with these constituents. Note that the combination of aerosol models in 3 major layers (boundary, troposphere and stratosphere) defines an aerosol assemblage.

6 basic components are distinguished in the atmosphere over ocean:

- desert dust aerosols,
- dust-like particles,
- oceanic particles (sea-salt solution in water),
- water-soluble particles,
- soot-like particles,
- rural aerosol mixture (70% of water soluble particles and 30% of dust-like particles),

In the stratosphere, the sulphuric acid solution in water is built by combining two basic constituents excepted the rural aerosol mixture. A Modified-Gamma distribution function is used to describe the particle size distribution.

From these 7 basics components (including $\mathrm{H}_{2} \mathrm{SO}_{4}$), 6 aerosol models (4 boundary models, 1 tropospheric model and 1 stratospheric model) have been defined and summarized in Table 6.

Table 6: Aerosol components and their respective contributions (as percent of the volume (Vol.), or as percent of the number of particles (Pcl.)) in the composition of the aerosol models.

Aerosol model	Components	Vol. (\%)	Pcl. (\%)	Atmosph. Layer
Maritime (Shettle and Fenn, 1979) [RD-33]	- rural aerosol mixtures - oceanic (sea-salt solution in water)		$\begin{gathered} 99.0 \\ 1.0 \end{gathered}$	Boundary layer [0-2 km]
Coastal (Shettle and Fenn, 1979) [RD-33]	- rural aerosol mixtures - oceanic (sea-salt solution in water)		$\begin{gathered} 99.5 \\ 0.5 \end{gathered}$	Boundary layer [0-2 km]
Rural (Shettle and Fenn, 1979) [RD-33]	- water soluble + dust-like	100	100	Boundary layer [0-2 km]
Desert dusts				
-DBS1 \& DBW1 (Moulin at al., 2001) [RD-35]	- large particles - medium particles - small particles		$\begin{aligned} & 3.86110^{-5} \\ & 45.785735 \\ & 54.214226 \end{aligned}$	Boundary layer + Troposphere [0-7 km]
-DBS2 \& DBW2 (Moulin at al., 2001) [RD-35]	- large particles - medium particles - small particles		$\begin{aligned} & 3.86110^{-4} \\ & 45.785562 \\ & 54.214052 \end{aligned}$	Boundary layer + Troposphere [0-7 km]
-DBS1 \& DBW1 (Moulin at al., 2001) [RD-35]	- large particles - medium particles - small particles		$\left[\begin{array}{l} 7.72210^{-4} \\ 45.785369 \\ 54.213859 \end{array}\right.$	Boundary layer + Troposphere [0-7 km]
Continental (WCRP, 1980) [RD-34]	- water soluble - dust-like - soot-like	$\begin{gathered} 29 \\ 70 \\ 1 \end{gathered}$	$\begin{gathered} 93.876773 \\ 2.2710^{-4} \\ 6.123 \end{gathered}$	Troposphere [2-12 km]

Aerosol model	Components	Vol. (\%)	Pcl. (\%)	Atmosph. Layer
$\mathrm{H}_{2} \mathrm{SO}_{4}$ (WCRP, 1980) [RD-34]	- 75% solution of sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ in water	100	100	Stratosphere [12-50 km]

3.2.4 Vertical distribution

Depending on the number of aerosol layers defined in the atmosphere two vertical distributions of the particles are commonly used:

- 1 aerosol layer (case over land): The aerosol optical thickness $\tau_{a}(z)$ at the altitude z follows an exponential law as,

$$
\begin{equation*}
\tau_{a}(z)=\tau_{a}(0) e^{-z / H_{a}} \tag{115}
\end{equation*}
$$

where $\tau_{a}(0)$ is the AOT of the whole atmosphere at ground level, and H_{a} the aerosol scale height. Over land, H_{a} is usually taken to be equal to 2 km .
-3 aerosol layers (case over ocean): The aerosol optical thickness can be either homogeneously (RTC/UdL \& FUB) or heterogeneously (RTC/FUB only) distributed in each of these 3 layers,

- a boundary layer: model, optical thickness at 550 nm , between 0 and 2 km altitude,
- a tropospheric layer: model, optical thickness at 550 nm , between 2 and 12 km altitude,
- a stratospheric layer. model, optical thickness at 550 nm , above 12 km altitude.

3.3 CLOUDS

3.3.1 Inherent optical properties

Except for the cirrus, cloud IOPs are computed according to the Mie theory (see Section 2.8). Similarly to the aerosols, the water droplet is assumed to be a spherical particle characterized by its complex refractive index n and its effective geometrical radius r. The cloud extinction, scattering and absorption coefficients as well as the phase function are expressed as identical to the IOPs of the aerosol particles (see Section 3.2.1). For a cirrus cloud layer IOPs could be derived from [RD-36] but are not considered in the two RTCs for the MERIS project.

3.3.2 Particle size distribution

The drop size distributions are usually described by the Modified Gamma distribution function presented in Section 3.2.2.

3.3.3 Cloud models

The standard cloud types are fully described by [RD-37] for the Mie's calculations.

3.3.4 Vertical distribution

The cloud profile is specified by a type and an extinction coefficient (m^{-1}) in each of atmospheric layer. Three major cloud layers is predefined in the atmosphere. The cloud optical thickness can be either homogeneously or heterogeneously (RTC/UdL \& FUB) distributed in each of these 3 layers:

- a $1^{\text {st }}$ cloud layer: model, optical thickness at 550 nm , between 0 and 2 km altitude,
- a $2^{\text {nd }}$ cloud layer.
- a $3^{\text {rd }}$ cloud layer. model, optical thickness at 550 nm , between 2 and 9 km altitude, model, optical thickness at 550 nm , between 7 and 12 km altitude,.

4. WATER OPTICAL PROPERTIES

Two ocean water cases are distinguished (see [AD-4] for more details):

- Case 1: the oceanic waters (i.e., open oceans) for which the apparent optical properties only depend on the IOPs of phytoplankton (such as living alga cells, heterotrophic bacteria and organisms, various debris) and the associated yellow substances (coloured dissolved organic material CDOM generated through excretion, organism decay, etc.)
- Case 2: the coastal waters which are seen as case 1 waters but with additional other optically active substances such as the inorganic particulate matter so-called Gelbstoff (exogenous particles, mainly sediments, either transported by rivers or re-suspended from the bottom in shallow waters).

The total extinction (e), scattering (s), absorption (a) coefficients for these ocean water cases result from the sum of the contributions of each oceanic component.

$$
\begin{equation*}
\sigma_{e, s, a}=\sigma_{e, s, a}^{w}+\sigma_{e, s, a}^{p}+\sigma_{e, s, a}^{y s}+\sigma_{e, s, a}^{s p m} \tag{116}
\end{equation*}
$$

with w for the pure sea water, p for the phytoplankton, $y s$ for the yellow substance (or Gelbstoff) and spm for the inorganic particles (suspended particulate matter).

4.1 PURE SEA WATER

The absorption coefficient σ_{a}^{w} of the pure sea water is tabulated in [RD-38] for wavelengths up to 709 nm and in [RD-39] above 709 nm . These values are resampled for 10 MERIS spectral bands (Table 7). As expected this absorption spectrum stresses an increase with the wavelength.

Table 7: Pure water absorption coefficient σ_{a}^{w} for 10 MERIS spectral bands.

$\lambda(\mathrm{nm})$	$\sigma_{a}^{w}\left(\mathrm{~nm}^{-1}\right)$
412.50	0.00452
442.50	0.00696
490.00	0.01500
510.00	0.03250
560.00	0.06190
620.00	0.27550
665.00	0.42900
708.75	0.79150
778.75	2.34000
865.00	4.93790

The scattering coefficient σ_{s}^{w} of the pure sea water strongly decreases with the wavelength. The More/ 's formulation [RD-40] expresses this wavelength dependence as:

$$
\begin{equation*}
\sigma_{s}^{w}(\lambda)=0.00288 \cdot\left(\frac{\lambda}{500}\right)^{-4.32} \tag{117}
\end{equation*}
$$

The scattering phase function of the pure sea water is defined as [RD-41]:

$$
\begin{equation*}
P_{w}(\theta)=\frac{3}{3+p} \cdot\left(1+p \cdot \cos ^{2} \theta\right) \tag{118}
\end{equation*}
$$

with p the polarization factor at 90° ($p=0.84$). However, the anisotropy of the molecular scattering for the pure sea water is often taken into account using a depolarization factor (δ) of 0.0906 in the molecular scattering phase function (Equation 99).

4.2 PHYTOPLANKTON

4.2.1 Inherent optical properties

- Absorption and scattering coefficients:

The absorption coefficient $\sigma_{a}^{p}\left(m^{-1}\right)$ of phytoplankton is taken from [RD-42]:

$$
\begin{equation*}
\sigma_{a}^{p}(\lambda,[\text { chl }])=A_{\lambda} \cdot[\text { chl }]^{B_{\lambda}} \tag{119}
\end{equation*}
$$

with [chl] the chlorophyll- a concentration (in $m g . m^{-3}$), and A_{λ}, B_{λ} two spectral coefficients tabulated for which the values are reproduced at 10 MERIS wavelengths in Table 8.

Table 8: Values of A_{λ} and B_{λ} coefficients for 10 MERIS spectral bands useful to compute $\sigma_{a}^{c h l}(\lambda)$.

$\lambda(\mathrm{nm})$	A_{λ}	B_{λ}
412.50	0.0474995	0.6840705
442.50	0.0511810	0.6266249
490.00	0.0341240	0.6200260
510.00	0.0231810	0.7060040
560.00	0.0100310	0.8412540
620.00	0.0089570	0.8438080
665.00	0.0167630	0.8207835
708.75	0.0010000	1.0000000
778.75	0	1.0000000
865.00	0	1.0000000

The scattering coefficient σ_{s}^{p} of phytoplanckton is expressed according to [RD-43]:

$$
\begin{equation*}
\sigma_{s}^{p}(\lambda)=A_{c h l} \cdot[c h l]^{B_{c h l}} \cdot\left(\frac{\lambda}{550}\right)^{-1} \tag{120}
\end{equation*}
$$

where $A_{c h l}, B_{c h l}$ are respectively equal to 0.416 and 0.766 .

- Scattering phase function:

The Petzold phase function is often used to define the scattering phase function of the phytoplankton (Table 9). The latter can be also computed by the Mie's theory (see Section 2.8). The real part of the refractive index m is ranged within [1.01;1.09] and the imaginary part k is often equal to 0 . The particle size distribution $n(r)$ is described by a Junge power-law function (see Section 3.2.2) with a standard α of -3.2. The particle size values are ranged from $0.01 \mu m$ to $200 \mu m$.

Table 9: Petzold phase function $P_{p}(\theta)$ derived from [RD-44].

θ	$P_{p}(\theta)$	θ	$P_{p}(\theta)$
0.00000	$1.00000 \mathrm{E}+04$	40.00000	4.20985E-02
0.05000	$8.63700 \mathrm{E}+03$	45.00000	$3.06722 \mathrm{E}-02$
0.10000	$1.76661 \mathrm{E}+03$	50.00000	$2.27533 \mathrm{E}-02$
0.12589	$1.29564 \mathrm{E}+03$	55.00000	$1.69904 \mathrm{E}-02$
0.15849	$9.50172 \mathrm{E}+02$	60.00000	$1.31254 \mathrm{E}-02$
0.19953	$6.99092 \mathrm{E}+02$	65.00000	$1.04625 \mathrm{E}-02$
0.25119	$5.13687 \mathrm{E}+02$	70.00000	8.48826E-03
0.31623	$3.76373 \mathrm{E}+02$	75.00000	$6.97601 \mathrm{E}-03$
0.39811	$2.76318 \mathrm{E}+02$	80.00000	$5.84232 \mathrm{E}-03$
0.50119	$2.18839 \mathrm{E}+02$	85.00000	$4.95306 \mathrm{E}-03$
0.63096	$1.44369 \mathrm{E}+02$	90.00000	$4.29232 \mathrm{E}-03$
0.79433	$1.02241 \mathrm{E}+02$	95.00000	$3.78161 \mathrm{E}-03$
1.00000	$7.16082 \mathrm{E}+01$	100.00000	$3.40405 \mathrm{E}-03$
1.25890	$4.95803 \mathrm{E}+01$	105.00000	$3.11591 \mathrm{E}-03$
1.58490	$3.39511 \mathrm{E}+01$	110.00000	$2.91222 \mathrm{E}-03$
1.99530	$2.28129 \mathrm{E}+01$	115.00000	$2.79696 \mathrm{E}-03$
2.51190	$1.51622 \mathrm{E}+01$	120.00000	$2.68568 \mathrm{E}-03$
3.16230	$1.00154 \mathrm{E}+01$	125.00000	$2.57142 \mathrm{E}-03$
3.98110	$6.57957 \mathrm{E}+00$	130.00000	$2.47603 \mathrm{E}-03$
5.01190	$4.29530 \mathrm{E}+00$	135.00000	$2.37667 \mathrm{E}-03$
6.30960	$2.80690 \mathrm{E}+00$	140.00000	$2.32898 \mathrm{E}-03$
7.94330	$1.81927 \mathrm{E}+00$	145.00000	$2.31308 \mathrm{E}-03$
10.00000	$1.15257 \mathrm{E}+00$	150.00000	$2.36475 \mathrm{E}-03$
15.00000	$4.89344 \mathrm{E}-01$	155.00000	$2.50584 \mathrm{E}-03$
20.00000	$2.44424 \mathrm{E}-01$	160.00000	$2.66183 \mathrm{E}-03$
25.00000	$1.47151 \mathrm{E}-01$	165.00000	$2.83472 \mathrm{E}-03$
30.00000	8.60848E-02	170.00000	$3.03046 \mathrm{E}-03$
35.00000	$5.93075 \mathrm{E}-02$	175.00000	$3.09206 \mathrm{E}-03$
		180.00000	$3.15366 \mathrm{E}-03$

4.2.2 Vertical distribution

Whatever the ocean water case, the phytoplankton is assumed to be homogeneously distributed in the water column. This is especially true for the coastal waters due to a strong hydrodynamic. In the case of the open sea waters, certain authors prefer rather to use a shifted Gaussian curve from [RD-45] to modelize the vertical distribution of the phytoplankton which seems to be more adapted.

4.3 YELLOW SUBSTANCE

4.3.1 Inherent optical properties

The yellow substance is a purely absorbing component. Its absorption coefficient $\sigma_{a}^{y s}$ is expressed as (see [RD-42]):

$$
\begin{equation*}
\sigma_{a}^{y s}(\lambda)=\sigma_{a}^{y s}(443) \cdot \exp \left[-S_{y s} \cdot(\lambda-443)\right] \tag{121}
\end{equation*}
$$

with $S_{y s}$ a yellow substance coefficient equal to $0.014 \mathrm{~nm}^{-1}$ (resp., $0.0176 \mathrm{~nm}^{-1}$) for the oceanic waters from case 1 (resp., from case 2 with the CDOM absorption), and $\sigma_{a}^{y s}(443)$ the absorption coefficient of the yellow substance at the 443 nm wavelength which is given by:

$$
\begin{equation*}
\sigma_{a}^{y s}(443)=\frac{1}{2} \cdot\left[\sigma_{a}^{w}(443)+\sigma_{a}^{p}(443,[\operatorname{chl}])\right] \tag{122}
\end{equation*}
$$

where $\sigma_{a}^{w}(443)$ and $\sigma_{a}^{p}(443,[c h l])$ represent respectively the absorption coefficient of the pure sea water and the phytoplankton at the 443 nm wavelength.

4.3.2 Vertical distribution

The yellow substance is assumed homogeneously distributed in the water column. For many coastal waters this is a realistic assumption, but of course this is not true for the river plumes where very strong vertical gradients are observed.

4.4 SUSPENDED PARTICULATE MATTER AND GELBSTOFF

4.4.1 Inherent optical properties

- Absorption and scattering coefficients:

The non-chlorophyll suspended particulate matter (SPM) strongly differs in composition with very large range of concentrations in the coastal waters which makes very difficult the modelling of its bio-optical properties.

The absorption coefficient of SPM $\sigma_{a}^{s p m}$ is expressed as for the yellow substance:

$$
\begin{equation*}
\sigma_{a}^{s p m}(\lambda)=\sigma_{a}^{s p m}(443) \cdot \exp \left[-S_{s p m} \cdot(\lambda-443)\right] \tag{123}
\end{equation*}
$$

with $S_{s p m}$ a SPM coefficient equal to $0.0122 \mathrm{~nm}^{-1}$ for the oceanic waters from case 2, and $\sigma_{a}^{s p m}(443)$ the absorption coefficient of SPM at the 443 nm wavelength which is given by:

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } 61 \end{aligned}$		

$$
\begin{equation*}
\sigma_{a}^{s p m}(443)=A_{s p m} \cdot S P M^{B_{s p m}} \tag{124}
\end{equation*}
$$

where $A_{s p m}, B_{s p m}$ are respectively equal to 0.0216 and 1.0247 .

The scattering coefficient $\sigma_{s}^{s p m}$ of SPM is expressed as:

$$
\begin{equation*}
\sigma_{s}^{s p m}(\lambda)=C_{\lambda} \cdot C_{555} \cdot S P M \tag{125}
\end{equation*}
$$

with SPM the SPM concentration (in $g \mathrm{~m}^{-3}$), and C_{λ} a spectral coefficient tabulated for which the values are reproduced at MERIS wavelengths in Table 10, and C_{555} the value of C_{λ} at the 555 nm wavelength.

Table 10: Values of C_{λ} coefficients in 10 MERIS spectral bands useful to compute $\sigma_{s}^{s p m}(\lambda)$.

$\lambda(\mathrm{nm})$	C_{λ}
412.50	1.016
442.50	1.002
490.00	1.003
510.00	1.007
560.00	0.996
620.00	0.951
665.00	0.914
708.75	0.928
778.75	0.931
865.00	0.931

- Scattering phase function:

The Petzold phase function is often used to define the scattering phase function of SPM (Table 9). The latter can be also computed by the Mie's theory (see Section 2.8). The real part of the refractive index m is ranged from 1.15 to 1.20 and the imaginary part k from -0.008 to 0 . The particle size distribution $n(r)$ is represented by the Junge power-law function (see Section 3.2.2) with a standard α of -4. The particle size values are ranged from $0.01 \mu m$ to $50 \mu m$.

4.4.2 Vertical distribution

SPM are assumed homogeneously distributed in the water column.

5. SEA SURFACE STATE

The effect of the air-sea interface shape (i.e., the water surface roughness) on the Fresne/ reflection and refraction is usually modelled according to the statistical description of the wave facet distribution derived by Cox and Munk [RD-46]. This surface model assumes an isotropic distribution of the facet slopes independently of the wind orientation, and the reflectance above sea surface level depends on the wind speed. Shadowing effects are not accounted for in the total upwelling radiances.

In this surface model, the probability density function of facet slopes $p\left(\theta_{s}, \theta_{v}, \Delta \phi\right)$ for the illumination and viewing configurations $\left(\theta_{s}, \theta_{v}, \Delta \phi\right)$ is expressed as:

$$
\begin{equation*}
p\left(\theta_{s}, \theta_{v}, \Delta \phi\right)=\frac{1}{\pi \sigma^{2}} \cdot \exp \left(\frac{-\tan ^{2} \beta}{\sigma^{2}}\right) \tag{126}
\end{equation*}
$$

where β the angle between the local normal and the normal to the facet, and σ the root mean square of facet slopes are defined by:

$$
\begin{equation*}
\cos \beta=\frac{\cos \theta_{v}+\cos \theta_{s}}{2 \cos \omega} \tag{127}
\end{equation*}
$$

with,

$$
\cos 2 \omega=\cos \theta_{s} \cdot \cos \theta_{v}-\sin \theta_{s} \cdot \sin \theta_{v} \cdot \cos \Delta \phi
$$

and

$$
\begin{equation*}
\sigma^{2}=0.003+5.1210^{-3} \cdot w_{s} \tag{128}
\end{equation*}
$$

with w_{s} the wind speed $\left(m s^{-1}\right)$ at $0.5 m$ height above sea level.

The sun glint ρ_{G} (i.e., the specular reflection of the sunlight over the ocean waves) just above sea level is then defined as:

$$
\begin{equation*}
\rho_{G}=\rho_{F}(\omega) \cdot \frac{\pi p\left(\theta_{s}, \theta_{v}, \Delta \phi\right)}{4 \cos \theta_{s} \cos \theta_{v} \cos ^{4} \beta} \tag{129}
\end{equation*}
$$

where $\rho_{F}(\omega)$ is the Fresnel reflectance at the air-sea interface for the angle ω given by (see Section 2.10):

$$
\left\{\begin{array}{l}
\rho_{F}(\omega)=\frac{1}{2} \cdot\left[\left(\frac{\sin \left(\omega-\vartheta_{t}\right)}{\sin \left(\omega+\vartheta_{t}\right)}\right)^{2}+\left(\frac{\tan \left(\omega-\vartheta_{t}\right)}{\tan \left(\omega+\vartheta_{t}\right)}\right)^{2}\right] \text { for } \omega \neq \vartheta_{t} \\
\rho_{F}(\omega)=\left(\frac{n_{w}-1}{n_{w}+1}\right)^{2} \text { for } \omega=\vartheta_{t}
\end{array}\right.
$$

with $\vartheta_{t}=\arcsin \left(\sin \omega / n_{w}\right)$.

6. RADIATIVE TRANSFER

The theory of the radiative transfer is based on the assumption of an infinite plane-parallel dielectric medium (atmosphere or ocean) where the optical properties only depend on the vertical coordinate.

6.1 GEOMETRY

The geometry conventions are depicted in Figure 14. The sun illumination and viewing configurations are given by the solar zenithal angle ϑ_{s} (also noted ϑ_{0}), the viewing zenithal angle ϑ_{v}, and the relative azimuthal angle $\Delta \varphi$ between the solar incidence and viewing planes ($\Delta \varphi=\varphi_{s}-\varphi_{v}$). The azimuthal angle $\Delta \phi$ in Figure 14 corresponds to the azimuth angle difference for the 6 S geometry conventions [RD47].

Figure 14: Illumination and viewing configuration for MERIS sensor.

The scattering angle θ is defined as:

$$
\begin{equation*}
\cos \theta=\mp \cos \vartheta_{s} \cdot \cos \vartheta_{v} \pm \sin \vartheta_{s} \cdot \sin \vartheta_{v} \cdot \cos \Delta \varphi \tag{130}
\end{equation*}
$$

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0003 Issue: 4 Rev.: A Date: 16-Dec-10 Page: 64			

The first configuration (- cos + sin) corresponds to an upward signal (namely an observation towards the surface) and the second one (+ cos - sin) to a downward signal (namely a skyward observation).

6.2 GENERAL FORMULATION

6.2.1 Radiative Transfer Equation (RTE)

Generally speaking, the light propagating within a dielectric medium may be attenuated by the absorption or the scattering of photons out of the light propagation direction but may be also intensified by the scattering and the emission of photons into the light propagation direction.

For a passive medium (i.e., without any internal source of radiation), the radiative transfer equation (RTE) accounts for the loss of radiance due to the scattering and absorption in the propagation direction, and for the gain of radiance due to the scattering from other directions. Thus, the two parameters of this equation are the attenuation coefficient and the phase function. The radiative balance for an elementary layer with an infinitesimal optical thickness $d \tau$ enlightened by an incident light $\left(\mu_{\mathrm{o}}, \varphi_{\mathrm{o}}\right)$ and viewed under the direction (μ, φ) is expressed as (see [RD-48] \& [RD-49] for more details):
$\mu \cdot \frac{d L(\tau, \mu, \varphi)}{d \tau}=L(\tau, \mu, \varphi)-\frac{\omega_{0}(\tau)}{4 \pi} \cdot P\left(\tau, \mu, \mu_{0}, \Delta \varphi\right) \cdot E_{0} \cdot e^{\tau / \mu_{0}}-\frac{\omega_{0}(\tau)}{4 \pi} \cdot \int_{0}^{2 \pi} \int_{-1}^{1} P\left(\tau, \mu, \mu^{\prime}, \Delta \varphi\right) \cdot L\left(\tau, \mu^{\prime}, \varphi^{\prime}\right) \cdot d \mu^{\prime} \cdot d \varphi^{\prime}$
with $\mu d \tau<0$ and where,
μ_{o}, μ : cosine of zenithal angle θ_{o} (incident light, $\mu_{\mathrm{o}} \leq 0$) and θ (viewing angle) respectively,
$\varphi, \Delta \varphi$: azimuthal viewing angle and relative azimuthal angle ($\varphi_{\mathrm{o}}-\varphi$) respectively,
$\omega_{0}(\tau):$ single scattering albedo located at τ within the elementary layer,
$P\left(\tau, \mu, \mu_{0}, \Delta \varphi\right), P\left(\tau, \mu, \mu^{\prime}, \Delta \varphi\right)$: scattering phase functions located at τ within the layer,
$L\left(\tau, \mu^{\prime}, \varphi^{\prime}\right), L(\tau, \mu, \varphi)$: incident and scattered radiances located at τ within the elementary layer,
$E_{\mathrm{o}} . e^{\tau / \mu_{\mathrm{o}}}$: irradiance not yet intercepted at τ within the elementary layer (E_{o} corresponds usually to the solar constant).

The first term in the right part of the RTE represents the radiance attenuated (scattering + absorption) along (μ, φ) direction within the layer $d \tau$, the second term the radiance along (μ, φ) direction due to the scattering of the incident radiation $\left(\mu_{0}, \varphi_{0}\right)$ not yet intercepted within the layer $d \tau$, and the third term the radiance along (μ, φ) direction due to the scattering of radiations already scattered within the layer $d \tau$.

Note that, the prime notation used here and in following sections, denotes the incident field light. Moreover, all energetic quantities mentioned above and hereafter are mono-chromatic, and to simplify notation the subscript λ corresponding to the wavelength is omitted.

By considering τ_{1} as the total optical thickness of the elementary layer (Figure 15) the RTE can then be written as the following standard integral forms [RD-47]:

where $I(\tau, \mu, \varphi)$ and $I(\tau,-\mu, \varphi)$ are respectively the upwelling and downwelling radiance located at τ within the layer, and $J(\tau, \mu, \varphi)$ the source function which accounts for the interaction of the present radiation field with the particles of the layer located at τ. This source function is expressed as:

$$
\begin{equation*}
J(\tau, \mu, \varphi)=\frac{\omega_{\mathrm{o}}(\tau)}{4} \cdot F_{\mathrm{o}} \cdot P\left(\tau, \mu, \varphi, \mu_{\mathrm{o}}, \varphi_{\mathrm{o}}\right) \cdot e^{\tau / \mu_{\mathrm{o}}}+\frac{\omega_{\mathrm{o}}(\tau)}{4 \pi} \cdot \int_{0}^{2 \pi} \int_{-1}^{1} I\left(\tau, \mu^{\prime}, \varphi^{\prime}\right) \cdot P\left(\tau, \mu, \varphi, \mu^{\prime}, \varphi^{\prime}\right) \cdot d \mu^{\prime} \cdot d \varphi^{\prime} \tag{133}
\end{equation*}
$$

The first term represents the illumination source $E_{\mathrm{o}}=\pi F_{\mathrm{o}}$ (i.e., the direct solar radiation) which propagates across the elementary layer along $\left(\mu_{0}, \varphi_{\mathrm{o}}\right)$ directly up to the level τ and being scattered in the (μ, φ) direction (primary scattering), and the second term is related to the multiple scattering and quantifies the redistribution of diffuse light into the considered direction of light propagation.

Figure 15: Schematic representation of radiative transfer problem.

6.2.2 Solving the RTE

Analytical solutions of the RTE exist for a number of simple source functions such as for the isotropic or Rayleigh scattering (see [RD-5] \& [RD-50]). However, in most cases the source function presents a complex dependence with the optical properties of the medium and the angular distribution of the incident light, and the RTE needs to be solved numerically. Numerous developed methods to solve the RTE in a scattering and absorbing medium all have in common to start with some analytical treatment followed by numerical computations. The computer time requirement strongly depends on the complexity of the physical problem (phase function, vertical inhomogeneity) and on the expected accuracy.

Hereafter are briefly described four numerical approaches commonly used to solved the RTE:

- Monte Carlo method:

This method is potentially the most exact in theory, in particular for media with a complex geometry and anisotropic scattering phase functions. However it is more computer time-consuming. Classically, this method begins with an illumination phase of the medium simulated by the tracking of the trajectories of photons. An angular scattering and absorption probability is then associated with each eventual interaction. The trajectory of each photon is tracked up to its absorption or its outgoing from the medium. This process iterates until to reach statistically stable results for all the scattering directions.

- Double Adding method:

This numerical approach is commonly used to solve the RTE in the stellar and planetary atmospheres. This method developed by Van de Hulst [RD-51] needs relatively few computational times and is particularly useful for the case of anisotropic scattering phase functions. In this method, the optical properties of the particles with a layer are characterized by two matrices \mathbf{R} and \mathbf{T}, respectively the directional reflectance and transmittance, the size of which is equal to the number of selected propagation directions. The superimposition of two layers yields to the following optical properties R' and \mathbf{T}^{\prime} :

$$
\left\{\begin{array}{l}
\mathbf{R}^{\prime}=\mathbf{R}+\mathbf{T} \cdot \mathbf{R} \cdot[\mathbf{1}-\mathbf{R} \cdot \mathbf{R}]^{-1} \cdot \mathbf{T} \tag{134}\\
\mathbf{T}^{\prime}=\mathbf{T} \cdot[\mathbf{1}-\mathbf{R} \cdot \mathbf{R}]^{-1} \cdot \mathbf{T}
\end{array}\right.
$$

The first phase of the method consists in the use of an infinitely thin layer, e.g., a layer with an optical thickness of 2^{-25}. This layer is then doubled and the optical characteristics of this resulting layer are recomputed. This double adding of layers is repeated until to reach the desired optical depth. It can be note that only 50 iterations are needed for obtaining an optical depth of 2^{25}. This method can be easily adapted to consider layers with different optical properties (see Section 8.2.3.1).

- Discrete Ordinates Method (DOM):

This DOM approach relies on the discretization of all the space for incident and scattered directions [RD52]. Thus photons can be only propagated along a finite number of directions. This approximation may lead to some artefacts inherent to this method. Of course the number of selected directions N must be sufficiently large to obtain accurate results, but not too much for an acceptable computational time. Moreover the solution derived from this technique needs to be checked to be realistic (or positive).

Thus, by using this approach the RTE becomes a system of N differential integral equations. For a plane parallel medium and by considering the mean value for each selected direction, this set of equations is written as:

$$
\begin{align*}
\frac{1}{\Delta \Omega_{\mathrm{j}}} \cdot \int_{\Delta \Omega_{\mathrm{j}}} \mu \cdot \frac{d L(\tau, \Omega)}{d \tau} \cdot d \Omega & =\frac{1}{\Delta \Omega_{\mathrm{j}}} \cdot \int_{\Delta \Omega_{\mathrm{j}}} L(\tau, \Omega) \cdot d \Omega-\frac{\omega_{\mathrm{o}}(\tau)}{4 \pi} \cdot E_{\mathrm{o}} \cdot e^{\tau / \mu_{\mathrm{o}}} \cdot \frac{1}{\Delta \Omega_{\mathrm{j}}} \cdot \int_{\Delta \Omega_{\mathrm{j}} 4 \pi} \int_{4 \pi} P\left(\tau, \Omega, \Omega_{\mathrm{o}}\right) \cdot d \Omega \tag{135}\\
& -\frac{\omega_{\mathrm{o}}(\tau)}{4 \pi} \cdot \frac{1}{\Delta \Omega_{\mathrm{j}}} \cdot \int_{\Delta \Omega_{\mathrm{j}} 4 \pi} P\left(\tau, \Omega, \Omega^{\prime}\right) \cdot L\left(\tau, \Omega^{\prime}\right) \cdot d \Omega^{\prime} \cdot d \Omega
\end{align*}
$$

where,
Ω_{0}, Ω : solid angles for the incident and scattered direction respectively,
$\Delta \Omega_{\mathrm{j}}$: increment of solid angle for the $j^{\text {th }}$ discrete angular sector in the space,

Using the following quantities,

$$
\begin{gathered}
L_{\mathrm{j}}(\tau)=\frac{1}{\Delta \Omega_{\mathrm{j}}} \cdot \int_{\Delta \Omega_{\mathrm{j}}} L(\tau, \Omega) \cdot d \Omega \\
\mu_{\mathrm{j}}=\frac{1}{\Delta \Omega_{\mathrm{j}}} \cdot \int_{\Delta \Omega_{\mathrm{j}}} \mu \cdot d \Omega \\
P_{\mathrm{k}, \mathrm{j}}=\frac{1}{\Delta \Omega_{\mathrm{k}}} \cdot \frac{1}{\Delta \Omega_{\mathrm{j}}} \cdot \int_{\Delta \Omega_{\mathrm{k}} \Delta \Omega_{\mathrm{j}}} P\left(\tau, \Omega, \Omega^{\prime}\right) \cdot d \Omega^{\prime} \cdot d \Omega
\end{gathered}
$$

the N differential integral equations can be substituted by the N following linear equations at first order,

$$
\mu_{\mathrm{j}} \cdot \frac{d L_{\mathrm{j}}(\tau)}{d \tau}=L_{\mathrm{j}}(\tau)-\frac{\omega_{\mathrm{o}}(\tau)}{4 \pi} \cdot P_{\mathrm{o}, \mathrm{j}}(\tau) \cdot E_{\mathrm{o}} \cdot e^{\tau / \mu_{\mathrm{o}}}-\frac{\omega_{\mathrm{o}}(\tau)}{4 \pi} \cdot \sum_{k=1}^{N} P_{\mathrm{k}, \mathrm{j}}(\tau) \cdot L_{\mathrm{k}}(\tau) \cdot \Delta \Omega_{\mathrm{k}}
$$

which can be analytically or numerically solved for a small value of N.
A classical approach consists in the use of the Gauss quadrature with an even number of directions (pivots) which optimizes the representation of energetic propagation within the space. The latters are the roots of Legendre polynomials at the $N^{\text {th }}$ order (see [RD-53] for more details). Note that for strongly anisotropic media, an assymetric quadrature such as Gauss-Lobatto quadrature would be more appropriate to describe the energetic propagation within the anisotropic angular region.

- Successive Orders (SO) method:

By combining the left term and the first right term of the RTE (Equation 130), we can write:

$$
\begin{equation*}
\mu \cdot \frac{d L(\tau, \mu, \varphi)}{d \tau}-L(\tau, \mu, \varphi)=\mu \cdot e^{\tau / \mu} \cdot \frac{d}{d \tau}\left[L(\tau, \mu, \varphi) \cdot e^{-\tau / \mu}\right] \tag{136}
\end{equation*}
$$

which yields to,

$$
\begin{equation*}
\frac{d}{d \tau}\left[L(\tau, \mu, \varphi) \cdot e^{-\tau / \mu}\right]=-\frac{\omega_{\mathrm{o}}(\tau)}{2 \mu} \cdot e^{-\tau / \mu}\left[\frac{1}{2 \pi} \cdot P\left(\tau, \mu, \mu_{\mathrm{o}}, \Delta \varphi\right) \cdot E_{\mathrm{o}} \cdot e^{\tau / \mu_{\mathrm{o}}}+\int_{-1}^{1} P\left(\tau, \mu, \mu^{\prime}, \Delta \varphi\right) \cdot L\left(\tau, \mu^{\prime}, \varphi^{\prime}\right) \cdot d \mu^{\prime}\right] \tag{137}
\end{equation*}
$$

or then,

$$
\begin{equation*}
\frac{d}{d \tau}\left[L(\tau, \mu, \varphi) \cdot e^{-\tau / \mu}\right]=-\frac{\omega_{0}(\tau)}{4 \pi \mu} \cdot e^{-\tau / \mu} \cdot \int_{0}^{2 \pi} \int_{-1}^{1} P\left(\tau, \mu, \varphi, \mu^{\prime}, \varphi^{\prime}\right) \cdot L\left(\tau, \mu^{\prime}, \varphi^{\prime}\right) \cdot d \mu^{\prime} \cdot d \varphi^{\prime} \tag{138}
\end{equation*}
$$

The SO method consists in an iterative processus with an approximate solution which will be inserted within the double integral form. A new analytical or numerical solution is then computed, and the process continues while the needed accuracy is not reached. The following section outlines this method.

6.2.2.1 Single and multiple scattering

The RTE is numerically solved by iteration. First the solution is computed for the primary scattering radiation for each layer of the stratified propagation medium then for the scattering at successive orders.

- Single scattering:

The light which propagates within an optically very thin layer ($\Delta \tau / \mu \leq 10^{-3}$) is unlikely to undergo more than one scattering process inside the layer [RD-5]. Multiple scattering can then be neglected and by

using the RTE in its integral form (see Equation 131), the primary scattering radiation for the upward and downward directions (respectively, $I^{(1)}(\tau, \mu, \varphi)$ and $\left.I^{(1)}(\tau,-\mu, \varphi)\right)$ is given by:

$$
\left\{\begin{array}{l}
I^{(1)}(\tau, \mu, \varphi)=\frac{\omega_{\mathrm{o}}(\tau)}{4 \mu} \cdot F_{\mathrm{o}} \cdot P\left(\tau, \mu, \varphi, \mu_{\mathrm{o}}, \varphi_{\mathrm{o}}\right) \cdot e^{\tau / \mu_{\mathrm{o}}} \cdot \Delta \tau \tag{139}\\
I^{(1)}(\tau,-\mu, \varphi)=\frac{\omega_{\mathrm{o}}(\tau)}{4 \mu} \cdot F_{\mathrm{o}} \cdot P\left(\tau,-\mu, \varphi, \mu_{\mathrm{o}}, \varphi_{\mathrm{o}}\right) \cdot e^{\tau / \mu_{\mathrm{o}}} \cdot \Delta \tau
\end{array}\right.
$$

- Multiple scattering:

Thus, for higher order of scattering the n-times scattered light in the upward and downward directions (respectively, $I^{(n)}(\tau, \mu, \varphi)$ and $\left.I^{(n)}(\tau,-\mu, \varphi)\right)$ can then be estimated from the $(n-1)$ times scattered light knowing the primary scattering radiations from the direct sun beam:

$$
\left\{\begin{array}{l}
I^{(n)}(\tau, \mu, \varphi)=\frac{1}{\mu} \cdot \sum_{j=i}^{N} J^{(n)}\left(\tau_{\mathrm{j}}, \mu, \varphi\right) \cdot e^{-\left(\tau_{\mathrm{j}}-\tau\right) / \mu} \cdot \Delta \tau \tag{140}\\
I^{(n)}(\tau,-\mu, \varphi)=\frac{1}{\mu} \cdot \sum_{j=1}^{i} J^{(n)}\left(\tau_{\mathrm{j}},-\mu, \varphi\right) \cdot e^{-\left(\tau-\tau_{\mathrm{j}}\right) / \mu} \cdot \Delta \tau
\end{array} \quad \text { with }(0<\mu \leq 1)\right.
$$

where N represents the number of layers used in the stratification of the propagation medium, τ and τ_{j} respectively the optical thickness at level i and j, and $\Delta \tau$ the optical thickness increment between the two layer interfaces.

The source function $J^{(n)}$ is computed from $I^{(n-1)}$ as follows:

$$
\begin{equation*}
J^{(n)}(\tau, \mu, \varphi)=\frac{\omega_{0}(\tau)}{4 \pi} \cdot \int_{0}^{2 \pi} \int_{-1}^{1} I^{(n-1)}\left(\tau, \mu^{\prime}, \varphi^{\prime}\right) \cdot P\left(\tau, \mu, \varphi, \mu^{\prime}, \varphi^{\prime}\right) \cdot d \mu^{\prime} \cdot d \varphi^{\prime} \tag{141}
\end{equation*}
$$

The numerical integration of this equation is performed considering a Fourier series expansion in azimuth for the radiance.

Note that here, only the contribution of the elastic scattering to the source function is considered. Moreover, assuming that the atmosphere and the ocean are isotropic media where the scattering probability only depends on the scattering angle θ, the volume scattering phase function P can be expressed as the product of scattering coefficient σ_{s} by the normalized phase function p :

$$
\begin{equation*}
P\left(\tau, \mu, \varphi, \mu^{\prime}, \varphi^{\prime}\right)=\sigma_{s}(\tau) \cdot p(\tau, \cos \theta) \tag{142}
\end{equation*}
$$

with $\cos \theta=\mu \cdot \mu^{\prime}+\sqrt{1-\mu^{2}} \cdot \sqrt{1-\mu^{\prime 2}} \cdot \cos \left(\varphi-\varphi^{\prime}\right)$

6.2.2.2 Fourier series expansion of the radiation field

An usual procedure for numerically solving the RTE consists in a Fourier series decomposition of the radiation field as a function of the azimuth [RD-53] \& [RD-54]. The Fourier analysis allows one to separate the zenithal (ϑ) and azimuthal (φ) angular dependence, and the RTE splits up into a set of independent equations with the zenithal angle as the unique coordinate. Each equation can then be solved independently in the Fourier space before to be recombined to yield to the solution in the Euclidian space.

In fact, taking the radiation field polarization into account the RTE in a plane-parallel finite medium is written as:
$\mu \cdot \frac{d \widetilde{I}(\tau, \mu, \varphi)}{d \tau}=\widetilde{I}(\tau, \mu, \varphi)-\frac{\omega_{0}(\tau)}{4 \pi} \cdot \tilde{M}\left(\tau, \mu, \mu_{0}, \Delta \varphi\right) \cdot \widetilde{E}_{s} \cdot e^{\tau / \mu_{0}}-\frac{\omega_{0}(\tau)}{4 \pi} \cdot \int_{0}^{2 \pi} \int_{-1}^{1} \tilde{M}\left(\tau, \mu, \mu^{\prime}, \Delta \varphi\right) \cdot \widetilde{I}\left(\tau, \mu^{\prime}, \varphi^{\prime}\right) \cdot d \mu^{\prime} \cdot d \varphi^{\prime}(14$
with \widetilde{I} the Stokes vector located in the meridian plane, the components of which are the four Stokes parameters (I, Q, U, V) defined in Section 2.5 , and \tilde{M} the phase matrix for a given scattering direction.

Two additional matrices $\widetilde{L}(-\chi)$ and $\widetilde{L}\left(\chi^{\prime}\right)$ are required to rotate the meridian planes before and after scattering onto the scattering plane. In fact for an incident radiation, ($I^{\prime}, Q^{\prime}, U^{\prime}, V^{\prime}$) refers to the directions l^{\prime} and r^{\prime} which describe a perpendicular plane to the incident plane. Let $\widetilde{I}\left(\mu^{\prime}, \varphi^{\prime}\right)$ be the vector ($I^{\prime}, Q^{\prime}, U^{\prime}, V^{\prime}$), then to compute the scattered intensities $(I, Q, U, V$) (or $\tilde{I}(\mu, \varphi)$) we need to use the phase matrix $\tilde{M}(\theta)$. However the latter refers to the scattering plane which can differ from the incident plane. So $\tilde{I}(\mu, \varphi)$ has to be projected in the scattering plane by applying the rotation matrix $\tilde{L}(-\chi)$ where χ is the angle between the incident and scattering planes. Thus the product $\widetilde{L}(-\chi) . \widetilde{I}(\mu, \varphi)$ defines the new Stokes matrix referring to the scattering plane. After scattering, we need to come back in the plane (l, r) by applying a rotation matrix $\tilde{L}\left(\pi-\chi^{\prime}\right)$ with χ^{\prime} the angle between the scattering plane and the plane of the scattered radiation.

Finally, the phase matrix for a scattering direction is:

$$
\begin{equation*}
\tilde{M}\left(\tau, \mu, \varphi, \mu^{\prime}, \varphi^{\prime}\right)=\widetilde{L}(-\chi) \cdot \tilde{M}(\cos \theta) \cdot \widetilde{L}\left(\chi^{\prime}\right) \tag{144}
\end{equation*}
$$

where $\tilde{M}(\cos \theta)$ represents the phase matrix in the scattering plane and θ the scattering angle.

The rotation matrix is expressed as:

$$
\widetilde{L}(\chi)=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{145}\\
0 & \cos 2 \chi & \sin 2 \chi \\
0 & -\sin 2 \chi & \cos 2 \chi
\end{array}\right]
$$

Considering an isotropic medium illuminated by an unpolarized radiation beam, i.e., with the Stokes parameters $\left(E_{0}, 0,0,0\right)$ and with symmetrical boundary conditions with respect to the incident plane, the Stokes vector components can then be developed in azimuth using a Fourier series expansion as follows (see [RD-53] \& [RD-54] for more details):

$$
\left\{\begin{array}{l}
I(\tau, \mu, \varphi)=\sum_{m=0}^{M}\left(2-\delta_{0, m}\right) \cdot I_{m}(\tau, \mu) \cdot \cos \left[m \cdot\left(\varphi-\varphi^{\prime}\right)\right]+R(M) \tag{146}\\
Q(\tau, \mu, \varphi)=\sum_{m=0}^{M}\left(2-\delta_{0, m}\right) \cdot Q_{m}(\tau, \mu) \cdot \cos \left[m \cdot\left(\varphi-\varphi^{\prime}\right)\right]+R(M) \\
U(\tau, \mu, \varphi)=\sum_{m=0}^{M}\left(2-\delta_{0, m}\right) \cdot U_{m}(\tau, \mu) \cdot \sin \left[m \cdot\left(\varphi-\varphi^{\prime}\right)\right]+R(M) \\
V(\tau, \mu, \varphi)=\sum_{m=0}^{M}\left(2-\delta_{0, m}\right) \cdot V_{m}(\tau, \mu) \cdot \sin \left[m \cdot\left(\varphi-\varphi^{\prime}\right)\right]+R(M)
\end{array}\right.
$$

where M is the number of terms used in the Fourier series expansion, $R(M)$ the tail of the series expansion (so-called the error term), and $\delta_{0, m}$ the Dirac's delta function which is equal to 1 for $m=0$ and 0 otherwise.

If the phase matrix terms are expanded in the same manner in a Fourier series, the RTE is then completely transformed into the following set of $(M+1)$ independent differential equations due to the orthogonality of the trigonometric functions:

$$
\begin{equation*}
\mu \cdot \frac{d \widetilde{I}_{m}(\tau, \mu)}{d \tau}=\widetilde{I}_{m}(\tau, \mu)-\frac{\omega_{0}(\tau)}{4 \pi} \cdot \tilde{M}_{m}\left(\tau, \mu, \mu_{\mathrm{o}}\right) \cdot \widetilde{E}_{s} \cdot e^{\tau / \mu_{\mathrm{o}}}-\frac{\omega_{\mathrm{o}}(\tau)}{2} \cdot \int_{-1}^{1} \tilde{M}_{m}\left(\tau, \mu, \mu^{\prime}\right) \cdot \widetilde{I}_{m}\left(\tau, \mu^{\prime}\right) \cdot d \mu^{\prime} \tag{147}
\end{equation*}
$$

Thus for a black background, the resulting equations for each term m of the Fourier series expansion of $\widetilde{I}(\tau, \mu, \varphi)$ are expressed as:

- For the primary scattering $(n=1)$:

$$
\left\{\begin{array}{l}
\widetilde{I}_{m}{ }^{(1)}(\tau, \mu>0)=\frac{1}{4 \pi \mu} \cdot \int_{\tau_{1}}^{\tau} \omega_{\mathrm{o}}\left(\tau^{\prime}\right) \cdot e^{-\left(\tau^{\prime}-\tau\right) / \mu} \cdot \tilde{M}_{m}\left(\tau^{\prime}, \mu, \mu_{\mathrm{o}}\right) \cdot E_{\mathrm{o}} \cdot e^{\tau^{\prime} / \mu_{\mathrm{o}}} \cdot d \tau^{\prime} \tag{148}\\
\widetilde{I}_{m}{ }^{(1)}(\tau, \mu>0)=\frac{1}{4 \pi \mu} \cdot \int_{0}^{\tau} \omega_{\mathrm{o}}\left(\tau^{\prime}\right) \cdot e^{-\left(\tau-\tau^{\prime}\right) / \mu} \cdot \tilde{M}_{m}\left(\tau^{\prime},-\mu, \mu_{\mathrm{o}}\right) \cdot E_{\mathrm{o}} \cdot e^{\tau^{\prime} / \mu_{0}} \cdot d \tau^{\prime}
\end{array}\right.
$$

- For the multiple scattering $(n>1)$:

$$
\left\{\begin{array}{l}
\widetilde{I}_{m}{ }^{(n)}(\tau, \mu>0)=\frac{1}{2 \mu} \cdot \int_{\tau_{1}}^{\tau} \omega_{\mathrm{o}}\left(\tau^{\prime}\right) \cdot e^{-\left(\tau^{\prime}-\tau\right) / \mu} \cdot\left[\int_{-1}^{1} \widetilde{M}_{m}\left(\tau^{\prime}, \mu, \mu^{\prime}\right) \cdot \widetilde{I}_{m}^{(n-1)}\left(\tau^{\prime}, \mu^{\prime}\right) \cdot d \mu^{\prime}\right] \cdot d \tau^{\prime} \tag{149}\\
\widetilde{I}_{m}{ }^{(n)}(\tau, \mu>0)=\frac{1}{2 \mu} \cdot \int_{0}^{\tau} \omega_{0}\left(\tau^{\prime}\right) \cdot e^{-\left(\tau-\tau^{\prime}\right) / \mu} \cdot\left[\int_{-1}^{1} \tilde{M}_{m}\left(\tau^{\prime},-\mu, \mu^{\prime}\right) \cdot \widetilde{I}_{m}^{(n-1)}\left(\tau^{\prime}, \mu^{\prime}\right) \cdot d \mu^{\prime}\right] \cdot d \tau^{\prime}
\end{array}\right.
$$

The number $(M+1)$ of independent equations depends on the length of the scattering matrix development (i.e., the number of terms used in the Legendre polynomial expansion). The major advantage of the Fourier series expansion is to reduce the angular integration to μ. Moreover, only the zeroth terms are of interest for the flux or radiance estimates in the nadir viewing direction. According to the reciprocity principle, the nadir radiance for any solar zenithal angle ϑ_{s} can be derived from the radiance at the viewing zenithal angle ϑ_{v} for null solar zenith angle, which requires only one computation of the zeroth terms of the Fourier series. Despite the number of equations to be solved, this numerical approach allows one to save much computer times.

For each term m of the Fourier series expansion, the scattering phase matrix elements of $\tilde{M}_{m}\left(\tau, \mu, \mu^{\prime}\right)$ are developed in Legendre polymomials as follows (see [RD-53] \& [RD-54] for more details):

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0003			
d		Issue	4 Rev.:		
t e ch nologies		Date:	16-Dec-10	Page:	71

with $\alpha_{l}, \beta_{l}, \gamma_{l}, \zeta_{l}, \varepsilon_{l}, \delta_{l}$ the sets of $L+1$ coefficients, L a number which has to be large enough to ensure the required accuracy, and $p_{l}^{m}, r_{l}^{m}, t_{l}^{m}$ and $p_{l}^{m '}, r_{l}^{m}{ }^{\prime}, t_{l}^{m}$ ' respectively expressed as (τ, μ) and (τ, μ^{\prime}) which are the linear combinations of the generalized Legendre functions. The β_{l} coefficients are used for the expansion of the phase matrix element $P_{m}\left(\tau, \mu, \mu^{\prime}\right)$, and coefficients $\alpha_{l}, \gamma_{l}, \zeta_{l}, \varepsilon_{l}, \delta_{l}$ are used to take the atmospheric polarization into account.

7. DESCRIPTION OF RTC/UDL

In the framework of the MERIS project, the RTC/UdL package was initially devoted to the pixel identification algorithm used at the level-2 processing for improving some basic classifications available at level-1b (see [AD-2] for more details). This tool package allows one to simulate the optical properties of the atmospheric and oceanic constituents and to compute the reflectance LUTs over several surface states (e.g., land, sea surface, oceanic composition) for a wide range of viewing and illumination configurations and atmospheric conditions (e.g., aerosols, clouds, water vapor). These simulations are of a particular interest to generate the thresholds and the coefficients useful for the discrimination between the different targets such as land-water surfaces, bright over ocean (e.g., sun glint, sea-ice), bright over land (e.g., sand, ice-snow), DDV (dense dark vegetation), and cloud heterogeneities. A main objective in the MERIS project is a better discrimination between the remotely sensed targets in order to correctly apply the atmospheric correction scheme or to better retrieve the atmospheric optical characteristics (e.g., aerosol optical depth) and ground surface properties.

RTC/UdL package is composed of two principal modules:

- SCAMAT module: This allows one to compute the optical properties (i.e., scattering phase function, extinction and scattering coefficients, and forward scattering proportion) for a mixture of N particle size distributions of atmospheric or oceanic constituents at a selected wavelength according to the Mie's theory.
- UPRAD module: This simulates the radiative transfer within a multi-layered 'AtmosphereLand/Ocean' system both using the DOM and SO techniques. All physical processes (single and multiple scattering, gaseous absorption, etc.) are accounted for in the computation of upwelling radiances at TOA.

These two modules are detailed in the following sections.

7.1 SCAMAT MODULE

7.1.1 Description

This module allows one to compute the scattering phase matrix $P(\lambda, r, n, \theta)$ and optical properties (i.e., the single scattering albedo $\omega_{0}(\lambda, r, n)$ and the extinction coefficient $\sigma_{e}(\lambda, r, n)$) for a mixture of N particle size distributions at a given wavelength λ. Each particle size distribution $n_{i}(r)$ is characterized by a complex refractive index ($n_{i, \lambda}=m_{i, \lambda}-i k_{i, \lambda}$), which is assumed to be identical for all the scatterers within the same distribution, and a component mixing ratio (n_{i} / n). This computation is performed with the Mie's theory, assuming particles as homogeneous isotropic spheres the sizes of which are comparable to or larger than the incident wavelength.

Moreover, it allows to calcultate as well the forward scattering proportion $f_{s p}(\mu=0)$ of a mixture of aerosols by using its computed scattering phase matrix $P(\lambda, r, n, \theta)$.

7.1.2 Tool

The latest version of Mie/UdL package (available since July 27, 1999 - last release in March 31, 2009) is composed of:

[^0]
-'compute_FSP.f': for the computation of the forward scattering proportion $f_{s p}(\mu=0)$ of a given scattering phase matrix $P(\lambda, r, n, \theta)$.

Only the scamat sub-module is detailed in the following section. A full I/O description for each of these two codes is given in Appendix 1 (Sections 9.1).

7.1.3 Mie processing

The Mie's processing is depicted in Figure 16. A complete description of the input/output data is provided in Appendix 1.

Figure 16: Flowchart of the MIE processing

- Sub-module MIE:

The Mie's theory fully describes the interaction of an incident electromagnetic wave with an homogeneous isotropic and absorbing sphere, the size of which is comparable to or larger than the incident wavelength.

Assuming the atmospheric or oceanic scatterer (i.e., aerosol, cloud droplet, or sediment and phytoplankton) as an homogeneous isotropic sphere, its optical properties ($\omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}, P_{\lambda}(\theta)$) can then be computed using this theory (see Section 2.8 for more details).

- Sub-module MODE:

Let us consider now a sample of identical particles, the sizes of which are described by a size distribution. Several size distributions are proposed to the operator (see Section 3.2.2):

- the Junge power-law function (for the simple tropospheric aerosols),
- the Modified Gamma distribution function (for the stratospheric aerosols and clouds),
- the Log-Normal distribution function (for the tropospheric aerosols including several modes).

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref. Issue Date	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \underline{\text { Rev.: }} \\ & \text { A } \\ & \text { 16-Dec-10 } \quad \text { Page: } 74 \end{aligned}$		

Once the size distribution selected, a loop on the particle sizes r is then performed to compute the optical scattering parameters of the sample: single scattering albedo, extinction coefficient and normalized phase function (see Section 3.1.1.1 for more details).

- Loop on N (the number of components):

For a mixture of several particles (or components) originating from different sources ($N_{\max }=3$), a second loop on the number of components N allows then to compute the resulting optical properties of the mixture using a mixing ratio (see Section 3.2.1.2 for more details):

From the basic atmospheric constituents (desert dust, dust-like, oceanic, water soluble, soot-like), aerosol models can be built up by homogeneously mixing. Six typical aerosol models are already set up in this module, i.e., maritime, coastal, rural, dust, continental and stratospheric models (see Section 3.2.3). The operator can also build up his own aerosol model using up to 3 components.

7.2 UPRAD MODULE

7.2.1 Description

The RTC/UPRAD allows one to simulate the upwelling normalized radiances ($s r^{-1}$) at TOA over several surface states (land, sea surface, oceanic composition) for various atmospheric conditions (aerosols, clouds, water vapor) and viewing and illumination configurations. The spectral irradiance at TOA is fixed to $1 \mathrm{Wm}^{-2} \mu^{-1}$ in the code, and a flag was included to activate or not the computation of polarization processes.

According to the selected input value for the i _branch parameter, this module calls one of the three following specific sub-modules (Figure 18):

- GAME: the Global Absorption ModEl used to account for coupling between scattering and gaseous absorption,
- SO: the Successive Orders method used to compute the single and multiple scattering within the atmophere,
- SOAO: the Successive Orders method for a coupled 'Atmophere-Ocean'system based on the same approach as the SO technique.

Upwelling radiances over ocean under a clear-sky condition (i_branch=2) is computed either with the SO or SOAO code depending on the total extinction coefficient value of the oceanic medium. In the case where this total oceanic extinction is null, the SO sub-module is then selected to simulate upwelling radiances over a wind-roughened sea surface including or not the sun glint water reflectance (see Section 5; Note that a sun glint flag has to be raised in the SO code to include the direct-direct contribution in the TOA normalized radiances). Otherwise, the oceanic components are taking into account and radiative transfer within a coupled 'Atmosphere-Ocean' system is then computed with the SOAO code. Over land with a clear- sky condition (i_branch=1) the SO code is used to simulate upwelling radiances for a purely scattering atmosphere (i.e., without gaseous absorption), whereas the GAME code is selected for an absorbing atmosphere $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}\right.$ and $\left.\mathrm{O}_{3}\right)$. GAME is also the unique sub-module for the treatment of the cloud (i_branch=3) or water vapor (i_branch=4) conditions. Moreover the atmospheric transmittances (diffuse, direct and total) over land/ocean and the primary scattering radiances over land (i_branch=11) can be computed for clear-sky conditions with RTC/SO.

7.2.2 Tools

The latest version of the RTC/UdL package (available since July 27, 1999 - last release in March 31, 2009) is composed of:

- 'rtc_uprad.f': the main code for the radiative transfer computations,
- 'rtc_ game.f': for the GAME computations,
- 'rtc_so.f': for the SO computations within the atmophere,
- 'rtc_soao.f' : for the SO computations within the coupled 'Atmophere-Ocean'system,
- 'rtc_gauss.f': for the computation of the Gauss quadrature (angles and weights),
- 'step1.f', 'step2.f', 'step3.f', 'step4.f' (RTC/Wind package):
for the computation of the Fourier series expansion of the Fresnel reflexion matrix for a Cox-Munk surface model (wind-roughened sea surface),
- 'rtc_po2.f': for the computation of the transmittance integrated over the oxygen band (only used with MERISAT for the LUTs generation)
- 'otc_rayleigh.f': for the total Rayleigh optical thickness computation,
-'otc_ozone.f': for the total ozone optical thickness computation,
- 'iop_water.f': for the computation of the optical properties of the oceanic components,

Only the first four sub-modules are detailed in the following sections. A full I/O description for all these sub-modules is given in Appendix 1 (Sections 9.2 \& 9.4).

7.2.3 RTC/GAME

The correlated k-distribution method allows an accurate treatment of the overlapping atmospheric gaseous absorption and of the non-grey absorption for multiple scattering media. Transmission function can be approximated by the following ESFT (see Section 2.9):

$$
\begin{equation*}
T(u)=\sum_{l=1}^{N} a_{l} \cdot e^{-k_{l} \cdot u} \tag{150}
\end{equation*}
$$

For each term of this exponential sum, the RTE is solved using the absorption coefficient k_{l} which yields to the optical thickness of the corresponding atmospheric gas. Numerous tests stressed that seven exponential terms ($N=7$) gives a good compromise between accuracy and computer time.

The RTE resolution in an horizontally homogeneous scattering atmosphere is achieved in the planeparallel approximation using the DOM (see Section 6.2 .2 and [RD-52]) which employs a Legendre polynomial decomposition for the phase function and the radiance. Selection of sixty terms ($I_{s}=60$) in the Legendre expansion and a Dirads delta truncature (see Section 2.3.2) are used to approximate the exact scattering phase function of clouds and aerosols and to compute the upwelling radiances.

Vertical profile (i.e., 33 atmospheric layers according to the MLS atmosphere) of the extinction optical thickness, single scattering albedo and terms of the Legendre polynomial decomposition are derived from the optical properties of atmospheric constituents (aerosols, clouds and molecules) and gaseous absorption coefficients ($\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$ and O_{3}). These data are then used as input to the DOM. The mixture of absorbing and scattering components is defined as:

$$
\begin{equation*}
\tau_{s}=\tau_{s}^{a}+\tau_{s}^{c}+\tau_{s}^{m} \tag{151}
\end{equation*}
$$

$$
\begin{gather*}
\tau_{a}=\tau_{a}^{a}+\tau_{a}^{c}+\tau_{a}^{g} \tag{152}\\
\omega_{\mathrm{o}}=\frac{\tau_{s}}{\tau_{a}+\tau_{s}} \tag{153}\\
m_{l}=\frac{1}{\tau_{s}} \cdot\left[m_{l}^{a} \cdot \tau_{s}^{a}+m_{l}^{c} \cdot \tau_{s}^{c}+m_{l}^{m} \cdot \tau_{s}^{m}\right] \tag{154}
\end{gather*}
$$

with τ the optical thickness, ω_{0} the single scattering albedo and m_{l} the term at the order l in the Legendre polynomial decomposition. The exponents a, c, m and g refer to aerosol, cloud, molecule and gas component respectively, and subscript a and s to the absorbing and scattering processes. Of course, these parameters are defined in each layer of the atmospheric profile.

Note that this code is specially devoted to the radiative transfer computations within the clouds and the absorbing atmospheres. Although a depolarization factor δ of 0.0279 is included in the Rayleigh phase function, the RTC/GAME does not take the polarization processes into account. Consequently, only the β coefficient is used for the Legendre polynomial decomposition of the phase function and the radiance.

7.2.4 RTC/SO

The RTC/SO solves the RTE (Equation 142) within an atmospheric medium. The Fourier series expansion of this equation allows one to separate the angular variables (ϑ, φ) for the integral computation (see Section 6.2.2.2 for more details). This yields to a set of $(M+1)$ independent equations which only depends on the zenithal angle (ϑ). The upwelling and downwelling radiances are then computed for each term m of the Fourier series. A great advantage of this method is that the first term $(m=0)$ of the series directly provides the scattered flux. The length of the Fourier series depends on the number of Legendre terms ($I_{s}=79$ in the SO code) used to describe the scattering phase matrix.

- Primary scattering

The upwelling $L_{m}^{\uparrow(1)}$ and downwelling $L_{m}^{\downarrow(1)}$ radiances arising from primary scattering ($n=1$) are computed for each term m of the Fourier series as follows (see Section 6.2.2.2):

$$
\left\{\begin{array}{l}
L_{m}^{\uparrow(1)}(\tau, \mu>0)=\frac{\omega_{0}}{4 \pi \mu} \cdot \widetilde{E}_{s} \cdot \int_{\tau_{1}}^{\tau} e^{\tau^{\prime} / \mu_{0}} \cdot e^{-\left(\tau^{\prime}-\tau\right) / \mu} \cdot \widetilde{M}_{m}\left(\tau^{\prime}, \mu, \mu_{\mathrm{o}}\right) \cdot d \tau^{\prime} \tag{155}\\
L_{m}^{\downarrow(1)}(\tau, \mu>0)=\frac{\omega_{\mathrm{o}}}{4 \pi \mu} \cdot \widetilde{E}_{s} \cdot \int_{0}^{\tau} e^{\tau^{\prime} / \mu_{\mathrm{o}}} \cdot e^{-\left(\tau-\tau^{\prime}\right) / \mu} \cdot \widetilde{M}_{m}\left(\tau^{\prime},-\mu, \mu_{\mathrm{o}}\right) \cdot d \tau^{\prime}
\end{array}\right.
$$

where τ_{1} is the total optical depth of the medium, ω_{0} the single scattering albedo. The Stokes vector $\widetilde{E}_{s}=\left(E_{\mathrm{o}}, 0,0\right)$ of the incident solar beam is unpolarized and E_{o} represents the extraterrestrial solar irradiance.

- Multiple scattering

For the multiple scattering $(n>1)$, the upwelling $L_{m}^{\uparrow(n)}$ and downwelling $L_{m}^{\downarrow(n)}$ radiances at the order n provide from the signal contributions at the order $(n-1)$. Thus for a given order n the signal is integrated over μ^{\prime} and τ as follows (see Section 6.2.2.2):

$$
\left\{\begin{array}{l}
L_{m}^{\uparrow(n)}(\tau, \mu>0)=\frac{\omega_{0}}{2 \mu} \cdot \int_{\tau_{1}}^{\tau} e^{-\left(\tau^{\prime}-\tau\right) / \mu} \cdot\left[\int_{-1}^{1} \tilde{M}_{m}\left(\tau^{\prime}, \mu, \mu^{\prime}\right) \cdot L_{m}^{(n-1)}\left(\tau^{\prime}, \mu^{\prime}\right) \cdot d \mu^{\prime}\right] \cdot d \tau^{\prime} \tag{156}\\
L_{m}^{\downarrow(n)}(\tau, \mu>0)=\frac{\omega_{0}}{2 \mu} \cdot \int_{0}^{\tau} e^{-\left(\tau-\tau^{\prime}\right) / \mu} \cdot\left[\int_{-1}^{1} \tilde{M}_{m}\left(\tau^{\prime},-\mu, \mu^{\prime}\right) \cdot L_{m}^{(n-1)}\left(\tau^{\prime}, \mu^{\prime}\right) \cdot d \mu^{\prime}\right] \cdot d \tau^{\prime}
\end{array}\right.
$$

The integration with respect to μ^{\prime} is performed using a Gaussian quadrature with 24 angles for each of two semi-hemispheres (lower and upper) and the computation with respect to τ is accomplished by dividing the atmosphere into N optically homogeneous layers. Due to the fact aerosols and molecules in the atmosphere present different vertical distributions, these N layers are non-homogeneous. Of course higher is the N value more accurate will be the results of the numerical integration on τ but more timeconsuming is the computation. Sensitivity studies stressed the discretization of the atmosphere into 26 layers is the best compromise [RD-53][RD-54].

- Vertical discretization of the atmosphere

In the current RTC/SO version, the atmosphere is deliberatly layered into 33 levels. The Rayleigh optical depth $\tau_{R}(z)$ is vertically distributed along z according to an exponential law:

$$
\tau_{R}(z)=\tau_{R}(0) \cdot e^{-z / H_{R}}
$$

where H_{R}, the molecular scale height, varies with the altitude. The standard H_{R} value in the troposphere is taken to be equal to $7.9 \mathrm{~km} . \tau_{R}(0)$ is the total Rayleigh optical thickness at ground level. The same formulation applies to the molecular extinction coefficient, $\sigma_{R}(z)$:

$$
\sigma_{R}(z)=\frac{\tau_{R}(0)}{H_{R}} \cdot e^{-z / H_{R}}
$$

As for the aerosols, these scatterers are distributed either within a unique layer for the whole atmosphere or in 3 major layers (boundary, troposphere and stratosphere). Two vertical distributions of scatterers are then defined according to the number of aerosol layers selected:

- Case of 1 aerosol layer:

As for the molecules, the aerosols are exponentially distributed along z with a scale height $\left(H_{a}\right)$ of 2 km over land (resp., 3 km over ocean) following Equation (114). The Rayleigh ($\alpha_{R}(z)$) and aerosol ($\alpha_{a}(z)$) mixing rates at level z are then computed as:
and $\tau_{a}(0)$ is the total aerosol optical thickness at ground level.

- Case of 3 aerosol layers:

The aerosols are assumed to be homogeneously distributed within the 3 majors layers. A schematic representation of this atmosphere is displayed in Figure 17:

- the stratosphere (Layer\#1) above the troposphere, located around z_{2},
- the troposphere (Layer\#2) above the boundary layer,
- the boundary layer (or the mixing layer, layer\#3), between the surface level $\left(z_{0}\right)$ and the altitude z_{1} where the inversion of temperature occurs.

Figure 17: Schematic representation of the «3 aerosol-layers» atmosphere over ocean

In the RTC/SO, the surface is at sea level $\left(z_{0}=0 \mathrm{~km}\right)$ and the tropospheric layer is bounded by the lower surface at $z_{l}=1.902 \mathrm{~km}$ and the upper surface at $z_{2}=12.927 \mathrm{~km}$. These values remain acceptable considering that the altitudes of the mixing layer and the troposphere vary. More the atmosphere above $z_{3}=20 \mathrm{~km}$ is assumed to be a free-stratospheric aerosol layer. The TOA is located at $z_{4}=300 \mathrm{~km}$. This atmosphere is then discretized into 32 elementary sub-layers. In order to assure a continuity of the extinction coefficient (σ) of the light propagated between two consecutive major aerosol layers, an infinitesimal sub-layer has been introduced at the transition. The schematic distribution of the atmosphere is proposed as follows:

- a pure molecular atmosphere (1 sub-layer) between $\left(z_{3}+10^{-7}\right)$ and z_{4},
- a transition layer (1 optically thin sub-layer) between z_{3} and $\left(z_{3}+10^{-7}\right)$, with $\sigma\left(z_{3}+10^{-7}\right)=\sigma_{R}\left(z_{3}\right)$ and $\sigma\left(z_{3}\right)=\sigma_{R}\left(z_{3}\right)+\sigma_{3}(1$ sub-layer $)$,
- a stratospheric layer (1 sub-layer) between z_{3} and $\left(z_{2}+10^{-7}\right)$,
- a transition layer (1 optically thin sub-layer) between z_{2} and $\left(z_{2}+10^{-7}\right) \mathrm{km}$, with $\sigma\left(z_{2}+10^{-7}\right)=\sigma_{R}\left(z_{2}\right)+\sigma_{3}$ and $\sigma\left(z_{2}\right)=\sigma_{R}\left(z_{2}\right)+\sigma_{2}(1$ sub-layer $)$,
- a tropospheric layer (8 sub-layers) between z_{2} and $\left(z_{1}+10^{-7}\right) \mathrm{km}$,
- a transition layer (1 optically thin sub-layer) between z_{l} and $\left(z_{l}+10^{-7}\right) \mathrm{km}$, with $\sigma\left(z_{l}+10^{-7}\right)=\sigma_{R}\left(z_{1}\right)+\sigma_{2}$ and $\sigma\left(z_{l}\right)=\sigma_{R}\left(z_{l}\right)+\sigma_{l}(1$ sub-layer $)$,
- a boundary layer (19 sub-layers) between z_{1} and z_{0}.
with $\sigma_{l}(1$ sub-layer $), \sigma_{2}(1$ sub-layer $)$ and $\sigma_{3}(1$ sub-layer $)$ the extinction coefficient for an elementary sub-layer within the aerosol layer \#1 (boundary), \#2 (troposphere) and \#3 (stratosphere) respectively. The Rayleigh $\left(\alpha_{R}(z)\right.$) and aerosol ($\alpha_{a}^{i}(z)$) mixing rates for an elementary sub-layer from the aerosol layer $i\left(i=1,2\right.$ and 3) are then computed as: $\left(\alpha_{a}^{i}(z)\right) \alpha_{R}(z)$

$$
\left\{\begin{array}{l}
\alpha_{a}^{i}(z)=\frac{\omega_{o}^{i} \cdot \sigma_{a}^{i}(z)}{\sigma_{R}(z)+\sigma_{a}^{i}(z)} \\
\alpha_{R}(z)=\frac{\sigma_{R}(z)}{\sigma_{R}(z)+\sigma_{a}^{i}(z)}
\end{array}, \text { with } \sigma_{a}^{i}(z)=\tau_{a}(0) \cdot \frac{z}{z_{i}-z_{i+1}}\right.
$$

Figure 19 displays the flowchart of the RTC/SO. Using the inputs described in Appendix 1 (Section 9.1), the mixing rates (defined as the ratio of the scattering coefficient of an atmospheric component to the sum on the extinction coefficients of all the atmospheric components) of aerosol and molecular optical properties are then computed for each atmospheric layer to generate the corresponding primary scattering source functions at each Gauss angle (μ^{\prime}). Then the computation of the upwelling $L_{m}^{\uparrow(1)}$ and downwelling $L_{m}^{\downarrow(1)}$ primary scattering radiances $(n=1)$ within the layer is performed for each term m of the Fourier series. At this step starts the iterative process to determine the contribution of multiple scatterings $(n>1)$ to the upwelling $L_{m}^{\uparrow(n)}$ and downwelling $L_{m}^{\uparrow(n)}$ radiances.

- Convergence tests

For a given term m of the Fourier series, the iterative process over the successive orders of scattering ($n>1$) is broken as soon as one of the two following criteria applied to the first Stokes parameter is verified:

- Test 1: This test (namely 'weakness of signal' in Figure 19) compares the radiance contribution at the order n with the sum of the contributions from all the previous orders as follows,

$$
\begin{equation*}
\left|\frac{L_{m}^{(n)}\left(\tau, \mu_{v}\right)}{\sum_{i=0}^{n-1} L_{m}^{(i)}\left(\tau, \mu_{v}\right)}\right|<10^{-5} \tag{157}
\end{equation*}
$$

- Test 2: This test (namely 'convergence' in Figure 19) examines if the radiance contribution from the successive orders of scattering converge into a geometrical series. If this is the case, the iterations are then stopped and the tail of the geometrical series is added to the contribution of the scattering order for which the convergence was detected. Generally, this test is often firstly checked and greatly reduces the computational time. Convergence is reached at the order n if the ratio of the current to the previous order contributions verifies,

$$
\begin{equation*}
\left|\frac{L_{m}^{(n)}\left(\tau, \mu_{v}\right)}{L_{m-1}^{(n)}\left(\tau, \mu_{v}\right)}-\frac{L_{m-1}^{(n)}\left(\tau, \mu_{v}\right)}{L_{m-2}^{(n)}\left(\tau, \mu_{v}\right)}\right|<10^{-2} \tag{158}
\end{equation*}
$$

Note that the order of scattering is very dependent on the solar zenithal angle. In fact, lower is the sun in the sky (i.e., for the largest solar zenithal angles), higher is the maximum order of scattering ($n_{\max }$). Tests stressed the iterative process could be broken for a $n_{\max }$ value of 200 .

The following step consists in a recombination of the solution (i.e., a sum on the Fourier series) for the lower and upper hemispheres, which is resampled to input viewing angles using a spline interpolation scheme. A last test of convergence is then added to determine the truncation of the Fourier series expansion. This test is applied to the upwelling radiance simulated in the specular direction ($\Delta \phi=180^{\circ}$) expressed as:

$$
\begin{equation*}
L\left(\mu, \mu_{\mathrm{o}}, 180\right)=\sum_{m=0}^{\infty}\left(2-\delta_{0, m}\right) \cdot L_{m}\left(\mu, \mu_{\mathrm{o}}\right) \tag{159}
\end{equation*}
$$

Convergence is achieved if the contribution of a given term m verifies:

$$
\begin{equation*}
\frac{L_{m}}{L}<10^{-4} \tag{160}
\end{equation*}
$$

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } 80 \end{aligned}$		

For a land case the ground surface is assumed to be Lambertian and is characterized by its reflectance. Over black ocean, the wind-roughened sea surface is described by the Cox \& Munk wave slope distribution (see Section 5). A sophisticated Fourier series expansion of the reflection matrix combined with the wave slope distribution function is then achieved using the wind speed (see [RD-53] \& [RD-54] for more details).

7.2.5 RTC/SOAO

The RTC/SOAO solves the RTE within a coupled 'Atmosphere-Ocean' system for which the interface is assumed to be plane. The boundary conditions through the air-water interface are modelized according to the Snellius-Fresnel laws described in Section 2.10. The refractive index $\left(n_{w}\right)$ of the sea water is assumed to be constant whatever the wavelength and equal to 1.34 , whereas for the air this index $\left(n_{a}\right)$ is taken to be equal to 1 . For a flat surface, the reflection ($r_{/ /}, r_{\perp}$) and transmission $\left(t_{/ /}, t_{\perp}\right)$ coefficients are given by the Fresne/ formulas (see Equations 86 and 87).

The polarization of the signal due to the specular reflection at the air-water interface is accounted for in the RTC/SOAO by treating radiance as a vector (\tilde{L}). So the Fresne/ reflection matrix (R) on the sea water surface and transmission matrix (T) from air to water are computed according to Equations (88). These matrices are expressed in the reflection plane (i.e., the meridian plane). More, due to the fact that for a specular reflexion the terms of the Fourier series expansion are constant, these matrices then correspond to the Fourier series terms.

Thus for an horizontal sea surface, an incident atmospheric beam will be partly reflected in the specular direction and the other part will be refracted in the water. These boundary conditions at sea level becomes:

$$
\left\{\begin{array}{l}
\widetilde{L}^{\uparrow}\left(\tau_{1},-\mu_{\mathrm{o}}, \varphi\right)=R\left(\mu_{\mathrm{o}}, n_{w}\right) \cdot \widetilde{L}^{\downarrow}\left(\tau_{1}, \mu_{\mathrm{o}}, \varphi\right) \tag{161}\\
\widetilde{L}^{\downarrow}\left(\tau_{1}^{w}, \mu_{\mathrm{o}}^{w}, \varphi\right)=n_{w}^{2} \cdot T\left(\mu_{\mathrm{o}}, n_{w}\right) \cdot \widetilde{L}^{\downarrow}\left(\tau_{1}, \mu_{\mathrm{o}}, \varphi\right)
\end{array}\right.
$$

where τ_{1} and τ_{1}^{w} are the optical depths of the atmosphere and the ocean respectively, μ_{0} and μ_{0}^{w} the cosine of incident and refracted (in the water) zenithal angles respectively ($\mu_{0}<0$ and $\mu_{0}^{w}<0$).

The terms describing the specular reflection at the plane air-water interface, which are the second source for the primary scattering, are defined as:

$$
\left\{\begin{array}{l}
L_{m}^{(1) \uparrow}(\tau, \mu>0)=\frac{\omega_{0}}{4 \pi \mu} \cdot R\left(\mu_{0}, n_{w}\right) \cdot \widetilde{E}_{s} \cdot e^{\tau_{1} / \mu_{0}} \cdot \int_{\tau_{1}}^{\tau} e^{\left(\tau_{1}-\tau^{\prime}\right) / \mu_{0}} \cdot e^{-\left(\tau^{\prime}-\tau\right) / \mu} \cdot \widetilde{M}_{m}\left(\tau^{\prime}, \mu, \mu_{0}\right) \cdot d \tau^{\prime} \tag{161}\\
L_{m}^{(1) \downarrow}(\tau, \mu>0)=\frac{\omega_{0}}{4 \pi \mu} \cdot R\left(\mu_{0}, n_{w}\right) \cdot \widetilde{E}_{s} \cdot e^{\tau_{1} / \mu_{0}} \cdot \int_{0}^{\tau} e^{\left(\tau_{1}-\tau^{\prime}\right) / \mu_{0}} \cdot e^{-\left(\tau-\tau^{\prime}\right) / \mu} \cdot \widetilde{M}_{m}^{w}\left(\tau^{\prime},-\mu, \mu_{0}\right) \cdot d \tau^{\prime}
\end{array}\right.
$$

The incident in-water source is the solar irradiance attenuated by the two media (atmosphere + water) and transmitted into the water. The upwelling and downwelling radiances in the water are expressed as follows:

$$
\left\{\begin{array}{l}
L_{m}^{(1) \uparrow}\left(\tau, \mu^{w}>0\right)=\frac{\omega_{0}}{4 \pi \mu^{w}} \cdot T\left(\mu_{0}, n_{w}\right) \cdot \widetilde{E}_{s} \cdot e^{\tau_{1} / \mu_{0}} \cdot \int_{\tau_{1}+\tau_{w}}^{\tau} e^{\left(\tau^{\prime}-\tau_{1}\right) / \mu_{0}^{w}} \cdot e^{-\left(\tau^{\prime}-\tau\right) / \mu^{w}} \cdot \widetilde{M}_{m}^{w}\left(\tau^{\prime}, \mu^{w}, \mu_{\mathrm{o}}^{w}\right) \cdot d \tau^{\prime} \tag{162}\\
L_{m}^{(1) \downarrow}\left(\tau, \mu^{w}>0\right)=\frac{\omega_{0}}{4 \pi \mu^{w}} \cdot T\left(\mu_{0}, n_{w}\right) \cdot \widetilde{E}_{s} \cdot e^{\tau_{1} / \mu_{0}} \cdot \int_{\tau_{1}}^{\tau} e^{\left(\tau^{\prime}-\tau_{1}\right) / \mu_{0}^{w}} \cdot e^{-\left(\tau-\tau^{\prime}\right) / \mu^{w}} \cdot \tilde{M}_{m}^{w}\left(\tau^{\prime},-\mu^{w}, \mu_{0}^{w}\right) \cdot d \tau^{\prime}
\end{array}\right.
$$

where \tilde{M}^{w} is the scattering phase matrix of the oceanic particles.
Thus for the primary scattering, the total upwelling radiance at TOA is then the sum of the atmospheric scattering radiances (Equations 154 and 160) and the water leaving radiance (Equation 161) for which the refraction law is applied. This total upwelling radiance is then attenuated in the atmospheric path:

$$
\begin{equation*}
L_{m}^{(1) \uparrow}(\tau, \mu)=T\left(\mu^{w}\right) \cdot L_{m}^{(1) \uparrow}\left(\tau, \mu^{w}\right) / n_{w}^{2} \tag{163}
\end{equation*}
$$

As concerns the downwelling radiance in the water, the latter is computed using the downwelling atmospheric radiance (sources of which comes from the direct solar beam and the specular reflection at the air-sea interface) at the sea level (Equations 154 and 160). Conversely this downwelling radiance increases by a factor n_{w}^{2} in the direction air to water before being attenuated in the water.

$$
\begin{equation*}
L_{m}^{(1) \downarrow}\left(\tau, \mu^{w}\right)=n_{w}^{2} \cdot T(\mu) . L_{m}^{(1) \downarrow}(\tau, \mu) \tag{164}
\end{equation*}
$$

The boundary conditions at the bottom of the atmosphere (BOA) depend on the presence of the foam (i.e., white caps) which is considered as a Lambertian reflector, whereas for the ocean these rely on the bottom also assumed to be Lambertian. Strictly speaking, the primary scattering should include the first interaction of the reflected solar beam by the foam in the atmosphere as well as for the reflection by the sea bottom. Because of the isotropic nature of the reflected radiance, Equations (160) and (161) are not directly applied. For a numerical convenience these terms will be computed in the multiple scattering module.

The different contributions to the primary scattering for the upward atmospheric path radiance are depicted in Figure 20. In this case, the direct solar beam being the unique source of the downwelling atmospheric radiance, each of these contributions can be computed using Equations (154) and (160).

In Figure 21 are summarized the different contributions for the downward water path radiance. For the leaving water radiance (not shown), only the direct solar beam is considered in the computation.

The relevant equations for the multiple scattering are similar to Equations (155) for which the source function is the scattering radiance at the $(n-1)$ order. As an example, the second scattering in the air will have as the source function, (I) the primary scattering for the atmospheric upwelling (Figure 20) and downwelling radiances and (ii) the isotropic radiance reflected by the foam and the sea bottom. This last term is unpolarized and just introduced for $m=0$ (isotropy).

For the coupled 'Atmosphere-Ocean' system, there are boundary conditions at the air-water interface as well as in each medium. Numerically, the interface can be considered as an infinitely thin layer (i.e., with an optical depth of 10^{-7}). This permits then the application of the Fresne/'s equations from a medium to another. Due to the fact that the refractive indices of the air and water differ, the refracted angles in the ocean do not correspond to the atmospheric Gaussian angles. Consequently, these angles need to be adjusted using a polynomial interpolation (spline method) in order to use the Gauss quadrature below the air-water interface.

As for the atmosphere (see Section 7.2.4 for more details), the ocean is discretized into a finite number of layers with an identical optical thickness but not necessarily homogeneous depending on the vertical profile of the oceanic constituents (phytoplanckton, sediment, etc.). Because the ocean is optically denser

than the atmosphere (the optical depth in the water could exceed 10), the number of layers required for accurate computations of the oceanic radiative transfer is then greater than the number of atmospheric layers. Tests carried out over a purely scattering ocean (which is admittedly unrealistic) stressed the need of around 80 oceanic layers for accurate computations.

In order to reduce the computational time, the convergence criteria from the RTC/SO (Equations 156, 157 and 159) are employed in the RTC/SOAO, but with a threshold of 10^{-6} for Test 1 and a maximum order of scattering $\left(n_{\max }=10^{4}\right)$.

Figure 18: Flowchart of the RTC/UdL.

Figure 20: Description of the primary scattering for the atmospheric upwelling radiance:
(1) primary scattering of the intrinsic atmospheric radiance,
(2) reflection of the primary scattering of atmospheric radiance at the air-water interface,
(3) forward scattering of the direct solar beam reflected at the air-water interface,
(4) water leaving radiance.

Figure 21: Description of the primary scattering for the in-water downwelling radiance:
(1) primary scattering of the in-water radiance,
(2) transmission of the backward atmospheric radiance at the air-water interface,
(3) transmission of the primary scattering of atmospheric radiance at the air-water interface.

7.3 OTHER MODULE: RTCIMOS

7.3.1 Description

The RTC/MOS module allows one to generate 4 MERIS LUTs at the level- 2 relying on the dense dark vegetation (DDV) parameters for the bidirectionality correction. The latters used in the over land atmospheric correction algorithm are:

- LUT-320: the Rayleigh-ground DDV coupling bidirectionality term ($\bar{\rho}_{R G}$),
- LUT-321: the aerosol-ground DDV coupling bidirectionality term $\left(\bar{\rho}_{a G}\right)$,
- LUT-322: the ground DDV albedos at 3 MERIS wavelengths ($\rho_{D D V}$),
- LUT-324: the aerosol-molecule coupling bidirectionality term $\left(\bar{\rho}_{a R}\right)$.

7.3.2 Tools

The latest version of the RTC/MOS package (available since October $28^{\text {th }}, 2002$ - last release on December $14^{\text {th }}, 2010$) is composed of:

- 'lut_ alb_gddv.f ': for the generation of MERIS LUT-322,
- 'lut_rhob_agddv.f': for the generation of MERIS LUT-321,
- 'lut_rhob_Rgddv.f': for the generation of MERIS LUT-320,
- 'lut_rhob_aR.f': for the generation of MERIS LUT-324,
- 'lut_library.f': library which contains routines for the generation of the 4 MERIS LUTs mentionned above.

Only the first four sub-modules are detailed in the following sections. A complete input/output description for all these sub-modules is given in Appendix 3 (Section 11).

7.3.3 RTC/lut_alb_gddv

The ground DDV albedos ($\rho_{D D V}$) are determined at 4 MERIS wavelengths ($412.5 \mathrm{~nm}, 442.5 \mathrm{~nm}, 490 \mathrm{~nm}$ and 665 nm) for 20 DDV reflectance models defined by the CESBIO (Centre d'Etudes Spatiales de la BIOsphere, Toulouse - FRANCE) institute. These models are built using the Hapke's representation:

The Hapke's bidirectional reflectance distribution function (BRDF) R is defined as [RD-55]:

$$
\begin{equation*}
R\left(\mu_{s}, \mu_{v}, \theta, \omega\right)=\frac{\omega}{4} \cdot \frac{1}{\mu_{s}+\mu_{v}} \cdot\left[p(\theta) \cdot(1+B(\theta))+H\left(\omega, \mu_{s}\right) \cdot H\left(\omega, \mu_{v}\right)-1\right] \tag{165}
\end{equation*}
$$

where μ_{s} and μ_{v} are respectively the cosine of solar and viewing zenithal angle, θ the phase (scattering) angle, ω the single scattering albedo, $p(\theta)$ the scattering phase function, $B(\theta)$ the backscattering function (referred also as the opposition effect function), and $H(\omega, x)$ a function which accounts for multiple scattering.

The scattering angle θ is defined as:

$$
\cos \theta=\mu_{s} \cdot \mu_{v}+\sqrt{1-\mu_{s}^{2}} \cdot \sqrt{1-\mu_{v}^{2}} \cdot \cos \Delta \phi
$$

where $\Delta \phi$ is the relative azimuthal angle between solar and viewing directions.

The backscattering function $B(\theta)$ which ranges from -1 to +1 is expressed as:

$$
B(\theta)=\frac{B_{0}}{1+\frac{\tan (\theta / 2)}{h}}
$$

where h and B_{0} are respectively the width and the amplitude of the hot-spot. The latter which is given by,

$$
B_{0}=\frac{S}{\omega \cdot p(0)}
$$

is controlled by the relative value of the parameter S.
The phase function $p(\theta)$ employed here is the Henyey-Greenstein function:

$$
p(\theta)=\frac{1-g^{2}}{\left(1+g^{2}+2 g \cdot \cos \theta\right)^{3 / 2}}
$$

with g the asymmetry factor ranging from -1 to 1 . Note that $g=0$ for isotropic scattering particles, $g>0$ for forward scattering particles and $g<0$ for backward scattering particles.

Finally, the multiple scattering functions $H(\omega, x)$ derive from the Hapke's approximation:

$$
H(\omega, x)=\frac{1+2 x}{1+2 x \cdot \sqrt{1-\omega}}
$$

In summary, the Hapke's reflectance model is defined by the 4 following parameters: ω, g, S and h.
The ground DDV albedo $\left(\rho_{D D V}(\lambda)\right)$ at each MERIS wavelength (λ) is then computed by the angular integration of the DDV BRDF $\left(R_{D D V}\left(\lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right)\right)$ as follows:

$$
\begin{equation*}
\rho_{D D V}(\lambda)=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1} R_{D D V}\left(\lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right) \cdot d \mu^{\prime} \cdot d \mu_{v} \cdot d \Delta \phi^{\prime} \tag{166}
\end{equation*}
$$

These angular integrations on μ^{\prime}, μ_{v} and $d \Delta \phi^{\prime}$ are performed using the Gauss quadrature.

7.3.4 RTC/lut_rhob_agddv

The aerosol-ground DDV coupling bidirectionality term $\left(\bar{\rho}_{a G}\right)$ is computed by the double angular integration of the DDV BRDF $\left(R_{D D V}\left(\lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right)\right)$ weighted by the downward normalized aerosol phase function $\left(P\left(\vartheta_{s}, \vartheta^{\prime}, \Delta \phi, \Delta \phi^{\prime}\right)\right)$:

$$
\begin{equation*}
\bar{\rho}_{a G}\left(\lambda, \vartheta_{s}, \vartheta_{v}, \Delta \phi\right)=\frac{\int_{0}^{2 \pi} \int_{0}^{1} R_{D D V}\left(\lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right) \cdot P\left(\vartheta_{s}, \vartheta^{\prime}, \Delta \phi, \Delta \phi^{\prime}\right) \cdot d \mu^{\prime} \cdot d \Delta \phi^{\prime}}{\int_{0}^{2 \pi} \int_{0}^{1} P\left(\vartheta_{s}, \vartheta^{\prime}, \Delta \phi, \Delta \phi^{\prime}\right) \cdot d \mu^{\prime} \cdot d \Delta \phi^{\prime}} \tag{167}
\end{equation*}
$$

The integration on μ^{\prime} is performed using the Gauss quadrature, and the integration on $d \Delta \phi^{\prime}$ using the Newton-Cotes method.

In order to remove the $\Delta \phi$ dependence, $\bar{\rho}_{a G}$ is expanded into Fourier series of $4^{\text {th }}$ order:

$$
\begin{equation*}
\bar{\rho}_{a G}\left(\lambda, \vartheta_{s}, \vartheta_{v}\right)=\sum_{s=0}^{4}\left(\bar{\rho}_{a G}\right)^{(s)}\left(\lambda, \vartheta_{s}, \vartheta_{v}, \Delta \phi\right) \cdot \cos (s . \Delta \phi) \tag{168}
\end{equation*}
$$

Note that this computation is completed at 4 MERIS wavelengths ($412.5 \mathrm{~nm}, 442.5 \mathrm{~nm}, 490 \mathrm{~nm}$ and 665 nm), for each of the 20 DDV BRDF models defined by the CESBIO institute and for each of 78 SAMs (Junge's models) over Land.

7.3.5 RTC/lut_rhob_Rgddv

The Rayleigh-ground DDV coupling bidirectionality term $\left(\bar{\rho}_{R G}\right)$ is computed as the mean of a double integration of the $\operatorname{DDV} \operatorname{BRDF}\left(R_{D D V}\left(\lambda, \vartheta_{s}, \vartheta_{v}, \Delta \phi^{\prime}\right)\right)$ on the solar zenithal angle $\left(\vartheta_{s}\right)$ and relative azimuthal angle $(\Delta \phi)$:

$$
\begin{equation*}
\bar{\rho}_{R G}\left(\lambda, \vartheta_{v}\right)=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} \int_{0}^{1} R_{D D V}\left(\lambda, \vartheta_{s}, \vartheta_{v}, \Delta \phi\right) \cdot d \mu_{s} \cdot d \Delta \phi \tag{169}
\end{equation*}
$$

Note that this computation is completed at 4 MERIS wavelengths ($412.5 \mathrm{~nm}, 442.5 \mathrm{~nm}, 490 \mathrm{~nm}$ and 665 nm) and for each of the 20 DDV BRDF models defined by the CESBIO institute.

7.3.6 RTC/lut_rhob_aR

The aerosol-molecule coupling bidirectionality term $\left(\bar{\rho}_{a R}\right)$ is defined as the integration of the intrinsic aerosol TOA radiance at the first Fourier series term $\left(L^{(0)}\right)$ over μ_{v} using a Gauss quadrature:

$$
\begin{equation*}
\bar{\rho}_{a R}\left(\tau^{a}, \vartheta_{s}\right)=\int_{0}^{1} L^{(0)}\left(\tau^{a}, \vartheta_{s}, \vartheta_{v}\right) \cdot d \mu_{v} \tag{170}
\end{equation*}
$$

In the framework of the MOS ground segment, $\bar{\rho}_{a R}$ have been completed with a MLS profile, for 78 SAMs (Junge's models) over land and with several aerosol optical thicknesses at 550 nm (i.e., τ^{a} in [0.1;1.5] by step of 0.1). A Gauss quadrature with 24 angles was used for the angular integration of $\bar{\rho}_{a R}$. For each Fourier series term $s(s=[1 ; 6])$, a third order polynomial fit has then been determined as function of τ^{a}, and the derived coefficients have been tabulated for each of the first 6 Fourier orders.

Using results derived from the MOS experiment, once interpolated to the Gauss quadrature for MERIS ground segment (12 angles) the polynomial coefficients fits at the first 6 Fourier orders are recombined to yield the aerosol-molecule coupling bidirectionality term $\left(\bar{\rho}_{a R}\right)$ for the MERIS ground segment. A third order polynomial fit as function of aerosol optical thickness $\left(\tau^{a}\right)$ is then applied on the $\bar{\rho}_{a R}$ values in order to remove the explicit dependence on τ^{a} :

$$
\begin{equation*}
\bar{\rho}_{a R}\left(\tau^{a}, \vartheta_{s}\right)=\sum_{i=0}^{3} k_{i}\left(\vartheta_{s}\right) \cdot\left(\tau^{a}\right)^{i} \tag{171}
\end{equation*}
$$

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0003			
-		Issue:	4 Rev.:		
t e ch nologies		Date:	16-Dec-10	Page:	89

with k_{i} the polynomial coefficients.

Note that the simulations are completed with a MLS profile for 78 SAMs over land with several τ^{a} values in $[0.1 ; 1.5]$ by step of 0.1 . Moreover, the polynomial coefficients for each of the 78 SAMs have been retrieved by adding the point $(0 ; 0)$ into the set of $\left(\tau^{a} ; \bar{\rho}^{a R}\right)$ points and by using a constraint on the polynomial fit in order to get a value close to 0 for the first polynomial coefficient (i.e., for the constant term).

8. DESCRIPTION OF RTC/FUB

The RTC/FUB is the second simulation tool used to generate the MERIS LUTs for the level-2 processing. This package allows one to determine the optical properties of the complex absorbing and scattering media such as the atmosphere and the ocean, and to compute the upwelling and downwelling radiances for a discrete number of propagation directions at predefined depth levels. This code is particularly appropriate for the light propagation in optically dense media such as clouds and oceans, and therefore well suited for the development of the MERIS algorithms regarding the retrieval of cloud properties (albedo, optical thickness, droplets) for the global energy budget studies or specific optical properties of water constituents for the ocean colour studies.

RTC/FUB package is composed of two principal modules:

- MIE module: This allows one to compute the optical properties (i.e., scattering phase function, extinction and scattering coefficients) for a mixture of N particle size distributions of atmospheric or oceanic constituents at a selected wavelength according to the Mie's theory,
- MOMO module: This computes the radiative transfer in the coupled 'Atmosphere-Ocean' system. The approach is based on the matrix-operator method (also known as doublingadding method) which solves the RTE for the diffuse radiation within a multilayered medium. Direct sun propagation through atmosphere and ocean is independently computed using Beer-Lambert's law. All physical processes (single and multiple scattering, gaseous absorption, etc.) are accounted for in the computation of upwelling radiances at TOA.

These two modules are presented in the following sections.

8.1 MIE MODULE

8.1.1 Description

This module allows one to compute the scattering phase matrix $P(\lambda, r, n, \theta)$ and the optical properties (i.e., the single scattering albedo $\omega_{0}(\lambda, r, n)$ and the extinction coefficient $\sigma_{e}(\lambda, r, n)$) for a mixture of N particle size distributions at a given wavelength λ. Each particle size distribution $n_{i}(r)$ is characterized by a complex refractive index ($n_{i, \lambda}=m_{i, \lambda}-i k_{i, \lambda}$), which is assumed to be identical for all the scatterers within the same distribution, and a component mixing ratio (n_{i} / n). This computation is performed with the Mie's theory, assuming particles as homogeneous isotropic spheres the sizes of which are comparable to or larger than the incident wavelength.

Moreover, it allows to calcultate as well the forward scattering proportion $f_{s p}(\mu=0)$ of a mixture of aerosols by using its computed scattering phase matrix $P(\lambda, r, n, \theta)$.

8.1.2 Tool

The latest version of the Mie/FUB package (available since July 27, 1999 - last release in March 31, 2009) is composed of:

```
\bullet'mie36.f':
-'scfp_2.f': for the computation of the forward scattering proportion f}\mp@subsup{f}{sp}{}(\mu=0)\mathrm{ of a given
    list of selected aerosol models (i.e., scattering phase matrices P(\lambda,r,n,0)).
```


Only the Mie sub-module is detailed in the following section. A full I/O description for each of these two codes is given in Appendix 1 (Sections 10.1).

8.1.3 Mie processing

The Mie processing is fully described in Section 7.1.3 and a complete list of I/O data is given in Appendix 2 (Section 10.1). Compared with the 'SCAMAT' module from RTC/UdL, this Mie code allows one to compute the optical properties of a mixture composed with up to 5 different sources of particles (or components), and one additional particle size distribution is available: the Gamma-Hansen distribution [RD-13].

$$
\frac{d N(r)}{d r}=r^{\left(1-3 r_{b}\right) / r_{b}} \cdot \exp \left[-r /\left(r_{i} \cdot r_{b}\right)\right]
$$

where r_{i} and r_{b} are respectively the effective radius of the particle and its standard deviation expressed as μm. The r_{i} values usually varies between 4 and $30 \mu m$. However the lack of information about r_{i} makes the Modified Gamma distribution (see Section 3.2.2) is often chosen as the droplet size distribution.

8.2 MOMO MODULE

8.2.1 Description

The purpose of the MOMO (Matrix-Operator Method) code is to simulate MERIS radiances by computing the radiative transfer processes within a coupled 'Atmosphere-Ocean' system [RD-4]. The approach is based on the matrix-operator method (also known as the doubling-adding method) which solves the RTE for the diffuse radiation. The propagation of the direct solar flux through the atmosphere and ocean is independently calculated using the Beer-Lambert's law.

With respect to the radiative transfer processes, the coupled 'Atmosphere-Ocean'system can be divided into four distinct sub-systems: atmosphere, interface between atmosphere and ocean, ocean, and ocean ground. Each sub-system requires a special treatment adapted to its particularities. The sub-system 'Atmosphere-Ocean' and 'Ocean-Ground' interface are each represented by one layer, whereas the ocean and the atmosphere are defined as a multi-layered medium the number of layers of which depends on the precision to describe the vertical structure of the medium. For each layer, reflection and transmission matrices and source functions are derived to describe how diffuse radiation is transmitted through, reflected and emitted from the layer.

The primary model output consists of azimuthally and zenithally resolved diffuse radiances at the layer boundaries. Secondary output consists in quantities that can be derived from radiances such as fluxes, reflectances, etc.

8.2.2 Tools

The latest version of the RTC/FUB package (available since July 27, 1999 - last release in March 31, 2009) is composed of:

```
- 'mom39.f': the main code for the radiative transfer computations,
- 'vtp.f': for generating the vertical atmospheric / oceanic profile with respect to the
    defined model layers, the US Standard62 atmospheric profile and the vertical
    distribution of the constituents,
```

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } 92 \end{aligned}$		

- 'cox_munk.f': for the computation of the reflection and transmission functions of a Cox-Munk wave slope distribution at the air-sea interface (code not available).

Only the first sub-module is detailed in the following sections. A full I/O description for all these submodules is given in Appendix 2 (Sections 10.2 \& 10.3).

8.2.3 RTC/MOMO

The development of the RTC/MOMO benefits from many previous research works. In fact, the implementation of the matrix-operator method mainly derived from [RD-56], the analytical treatment of strongly peak phase functions is based on [RD-57], the effects of the refraction at the air-sea interface on the Gaussian-Lobatto quadrature scheme are outlined in [RD-58]. The reflection at the rough sea surface modelized by the statistical description of the wave facet distribution derived by Cox and Munk [RD-46] is incorporated as described by [RD-59]. The atmospheric gas absorption [RD-60], the chlorophyll-a fluorescence [RD-61] and the Raman scattering have also been included in the code. Polarization as well as wind direction dependent effects at the rough sea surface have been recently incorporated into a new version of this code ([RD-62] \& [RD-63]). A detailed description of the matrix-operator method for the 'Atmosphere-Ocean'system including the numerical treatment and the effects at the rough sea surface is given in [RD-4]. Here we outline the principal bases of the method which have been implemented in the RTC/MOMO the structure of which was developed by [RD-64].

8.2.3.1 Matrix-Operator Method

The application of the matrix-operator method is based on the assumption that the vertical structure of the medium can be approximated by an appropriate number of homogeneous layers. Reflection, transmission and source operators for each layer are then obtained by repeated application of the doubling algorithm to an optically very thin sub-layer for which the single scattering approximation can be applied. The individual layers are then combined using the adding algorithm. The final output consists of the diffuse light field at the layer boundaries for all selected solar incident angles. The efficiency of this method for the treatment of optically thick media relies on the doubling algorithm.

- Single scattering approximation

Using the Fourier analysis to separate zenith and azimuth dependence (see Section 6.2.2.2), the upwelling and downwelling diffuse radiance L_{m} produced by elastic scattering of a solar beam E_{o} within an optically thin layer $\left(\Delta \tau / \mu \leq 10^{-3}\right)$ can be approximated using Equations (138) by:

$$
\begin{equation*}
L_{m}(\Delta \tau, \mu)=\omega_{\mathrm{o}} \cdot P_{m}\left(\mu, \mu_{\mathrm{o}}\right) \cdot E_{\mathrm{o}} \cdot \frac{\Delta \tau}{|\mu|} \tag{172}
\end{equation*}
$$

with $P_{m}\left(\mu, \mu_{\mathrm{o}}\right)$ the normalized phase function. This single scattering approximation is of fundamental importance for the development of the matrix-operator method.

- Interaction principle

The interaction principle within an absorbing, scattering and emitting medium can be expressed by reflexion, transmission and source operators. By considering τ_{0} and τ_{1} the upper and lower boundaries of an elementary layer, the upward directed radiance (L_{0}^{+}) at τ_{0} can be expressed as (Figure 22):

$$
\begin{equation*}
L_{0}^{+}=R_{01} \cdot L_{0}^{-1}+T_{10} \cdot L_{1}^{+'}+J_{10}^{+} \tag{173}
\end{equation*}
$$

where R_{01} quantifies the reflexion of downward radiation, T_{10} the transmission of the upward radiance, and J_{10}^{+}the contribution of the internal radiation sources to the upward radiance at the layer boundary τ_{0}. The prime denotes the incident radiation on the layer.

Figure 22: Interaction principle within an elementary layer $\left[\tau_{0} ; \tau_{1}\right]$

- Radiance at internal layer boundaries

A formalism to compute the radiance at the internal boundary between two layers can be derived from the interaction principle (see [RD-56] for more details). Thus, the radiance distribution at the internal boundary τ_{1} can then be determined from Equation (172) using the optical properties of the adjacent layers and the inward directed radiance on the external boundaries τ_{0} and τ_{2} :

$$
\left\{\begin{array}{l}
L_{1}^{+}=\left(1-R_{12} \cdot R_{10}\right)^{-1} \cdot\left(R_{12} \cdot T_{01} \cdot L_{0}^{-}+T_{21} \cdot L_{2}^{+}+R_{12} \cdot J_{01}^{-}+J_{21}^{+}\right) \tag{174}\\
L_{1}^{-}=\left(1-R_{10} \cdot R_{12}\right)^{-1} \cdot\left(R_{10} \cdot T_{21} \cdot L_{2}^{+}+T_{01} \cdot L_{0}^{-}+R_{10} \cdot J_{21}^{+}+J_{01}^{-}\right)
\end{array}\right.
$$

with 1 the unity operator. Multiple internal reflexions between the layers are included in Equations (173). This appears as an expansion of the term $\left(1-R_{10} \cdot R_{12}\right)^{-1}$ for example into a geometrical series.

Since there is no downwelling diffuse radiation at TOA, the diffuse radiation transfer within the coupled 'Atmosphere-Ocean'system can be written as:

$$
\left\{\begin{array}{l}
L_{1}^{+}=\left(1-R_{12} \cdot R_{10}\right)^{-1} \cdot\left(T_{21} \cdot L_{2}^{+}+R_{12} \cdot J_{01}^{-}+J_{21}^{+}\right) \tag{175}\\
L_{1}^{-}=\left(1-R_{10} \cdot R_{12}\right)^{-1} \cdot\left(R_{10} \cdot T_{21} \cdot L_{2}^{+}+R_{10} \cdot J_{21}^{+}+J_{01}^{-}\right)
\end{array}\right.
$$

As seen just above, the computation of the radiance at level τ_{1} requires the radiance $L_{2}^{+\prime}$ entering the system at the lower boundary τ_{1}. Consequently, the radiances will be calculated from the bottom to the top. Considering the ocean bottom or the land surface as a Lambertian reflector, then the radiance just above the surface can be deduced from Equations (174) as follows:

$$
\left\{\begin{array}{l}
L_{1}^{+}=\left(1-R_{B} \cdot R_{10}\right)^{-1} \cdot\left(R_{B} \cdot J_{01}^{-}+J_{B}^{+}\right) \tag{176}\\
L_{1}^{-}=\left(1-R_{10} \cdot R_{B}\right)^{-1} \cdot\left(R_{10} \cdot J_{B}^{+}+J_{01}^{-}\right)
\end{array}\right.
$$

where the subscript B denotes the background (i.e., ocean bottom or land surface).

- Adding and doubling

Layers are combined by the so-called adding algorithm which derives from the interaction principle. The resulting reflection, transmission and source operators from two consecutive layers are expressed as:

$$
\left\{\begin{array}{l}
R_{02}=R_{01}+T_{10} \cdot\left(l-R_{12} \cdot R_{10}\right)^{-1} \cdot R_{12} \cdot T_{01} \tag{177}\\
R_{20}=R_{21}+T_{12} \cdot\left(1-R_{10} \cdot R_{12}\right)^{-1} \cdot R_{10} \cdot T_{21} \\
T_{02}=T_{10} \cdot\left(l-R_{12} \cdot R_{10}\right)^{-1} \cdot T_{21} \\
T_{20}=T_{12} \cdot\left(l-R_{10} \cdot R_{12}\right)^{-1} \cdot T_{01} \\
J_{20}^{+}=J_{10}^{+}+T_{10} \cdot\left(1-R_{12} \cdot R_{10}\right)^{-1} \cdot\left(R_{12} \cdot J_{01}^{-}+J_{21}^{+}\right) \\
J_{02}^{-}=J_{12}^{-}+T_{12} \cdot\left(l-R_{10} \cdot R_{12}\right)^{-1} \cdot\left(R_{10} \cdot J_{21}^{+}+J_{01}^{-}\right)
\end{array}\right.
$$

By considering two identical and homogeneous layers ($\left[\tau_{0} ; \tau_{1}\right]$ and $\left[\tau_{1} ; \tau_{2}\right]$),

$$
\left\{\begin{array}{l}
R_{01}=R_{10}=R_{12}=R_{21}=R \tag{178}\\
T_{01}=T_{10}=T_{12}=T_{21}=T
\end{array}\right.
$$

Equations (176) and (177) yield to the following doubling algorithm:

$$
\left\{\begin{array}{l}
R_{02}=R_{20}=R+T \cdot(1-R \cdot R)^{-1} \cdot R \cdot T \tag{179}\\
T_{02}=T_{20}=T \cdot(1-R \cdot R)^{-1} \cdot T \\
J_{20}^{+}=J_{10}^{+}+T \cdot(1-R \cdot R)^{-1} \cdot\left(R \cdot J_{01}^{-}+J_{21}^{+}\right) \\
J_{02}^{-}=J_{12}^{-}+T \cdot(1-R \cdot R)^{-1} \cdot\left(R \cdot J_{21}^{+}+J_{01}^{-}\right)
\end{array}\right.
$$

- Reflexion, transmission and source operators

For applying the matrix-operator method, reflexion, transmission and source operators have to be determined from the optical properties of the propagation medium. Let consider as an example the reflection of downwelling diffuse radiation $L_{m}^{-\prime}$ (after expanded in Fourier series) by an homogeneous thin layer $\Delta \tau$, and the transmitted diffuse radiation at the lower boundary of $\Delta \tau$, we can then write using the operator notations:

$$
\left\{\begin{array}{l}
L_{m}^{+}(\Delta \tau)=R_{m}(\Delta \tau) \cdot L_{m}^{-}{ }^{\prime} \tag{180}\\
L_{m}^{-}(\Delta \tau)=T_{m}(\Delta \tau) \cdot L_{m}^{\prime}
\end{array}\right.
$$

Because of the homogeneity of the thin layer $\Delta \tau$, the reflection $R_{m}(\Delta \tau)$ and transmission $T_{m}(\Delta \tau)$ operators are identical both for the two paths. By introducing a quadrature scheme for the discretization of zenithal angular directions, L_{m} is expressed as a vector each element of which represents the radiance for a couple of incident and viewing discrete directions and the phase normalized function P_{m} as a matrix the elements of which indicate the probability density of photon redistribution between two discrete directions.

Using a quadrature scheme $\left(N, \mu_{i}, w_{i}\right)$, with N the number of discrete zenithal angles, μ_{i} and w_{i} respectively the cosine of Gaussian angles and associated weights, the matrix representations of $R_{m}(\Delta \tau)$ and $T_{m}(\Delta \tau)$ are expressed as follows (see [RD-4] for more details):

$$
\left\{\begin{array}{l}
R_{m}(\Delta \tau)=\left[1+\delta_{0, m}\right] \cdot \pi \omega_{\mathrm{o}} \cdot \Delta \tau \cdot \mathbf{M} \mathbf{u}^{-1} \cdot \mathbf{P}_{m}^{R} \cdot \mathbf{C} \tag{181}\\
T_{m}(\Delta \tau)=\mathbf{F}(\Delta \tau)+\left[1+\delta_{0, m}\right] \cdot \pi \omega_{\mathrm{o}} \cdot \Delta \tau \cdot \mathbf{M} \mathbf{u}^{-1} \cdot \mathbf{P}_{m}^{T} \cdot \mathbf{C}
\end{array}\right.
$$

with,

$$
\begin{aligned}
& \mathbf{M u}^{-1}=\left[\left(\mu_{i}\right)^{-1} \cdot \delta_{i, j}\right] \\
& \mathbf{C}=\left[w_{i} \cdot \delta_{i, j}\right] \\
& \mathbf{F}(\tau)=\left[\exp \left(-\tau / \mu_{i}\right) \cdot \delta_{i, j}\right]
\end{aligned}
$$

where \mathbf{P}_{m}^{R} and \mathbf{P}_{m}^{T} are the scattering phase matrices for the reflection and transmission respectively, Mu the incidence angles matrix, \mathbf{C} the Gaussian weights matrix, and \mathbf{F} the transmission matrix for direct solar radiation. $\delta_{i, j}$ represents the Dirad's delta function which is equal to 1 for ($i=j$) and 0 otherwise.

In the same way, the source operators for upwelling and downwelling diffuse radiations within the optically thin layer located at τ_{o} are given by:

$$
\left\{\begin{array}{l}
J_{m}^{+}(\Delta \tau)=\omega_{\mathrm{o}} \cdot \Delta \tau \cdot E_{\mathrm{o}} \cdot \mathbf{M u}^{-1} \cdot \mathbf{P}_{m}^{T} \cdot \mathbf{F}\left(\tau_{0}\right) \tag{182}\\
J_{m}^{+}(\Delta \tau)=\omega_{\mathrm{o}} \cdot \Delta \tau \cdot E_{\mathrm{o}} \cdot \mathbf{M u}^{-1} \cdot \mathbf{P}_{m}^{R} \cdot \mathbf{F}\left(\tau_{0}\right)
\end{array}\right.
$$

- Lambertian surfaces

In the matrix-operator method, the lower boundary of the system is often considered as a nontransmitting Lambertian reflector which makes easier the computation of the upwelling input radiation into the system by the below interface. As the first term of the Fourier series expansion of the reflected isotropic radiance is not null, it will be then the same for the corresponding Fourier expansion terms of the reflection function. The operator R_{m}^{B} describing the reflection of diffuse radiation at the Lambertian surface level is then derived from the surface albedo ρ_{s} as (see [RD-56] for more details):
where,

$$
\begin{align*}
& \left\{\begin{array}{l}
R_{m=0}^{B}=2 \cdot \rho_{s} \cdot \mathbf{1} \cdot \mathbf{M u} \cdot \mathbf{C} \\
R_{m>0}^{B}=\mathbf{0}
\end{array}\right. \tag{183}\\
& \left.\begin{array}{rl}
\mathbf{M u} & =\left[\mu_{i} \cdot \delta_{i, j}\right] \\
\mathbf{1}=\left[1_{i, j}=1\right]
\end{array}\right\} \text { with } i, j \in\{1, \ldots, N\}
\end{align*}
$$

Since the direct solar radiation is scattered by the Lambertian surface, the latter also acts as a source of diffuse radiation, and the corresponding source term J_{m}^{B} is derived from ρ_{s} as follows:

$$
\left\{\begin{array}{l}
J_{m=0}^{B}=\left(\rho_{s} \cdot E_{\mathrm{o}} / \pi\right) \cdot \mathbf{1} \cdot \mathbf{M u} \cdot \mathbf{F}\left(\tau_{B}\right) \tag{184}\\
J_{m>0}^{B}=\mathbf{0}
\end{array}\right.
$$

8.2.3.2 Numerical method

The integral computation with respect to the zenithal angles in the RTC/MOMO are evaluated with the Gauss-Lobatto quadrature scheme (see Section 12.6). Consequently, radiances are computed for a finite number N of discrete zenithal angles. Of course, the values of these angles depend on the number of points used for the quadrature.

To allow the incorporation of strongly peaked phase functions for which the Fourier expansion requires a large number of terms (e.g., 400 terms for cloud particles), the phase function truncation technique which substitutes the forward scattering peak by a second order polynomial (see Section 2.3.2) is used: the radiance scattered into a certain small solid angle around a scattering angle of 0° is removed from the diffuse radiation field and treated as being not scattered at all. In order to ensure the desired accuracy ε in the computations with the matrix-operator method, two successive tests are implemented:

- Test 1: It is firstly tested whether the quadrature of the normalized phase function P can be completed with the level of required accuracy for the selected value of N :

$$
\begin{equation*}
\left|1-\sum_{i=1}^{N} w_{i} \cdot\left[P\left(\tau, \mu_{i}\right)+P\left(\tau,-\mu_{i}\right)\right]\right|<\varepsilon \tag{185}
\end{equation*}
$$

While this condition is not fulfilled, the forward peak of P will be truncated for an increasing angle of ϑ_{p}. Once this accuracy reached, N will then be increased if necessary, and \mathbf{P}_{m}^{R} and \mathbf{P}_{m}^{T} computed using the modified phase function P^{\prime}.

- Test 2: The Fourier expansion for a given combination of angles ($\mu_{j}^{\prime}, \mu_{i}$) will be stopped as soon as the following test is verified:

$$
\begin{equation*}
\left|P_{m}^{\prime}\left(\tau, \mu_{j}^{\prime}, \mu_{i}\right)\right|<\varepsilon_{F} \cdot P_{\mathrm{o}}^{\prime}\left(\tau, \mu_{j}^{\prime}, \mu_{i}\right) \tag{186}
\end{equation*}
$$

with ε_{F} the level of required accuracy in the Fourier expansion.

Numerous tests stressed the maximum number of Fourier series term ($I_{s}=70$) was sufficient for a good compromise between the accuracy and the computational time.

Moreover radiances for angles which differ to the quadrature have to be gathered by interpolation or introduction of ancillary zenithal angles with the corresponding weights set to zero. The latter is implemented in the RTC/MOMO.

Note that the atmospheric gaseous transmittivity is estimated (using the correlated k-distribution method) by an ESFT with the HITRAN-2000 database (see Sections 2.9 \& 7.2.3).

8.2.3.3 Air-sea interface

The computation of reflection and transmission matrices for the 'Atmosphere-Ocean'interface is based on the assumption that the orientation of the sea surface slopes follows a two-dimensional Gaussian probability density distribution (see Section 5). Effects due to the wind direction are not taken into account and the multiple reflections between the ocean facets and internal shading effects are not simulated. This air-sea interface is modelized as an infinitely thin layer whereas its real vertical profile depends on the wave height. This may lead errors if the in-water radiance near the ocean surface is computed. This section briefly describes the radiative processes in term of matrix representations of reflection, transmission and source operators included in the RTC/MOMO for flat and rough sea surfaces.

- Flat sea surface

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: PO-RS-PAR-GS-0003 Issue: $4 \quad$ Rev.: Date: $16-$ Dec-10 \quad Page: 			

Reflection and transmission of the light through the air-water interface are described by the Fresnel formulas and Snellius law of refraction (see Section 2.10) for which the refractive indice of air (n_{a}) and water $\left(n_{w}\right)$ are fixed to 1 and 1.34 respectively whatever the wavelength.

Because of the non-linearity of the mapping of atmospheric Gaussian angles ($N_{a}, \mu_{i}^{a}, w_{i}^{a}$) on the refraction angles in the water, a new Gauss-Lobatto-like quadrature scheme ($N_{w}, \mu_{i}^{w}, w_{i}^{w}$) based on the energetic conservation considerations is then implemented for the acceptance angular cone of the atmospheric radiation into the water (see [RD-58] for more details). Moreover, since the angular domain of total internal reflection is not directly accessible to atmospheric radiation, a modified Gauss-Lobatto quadrature scheme is then added in the RTC/MOMO for the angular domain $\left[0, \mu_{c}^{w}\right]$ with μ_{c}^{w} the cosine of the critical angle in the water for which the reflection just below the air-sea interface is total.

In the case of a flat sea surface, there is no exchange of energy between the different zenith angles, which means only the diagonal elements of the reflection and transmission matrices are not null. More, the terms of the Fourier series expansion ($m \in[0, M]$) for the reflection and transmission operators are constant. These flat sea operators are then defined as:

$$
\begin{align*}
& N_{a} \times N_{a}: R_{m}^{a a}=\left\{\begin{array}{l}
\rho_{F}\left(\mu_{i}, n_{w} / n_{a}\right) \text { for } i=j \\
0 \\
\text { otherwise }
\end{array}\right. \tag{187}\\
& N_{w} \times N_{w}: R_{m}^{w w}= \begin{cases}\rho_{F}\left(\mu_{i}^{*}, n_{a} / n_{w}\right) & \text { for } i=j \text { and } i, j \leq N_{a} \\
1 & \text { for } i=j \text { and } N_{a}<i, j \leq N_{w} \\
0 & \text { otherwise }\end{cases} \tag{188}\\
& N_{a} \times N_{w}: T_{m}^{a w}= \begin{cases}\left(n_{w} / n_{a}\right)^{2} \cdot \tau_{F}\left(\mu_{i}, n_{w} / n_{a}\right) & \text { for } i=j \text { and } i, j \leq N_{a} \\
0 & \text { otherwise }\end{cases} \tag{189}\\
& N_{w} \times N_{a}: T_{m}^{w a}= \begin{cases}\left(n_{a} / n_{w}\right)^{2} \cdot \tau_{F}\left(\mu_{i}^{*}, n_{a} / n_{w}\right) & \text { for } i=j \text { and } i, j \leq N_{a} \\
0 & \text { otherwise }\end{cases} \tag{190}
\end{align*}
$$

where ρ_{F} and τ_{F} represents the Fresnel reflection and transmission respectively (see Section 2.10) defined as,

$$
\left\{\begin{array}{l}
\rho_{F}=\frac{1}{2} \cdot\left(r_{/ /}^{2}+r_{\perp}^{2}\right) \tag{184}\\
\tau_{F}=\frac{1}{2} \cdot \frac{n_{w} \cdot \cos \theta_{w}}{\cos \theta_{a}} \cdot\left(t_{/ /}^{2}+t_{\perp}^{2}\right)
\end{array}\right.
$$

and $R_{m}^{a a}$ the reflexion of diffuse atmospheric radiance, $T_{m}^{w a}$ the transmission of oceanic radiance into the atmosphere, etc.

Moreover the flat sea surface does not generate any diffuse radiation, consequenty the source operators are represented by the zero matrix for all the Fourier terms:

$$
\begin{equation*}
N_{a} \times N_{w}: J_{m}^{+}=\mathbf{0} \tag{185}
\end{equation*}
$$

$$
\begin{equation*}
N_{a} \times N_{a}: J_{m}^{-}=\mathbf{0} \tag{186}
\end{equation*}
$$

Note that in the matrix-operator method the portion of the direct solar radiation reflected at the flat airsea interface and scattered on its way back through the atmosphere is not considered.

- Rough sea surface

Contrary to the the flat sea surface, the wind-roughened sea surface acts as a source of diffuse radiation due to the angular redistribution of the incident direct solar radiation.

The reflection operators for upwelling and downwelling radiances at the air-sea interface are expressed as (see [RD-4]):

$$
\begin{align*}
& N_{a} \times N_{a}: \widetilde{R}_{m}^{a a}=\left[1+\delta_{0, m}\right] \cdot \pi \cdot \widetilde{\mathbf{R}}_{m}^{a a} \cdot \mathbf{C} \tag{191}\\
& N_{w} \times N_{w}: \widetilde{R}_{m}^{w w}=\left[1+\delta_{0, m}\right] \cdot \pi \cdot \widetilde{\mathbf{R}}_{m}^{w w} \cdot \mathbf{C}^{*} \tag{192}
\end{align*}
$$

where tilde is only used to denote the parameters of the rough sea surface described in Section 5 . The matrices \mathbf{C} and \mathbf{C}^{*} for the atmospheric and oceanic weigths are given in Equations (180), and the matrices $\widetilde{\mathbf{R}}_{m}^{a a}$ and $\widetilde{\mathbf{R}}_{m}^{w w}$ are defined by:

$$
\left\{\begin{array}{l}
\widetilde{\mathbf{R}}_{m}^{a a}=\widetilde{R}_{m}\left(+\mu_{j}^{\prime},-\mu_{i}\right) \text { with } i, j=1, \ldots, N \\
\widetilde{\mathbf{R}}_{m}^{w w}=\widetilde{R}_{m}\left(+\mu_{j}^{* *},-\mu_{i}^{*}\right) \text { with } i, j=1, \ldots, N^{*}
\end{array}\right.
$$

The source operator which describes the production of upwelling diffuse radiance at the rough sea interface is then:

$$
\begin{equation*}
\widetilde{J}_{m}^{+}=\widetilde{\mathbf{R}}_{m}^{a a} \cdot \mathbf{F}(\tau) \cdot E_{\mathrm{o}} \tag{193}
\end{equation*}
$$

with τ the atmospheric optical depth and $\mathbf{F}(\tau)$ defined in Equations (180).

The transmission operators for the rough sea surface used in the RTC/MOMO are formally identical to the transmission operator for a flat sea surface:

$$
\begin{align*}
& N_{a} \times N_{w}: \widetilde{T}_{m}^{a w}=\widetilde{\mathbf{T}}_{m}^{a w}= \begin{cases}\left(n_{w} / n_{a}\right)^{2} \cdot \widetilde{\tau}_{F}\left(\mu_{i}, n_{w} / n_{a}\right) & \text { for } i=j \text { and } i, j \leq N_{a} \\
0 & \text { otherwise }\end{cases} \tag{194}\\
& N_{w} \times N_{a}: \widetilde{T}_{m}^{w a}=\widetilde{\mathbf{T}}_{m}^{w a}= \begin{cases}\left(n_{a} / n_{w}\right)^{2} \cdot \widetilde{\tau}_{F}\left(\mu_{i}^{*}, n_{a} / n_{w}\right) & \text { for } i=j \text { and } i, j \leq N_{a} \\
0 & \text { otherwise }\end{cases} \tag{195}
\end{align*}
$$

APPENDICES

Document Number:	PO-RS-PAR-GS-0003 (Appendices)	
Issue:	4	Revision:
Issue Date:	December 16, 2010	Filenames: A
		PO-RS-PAR-GS-0003 4A - Code_Spec_Part1-Theory.doc
		PO-RS-PAR-GS-0003 4A - Code_Spec_Part2-Appendices.doc

	Function (Company)	Name	Signature	Date
Prepared by:	Scientist (PARBLEU)	Francis Zagolski		
Checked by:	Scientist (LISE-Wimereux)	Richard Santer		
Checked by:	Scientist (FUB-Berlin)	Juergen Fischer		
Approved by:	Project Manager (ESA/ESTEC)	Jean-Paul Huot		
Released by:	Project Manager (ESA/ESRIN)	Philippe Goryl		

TABLE OF CONTENTS

TABLE OF CONTENTS 100
9. APPENDIX-1: SPECIFICATION OF RTC/UDL PACKAGE 101
9.1 SCAMAT InPUT / OUTPUT DESCRIPTION 101
9.1.1 Input / Output description 101
9.1.2 Input / Output sample 102
9.2 UPRAD INPUT/OUTPUT DESCRIPTION 105
9.3 AUXILIARY FILE: 'UPRAD_DEF' 108
9.4 ADDITIONAL TOOLS 110
9.4.1 OTC/COMPUTE_FSP 110
9.4.2 RTC/GAUSS 111
9.4.3 RTC/PO2 112
9.4.4 RTC/WIND 113
9.4.5 OTC/RAYLEIGH 115
9.4.6 OTC/OZONE 116
9.4.7 IOP/WATER 117
10. APPENDIX-2: SPECIFICATION OF RTC/FUB PACKAGE 119
10.1 MIE InPUT / OUTPUT DESCRIPTION 119
10.1.1 Input / Output description 119
10.1.2 Input / Output sample 120
10.2 MOMO InPut / OUTPUT DESCRIPTION 125
10.3 SOFTWARE TECHNICAL DESCRIPTION 128
10.3.1 Include file: 'param' 128
10.3.2 Auxiliary file: 'mom_def' 129
10.3.3 Input files to RTC / MOMO 132
10.3.4 Tree directories 132
10.3.5 Vertical profile 134
10.3.6 Forward scattering proportion computation 137
11. APPENDIX-3: SPECIFICATION OF RTC/MOS PACKAGE 139
11.1 RTC/LUT_ALB_GDDV 139
11.2 RTC/LUT_RHOB_AGDDV 140
11.3 RTC/LUT_RHOB_RGDDV 143
11.4 RTC/LUT_RHOB_AR 144
12. APPENDIX-4: SPECIFICATION OF TOOLS FOR MERISAT 147
12.1 LINEAR FITTING 147
12.2 Polynomial fitting 149
12.3 LINEAR INTERPOLATION IN ONE DIMENSION 150
12.4 Parabolic interpolation in one dimension 152
12.5 INTERPOLATION IN MULTI-DIMENSIONS 154
12.6 NUMERICAL INTEGRATION 154
12.7 SIMPLEX MINIMIZATION 156
12.8 DETERMINATION OF THE GOODNESS OF FIT 159

MERIS/ ENVISAT-1
MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: $16-$ Dec-10 Page: 101

9. APPENDIX-1: SPECIFICATION OF RTC/UDL PACKAGE

An overview of the RTC/UdL package is displayed on Figure 1.

9.1 SCAMAT INPUT/OUTPUT DESCRIPTION

9.1.1 Input/Output description

SCAMAT Inputs

Input	Descriptive name	Source	Format	Unit	Range	Remarks
scamat _out	Output filename	-	string	n.u.	-	Scattering phase matrix
λ	Wavelength	-	float	$n m$	[250; 4000]	15 MERIS wavelengths in [400;900]
$\lambda_{\text {ref }}$	Reference wavelength	-	float	$n m$	[250; 4000]	15 MERIS wavelengths in [400;900]
n_{2}	Number of scattering angles	-	int	п.и.	83	Not used (fixed value in the code)
N	Number of particle size distributions	-	int	n.u.	[1;3]	Maximum of 3 particle size distributions
$m_{\lambda}(i), k_{\lambda}(i)$	Real and imaginary parts of refractive index at wavelength λ for size distribution i	-	float	n.u. / n.u.	$\begin{aligned} & m_{\lambda}>0 \\ & k_{\lambda} \geq 0 \end{aligned}$	$2 \times N$ values
$m_{r e f}(i), k_{r e f}(i)$	Real and imaginary parts of refractive index at reference wavelength $\lambda_{\text {ref }}$ for size distribution i	-	float	n.u. / n.u.	$\begin{aligned} m_{r e f} & >0 \\ k_{r e f} & \geq 0 \end{aligned}$	$2 \times N$ values
$\begin{gathered} r_{\min }(i), r_{\max }(i) \\ d r(i) \end{gathered}$	Minimum, maximum radii and size increment for size distribution i	-	float	$\begin{gathered} \mu m / \mu m \\ \mu m \end{gathered}$	$\begin{gathered} r_{\min }, r_{\max } \geq 0 \\ d r \geq 10^{-4} \end{gathered}$	$3 \times N$ values Note: if $r_{\min } \leq 0 \Rightarrow r_{\min }=10^{-4}$
$\begin{gathered} \operatorname{ind}(i) \\ a(i), b(i) \end{gathered}$	Index of selected particle size distribution and its 2 parameters for size distribution i	-	float	$\begin{gathered} \text { n.u. } \\ \mu m / n . u . \end{gathered}$	$\begin{gathered} \text { ind: }[1 ; 4] \\ (a, b)>0 \end{gathered}$	$2 \times N \text { values }$ ind $=1$ (Junge power-law): $a=r_{o}, b=\alpha$ ind $=2$ (Log normal): $a=r_{m}, b=\sigma$ ind=3 (Modified Gamma): $a=\alpha, b=b$ ind $=4$ (Gamma-Hansen): $a=r_{i}, b=r_{b}$
$n(i) / n$	Component mixing ratio for distribution i	-	float	n.u.]0;1]	N values
Loop on the inputs \#6, 7, 8, 9 \& 10 for the size distributions $(i+1)$ and (i+2) if necessary!						

Nb: (1) The 'Particle ratio' (see Section 10.1.1) is the default option included in the Mie's code.
(2) The size increment of 10^{-4} is a critical value acceptable as the limit of Mie's theory. Better acceptable limit would be a value of 10^{-3}.

SCAMAT Outputs

Output	Descriptive name	Source	Format	Unit	Range	Remarks
Inputs	Input data card	-	string	n.u.	-	-
θ	Scattering angles	-	float	deg.	-	n_{2} values
$P(\theta)$	First Stokes parameter	-	float	n.u.	-	n_{2} values
$Q(\theta)$	Second Stokes parameter	-	float	n.u.	-	n_{2} values
$U(\theta)$	Third Stokes parameter	-	float	n.u.	-	n_{2} values
$\omega_{o, \lambda}, \omega_{o, \lambda_{\text {ref }}}$	Single scattering albedos at wavelengths λ and $\lambda_{\text {ref }}$	-	float	n.u.	$[0 ; 1]$	-
$\sigma_{e, \lambda}^{*}, \sigma_{e, \lambda_{r e f}}^{*}$	Normalized extinction coefficients at the wavelengths λ and $\lambda_{\text {ref }}$	-	float	n.u.	≥ 0	Values normalized to $\sigma_{e, \lambda_{r e f}}$
$\sigma_{e, \lambda_{\text {ref }}}$	Extinction coefficient at the wavelength $\lambda_{\text {ref }}$	-	float	$\mu m^{-1} . p c l^{-1}$	≥ 0	Values normalized to $\sigma_{e, \lambda_{r e f}}$

$\underline{N b}$: Stokes parameters are not normalized to 4π, and extinction coefficients are computed for 1 particle (pcl) per cm^{3}.

9.1.2 Input / Output sample

UDL SCAMAT INPUT CARD

scama	test12		scamat_out
443.00			λ
865.00			$\lambda_{\text {ref }}$
83			n_{2}
3			N
1.530	0.500E		$m_{\lambda}(1), k_{\lambda}(1)$
1.520	1.210 E		$m_{r e f}(1), k_{r e f}(1)$
0.001	20.000	0.001	$r_{\text {min }}(1), r_{\max }(1), d r(1)$
2	0.0050	2.99	ind (1), $a(1), b(1)$
0.938			$n(1) / n$
1.530	0.800E		$m_{\lambda}(2), k_{\lambda}(2)$
1.530	0.800E		$m_{r e f}(2), k_{r e f}(2)$
0.010	40.000	0.010	$r_{\text {min }}(2), r_{\text {max }}(2), d r(2)$
2	0.5000	2.99	ind (2), $a(2), b(2)$
2.27E			$n(2) / n$
1.750	4.550 E		$m_{\lambda}(3), k_{\lambda}(3)$
1.750	4.300 E		$m_{r e f}(3), k_{r e f}(3)$
0.001	20.000	0.001	$r_{\text {min }}(3), r_{\text {max }}(3), d r(3)$
2	0.0118	2.00	ind (3), a (3), b (3)
0.06123			$n(3) / n$

UDL SCAMAT OUTPUT FILE

82.174	. $3709214772119 \mathrm{E}+00$	-.8023016270063E-01	. $2634787922518 \mathrm{E}+00$
79.938	. $3998297784497 \mathrm{E}+00$	-.8251415304212E-01	. $2949100505564 \mathrm{E}+00$
77.702	. $4321560206200 \mathrm{E}+00$	-.8459203530305E-01	. $3297198318375 \mathrm{E}+00$
75.466	. $4682967419413 \mathrm{E}+00$	-.8644152340648E-01	. $3683093248970 \mathrm{E}+00$
73.230	. $5087005086792 \mathrm{E}+00$	-.8803936491282E-01	. $4111302751507 \mathrm{E}+00$
70.994	.5538745831095E+00	-.8936144838235E-01	. $4586921776910 \mathrm{E}+00$
68.758	.6043923279499E+00	-.9038276052376E-01	. $5115700976860 \mathrm{E}+00$
66.522	. $6609015550975 \mathrm{E}+00$	-.9107740399308E-01	. $5704132761754 \mathrm{E}+00$
64.286	.7241339363339E+00	-.9141876002574E-01	. $6359551207304 \mathrm{E}+00$
62.050	.7949155235325E+00	-.9137975833053E-01	. $7090240646960 \mathrm{E}+00$
59.814	. $8741784387790 \mathrm{E}+00$	-.9093330211686E-01	.7905551131647E+00
57.578	. $9629740012076 \mathrm{E}+00$	-.9005297052942E-01	. $8816028292046 \mathrm{E}+00$
55.342	. $1062487336325 \mathrm{E}+01$	-.8871394928398E-01	. $9833561604056 \mathrm{E}+00$
53.106	. $1174052643104 \mathrm{E}+01$	-.8689363126441E-01	. $1097154064357 \mathrm{E}+01$
50.870	. $1299169689623 \mathrm{E}+01$	-.8457231204493E-01	. $1224502336334 \mathrm{E}+01$
48.635	. $1439522682481 \mathrm{E}+01$	-.8173446166930E-01	. $1367093601552 \mathrm{E}+01$
46.399	. $1597000177114 \mathrm{E}+01$	-.7837061470665E-01	. $1526826665302 \mathrm{E}+01$
44.163	. $1773715816448 \mathrm{E}+01$	-.7447922496096E-01	. $1705825766275 \mathrm{E}+01$
41.927	.1972031591718E+01	-.7006805385296E-01	. $1906463380878 \mathrm{E}+01$
39.691	. $2194585738845 \mathrm{E}+01$	-.6515714180905E-01	. $2131385815751 \mathrm{E}+01$
37.455	. $2444322938628 \mathrm{E}+01$	-.5978016793599E-01	. $2383539687270 \mathrm{E}+01$
35.219	. $2724529706553 \mathrm{E}+01$	-.5398046675896E-01	. $2666205761382 \mathrm{E}+01$
32.983	. $3038884222146 \mathrm{E}+01$	-.4781157539085E-01	.2983041751257E+01
30.747	. $3391523191867 \mathrm{E}+01$	-.4134131095969E-01	. $3338141932163 \mathrm{E}+01$
28.511	. $3787133636302 \mathrm{E}+01$	-.3465242342122E-01	. $3736137924503 \mathrm{E}+01$
26.276	. $4231085409726 \mathrm{E}+01$	-.2784667275319E-01	. $4182360680465 \mathrm{E}+01$
24.040	. $4729626940862 \mathrm{E}+01$	-.2105541361668E-01	. $4683084093184 \mathrm{E}+01$
21.804	. $5290180612787 \mathrm{E}+01$	-.1445154963310E-01	. $5245882861391 \mathrm{E}+01$
19.568	. $5921841958965 \mathrm{E}+01$	-.8287759103643E-02	. $5880187116887 \mathrm{E}+01$
17.333	. $6636308013014 \mathrm{E}+01$	-.2959470447050E-02	. $6598206538319 \mathrm{E}+01$
15.097	. $7449721688224 \mathrm{E}+01$.9972953574741E-03	.7416563762588E+01
12.862	. $8386539411706 \mathrm{E}+01$. $3127496904159 \mathrm{E}-02$. $8359627411350 \mathrm{E}+01$
10.627	. $9488243096452 \mathrm{E}+01$. $3239096547501 \mathrm{E}-02$. $9468099476853 \mathrm{E}+01$
8.393	. $1083929274598 \mathrm{E}+02$	$1285316601959 \mathrm{E}-02$. $1082545080801 \mathrm{E}+02$
6.159	. $1267750140123 \mathrm{E}+02$	-.2563732325216E-02	. $1266852699469 \mathrm{E}+02$
3.929	. $1612905922843 \mathrm{E}+02$	-.6998121219444E-02	. $1612278172232 \mathrm{E}+02$
1.712	. $3473475333535 \mathrm{E}+02$	-.3941495664279E-02	. $3472943575538 \mathrm{E}+02$
. 000	.7369529881157E+03	-.2867455687269E-15	.7369529881157E+03
.901901846E+00 .843478122E+00			
.220750513E+01			

Note: Inputs used to generate the scattering phase function are given in the header. The output is formatted into 4 columns, respectively
Theta, P (Theta), Q (Theta), U(Theta)
with Theta : scattering angle
(P,Q,U): 3 Stokes parameters not normalized to 4 PI

The last 5 values stand for, respectively:
wo(I) ; wo(I_ref) => single scatt. albedo
Qext(I)/Qext(I_ref) ; $1 \quad=>$ extinction coefficient
Qext(I_ref) => extinction coefficient at I_ref
[mic^-1]

Nb: Columns are for $\theta, P(\theta), Q(\theta), U(\theta)$. Last 5 values at the end of output file stand for $\omega_{o, \lambda}, \omega_{o, \lambda_{r e f}}, \sigma_{e, \lambda}^{*}, \sigma_{e, \lambda_{r e f}}^{*}, \sigma_{e, \lambda_{\text {ref }}}$.

MERIS/ ENVISAT-1
MEdium Resolution Imaging
Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: $16-$ Dec-10
Page: 105

9.2 UPRAD INPUT/OUTPUT DESCRIPTION

RTC/UdL-UPRAD Inputs

Input	Descriptive name	Source	Format	Unit	Range	Remarks
out_file	Output filename	-	string	n.u.	-	MERIS radiances at TOA
i_branch	Index to select the type of test case	-	int	n.u.	$\begin{gathered} {[1 ; 4]} \\ \text { or } \\ 11 \end{gathered}$	$\begin{aligned} & \text { 1-Land + Clear sky [SO/GAME] } \\ & \text { 2-Ocean + Clear sky [SO/SOAO] } \\ & \text { 3-Land + Cloud sky [GAME] } \\ & \text { 4-Land + Water vapor [GAME] } \\ & \text { 11-Primary scattering only [SO] } \end{aligned}$
n	MERIS band \#	-	int	n.u.	[1;15]	15 MERIS spectral bands (not used)
$U_{\mathrm{H}_{2} \mathrm{O}}$	Total water vapor amount	-	float	$\mathrm{g} / \mathrm{cm}^{2}$	≥ 0	$\begin{aligned} & - \text { GAME: } U_{\mathrm{H}_{2} \mathrm{O}}>0 \\ & -\mathrm{SO} / \text { SOAOO: } U_{\mathrm{H}_{2} \mathrm{O}}=0 \end{aligned}$
$U_{O_{2}}$	Total oxygen vapor amount	-	float	$\mathrm{g} / \mathrm{cm}^{2}$	≥ 0	$\begin{aligned} & - \text { GAME: } U_{O_{2}}>0 \text { (See note 1) } \\ & - \text { SO/SOAO: } U_{O_{2}}=0 \end{aligned}$
ESFT	Auxiliary data file (number of ESFT terms and ESFT coefficients [a_{l}, k_{l}] for $\mathrm{H}_{2} \mathrm{O}$ and O_{2} transmittivities in the 15 MERIS bands)	File provided by UdL/LISE institute	string	n.u.	-	Coefficients $\left(a_{l}, k_{l}\right)$ for computing $\mathrm{H}_{2} \mathrm{O} \& \mathrm{O}_{2}$ transm. above layer i - used in GAME branch only -filename: '/input/RKLM_AL'
P_{s}	Surface pressure	-	float	$h P a$	≥ 194	$\begin{aligned} & - \text { GAME: } \\ & \text { if }\left(P_{s}<1013.25\right) \Rightarrow \text { set } P_{s} \text { with MLS } \\ & -S O / \text { SOAO: } \\ & \text { if }\left(P_{s}<1013.25\right) \Rightarrow \text { call otc_rayleigh } \end{aligned}$
τ_{λ}^{R}	Rayleigh optical thickness (for $P_{s} \geq 1013.25 \mathrm{hPa}$)	Input value or output from otc_rayleigh	float	n.u.	[0;1[- GAME: input value $\begin{gathered} - \text { SO } / \text { SOAO: if }\left(P_{s}<1013.25\right) \\ \Rightarrow \tau_{\lambda}^{R} \text { recomputed } \\ \text { else input value } \end{gathered}$
aerosol1	Scattering phase matrix for aerosol layer \#1	Output file from scamat	string	n.u.	-	$\theta, P(\lambda, r, m, \theta), \omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}$ for the legendre polynomial development of scatt. phase matrix
$\tau_{550}^{a}(1)$	Aerosol optical thickness at 550 nm for layer \#1	-	float	n.u.	[0;10]	Realistic values in [0;0.8]
aerosol 2	Scattering phase matrix for aerosol layer \#2	Output file from scamat	string	n.u.	-	$\theta, P(\lambda, r, m, \theta), \omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix (See note 3)
$\tau_{550}^{a}(2)$	Aerosol optical depth at 550 nm for layer \#2	-	float	n.u.	[0;10]	Realistic values in [0;0.8]
aerosol3	Scattering phase matrix for aerosol layer \#3	Output file from scamat	string	n.u.	-	$\theta, P(\lambda, r, m, \theta), \omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix (See note 3)

Input	Descriptive name	Source	Format	Unit	Range	Remarks
$\tau_{550}^{a}(3)$	Aerosol optical depth at 550 nm for layer 3	-	float	n.u.	[0;10]	Realistic values in [0;0.8]
cloud 1	Scattering phase matrix for cloud layer 1	Output file from scamat	string	n.u.	-	$\text { GAME: } \theta, P(\lambda, r, m, \theta), \omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix (See note 2)
cloud 2	Scattering phase matrix for cloud layer 2	Output file from scamat	string	n.u.	-	GAME: $\theta, P(\lambda, r, m, \theta), \omega_{0, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix (See note 2)
cloud 3	Scattering phase matrix for cloud layer 3	Output file from scamat	string	n.u.	-	GAME: $\theta, P(\lambda, r, m, \theta), \omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix (See note 2)
phyto	Scattering phase matrix for phytoplankton	File provided by UdL/LISE (Petzold)	string	n.u.	-	$\operatorname{SOAO}: \theta, P(\lambda, r, m, \theta), \omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix
$\sigma_{e, \lambda}^{p}$	Extinction coefficient for phytoplankton	Input value or output from iop_water	float	m^{-1}	≥ 0	Only used in SOAO to compute the contribution of oceanic layers to upwelling radiances at TOA
$\omega_{\mathrm{o}, \lambda}^{p}$	Single scattering albedo for phytoplankton	Input value or output from iop water	float	n.u.	[0;1]	Only used in SOAO to compute the contribution of oceanic layers to upwelling radiances at TOA
spm	Scattering phase matrix for SPM	File provided by UdL/LISE (Petzold)	string	n.u.	-	$S O A O: \theta, P(\lambda, r, m, \theta), \omega_{0, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix
$\sigma_{e, \lambda}^{s p m}$	Extinction coefficient for SPM	Input value or output from iop_water	float	m^{-1}	≥ 0	Only used in SOAO to compute the contribution of oceanic layers to upwelling radiances at TOA
$\omega_{\mathrm{o}, \lambda}^{\text {spm }}$	Single scattering albedo for SPM	Input value or output from iop_water	float	n.u.	[0;1]	Only used in SOAO to compute the contribution of oceanic layers to upwelling radiances at TOA
$\sigma_{e, \lambda}^{\nu s}$	Extinction coefficient for yellow substance	Input value or output from iop_water	float	m^{-1}	≥ 0	Only used in SOAO to compute the contribution of oceanic layers to upwelling radiances at TOA
vertical	Vertical distribution of aerosol and cloud optical depths at ref. wavelength (550 nm)	File provided by UdL/LISE	string	n.u.	-	Altitudes from sea level to TOA. Note: Cloud 1: Layer 0 to 5 Cloud 2: Layer 6 to 15 Cloud 3: Layer $16+$
I_{s}	Maximum order of the Legendre polynomial decomposition (Fourier)	Optimal values after tests	int	n.u.	$\begin{gathered} \text { GAME } \\ {[4 ; 60]} \\ \text { SO/SOAO } \\ {[0 ; 80]} \end{gathered}$	- GAME: $I_{s}=60$ (optimal value) - SO/SOAO: $I_{s}=80$ (optimal value) - for total atm. transm. computation, select $I_{s}=0, \vartheta_{v}=-1$ (with $S O$)
ρ_{s}	Surface reflectance	-	float	n.u.	[0;1]	-GAME/SO: Lambertian surface -SOAO: ρ_{s} fixed to 0 for sea bottom
$E_{\text {o }}$	Solar constant at TOA	-	float	$W / m^{2} / \mu m$	1	Not used (fixed value in the code)

Input	Descriptive name	Source	Format	Unit	Range	Remarks
$\sigma_{e, \lambda}^{w}$	Extinction coefficient for pure oceanic water	Input value or output from iop_water	float	m^{-1}	≥ 0	Only used in SOAO to compute the contribution of oceanic layers to upwelling radiances at TOA
$\omega_{\mathrm{o}, \lambda}^{w}$	Single scattering albedo for pure oceanic water	Input value or output from iop_water	float	n.u.	[0;1]	Only used in SOAO to compute the contribution of oceanic layers to upwelling radiances at TOA
w_{s}	Wind speed at 0.5 m above sea level	-	float	m / s	≥ 0	Only used in SO to compute multiple reflexions (sun glint) on the windroughened sea surface (See note 4)
$\begin{gathered} n_{s} \\ n_{v} \\ n_{\Delta \varphi} \end{gathered}$	Nb of SZAs Nb of VZAs Nb of RAAs	-	int	n.u. n.u. n.u.	$\begin{aligned} & {[1 ; 60]} \\ & {[1 ; 60]} \\ & {[1 ; 25]} \end{aligned}$	For example $(3,16,25)$ respectively as used in a RTC intervalidation
ϑ_{s}	Solar zenith angles	-	float	deg.	[0;90[List of SZA values given in an increasing order. For example: 6.97; 29.96 or 69.99
ϑ_{v}	View zenith angles	-	float	deg.	$\begin{gathered} -1 \\ \text { or } \\ {[0 ; 90[} \end{gathered}$	List of VZA values given in a decreasing order. For example: $\begin{aligned} & 87.14 ; 81.43 ; 75.71 ; 69.99 ; 64.28 ; 58.56 ; \\ & 52.84 ; 47.12 ; 41.40 ; 35.68 ; 29.96 ; 24.24 ; \\ & 18.51 ; 12.76 ; 6.97 ; 0 \end{aligned}$
$\Delta \phi$	Relative azimuth angles between sun / view directions	-	float	deg.	[0;180]	List of RAA values given in an increasing order. For example: $\begin{aligned} & 0 ; 7.50 ; 15.00 ; 22.50 ; 30.00 ; 37.50 ; \\ & \text { 45.00; 52.50; } 60.00 ; 67.50 ; 75.00 ; 82.50 ; \\ & 90.00 ; 97.50 ; 105.00 ; 112.50 ; 120.00 ; \\ & 127.50 ; 135.00 ; 142.50 ; 150.00 ; 157.50 ; \\ & 165.00 ; 172.50 ; 180.00 \end{aligned}$
pol	Flag for polarization	-	int	п.и.	0 or 1	- GAME: not used - SO/SOAO: 0-no polarization 1 -with polarization

Notes: (1) For $U_{O_{2}}>0$, a vertical distribution of the oxygen vapor content is computed in RTC/GAME using a pressure profile derived from the MLS (33 layers). Thus the input $U_{O_{2}}$ represents a fraction of an oxygen vapor amount of $238.2 \mathrm{~g} \mathrm{~cm}^{-2}$. As an example, $U_{O_{2}}=1$ yields to a total oxygen vapor content of $238.2 \mathrm{~g} \mathrm{~cm}^{-2}$.
(2) For cloudly-sky conditions, only one aerosol layer can be defined to be run with RTC/GAME.
(3) For clear-sky conditions, if the aerosol scattering is simulated for a unique aerosol layer (i.e., aerosol layer \#1) then the aerosol scattering phase matrix of this layer has to be used as input for the two other aerosol layers.
(4) For a wind-roughened sea surface ($w_{s}>0$), RTC/SO needs a Cox-Munk binary file which contains the Fourier series terms of the Fresnel reflection matrix at the 'air-sea' interface generated with RTC/Wind. Note that 2 current versions of RTC/SO are available to be run with 2 differents sets of 3 Cox-Munk files:
(a) Cox-Munk file for a wind-speed of $1.5 \mathrm{~m} / \mathrm{s}\left(w_{s}<2\right), 3 \mathrm{~m} / \mathrm{s}\left(2 \leq w_{s}<5\right)$, and $7.2 \mathrm{~m} / \mathrm{s}\left(w_{s} \geq 5\right)$.
(b) Cox-Munk file for a wind-speed of $1.5 \mathrm{~m} / \mathrm{s}\left(w_{s}<3.25\right), 5 \mathrm{~m} / \mathrm{s}\left(3.25 \leq w_{s}<7.5\right)$, and $10 \mathrm{~m} / \mathrm{s}\left(w_{s} \geq 7.5\right)$.

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date	PO-RS-PAR-GS-0003 4 Rev.: A 16-Dec-10 Page: 108	

RTC/UdL-UPRAD Outputs

Input	Descriptive name	Source	Format	Unit	Range	Remarks
Inputs	Input data card	-	string	n.u.	-	if 'OutputFlag' $=1$ in 'uprad_def'
ϑ_{s}	Solar zenith angles	-	float	deg.	[0;90[List of input SZAs. For example: $\text { 6.97; 29.96; } 69.99$
ϑ_{v}	Viewing zenith angles	-	float	deg.	$\begin{gathered} -1 \\ \text { or } \\ {[0 ; 90[} \end{gathered}$	List of input VZAs. For example: $\begin{aligned} & 0 ; 6.97 ; 12.76 ; 18.51 ; 24.24 ; 29.96 ; \\ & 35.68 ; 41.40 ; 47.12 ; 52.84 ; 58.56 ; 64.28 ; \\ & 69.99 ; 75.71 ; 81.43 ; 87.14 \end{aligned}$
$\Delta \phi$	Relative azimuth angles between sun / view directions	-	float	deg.	[0;180]	List of input RAAs. For example: 0; 7.50; 15.00; 22.50; 30.00; 37.50; 45.00; 52.50; 60.00; 67.50; 75.00; 82.50; 90.00; 97.50; 105.00; 112.50; 120.00; 127.50; 135.00; 142.50; 150.00; 157.50; 165.00; 172.50; 180.00
$L_{\lambda}^{\uparrow(T O A)}$	MERIS normalized radiances (TOA)	-	float	$s r^{-1}$	≥ 0	$\begin{aligned} & \left(n_{s} \times n_{v} \times n_{\Delta \phi}\right) \text { values } \\ & \left(\text { solar irradiance }=1 \mathrm{~W} \cdot \mathrm{~m}^{-2} \cdot \mu \mathrm{~m}^{-1}\right) \end{aligned}$
$T_{\lambda}^{(\text {Total })}$	MERIS total atmospheric transmittance	-	float	n.u.	[0;1]	Total atmopheric transmittance for inputs $I_{s}=0, \vartheta_{v}=-1$

9.3 AUXILIARY FILE: 'UPRAD_DEF'

The Mie's code ('scamat.f') and RTC/UdL ('rtc_uprad.f') are controlled by a common auxiliary file (namely, 'uprad_def') which is read during the execution. This file contains input filenames, flags for additional output data and the definition of the 15 MERIS spectral bands.

'uprad_def' file

Input	Descriptive name	Format	Unit	Value	Code
RunOption	Structure of the input card: [0] with full description of input data (used for MERISAT), [1] without comment (used for RTC/Intervalidation)	int	n.u.	[0] or [1]scamat rtc_uprad	
Gauss_File1	GAUSS quadrature data $\left(\mu_{i}, w_{i}\right)$ using 41 directions	string	n.u.	-	scamat rtc_soao
Gauss_File2	GAUSS quadrature data $\left(\mu_{i}, w_{i}\right)$ using 24 directions	string	n.u.	-	step1
Gauss_File3	GAUSS quadrature data $\left(\mu_{i}, w_{i}\right)$ using 25 directions (including nadir)	string	n.u.	-	step2 step3 rtc_so
Wind_File1	Fourier series expansion of the Fresnel reflexion matrix for a wind-roughened sea surface (strind-speed)	string	n.u.	-	rtc_so

Par Bleu technolog i es	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } 109 \end{aligned}$	

Input	Descriptive name	Format	Unit	Value	Code
Wind_File2	Fourier series expansion of the Fresnel reflexion matrix for a wind-roughened sea surface (2 ${ }^{\text {nd }}$ wind-speed)	string	n.u.	-	rtc_so
Wind_File3	Fourier series expansion of the Fresnel reflexion matrix for a wind-roughened sea surface ($3^{\text {rd }}$ wind-speed)	string	n.u.	-	rtc_so
Beta_File	β_{l} coefficients derived from Legendre decomposition of	string	n.u.	-	rtc_soao
Petzold's phase function	Number of MERIS spectral bands	int	n.u.	-	rtc_uprad
MERIS band X	Nominal wavelength and FWMH for MERIS band X	float	nm	-	iop_water rtc_uprad
Output_structure	Structure of the output file: [0] without header, [1] with header (list of inputs)	int	n.u.	$[0]$ or [1]	rtc_uprad

Note: This 'uprad_def' file has to be created with an header of 4 lines. The last column indicates which codes from the RTC / UdL package use the inputs of 'uprad_def'.

Sample of 'uprad_def 'file

```
*** RTC/LISE - I/O files - Flags - MERIS Bands ***
******************************************************************
```

'RunOption	$={ }^{\prime}$	1	
'Gauss_File1	= '	'input/gauss41'	
'Gauss_File2	$={ }^{\prime}$	'input/gauss24'	
'Gauss_File3	= '	'input/gauss25'	
'Wind_File1	$=$	'input/wind01'	
'Wind_File2	= '	'input/wind05'	
'Wind_File3	$=$ '	'input/wind10'	
'Beta_File	$={ }^{\prime}$	'input/beta_petzold	
'Nb of bands	= '	15	
'MERIS band 01	$=$ '	412.5	10.0
'band 02	$=$ '	442.5	10.0
'band 03	= '	490.0	10.0
'band 04	$=$	510.0	10.0
'band 05	$=$ '	560.0	10.0
'band 06	$=$ '	620.0	10.0
'band 07	$=$	665.0	10.0
'band 08	$=$ '	681.25	7.5
'band 09	$=$	708.75	10.0
'band 10	$=$	753.75	7.5
'band 11	$=$ '	761.875	3.75
'band 12	$=$ '	778.75	15.0
'band 13	$=$	865.0	20.0
'band 14	$=$ '	885.0	10.0
'band 15	= '	900.0	10.0
OutputFlag	= '	0	

9.4 ADDITIONAL TOOLS

The following tools are useful to generate some inputs to the RTC/UdL, except for the RTC/PO2 module which is used in the MERISAT to generate some MERIS LUTs [AD-7]. Each tool is briefly described and the local variables are listed in an associated table.

9.4.1 OTC/COMPUTE_FSP

Description:

This module allows one to computes the forward scattering proportion $f_{s p}(\mu=0)$ of a scattering phase matrix $P(\lambda, r, n, \theta)$ using the polynomial $P_{n}^{1}(\cos \theta)$ derived from its Legendre expansion (see Section 2.8.4).

Processing:

Using the Legendre polynomials expansion of the phase function, the forward scattering proportion $f_{s p}(\mu=0)$ is computed as:

$$
f_{s p}(\mu=0)=\frac{1}{2} \cdot \sum_{l=0}^{L}\left(\beta_{l} p_{l}(\mu=0) \cdot \sum_{i=1}^{N} w_{i} \cdot p_{l}\left(\mu_{i}\right)\right)
$$

With L the number of Legendre polynomials, N the number of directions used in the Gauss quadrature to describe the angular variation of $P(\lambda, r, n, \theta), \mu_{i}$ the cosine of Gaussian angle and w_{i} the associated weight.

Tool:

'compute_FSP.f'

Input / Output description:

OTC/COMPUTE_FSP - Input/Output

Input/Outpu t	Descriptive name	Source	Format	Unit	I / O	Remarks
$P a_{-}$file	Input filename	-	string	n.u.	I	Phase function file with $\left.P_{a}(\Theta, \lambda)\right)$
Fa_file	Output filename	-	float	n.u.	I	Phase function file with $\left.f_{s p}(\theta, \lambda)\right)$
$\theta, f_{s p, \lambda}(\theta)$	Zenith angle \& forward scattering proportion	-	float	n.u.	O	

MERIS/ ENVISAT-1
MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: 16-Dec-10
Page: 111

9.4.2 RTC/GAUSS

Description:

This module allows one to generate the Gaussian angles (μ) and associated weights (w) using the Gauss-Legendre quadrature (see Section 12.6). This is used to numerically solve the RTE within the 'Atmosphere-Land / Ocean' system (see Section 6.2.2).

Processing:

The Gauss-Legendre quadrature is fully described in Section 12.6.

Tool:
'rtc_gauss.f'

Input description:

\square

Input	Descriptive name	Source	Format	Unit	Range	Remarks
n_{g}	Number of Gauss angles	-	int	n.u.	$[2 ; 80]$	- GAME, SO: $n_{g}=48$ - SOAO: $n_{g}=80$
φ_{i}, φ_{f}	Azimuth angular interval	-	float	deg.	$[0 ; 180]$	Selected in $\left[0 ; 180^{\circ}\right]$

Output description:

RTC/GAUSS - Outputs

Output	Descriptive name	Source	Format	Unit	Range	Remarks
μ_{i}	Gauss angle values	-	float	n.u.	$[0 ; 1]$	$\left(n_{g} / 2\right)$ values
w_{i}	Associated weights	-	float	n.u.	$[0 ; 1]$	-

Nb: For RTC/SO and RTC/SOAO the exact nadir angle $\left(\mu_{o}=1, w_{o}=0\right)$ is added in the Gauss quadrature output file for a better estimate of the upwelling nadir radiance.

9.4.3 RTC/PO2

Description:

This module allows one to compute the transmittance integrated over each of the 21 shifted MERIS O_{2} filters (i.e., each of the 21 lines corresponding to the 21 spectral shifts of $\pm 0.1 \mathrm{~nm}$ applied on the MERIS 02 filter centred at 761.75 nm), as a function of the product of the air mass (M) by the square of the surface pressure $\left(P_{s}\right)$. Each of the 21 output files will then be used in the MERISAT tool for retrieving the ESFT coefficients (a_{l}, k_{l}) which rely the product ($M . P_{s}^{2}$) to the O_{2} transmittance (see Section 2.9).

Note that this code is not used in the current generation of MERIS-O2 LUTs (i.e., transmittances and corrective factors for the surface pressure) for the $3^{\text {rd }}$ MERIS data reprocessing.

Processing:

From the pre-computed monochromatic absorption coefficients, calculated with the LBL model and the HITRAN-2000 database ([RD-21], [RD-64]) for a standard atmospheric profile [RD-16], monochromatic transmittances T_{v} (for the total atmosphere) can be expressed as a function of the airmass (M) and the surface pressure $\left(P_{s}\right)$. These monochromatic transmittances are defined as the product of intrinsic transmittances within the atmospheric layers:

$$
T_{v}\left(M, P_{s}\right)=\prod_{P=P_{s}}^{0} \exp \left[-k_{v}(P) \cdot U_{O_{2}}(P) \cdot M\right]
$$

where $k_{v}(P)$ and P are respectively the monochromatic absorption coefficients and the pressure at each altitude level.

A set of transmittances is generated for different (M, P) values. Transmittance T integrated over the MERIS spectral band (from v_{1} to v_{2}) can then be computed as a function of the filter spectral response f_{v} as follows:

$$
T\left(M, P_{s}\right)=\frac{\int_{v_{1}}^{v_{2}} f_{v} \cdot T_{v}\left(M, P_{s}\right) \cdot d v}{\int_{v_{1}}^{v_{2}} f_{v} \cdot d v}
$$

Tool:

```
'rtc_po2.f'
```


Input description:

Three input files are required for running the RTC/PO2 module:

- data_ O2: atmospheric parameters description,
- data_LBL_O2: monochromatic absorption coefficients computed with the LBL code,
- MERIS-O2: filter at 761.75 nm with the same spectral resolution as data from 'data_LBL_O2'.

The number of altitude levels is fixed to 49 in the RTC/PO2 module.

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref. Issue Date	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } 113 \end{aligned}$	

RTC/PO2 [data_O2 input file]

Input	Descriptive name	Source	Format	Unit	Range	Remarks
h	Altitude above sea level	-	float	$k m$	≥ 0	Not used
P_{s}	Surface pressure	-	float	$h P a$	≥ 0	-
T	Temperature	-	float	K	≥ 0	Not used
$U_{O_{2}}$	Absorber amount	-	float	${\text { mol. } \mathrm{cm}^{-2}}$	≥ 0	-

RTC/PO2 [data_LBL_O2 input file]

Input	Descriptive name	Source	Format	Unit	Range	Remarks
v	Wavenumber	-	float	cm^{-1}	≥ 0	$\left[12800-13400 \mathrm{~cm}^{-1}\right]$
k_{v}	Monochromatic absorption coefficient values at each altitude level	-	float	$\mathrm{cm}^{2} g^{-1}$	≥ 0	-

Output description:

Twenty-one output files (namely resmp2-xx) are generated by PO2 module. Each file contains 80 transmittance values as a function of the airmassand the pressure.

RTC/PO2 Outputs [resmp2-xx file]

Output	Descriptive name	Source	Format	Unit	Range	Remarks
$M . P_{s}^{2}$	Airmass by the square of pressure	-	float	$h P a^{2}$	≥ 0	-
$T_{O_{2}}$	Oxygen transmittivity	-	float	n.u.	$[0 ; 1]$	-

9.4.4 RTC/WIND

Description:

This module generates the Fourier series expansion of the Fresnel reflexion matrix for a Cox-Munk surface model. This is used to simulate the sun glint over a wind-roughened sea surface characterized by a Cox-Munk wave slope distribution (see Section 5).

Processing:

The Fourier series expansion of the Fresne/ reflexion matrix is performed with the following steps:

MERIS/ ENVISAT-1
MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date - 16-Dec-10
Page: 114

- Step1: Computation of the Legendre polynomial representation of the Fresne/ matrix (i.e., the sets of $L+1$ coefficients: $\alpha_{l}, \beta_{l}, \gamma_{l}, \zeta_{l}$; see Section 6.2.2.2).
- Step2: Expansion of the Cox-Munk wave slope distribution into a Fourier series
- The probability function is computed for each set of Gaussian angles.
- The number of terms required for the integration step (which determines the Fourier components) is tested against a limiting contribution since the series monotonically decreases.
- The integration to determine Fourier coefficients is carried out. This involves a bisection technique which subdivides the integration region into successively double the number of cell until convergence is reached.
- Step3: Computation of the Fourier serie components associated with the Legendre representation of the reflection matrix.

Results are then combined with Fourier representation of the Cox-Munk wave slope distribution. Final result does not match with the input data form to the RTC/SO due to the angular decomposition mis-matches.

- Step4: Re-write the combined results from step3 in order to be used as input to the RTC/SO.

Tools:

The four steps of the methodology presented above are completed with the following tools:
'step1.f ', 'step2.f ', 'step3.f ' and 'step4.f ' (which make up the RTC/ WI ND package).

Input / Output description:

RTC/WIND [step1] - Input/Output						
In/Output	Descriptive name	Source	Format	Unit	I / O	Remarks
μ_{i}, w_{i}	Gauss-Legendre quadrature	Output from RTC/GAUSS	ASCII file	n.u.	I	Internal file to 'step1.f', built with $n_{g}=48$
step1.out	Legendre polynomial coefficients	-	ASCII file	n.u.	O	$\alpha_{l}, \beta_{l}, \gamma_{l}, \zeta_{l}$

RTC/WIND [step2] - Input/Output

Input/Output	Descriptive name	Source	Format	Unit	I / O	Remarks
μ_{i}, w_{i}	Gauss-Legendre quadrature	Output from RTC/GAUSS	ASCII file	n.u.	I	Internal file to 'step1.f', built with $n_{g}=48+\left(\mu_{0}=1, w_{0}=0\right)$
w_{s}	Wind speed	-	float	$m s^{-1}$	I	-
step2.out	Fourier series expansion of Cox- Munk reflection	-	Binary file	n.u.	O	$\alpha_{l}, \beta_{l}, \gamma_{l}, \zeta_{l}$

MERIS/ ENVISAT-1
MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: $16-$ Dec-10 Page: 115

RTC/WIND [step3] - Input/Output

Input/Output	Descriptive name	Source	Format	Unit	I / O	Remarks
μ_{i}, w_{i}	Gauss-Legendre quadrature	Output from RTC/GAUSS	ASCII file	n.u.	I	Internal file to 'step1.f', built with $n_{g}=48$
w_{s}	Wind speed	-	float	$m s^{-1}$	I	
step1.out	Legendre polynomial coefficients	Output from RTC/Wind [step1]	ASCII file	n.u.	I	$\alpha_{l}, \beta_{l}, \gamma_{l}, \zeta_{l}$
step2.out	Fourier series expansion of Cox- Munk reflection	Output from RTC/Wind [step2]	Binary file	n.u.	I	
step3.out	Fourier series component associated with Legendre polynomial of Cox- Munk reflection	-	Binary file	n.u.	O	

RTC/WIND [step4] - Input/Output

Input/Output	Descriptive name	Source	Format	Unit	I/O	Remarks
windfile	Output filename	-	string	n.u.	I	windxx, $x x$ digits for w_{s} value
step3.out	Fourier series component associated with Legendre polynomial of Cox- Munk reflection	Output from RTC/Wind [step3]	Binary file	n.u.	I	
windxx	Fourier series expansion of the Fresnel reflexion	-	Binary file	n.u.	O	-

9.4.5 OTC/RAYLEIGH

Description:

This module computes the total Rayleigh optical thickness (τ_{λ}^{R}) for a purely molecular atmosphere (dry air).

Processing:

τ_{λ}^{R} is estimated with the formula from [RD-13] (see Section 3.1.2, Equation 103)

Tool:

'otc_rayleigh.f'

Input / Output description:
OTC/RAYLEIGH - Input/Output

Input/Output	Descriptive name	Source	Format	Unit	I/O	Remarks
λ	MERIS wavelength	-	float	μm	I	-
P_{s}	Surface pressure	-	float	$h P a$	I	-
τ^{R}	Rayleigh optical depth	-	float	n.u.	O	-

9.4.6 OTC/OZONE

Description:

This module computes the total Ozone optical thickness $\left(\tau^{O_{3}}\right)$. This module is not used for the MERIS LUTs generation for the level- 2 processing.

Processing:

$\tau^{O_{3}}$ are pre-computed values for each of all the 15 MERIS bands [RD-24].

Tool:

> 'otc_ozone.f'

Input / Output description:

OTC/OZONE - Input/Output

Input/Output	Descriptive name	Source	Format	Unit	I/O	Remarks
n	MERIS band	-	int	n.u.	I	-
$U_{O_{3}}$	Ozone amount	-	float	cm-atm.	I	-
$\tau^{o_{3}}$	Ozone optical depth	-	float	n.u.	O	-

MERIS/ ENVISAT-1

MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: $16-$ Dec-10 Page: 117

9.4.7 IOP/WATER

Description:

This module computes the IOPs of each oceanic component according to its concentration in each of all the 15 MERIS spectral bands. These IOPs are the extinction coefficients ($\left.\sigma_{e, \lambda}^{w}, \sigma_{e, \lambda}^{p}, \sigma_{e, \lambda}^{y s}, \sigma_{e, \lambda}^{s p m}\right)$ and the single scattering albedos $\left(\omega_{0, \lambda}^{w}, \omega_{0, \lambda}^{p}, \omega_{0, \lambda}^{s p m}\right)$ for pure sea water, phytoplankton, yellow substance (or Gelbstoff) and SPM (inorganic particles). The latters allow one to determine the optical properties of the oceanic water used for the radiative transfer computation (RTC/SOAO).

Note that this code is not used in the current generation of MERIS-O2 LUTs (i.e., transmittances and corrective factors for the surface pressure) for the $3^{\text {rd }}$ MERIS data reprocessing.

Processing:

IOPs for each of all the oceanic components are fully described in Section 4.

Tool:

'iop_water.f'

Input / Output description:
\square
$\left.\begin{array}{|c|l|c|c|c|c|c|}\hline \text { Input/Output } & \text { Descriptive name } & \text { Source } & \text { Format } & \text { Unit } & \text { I/O } & \text { Remarks } \\ \hline \text { IOP_file } & \text { Output filename } & - & \text { string } & \text { n.u. } & \mathrm{I} & - \\ \hline \text { chl } & \begin{array}{l}\text { Chlorophyll } \\ \text { concentration }\end{array} & - & \text { float } & m g m^{-3} & \mathrm{I} & - \\ \hline \text { spm } & \text { SPM concentration } & - & \text { float } & g m^{-3} & \mathrm{I} & \\ \hline \text { IOPS } & \begin{array}{l}\text { Single scattering albedo } \\ \text { and extinction } \\ \text { coefficient for all the } \\ \text { oceanic compounds and } \\ \text { all the 15 MERIS bands }\end{array} & - & \begin{array}{c}\text { ASCII } \\ \text { file }\end{array} & \text { n.u., } m^{-1} & \mathrm{O} & 15 \times\left(\begin{array}{l}\omega_{0, \lambda}^{\text {spm }}, \sigma_{e, \lambda}^{\text {spm }} \\ \omega_{0, \lambda}^{p}, \sigma_{e, \lambda}^{p} \\ \sigma_{e, \lambda}^{y s}\end{array}\right.\end{array}\right)$

Figure 1: Overview of the RTC/UdL package

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: $16-$ Dec-10 Page: 119

10. APPENDIX-2: SPECIFICATION OF RTC/FUB PACKAGE

An overview of the RTC / FUB package is displayed on Figure 2.

10.1 MIE INPUT/OUTPUT DESCRIPTION

10.1.1 Input/Output description

MIE Inputs

Input	Descriptive name	Source	Format	Unit	Range	Remarks
scamat_out	Output filename	-	string	n.u.	-	Scattering phase matrix
λ	Wavelength	-	float	$n m$	[250; 4000]	15 MERIS wavelengths in [400;900]
$\lambda_{\text {ref }}$	Reference wavelength	-	float	$n m$	[250; 4000]	15 MERIS wavelengths in [400;900]
n_{2}	Number of scattering angles	-	int	п.и.	171	Not used (fixed value in the code)
N	Number of particle size distributions	-	int	n.и.	[1;5]	Maximum of 5 particle size distributions
$m_{\lambda}(i), k_{\lambda}(i)$	Real and imaginary parts of refractive index at wavelength λ for size distribution i	-	float	n.u. / n.u.	$\begin{aligned} & m_{\lambda}>0 \\ & k_{\lambda} \geq 0 \end{aligned}$	$2 \times N$ values
$m_{r e f}(i), k_{\text {ref }}(i)$	Real and imaginary parts of refractive index at reference wavelength $\lambda_{\text {ref }}$ for size distribution i	-	float	n.u. / n.u.	$\begin{aligned} m_{r e f} & >0 \\ k_{r e f} & \geq 0 \end{aligned}$	$2 \times N$ values
$\begin{gathered} r_{\min }(i), r_{\max }(i) \\ d r(i) \end{gathered}$	Minimum, maximum radii and size increment for size distribution i	-	float	$\begin{gathered} \mu m / \mu m \\ \mu m \end{gathered}$	$\begin{gathered} r_{\text {min }}, r_{\text {max }} \geq 0 \\ d r \geq 10^{-4} \end{gathered}$	$3 \times N$ values Note: if $r_{\min } \leq 0 \Rightarrow r_{\min }=10^{-4}$
$\begin{gathered} \operatorname{ind}(i) \\ a(i), b(i) \end{gathered}$	Index of selected particle size distribution and its 2 parameters for size distribution i	-	float	$\mu m / n . u$.	$\begin{gathered} \text { ind: }[1 ; 5] \\ (a, b)>0 \end{gathered}$	$2 \times N$ values ind $=1$ (Junge power-law): $a=r_{o}, b=\alpha$ ind $=2$ (Log normal): $a=r_{m}, b=\sigma$ ind $=3$ (Modified Gamma): $a=\alpha, b=b$ ind $=4$ (Gamma-Hansen): $a=r_{i}, b=r_{b}$ ind $=5$ (Real size distribution)
$n(i) / n$	Component mixing ratio for each size distribution i	-	float	n.и.]0;1]	N values
Loop on the inputs \#6, 7, 8, 9 \& 10 for the size distributions (i+1), (i+2, (i+3) and (i+4) if necessary!						
Ratio	Volume or particle ratio	-	float	n.и.	1 or 2	1 -Volume ratio 2-Particle ratio

Nb: The size increment of 10^{-4} is a critical value acceptable as the limit of Mie's theory. Better acceptable limit would be a value of 10^{-3}.

MERIS/ ENVISAT-1
MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: $16-$ Dec-10
Page: 120

MIE Outputs

Output	Descriptive name	Source	Format	Unit	Range	Remarks
Inputs	Input Mie data	-	string	n.u.	-	-
θ	Scattering angles	-	float	deg.	-	n_{2} values
$P(\theta)$	$1^{\text {st }}$ Stokes parameter	-	float	$n . u$.	-	n_{2} values
$Q(\theta)$	$2^{\text {nd }}$ Stokes parameter	-	float	n.u.	-	n_{2} values
$U(\theta)$	$3^{\text {rd }}$ Stokes parameter	-	float	n.u.	-	n_{2} values
$V(\theta)$	$4^{\text {th }}$ Stokes parameter	-	float	n.u.	-	n_{2} values
$\omega_{o, \lambda}, \omega_{o, \lambda_{\text {ref }}}$	Single scattering albedos at wavelengths λ and $\lambda_{\text {ref }}$	-	float	n.u.	$[0 ; 1]$	-
$\sigma_{e, \lambda}^{*}, \sigma_{e, \lambda_{\text {ref }}^{*}}$	Normalized extinction coefficients at the wavelengths λ and $\lambda_{\text {ref }}$	-	float	n.u.	≥ 0	Values normalized to $\sigma_{e, \lambda_{\text {ref }}}$
$\sigma_{e, \lambda_{\text {ref }}}$	Extinction coefficient at the wavelength $\lambda_{\text {ref }}$	-	float	$\mu m^{-1} . p c l^{-1}$	≥ 0	Values normalized to $\sigma_{e, \lambda_{\text {ref }}}$

Nb: Stoke parameters are normalized to 4π.

10.1.2 Input/Output sample

FUB MIE INPUT CARD

'sca_out:	\ldots	out_sc_test_12.s			scamat_out
'wavelength:	'	443.00			λ
'ref. wavelength:	865.00				$\lambda_{\text {ref }}$
'number of angles (n2):	171				n_{2}
'number of size distributions (N):	3				N
'real, imag. refrac. index (m_i,k_i)	1:'	1.530	0.500E		$m_{\lambda}(1), k_{\lambda}(1)$
'ref. refrative index (m_r_i,k_r_i)	1:'	1.520	0.121E		$m_{r e f}(1), k_{r e f}(1)$
'min,max,step of particles (r0,rf,dr)	1:'	0.001	20.000	0.001	$r_{\text {min }}(1), r_{\text {max }}(1), d r(1)$
'size distri. parameters (ind,a,b)	1:'	2	0.005	2.99	ind (1), $a(1), b(1)$
'volume percentages (n - i / n):	1:'	0.93877			$n(1) / n$
'real, imag. refrac. index (m_i,kio)	2:'	1.530	0.800E-02		$m_{\lambda}(2), k_{\lambda}(2)$
'ref. refrative index (m_r_i,k_r_i)	2:'	1.520	0.800E-02		$m_{r e f}(2), k_{r e f}(2)$
'min,max,step of particles (r0,rf,dr)	2:'	0.01	40.000	0.01	$r_{\text {min }}(2), r_{\text {max }}(2), d r(2)$
'size distri. parameters (ind,a,b)	2:'	2	0.5	2.99	ind (2), $a(2), b(2)$
'volume percentages (n - i / n):	2:'	$2.27 \mathrm{E}-06$			$n(2) / n$
'real, imag. refrac. index (m_i,ki)	3:'	1.750	0.455E-00		$m_{\lambda}(3), k_{\lambda}(3)$
'ref. refrative index (m_r_i,k_r_i)	3:'	1.750	0.430E-00		$m_{r e f}(3), k_{r e f}(3)$
'min,max,step of particles (r0,rf,dr)	3:'	0.001	20.000	0.001	$r_{\min }(3), r_{\max }(3), d r(3)$

Par Bleu technolog i es	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \end{aligned}$	

'size distri. parameters (ind,a,b)	3:'	2	0.0118	2.00	ind (3), $a(3), b(3)$
'volume percentages (n _ i / n):	3:'	0.06123			$n(3) / n$
'volume (1) and particle (2) ratio :		2			ratio

FUB MIE OUTPUT FILE

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } 122 \end{aligned}$	

28	4.4	.1195E+01	-.4295E-03	.1195E+01	-. 1375E-01
29	4.6	.1167E+01	-.3987E-03	.1167E+01	-. 1375E-01
30	4.8	.1141E+01	-.3667E-03	.1141E+01	-.1379E-01
31	5.0	.1118E+01	-.3339E-03	.1117E+01	-.1386E-01
32	6.0	.1021E+01	-.1675E-03	.1020E+01	-.1459E-01
33	7.0	.9467E+00	-.1316E-04	.9459E+00	-.1564E-01
34	8.0	.8851E+00	.1167E-03	.8841E+00	-.1680E-01
35	9.0	.8316E+00	.2165E-03	.8304E+00	-.1793E-01
36	10.0	.7839E+00	.2841E-03	.7824E+00	-.1900E-01
37	11.0	.7405E+00	.3188E-03	.7388E+00	-.1997E-01
38	12.0	.7006E+00	.3208E-03	.6987E+00	-.2081E-01
39	13.0	.6637E+00	.2903E-03	.6615E+00	-.2153E-01
40	14.0	.6292E+00	.2279E-03	.6268E+00	-.2213E-01
41	15.0	. $5970 \mathrm{E}+00$.1346E-03	. $5944 \mathrm{E}+00$	-.2260E-01
42	16.0	. $5668 \mathrm{E}+00$.1172E-04	.5639E+00	-.2297E-01
43	17.0	. $5383 \mathrm{E}+00$	-.1380E-03	.5353E+00	-.2323E-01
44	18.0	. $5114 \mathrm{E}+00$	-. 3111E-03	.5083E+00	-.2340E-01
45	19.0	.4860E+00	-.5034E-03	.4828E+00	-.2348E-01
46	20.0	.4620E+00	-.7110E-03	.4586E+00	-.2349E-01
47	21.0	.4392E+00	-.9304E-03	.4358E+00	-.2344E-01
48	22.0	.4177E+00	-.1159E-02	.4141E+00	-.2332E-01
49	23.0	.3972E+00	-.1393E-02	. $3936 \mathrm{E}+00$	-.2315E-01
50	24.0	. $3779 \mathrm{E}+00$	-.1632E-02	. $3742 \mathrm{E}+00$	-.2294E-01
51	25.0	. $3595 \mathrm{E}+00$	-.1874E-02	. $3557 \mathrm{E}+00$	-.2268E-01
52	26.0	. $3420 \mathrm{E}+00$	-.2118E-02	.3381E+00	-.2239E-01
53	27.0	. $3254 \mathrm{E}+00$	-.2361E-02	. $3215 \mathrm{E}+00$	-.2206E-01
54	28.0	. $3097 \mathrm{E}+00$	-.2604E-02	.3057E+00	-.2170E-01
55	29.0	.2947E+00	-.2845E-02	.2906E+00	-.2132E-01
56	30.0	.2805E+00	-.3084E-02	.2763E+00	-.2091E-01
57	32.0	.2542E+00	-.3552E-02	.2499E+00	-.2004E-01
58	34.0	.2305E+00	-.4004E-02	.2260E+00	-.1911E-01
59	36.0	.2091E+00	-.4434E-02	.2044E+00	-.1814E-01
60	38.0	.1898E+00	-.4840E-02	.1849E+00	-. 1715E-01
61	40.0	.1723E+00	-.5217E-02	.1673E+00	-. $1615 \mathrm{E}-01$
62	42.0	.1566E+00	-.5565E-02	.1514E+00	-.1516E-01
63	44.0	.1425E+00	-.5880E-02	.1371E+00	-.1418E-01
64	46.0	.1297E+00	-.6162E-02	.1241E+00	-.1322E-01
65	48.0	.1181E+00	-.6410E-02	.1124E+00	-.1229E-01
66	50.0	.1077E+00	-.6625E-02	.1019E+00	-.1140E-01
67	52.0	.9834E-01	-.6807E-02	.9231E-01	-. 1053E-01
68	54.0	.8987E-01	-.6956E-02	.8369E-01	-.9707E-02
69	56.0	.8223E-01	-.7073E-02	.7588E-01	-.8919E-02
70	58.0	.7533E-01	-.7161E-02	.6882E-01	-.8168E-02
71	60.0	.6909E-01	-.7219E-02	.6243E-01	-.7455E-02
72	62.0	.6346E-01	-.7250E-02	. $5664 \mathrm{E}-01$	-.6779E-02
73	64.0	.5837E-01	-.7255E-02	.5139E-01	-.6140E-02
74	66.0	.5377E-01	-.7235E-02	.4662E-01	-.5535E-02
75	68.0	.4961E-01	-.7193E-02	.4230E-01	-.4964E-02
76	70.0	.4585E-01	-.7129E-02	.3837E-01	-.4424E-02
77	72.0	.4245E-01	-.7045E-02	.3480E-01	-.3915E-02
78	74.0	. $3937 \mathrm{E}-01$	-.6943E-02	.3155E-01	-.3435E-02
79	76.0	. $3658 \mathrm{E}-01$	-.6824E-02	.2859E-01	-.2982E-02
80	78.0	.3406E-01	-.6689E-02	.2589E-01	-.2554E-02
81	80.0	. $3177 \mathrm{E}-01$	-.6540E-02	.2344E-01	-.2150E-02
82	82.0	.2971E-01	-.6378E-02	.2119E-01	-.1769E-02
83	84.0	.2784E-01	-.6204E-02	.1914E-01	-.1408E-02
84	86.0	.2615E-01	-.6019E-02	.1727E-01	-.1066E-02
85	88.0	.2462E-01	-.5825E-02	.1555E-01	-.7419E-03
86	90.0	.2325E-01	-.5621E-02	.1398E-01	-.4344E-03
87	92.0	.2200E-01	-.5410E-02	.1254E-01	-.1421E-03
88	94.0	.2089E-01	-.5191E-02	.1122E-01	.1363E-03
89	96.0	.1988E-01	-.4965E-02	.1000E-01	.4017E-03
90	98.0	.1898E-01	-.4733E-02	.8888E-02	.6554E-03
91	100.0	.1818E-01	-.4495E-02	.7859E-02	.8984E-03
92	102.0	.1746E-01	-.4251E-02	.6911E-02	.1132E-02

93	104.0	.1683E-01	-. $4001 \mathrm{E}-02$.6035E-02	.1356E-02
94	106.0	.1627E-01	-.3746E-02	. $5225 \mathrm{E}-02$.1572E-02
95	108.0	.1578E-01	-.3484E-02	.4475E-02	.1781E-02
96	110.0	.1536E-01	-.3217E-02	. $3778 \mathrm{E}-02$.1984E-02
97	112.0	.1500E-01	-.2944E-02	. $3131 \mathrm{E}-02$.2181E-02
98	114.0	.1470E-01	-.2664E-02	.2527E-02	.2373E-02
99	116.0	.1445E-01	-.2378E-02	.1963E-02	.2561E-02
100	118.0	.1426E-01	-.2084E-02	.1433E-02	.2745E-02
101	120.0	.1411E-01	-.1782E-02	.9354E-03	.2926E-02
102	122.0	.1402E-01	-.1471E-02	.4650E-03	. $3104 \mathrm{E}-02$
103	124.0	.1397E-01	-.1150E-02	.1831E-04	.3280E-02
104	126.0	.1397E-01	-.8187E-03	-.4081E-03	.3452E-02
105	128.0	.1402E-01	-.4755E-03	-.8180E-03	.3623E-02
106	130.0	.1411E-01	-.1193E-03	-.1215E-02	. $3790 \mathrm{E}-02$
107	132.0	. $1425 \mathrm{E}-01$.2513E-03	-.1603E-02	. $3954 \mathrm{E}-02$
108	134.0	.1444E-01	.6376E-03	-.1986E-02	.4113E-02
109	136.0	.1467E-01	.1041E-02	-.2369E-02	.4266E-02
110	138.0	.1494E-01	.1462E-02	-.2756E-02	.4411E-02
111	140.0	.1527E-01	.1903E-02	-.3155E-02	.4543E-02
112	142.0	.1564E-01	.2363E-02	-.3570E-02	.4657E-02
113	144.0	.1605E-01	.2841E-02	-.4012E-02	.4748E-02
114	146.0	.1651E-01	.3335E-02	-.4490E-02	.4805E-02
115	148.0	. $1700 \mathrm{E}-01$.3840E-02	-. 5018E-02	.4816E-02
116	150.0	.1752E-01	.4347E-02	-.5610E-02	.4762E-02
117	151.0	. $1778 \mathrm{E}-01$.4596E-02	-.5936E-02	.4705E-02
118	152.0	.1805E-01	.4841E-02	-.6285E-02	.4622E-02
119	153.0	.1832E-01	.5077E-02	-.6660E-02	.4511E-02
120	154.0	.1859E-01	.5301E-02	-.7063E-02	.4368E-02
121	155.0	.1885E-01	.5509E-02	-.7498E-02	.4189E-02
122	156.0	.1910E-01	.5696E-02	-.7967E-02	.3972E-02
123	157.0	.1935E-01	.5858E-02	-.8473E-02	. $3712 \mathrm{E}-02$
124	158.0	.1959E-01	.5987E-02	-.9020E-02	. $3408 \mathrm{E}-02$
125	159.0	.1981E-01	.6079E-02	-.9611E-02	.3059E-02
126	160.0	.2003E-01	.6126E-02	-.1025E-01	.2666E-02
127	161.0	.2024E-01	.6123E-02	-.1093E-01	.2230E-02
128	162.0	.2044E-01	.6065E-02	-.1167E-01	.1756E-02
129	163.0	.2065E-01	.5950E-02	-.1246E-01	.1255E-02
130	164.0	.2089E-01	.5776E-02	-.1330E-01	.7419E-03
131	165.0	.2116E-01	.5549E-02	-.1419E-01	.2392E-03
132	166.0	.2149E-01	.5273E-02	-.1516E-01	-.2294E-03
133	167.0	.2190E-01	.4955E-02	-.1619E-01	-.6445E-03
134	168.0	.2241E-01	.4600E-02	-.1732E-01	-.9917E-03
135	169.0	.2302E-01	.4212E-02	-.1853E-01	-.1261E-02
136	170.0	.2374E-01	.3796E-02	-.1983E-01	-.1445E-02
137	171.0	.2456E-01	.3355E-02	-.2120E-01	-.1542E-02
138	172.0	.2548E-01	.2896E-02	-.2263E-01	-.1552E-02
139	173.0	.2646E-01	.2426E-02	-.2409E-01	-.1480E-02
140	174.0	.2749E-01	.1956E-02	-.2555E-01	-.1336E-02
141	175.0	.2852E-01	.1497E-02	-.2697E-01	-.1135E-02
142	175.2	.2872E-01	.1408E-02	-.2724E-01	-.1090E-02
143	175.4	.2892E-01	.1320E-02	-.2751E-01	-.1043E-02
144	175.6	.2911E-01	.1233E-02	-.2778E-01	-.9954E-03
145	175.8	.2930E-01	.1148E-02	-.2804E-01	-.9467E-03
146	176.0	.2949E-01	.1064E-02	-.2830E-01	-.8973E-03
147	176.2	.2967E-01	.9822E-03	-.2856E-01	-.8474E-03
148	176.4	.2984E-01	.9019E-03	-.2881E-01	-.7970E-03
149	176.6	. $3001 \mathrm{E}-01$.8236E-03	-.2905E-01	-.7465E-03
150	176.8	. $3017 \mathrm{E}-01$.7473E-03	-.2929E-01	-.6959E-03
151	177.0	. $3033 \mathrm{E}-01$.6733E-03	-.2952E-01	-.6453E-03
152	177.2	. $3047 \mathrm{E}-01$.6015E-03	-.2975E-01	-.5948E-03
153	177.4	. $3061 \mathrm{E}-01$.5322E-03	-.2997E-01	-.5444E-03
154	177.6	. $3074 \mathrm{E}-01$.4656E-03	-.3018E-01	-.4942E-03
155	177.8	. $3086 \mathrm{E}-01$.4017E-03	-.3038E-01	-.4439E-03
156	178.0	. $3097 \mathrm{E}-01$.3410E-03	-.3057E-01	-.3937E-03
157	178.2	. $3107 \mathrm{E}-01$.2835E-03	-.3075E-01	-.3433E-03

158	178.4	. $3116 \mathrm{E}-01$.2298E-03	-. 3092E-01	-.2927E-03
159	178.6	. $3124 \mathrm{E}-01$.1802E-03	-.3107E-01	-.2423E-03
160	178.8	. $3132 \mathrm{E}-01$.1353E-03	-.3121E-01	-.1924E-03
161	179.0	. $3138 \mathrm{E}-01$.9579E-04	-.3132E-01	-.1440E-03
162	179.1	. $3142 \mathrm{E}-01$.7824E-04	-.3137E-01	-.1208E-03
163	179.2	. $3144 \mathrm{E}-01$.6228E-04	-.3142E-01	-.9875E-04
164	179.3	. $3147 \mathrm{E}-01$.4799E-04	-.3145E-01	-.7800E-04
165	179.4	. $3150 \mathrm{E}-01$. $3545 \mathrm{E}-04$	-.3149E-01	-.5896E-04
166	179.5	. $3152 \mathrm{E}-01$.2473E-04	-.3151E-01	-.4199E-04
167	179.6	. $3154 \mathrm{E}-01$.1589E-04	-.3154E-01	-.2745E-04
168	179.7	.3155E-01	.8962E-05	-.3155E-01	-.1571E-04
169	179.8	.3156E-01	. $3991 \mathrm{E}-05$	-.3156E-01	-.7068E-05
170	179.9	. $3157 \mathrm{E}-01$.9988E-06	-.3157E-01	-.1780E-05
171	180.0	. $3157 \mathrm{E}-01$.2090E-25	-.3157E-01	-.3429E-26
Note: Inputs used to generate the scattering phase function are given in the header. The output is formatted into 5 columns, respectively Theta, P (Theta), Q(Theta), U(Theta), V(Theta) with Theta : scattering angle ($\mathrm{P}, \mathrm{Q}, \mathrm{U}, \mathrm{V}$): 4 Stokes parameters normalized to 4 PI .					

Nb: Column values are respectively for $n_{2}, \theta, P(\theta), Q(\theta), U(\theta), V(\theta)$.

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: $16-$ Dec-10
Page: 125

10.2 MOMO INPUTIOUTPUT DESCRIPTION

RTC/FUB-MOMO Inputs

Input	Descriptive name	Source	Format	Unit	Range	Remarks
out_file	Output filename	-	string	n.u.	-	MERIS radiances at TOA
$i _$branch	Index to select the type of test case	-	int	n.u.	[1;4]	1-Land + Clear sky 2-Ocean + Clear sky 3-Land + Cloud sky 4-Land + Water vapor Nb: input not used in MOMO
n	MERIS band \#	-	int	n.u.	[1;15]	15 MERIS spectral bands (not used)
$U_{\mathrm{H}_{2} \mathrm{O}}$	Total water vapor amount	-	float	$\mathrm{g} / \mathrm{cm}^{2}$	≥ 0	See note 1
$E S F T_{\mathrm{H}_{2} \mathrm{O}}$	Auxiliary data file (atmospheric gaseous composition and ESFT coefficients for $\mathrm{H}_{2} \mathrm{O}$ transmittivity in the MERIS band n	File provided by FUB institute	string	n.u.	-	Coefficients $\left(a_{l}, k_{l}\right)$ for computing $\mathrm{H}_{2} \mathrm{O}$ transmittance above layer i - Sample of filename: '/sca_esft/H2O_01_b λ^{\prime}
$U_{O_{2}}$	Total oxygen vapor amount	-	float	$\mathrm{g} / \mathrm{cm}^{2}$	≥ 0	See note 1
$E S F T_{O_{2}}$	Auxiliary data file (atmospheric gaseous composition and ESFT coefficients for O_{2} transmittivity in the MERIS band n	File provided by FUB institute	string	n.u.	-	Coefficients $\left(a_{l}, k_{l}\right)$ for computing O_{2} transmittance above layer i - Example of filename: '/sca_esff/O2a_01_b λ^{\prime}
$U_{O_{3}}$	Total ozone vapor amount	-	float	cm-atm	≥ 0	See note 1
$E S F T_{O_{3}}$	Auxiliary data file (atmospheric gaseous composition and ESFT coefficients for O_{3} transmittivity in the MERIS band n	File provided by FUB institute	string	n.u.	-	Coefficients $\left(a_{l}, k_{l}\right)$ for computing O_{3} transmittance above layer i - Example of filename: '/sca_esft/O3_01_b λ^{\prime}
P_{s}	Surface pressure	-	float	$h P a$	≥ 194	-
τ_{λ}^{R}	Rayleigh optical thickness (for $\left.P_{s} \geq 1013.25 \mathrm{hPa}\right)$	Input value or output from otc rayleigh	float	n.u.	[0;1[-
aerosol1	Scattering phase matrix for aerosol layer \#1	Output file from mie36	string	n.u.	-	$\theta, P(\lambda, r, m, \theta), \omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix

Input	Descriptive name	Source	Format	Unit	Range	Remarks
$\tau_{550}^{a}(1)$	Aerosol optical thickness at 550 nm for layer \#1	-	float	n.u.	[0;10]	Realistic values in [0;0.8]. (See note 2)
aerosol2	Scattering phase matrix for aerosol layer \#2	Output file from mie36	string	n.u.	-	$\theta, P(\lambda, r, m, \theta), \omega_{0, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix
$\tau_{550}^{a}(2)$	Aerosol optical thickness at 550 nm for layer \#2	-	float	n.u.	[0;10]	Realistic values in [0;0.8]. (See note 2)
aerosol3	Scattering phase matrix for aerosol layer \#3	Output file from mie36	string	n.u.	-	$\theta, P(\lambda, r, m, \theta), \omega_{0, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix
$\tau_{550}^{a}(3)$	Aerosol optical thickness at 550 nm for layer \#3	-	float	n.u.	[0;10]	Realistic values in [0;0.8]. (See note 2)
cloud 1	Scattering phase matrix for cloud layer \#1	Output file from mie36	string	п.и.	-	$\theta, P(\lambda, r, m, \theta), \omega_{0, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix
$\tau_{550}^{c}(1)$	Cloud optical thickness at 550 nm for layer \#1	-	float	n.u.	[0;300]	Realistic values in [0;300]
cloud 2	Scattering phase matrix for cloud layer \#2	Output file from mie36	string	n.u.	-	$\theta, P(\lambda, r, m, \theta), \omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix
$\tau_{550}^{c}(2)$	Cloud optical thickness at 550 nm for layer \#2	-	float	n.u.	[0;300]	Realistic values in [0;300]
cloud 3	Scattering phase matrix for cloud layer \#3	Output file from mie36	string	n.u.	-	$\theta, P(\lambda, r, m, \theta), \omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix
$\tau_{550}^{c}(3)$	Cloud optical thickness at 550 nm for layer \#3	-	float	n.u.	[0;300]	Realistic values in [0;300]
phyto	Scattering phase matrix for phytoplankton	File provided by FUB (Petzold)	string	n.u.	-	$\theta, P(\lambda, r, m, \theta), \omega_{0, \lambda}, \sigma_{e, \lambda}$ for the Legendre polyn. development of scatt. phase matrix
$\sigma_{e, \lambda}^{p}$	Extinction coefficient for phytoplankton	Input value or output from iop_water	float	m^{-1}	≥ 0	To compute the contribution of oceanic layers to upwelling radiances at TOA
$\omega_{\mathrm{o}, \lambda}^{p}$	Single scattering albedo for phytoplankton	Input value or output from iop_water	float	n.u.	[0;1]	To compute the contribution of oceanic layers to upwelling radiances at TOA
spm	Scattering phase matrix for SPM	File provided by FUB (Petzold)	string	n.u.	-	$\theta, P(\lambda, r, m, \theta), \omega_{\mathrm{o}, \lambda}, \sigma_{e, \lambda}$ for the legendre polynomial development of scatt. phase matrix
$\sigma_{e, \lambda}^{s p m}$	Extinction coefficient for SPM	Input value or output from iop_water	float	m^{-1}	≥ 0	To compute the contribution of oceanic layers to upwelling radiances at TOA

Dech \quad D olog i e s	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } 127 \end{aligned}$	

Input	Descriptive name	Source	Format	Unit	Range	Remarks
$\omega_{\mathrm{o}, \lambda}^{\text {spm }}$	Single scattering albedo for SPM	Input value or output from iop_water	float	n.u.	[0;1]	To compute the contribution of oceanic layers to upwelling radiances at TOA
$\sigma_{a, \lambda}^{\nu s}$	Absorption coefficient for yellow substance	Input value or output from iop_water	float	m^{-1}	≥ 0	To compute the contribution of oceanic layers to upwelling radiances at TOA
vertical	Vertical distribution of aerosols, cloud scatterers and oceanic components (phyto., SPM, yellow subst.)	Output from $v t p$	string	n.u.	-	Vertical profile generated with respect to a defined model layer, the US-standard profile and a vertical distribution of constituents
I_{s}	Maximum order of the Legendre polynomial decomposition (Fourier)	Optimal value after tests	int	n.u.	70	Not used. Note: This value is already defined in the 'mom_in/mom_def' file
ρ_{s}	Surface reflectance	-	float	n.u.	[0;1]	Lambertian surface (for land and sea bottom)
$E_{\text {o }}$	Solar constant at TOA	-	float	$W / m^{2} / \mu m$	≥ 0	-
$\sigma_{a, \lambda}^{w}$	Absorption coefficient for pure oceanic water	Output from IOP_water	float	m^{-1}	≥ 0	-
w_{s}	Wind speed at 10 m above sea level	-	float	m / s	≥ 0	To compute multiple reflexions (sun glint) on the wind-roughened sea surface (see note 3)
n_{s}	Number of SZAs	-	int	n.u.	[1;21]	Not used (defined by the GaussLobatto quadrature in MOMO) Note:The upper limit is given by the MATDIMWINK variable in the 'input/param' include file

Notes: (1) Be careful: Depending on the termination of ESFT filename selected for each atmospheric gas ($\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}, \mathrm{O}_{3}$), the absorber amount U will be considered or not in the gaseous transmittivity computation. If the termination is ' \quad b00' then the gaseous transmittance will be 1 whatever the input value of U. In all the other cases, the gaseous transmittivity will be computed using either the input gaseous amount if $U>0$ or using the total absorber amount U from the atmospheric profile specified in the ESFT file for the case where $U=0$. Note that for the oxygen $\left(U_{O_{2}}>0\right)$, a vertical distribution of the oxygen vapor amount is computed in RTC/FUB using a pressure profile derived from the US-Standard62.
(2) A scattering phase matrix has to be always selected for each atmospheric or oceanic layer even if the optical thickness is nil for the layer.
(3) For a wind-roughened sea surface ($W_{s}>0$), RTC/MOMO needs a Cox-Munk ASCII file which contains the Fourier series terms of the Fresnel reflection and transmission matrices at the 'air-sea' interface. This ASCII file is provided by the FUB institute. Note that 2 current versions of RTC/MOMO are available to be run with 2 differents sets of 3 CoxMunk files:
(a) Cox-Munk file for a wind-speed of $1.5 \mathrm{~m} / \mathrm{s}\left(w_{s}<2\right), 3 \mathrm{~m} / \mathrm{s}\left(2 \leq w_{s}<5\right)$, and $7.2 \mathrm{~m} / \mathrm{s}\left(w_{s} \geq 5\right)$.
(b) Cox-Munk file for a wind-speed of $1.5 \mathrm{~m} / \mathrm{s}\left(w_{s}<3.25\right), 5 \mathrm{~m} / \mathrm{s}\left(3.25 \leq w_{s}<7.5\right)$, and $10 \mathrm{~m} / \mathrm{s}\left(w_{s} \geq 7.5\right)$.

RTC/FUB-MOMO Outputs

Input	Descriptive name	Source	Format	Unit	Range	Remarks
input	Input data card	-	string	n.u.	-	-
τ_{λ}	Total optical thickness	-	float	n.u.	≥ 0	-
τ_{λ}^{R}	Rayleigh optical thickness	-	float	n.u.	≥ 0	-
V_{λ}	Horizontal visibility	-	float	m	≥ 0	-
$A T_{\lambda}$	Atmospheric turbidity	-	float	m	≥ 0	-
$\vartheta_{s}, \vartheta_{v}$	Sun / view zenith angles	Gauss- Lobatto quadrature	float	deg.	[0;90[$\begin{aligned} & 16 \text { fixed values: } \\ & 0 ; 6.97 ; 12.76 ; 18.51 ; 24.24 ; 29.96 ; \\ & 35.68 ; 41.40 ; 47.12 ; 52.84 ; 58.56 ; 64.28 ; \\ & 69.99 ; 75.71 ; 81.43 ; 87.14 \end{aligned}$
$\Delta \phi$	Relative azimuth angles between sun / view directions	-	float	deg.	[0;180]	25 fixed values: 0; 7.50; 15.00; 22.50; 30.00; 37.50; 45.00; 52.50; 60.00; 67.50; 75.00; 82.50; 90.00; 97.50; 105.00; 112.50; 120.00; 127.50; 135.00; 142.50; 150.00; 157.50; 165.00; 172.50; 180.00
$L_{\lambda}^{\uparrow(T O A)}$	MERIS normalized radiances (TOA)	-	float	$s r^{-1}$	≥ 0	$\left(n_{s} \times n_{v} \times n_{\Delta \phi}\right)$ values (solar irradiance $=1 \mathrm{Wm}^{-2} \mu \mathrm{~m}^{-1}$)

10.3 SOFTWARE TECHNICAL DESCRIPTION

The Mie's code ('mie36.f') and RTC/FUB ('mom39.f') are controlled by a common auxiliary file (namely, 'mom_def') which are read during the execution. The final results from the RTC/FUB are saved in a certain number of output files given in this auxiliary file. Moreover, an additional include file (namely 'param') in which are specified the maximal size of arrays is required by the RTC/FUB.

10.3.1 Include file: 'param'

This file contains data on the maximum size of the arrays used in the program. Computer memory can become a problem with the matrix-operator method as many three or four-dimensional arrays are used. It is therefore a good practice to keep the dimension of the matrices as small as possible. Six groups of parameters are included in this file:

- Parameters 1: Contains the number of zenith angles in the atmosphere and in the ocean.

ATMWINKEL: Number of zenithal angles in the atmosphere (default value: 17)
ATMZUSATZ: Number of additional zenithal angles in the atmosphere (default value: 1)
MATDIMWINK: Number of zenithal angles in the ocean (default value: 21)

- Parameters 2: Contains the maximal number of layers and the maximal number of Fourier terms.

MAXAZIMUT: Max. number of azimuthal angles (default value: 48)
MAXFOURIER: Max. number of Fourier terms (default value: 70)

MAXSCHICHT: Max. number of layers for the coupled 'atmosphere-ocean' system (default value: 23)

- Parameters 3: Contains the maximal number of wavelengths and the maximum number of coefficients used for the treatment of the gas absorption in the atmosphere.
MAXILAM: Max. number of wavelengths (fixed value: 1)
MAXTERME: Max. number of terms used in the ESFT for $\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$ and O_{3} transmittivities (default value: 20)
- Parameters 4: Contains the maximal number of atmospheric and oceanic constituents as well as additional information on the atmospheric and oceanic constituents with respect to storage order.
MAXZUTAT: Max. number of atmospheric (aerosols+clouds) and oceanic constituents (default value: 11)
MAXGASART: Max. number of atmospheric gases (default value: 3)
MAXSONST: Max. number of atmospheric (aerosols+clouds) and oceanic scatterers (default value: 10)
LUFTRAY: Index for Rayleigh scattering in the atmosphere (default value: 1)
AEROANF: Index for the first aerosol layer (default value: 2)
AEROSOLE: Number of aerosol layers (default value: 3)
WOLKANF: Index for the first cloud layer (default value: 5)
WOLKEN: Number of cloud layers (default value: 3)
H2OANF: Index for the first oceanic constituents (default value: 8)
H2OINH: Number of oceanic constituents (default value: 3)
H2ORAY: Index for Rayleigh scattering in the ocean (default value: 10)
- Parameters 5: Contains some additional information (not special of interest to the user).

GASART: \quad Number of atmospheric gases (default value: 3)
MAXZMIT: Maximum dimension for Zmit table (default value: 5)
(not used in RTC/FUB)

- Parametrs 6: Other parameters.

PHASTUETZ: Used in PHA_ENTW() [expansion of phase function into Fourier series] (default value: 501)
AKIMADIM: Used in PHA_Akima() [Akima interpolation method] (default value: PHASTUETZ+4)

10.3.2 Auxiliary file: 'mom_def'

This file contains I/O filenames, flags for additional output data and the definition of the 15 MERIS spectral bands.
'mom_def' file

Input	Descriptive name	Format	Unit	Value	Code
RunOption	Structure of the input card: [0] with full description of input data (used for MERISAT), [1] without comment (used for RTC/Intervalidation)	int	n.u.	[0] or [1]	mie34 mom39
OutFile1	Additional file for simulated downwelling and upwelling fluxes	string	n.u.	-	mom39
OutFile2	Additional file for simulated downwelling and upwelling fluxes	string	n.u.	-	mom39

Input	Descriptive name	Format	Unit	Value	Code
OutFile3	Additional file for simulated downwelling and upwelling fluxes	string	n.u.	-	mom39
OutFile4	Additional file for simulated downwelling and upwelling fluxes	string	n.u.	-	mom39
OutFile5	Additional file for simulated downwelling and upwelling fluxes	string	n.u.	-	mom39
Fluorescence	Flag for in-water fluorescence computation	logical	n.u.	-	mom39
FluoFile	Additional file for fluorescence fluxes	string	n.u.	-	mom39
PhaseDatei(1)	Atmospheric Rayleigh scattering phase function	string	n.u.	-	mom39
PhaseDatei(10)	Oceanic Rayleigh scattering phase function	string	n.u.	-	mom39
ZwischDatei_1	Fresnel reflexion and transmission matrices of a wind- roughened sea surface (1 $1^{\text {st }}$ wind-speed)	string	n.u.	-	mom39
ZwischDatei_2	Fresnel reflexion and transmission matrices of a wind- roughened sea surface (2 ${ }^{\text {nd }}$ wind-speed)	string	n.u.	-	mom39
ZwischDatei_3	Fresnel reflexion and transmission matrices of a wind- roughened sea surface (${ }^{\text {rd }}$ wind-speed)	string	n.u.	-	mom39
Aufgeloest	Flag to check the number of azimuthal angles	logical	n.u.	-	mom39
MaxAzi	Number of azimuthal angles	int	n.u.	-	mom39
MaxFou	Maximum order of the Fourier expansion	int	n.u.	-	mom39
Flag Surface	Flag to test sea surface state	logical	n.u.	-	mom39
Nb of bands	Number of MERIS spectral bands	int	n.u.	-	mom39
MERIS band X	Nominal wavelength and FwMH for MERIS band X	float	nm	-	mom39
Output_structure	Structure of the output file: [0] without header, [1] with header (list of 33 output flags; [0]/[1])	int	n.u.	$[0]$ or [1]	mom39

Note: This 'mom_def' file has to be created with an header of 4 lines. The last column indicates which codes from the $R T C / F U B$ package use the inputs of 'mom_def'. Note that the parameter 'Mtotal' is fixed to 1 in 'mom39'.

Sample of 'mom_def' file

```
*** RTC/FUB - I/O files - Flags - MERIS Bands ***
************************************************************
'RunOption = ' 1
'OutFile1 = ' 'mom_out/flux_test0'
'OutFile2 = ' 'mom_out/ld_test0'
'OutFile3 = ' 'mom_out/lu_0001'
'OutFile4 = ' 'mom_out/lu_n_0001'
'OutFile5 = ' 'mom_out/flu_0001'
'Fluorescence = ' .FALSE.
```


Par Bleu technologies	MERIS/ EN MEdium Resoluti Spectrom	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-P/ } \\ & 4 \quad \text { Rev. } \\ & \text { 16-Dec-1 } \end{aligned}$	-0003 Page: 132
'CtrlString (28) - NOT USED				
'CtrlString (29) - NOT USED				
'CtrlString (30) - ESA_L_0-				
'CtrlString (31) - ESA_L_0+				
'CtrlString (32) - ESA_L_top				

10.3.3 Input files to RTC/MOMO

Before running the RTC/MOMO (i.e., 'mom39.f), several input files need to be firstly defined. The latters describe the vertical structure of the atmosphere and ocean (pressure, temperature, altitude, atmospheric gaseous and oceanic compositions), the wavelength dependent optical properties (extinction coefficient and single scattering albedo) and phase functions of the atmospheric and oceanic scatterers, the absorption of the atmospheric gases and the concentrations of the atmospheric and oceanic constituents.

Scattering and absorption properties of atmospheric and oceanic particles, such as aerosols, hydrosols and water constituents can be pre-computed using the Mie's code presented in Section 8.1 or can be derived from in-situ measurements. In order to allow more flexibilities in the use of MERIS acquisitions (i.e., for a large variety of atmospheric conditions), a procedure for computing optical characteristics of atmospheric and oceanic components (i.e., spectral extinction and absorption coefficients) has been developed (see [AD-4] for more details).

Atmospheric gaseous absorption is estimated by an ESFT using the correlated k-distribution method (see Sections $2.9 \& 7.2 .3$). The computation of exponential terms remains complex and needs different tools. First, for each relevant gases $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}\right)$ a LBL code allows one to compute the absorption of each line, whereby the line has to be spectrally resolved. The absorption line parameters of these relevant gases are taken from the HITRAN-2000 database. The latters are used to simulate gaseous transmission functions which are finally approximated as a finite series of exponentials (ESFT). Due to the fact that the tools developed for retrieving these exponentials need to be carefully manipulated, it is highly recommended to use pre-computed exponents for all relevant MERIS bands. Moreover different sets of absorption and extinction coefficients have been established for taking into account eventual wavelength shifts within the MERIS band definition. This allows one to reduce the time-consuming of computation while the high performance is kept.

10.3.4 Tree directories

The main directory of MOMO (/RTC/FUB) which contains all the procedures to simulate the MERIS radiances/reflectances is separated into two major sections:

- 'Mie36' directory for the MIE computations, with the following sub-directories:
/ sca_in, / sca_out, and / src
Contains the routine for computing optical properties (i.e., scattering phase matrices and single scattering albedo and extinction coefficients) from the Mie's theory.
mie36: Mie-theory calculator: creates files in /sca_out directory;
considers single type of scatter (i.e., clouds) and creates aerosol models when different aerosol components are defined (i.e., maritime aerosol).
- 'Mom39' directory for the radiative transfer computation, with the following sub-directories:
/ mom_in, / mom_out, / sca_esft, / sca_out, / sca_vert, / src, / up_in, / up_out

Contains all the routines for computing the multi-spectral radiances for all the MERIS acquisitions and the code to calculate the optical properties for the selected vertical layers with respect to a standard or given atmosphere. Pre-computed tables of the ESFT exponents are also included.

Iup_in: Contains files which specify the inputs of mom39 for the simulation (in parallel with /mom_in/mom_def).
lup_out: Contains the outputs of mom39 which were specified by the input parameter file /up_in.

Imom_in: Contains the input files which specify various control flags needed in parallel with lup_in input file to run the simulation. The file 'mom_def' contains flags giving additional output data.

Imom_out: Contains the output additional files which were specified by various control flags in '/mom_in/mom_def' file.

Isca_out: Contains the output files of mie36, which includes the scattering phase-matrix, the normalized extinction coefficient and the single scattering albedo. It contains as well as all the related files or the Fourier series, which are generated by mom39, when the files do not exist.

Isca_esft: Contains files of the 'exponential sums' to account for the absorption of atmospheric gases, in each MERIS band and for water vapour, oxygen or ozone. These data are the precomputed exponentials used as input files to mom39.

Isca_in: Contains input data for Mie calculations. The input files contain parameters such as the wavelength, complex refractive index, type of size distribution, ratio and range of particle sizes for aerosols, hydrosols or water substances; all data used to compute the optical properties at a reference wavelength are also given.

Note: The mie36 code computes the Mie scattering output files *.s (for scattering). When the .s file is available, the phase function has to be expanded into Fourier coefficients. MOMO (mom39) produces an equivalent .d file of the output scattering file, containing angles, corresponding scattering functions, and series development. The .d file is only created when it does not exist; when MOMO program runs a second time, it reads the .d file instead of the .s file and does not need to re-compute the Fourier terms, so it is noticeably faster.

WARNING: If the scattering output file .s need to be re-computed by mie36 with different optical properties, the corresponding *.d file will have to be deleted before running MOMO.

Isca_vert Contains the routine vtp to generate the vertical profiles with respect to the defined model layers (i.e., /dat_scat/vtp.hsv_12), the atmospheric profiles (i.e., US-standard62) and the vertical distribution of the constituents (i.e., /dat_scat/scat_01.ein). The output file includes all information on the vertical distribution (height, pressure, temperature, $\left[\mathrm{H}_{2} \mathrm{O}\right],\left[\mathrm{O}_{2}\right]$ and aerosols, clouds, oceanic components profiles) usefull to run mom39.

scpf_2 Calculates the forward scattering proportion of a series of aerosol models. The list of aerosol models is given in the file 'scfp.ein' and corresponds to the scamat output filenames obtained using mie36. The outputs derived from $\boldsymbol{s c f p} \mathbf{2}$ are stored in the 'ae_fp.d' file.

10.3.5 Vertical profile

Vertical profiles used as inputs to the RTC/MOMO are generated by the vtp code. The latter allows one to build a vertical structure thanks to several defined parameters from an input file placed in '/ dat_vtp' directory. These parameters comprise the height profile ('vtp.hsv' file), the types of scatterers ('vtp.ein' file), and the output file 'vtp1_ xxx.01' where as an example $\mathbf{x x x}$ stands for cloud optical thickness and 01 is an index for the selected atmospheric profile. This output does not need to be recomputed as long as the atmosphere model structure remains the same. This input is very important mainly for atmospheric gases, like water vapour, which lines depend strongly on the pressure (line widths) whereas this is not the case for the aerosol scattering.

Sample of input card to the $\mathbf{v t p}$ code: /sca_vert/dat_vtp/vtp12.ein defines the selected atmospheric profile.

Eingabefile fuer Berechnung von VTPn-Profilen aus AFGL-Daten	
'AFGL - Profilnummer	: 2
'Radiosonden - Profil	: ' 'profil/profil_12.dat'
'Hoehenschichtenverteilung	: ' 'profil/vtp.hsv_23'
'Streuerbelegung	: 'dat_scat/scat_00.ein'
'Ausgabedatei1	:' 'dat_vert/vtp1_12'
'Ausgabedatei2	: ' 'dat_vert/vtp2_12'
Bitte auf die ' achten !!!	
AFGL-ATMOSPHAEREN-MODELL	
TROPICAL	1
MIDLATITUDE SUMMER	
MIDLATITUDE WINTER	
SUBARCTIC SUMMER	
SUBARCTIC WINTER	: 5
U.S. STANDARD	6

Sample of radiosonde profile: Isca_vert/profil/profil_12.dat contains altitude (km), pressure (hPa), temperature (K), relative humidity (\%) and ozone concentration $\left(\mathrm{g} / \mathrm{m}^{3}\right)$.

0.0000	1010.0000	276.1	59.9	$4.708876 \mathrm{E}-05$
0.2000	989.0000	279.2	49.1	$4.862150 \mathrm{E}-05$
0.4000	965.0000	280.3	45.0	$5.003241 \mathrm{E}-05$
0.6000	941.0000	279.1	47.5	$5.107787 \mathrm{E}-05$
0.8000	919.0000	277.4	51.2	$5.198391 \mathrm{E}-05$
1.0000	896.0000	275.5	55.7	$5.296464 \mathrm{E}-05$
1.3000	863.0000	273.0	62.0	$5.439026 \mathrm{E}-05$
1.6000	831.0000	271.1	65.0	$5.590637 \mathrm{E}-05$
2.0000	790.0000	268.9	66.3	$5.862374 \mathrm{E}-05$
2.5000	741.0000	266.1	65.6	$6.288275 \mathrm{E}-05$
3.0000	695.0000	262.7	67.3	$6.727582 \mathrm{E}-05$
3.5000	651.0000	259.0	70.8	$7.193130 \mathrm{E}-05$
4.0000	609.0000	255.1	73.3	$7.696632 \mathrm{E}-05$
5.0000	532.0000	247.5	75.2	$8.814244 \mathrm{E}-05$
7.0000	400.0000	232.1	73.5	$1.249216 \mathrm{E}-04$

9.0000	296.0000	224.0	55.6	$1.868254 \mathrm{E}-04$
10.0000	254.0000	223.2	44.3	$2.269797 \mathrm{E}-04$
15.0000	116.0000	220.9	28.9	$1.038565 \mathrm{E}-03$
30.0000	12.1000	234.1	0.2	$1.110821 \mathrm{E}-02$
100.000	0.0003	210.0	0.01	$8.639904 \mathrm{E}-05$

Sample of height profile: Isca_vert/profil/vtp.hsv_23 defines the distribution of the layers.

'Testprofil'	
Atm. Ozean Ges.	
23	0
	23
1	0.01
2	10.0
3	50.0
4	100.0
5	150.0
6	200.0
7	250.0
8	300.0
9	350.0
10	400.0
11	450.0
12	500.0
13	550.0
14	600.0
15	650.0
16	700.0
17	750.0
18	800.0
19	850.0
20	900.0
21	950.0
22	1000.0
23	1025.0

Sample of list of atmospheric and oceanic scatterers: Isca_vert/dat_scat/scat_00.ein contains altitude (km), pressure (hPa), temperature (K), relative humidity (\%) and ozone concentration $\left(\mathrm{g} / \mathrm{m}^{3}\right)$.

Par Bleu	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref: Issue Date		0003 Page: 136

5 set to zero	param1: not used	param2: not used
6	like 3, but	param1:mu in (m)

Sample of output vtp file: Isca_vert/vtp1_12

'Layer 2-3'	.00000E+01	. $00000 \mathrm{E}+01$.00000E+01			
'Layer 3-4'	.00000E+01	.00000E+01	.00000E+01			
'Layer 4-5'	.00000E+01	. $00000 \mathrm{E}+01$.00000E+01			
'Layer 5-6'	.00000E+01	.00000E+01	.00000E+01			
'Layer 6-7'	.00000E+01	.00000E+01	.00000E+01			
'Layer 7-8'	.00000E+01	. $00000 \mathrm{E}+01$.00000E+01			
'Layer 8-9'	.00000E+01	.00000E+01	. $00000 \mathrm{E}+01$			
' Layer 9-10'	.00000E+01	. $00000 \mathrm{E}+01$.00000E+01			
' Layer 10-11'	.00000E+01	. $00000 \mathrm{E}+01$.00000E+01			
' Layer 11-12'	.10000E+01	.10000E+01	.10000E+01			
' Dummy-Layer '	'.00000E+01	.00000E+01	.00000E+01	. $00000 \mathrm{E}+01$. $00000 \mathrm{E}+01$.00000E+01

10.3.6 Forward scattering proportion computation

The scfp_2 code allows one to computes the forward scattering proportion using as input the results derived from mie36 for different aerosol models. The latters are listed in 'scfp.ein' file and the scattering proportion outputs are saved in ae_fp.d'file.

'scfp.ein' file format.

First line: number of wavelengths N_{λ} and number of aerosol models $N_{\text {aer }}$
Second line and followings: aerosol scamat output filenames
The total number of aerosol filenames must be equal to $N_{\lambda} \times N_{\text {aer }}$
'ae_fp.d' file format:

First column:	
Scamat aerosol output file from mie36	
Third column:	
Fourth column:	extinction coefficient
Fingle scattering albedo	
Fifth column:	

Figure 2: Overview of the RTC/FUB package

11. APPENDIX-3: SPECIFICATION OF RTC/MOS PACKAGE

The following tools are useful to generate 4 MERIS LUTs at the level-2 relying on the dense dark vegetation (DDV) parameters for the bidirectionality correction.

11.1 RTC/LUT_ALB_GDDV

Description:

This code allows one to generate the MERIS LUT-322, i.e. the ground DDV albedos ($\rho_{D D V}$) at 4 MERIS wavelengths ($412.5 \mathrm{~nm}, 442.5 \mathrm{~nm}, 490 \mathrm{~nm}$ and 665 nm) for each of 20 DDV models defined by the CESBIO (Centre d'Etudes Spatiales de la BIOsphere, Toulouse - FRANCE) institute. These 20 DDV models are represented by the Hapke's model parameters (ω, g, S and h).

Processing:

The MERIS LUT-322 is generated with the following steps:

- Step 1: Extract the 4 Hapke's parameters (ω, g, S and h) for each DDV model $\left(N_{D D V}=20\right)$ and each MERIS wavelength $\lambda\left(N_{\lambda}=4\right)$, from an input Hapke's parameters file provided by the CESBIO institute.
- Step 2: Compute ground DDV albedo $\rho_{\mathrm{DDV}}(d d v, \lambda)$ for each DDV and each λ, by an angular integration of the DDV BRDF, $R_{\mathrm{DDV}}\left(d d v, \lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right)$ (Hapke's model).
$\rho_{\mathrm{DDV}}(d d v, \lambda)=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1} R_{\mathrm{DDV}}\left(d d v, \lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right) \cdot d \mu^{\prime} \cdot d \mu_{v} \cdot d \Delta \phi^{\prime}$
This angular integration is numerically achieved with 3 Gaussian quadratures for μ^{\prime}, μ_{v} and $\Delta \phi^{\prime}\left(24 \vartheta^{\prime} ; 24 \vartheta_{v} ; 48 \Delta \phi^{\prime}\right)$.

Tool:
'lut_alb_gddv.f'

Input description:

RTC/lut_alb_gddv - Inputs

Input	Descriptive name	Source	Format	Unit	Range	Remarks
param_Hapke	$\begin{array}{l}\text { Hapke's parameters } \\ (\omega, g, S, h) \text { for all } \\ \text { DDV BRDF models }\end{array}$	CESBIO	ASCII	n.u.	-	$\begin{array}{l}- \text { Hapke's parameters: } \\ \text { file -single scattering albedo (} \omega \text {) }\end{array}$
2 -assymmetry factor of phase						
function (g)						
3 -amplitude of the hot-spot (S)						
4 -width of the hot-spot (h)						

Output description:

RTC/lut_alb_gddv - Outputs

Output	Descriptive name	Source	Format	Unit	Range	Remarks
ddv_alb_lut	DDV albedos in 4 MERIS bands (412.5, $442.5, ~ 490, ~ 665 n m) ~$	-	ASCII file	n.u.	$[0 ; 1]$	$\Rightarrow\left(N_{D D V} \times N_{\lambda}\right)$ values
ddv_alb_lut.bin	DDV albedos in 4 MERIS bands (412.5, $442.5,490,665 m)$	-	Binary file	n.u.	$[0 ; 1]$	$\Rightarrow\left(N_{D D V} \times N_{\lambda}\right)$ values

11.2 RTC/LUT_RHOB_AGDDV

Description:

This code allows one to generate the 5 Fourier series coefficients $\left(\bar{\rho}_{a G}\right)^{(s)}$ of the aerosol-ground DDV coupling bidirectionality term $\left(\bar{\rho}_{a G}\right)$ at 4 MERIS wavelengths ($412.5 \mathrm{~nm}, 442.5 \mathrm{~nm}, 490 \mathrm{~nm}$ and 665 nm) for each of 20 DDV models defined by the CESBIO institute. The latters are represented by the Hapke's model parameters (ω, g, S and h).

Processing:

The MERIS LUT-321 is generated with the following steps:

- Step 1: Compute DDV BRDF $R_{\mathrm{DDV}}\left(d d v, \lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right)$ using Hapke's parameters provided by the CESBIO institute, for each DDV model ($N_{D D V}=20$), for each MERIS wavelength $\lambda \quad\left(N_{\lambda}=4\right)$, and for each illumination and viewing configuration $\left(\vartheta^{\prime}, \vartheta_{v}\right)$ and $\Delta \phi^{\prime} \quad\left(N_{\vartheta^{\prime}}=24 ; N_{\vartheta_{v}}=12 ; N_{\Delta \phi^{\prime}}=72\right)$. Note that the zenithal angles $\left(\vartheta^{\prime}, \vartheta_{v}\right)$ (within $\left[0^{\circ} ; 90^{\circ}[\right.$) derive from Gauss quadratures and the relative azimuthal differences $\left(\Delta \phi^{\prime}\right)$ (within $\left.\left[-180^{\circ} ; 180^{\circ}\right]\right)$ follow a parabolic distribution centred at 0°.
- Step 2: Set a table with pre-computed values of downward normalized aerosol phase function $P\left(\theta, N_{a e r}\right)\left(\operatorname{or} P\left(\vartheta_{s}, \vartheta^{\prime}, \Delta \phi, \Delta \phi^{\prime}, N_{a e r}\right)\right.$ with $\left.N_{\vartheta_{s}}=12, N_{\vartheta^{\prime}}=24, N_{\Delta \phi^{\prime}}=30, N_{\Delta \phi}=72\right)$ for all the SAMs over land $\left(N_{a e r}=78\right)$ and all the scattering geometries $\left(N_{\theta}=83\right)$.

For each combination $\left(\vartheta_{s}, \vartheta^{\prime}, \Delta \phi, \Delta \phi^{\prime}\right)$, we compute:

- the scattering angle $\theta_{\text {sca }}$ as follows:

$$
\cos \left(\theta_{s c a}\right)=\cos \left(\vartheta_{s}\right) \cos \left(\vartheta^{\prime}\right)+\sin \left(\vartheta_{s}\right) \cdot \sin \left(\vartheta^{\prime}\right) \cdot \cos \left(\Delta \phi^{\prime}-\Delta \phi\right)
$$

- the aerosol phase function $P\left(\theta_{\text {sca }}, i_{\text {aer }}\right)$ for each aerosol model $i_{\text {aer }}$ by interpolation from tabulated values of $P\left(\theta, N_{a e r}\right)$ using a $5^{\text {th }}$ degree polynomial.

Geometries: $12 \vartheta_{s}, 24 \vartheta^{\prime}, 30 \Delta \phi, 72 \Delta \phi^{\prime}$

- Step 3: Compute the aerosol-ground DDV coupling bidirectionality term $\bar{\rho}_{\mathrm{aG}}\left(d d v, \lambda, i_{\text {aer }}, \vartheta_{s}, \vartheta_{v}, \Delta \phi\right)$ for each DDV, each λ, each SAM over land $i_{\text {aer }}$ and each illumination and viewing configuration $\left(\vartheta_{s}, \vartheta_{v}, \Delta \phi\right)$ (with $N_{\vartheta_{s}}=12, \quad N_{\vartheta_{v}}=12$, $N_{\Delta \phi}=30$):
$\bar{\rho}_{\mathrm{aG}}\left(d d v, \lambda, i_{\text {aer }}, \vartheta_{s}, \vartheta_{v}, \Delta \phi\right)=\frac{\int_{0}^{2 \pi} \int_{0}^{1} R_{D D V}\left(d d v, \lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right) \cdot P\left(\vartheta_{s}, \vartheta^{\prime}, \Delta \phi, \Delta \phi^{\prime}, i_{a e r}\right) \cdot d \mu^{\prime} \cdot d \Delta \phi^{\prime}}{\int_{0}^{2 \pi} \int_{0}^{1} P\left(\vartheta_{s}, \vartheta^{\prime}, \Delta \phi, \Delta \phi^{\prime}, i_{a e r}\right) \cdot d \mu^{\prime} \cdot d \Delta \phi^{\prime}}$
This angular integration is numerically performed using a Gauss quadrature for μ^{\prime} and the Newton-Cotes method for $\Delta \phi^{\prime}$.

For each of: $12 \theta_{s}, 12 \theta_{v}, 30 \Delta \phi$, $78 i_{\text {aer }} 4 \lambda, 20 D D V$,
Call: $P\left(\theta_{s}, \theta^{\prime}, \Delta \phi, \Delta \phi^{\prime}, i_{\text {aer }}\right)$
Call: $R_{D D V}\left(d d v, \lambda, \theta^{\prime}, \theta_{v}, \Delta \phi^{\prime}\right)$
Numerical integration:
Gauss quadrature for $\theta, \longrightarrow \bar{\rho}_{a G}\left(d d v, \lambda, i_{a e r}, \theta_{\mathrm{s}}, \theta_{v}, \Delta \phi\right)$
Newton-Cotes for $\Delta \phi$,
-Step 4: Remove the azimuthal dependence $\Delta \phi$ by expanding $\bar{\rho}_{\mathrm{aG}}$ into Fourier series at the $4^{\text {th }}$ order:
$\bar{\rho}_{\mathrm{aG}}\left(d d v, \lambda, i_{\text {aer }}, \vartheta_{s}, \vartheta_{v}, \Delta \phi\right) \longrightarrow \begin{aligned} & \text { Fourier } \text { series } \\ & \text { expansion of } \Delta \phi\end{aligned} \longrightarrow \bar{\rho}_{\mathrm{aG}}\left(d d v, \lambda, i_{\text {aer }}, \vartheta_{s}, \vartheta_{v}, s\right)$

Tool:

'lut_rhob_agddv.f'

Input description:

RTC/lut_rhob_agddv - Inputs

Input	Descriptive name	Source	Format	Unit	Range	Remarks
phase_aer78	$\begin{array}{l}\text { Scattering phase } \\ \text { functions for 78 } \\ \text { Junge's models } \\ \text { (SAMs over land) }\end{array}$	LISE	$\begin{array}{c}\text { ASCII } \\ \text { file }\end{array}$	$n . u$.	-	$\Rightarrow\left(N_{\text {scat }} \times N_{\text {aer }}\right)$ values
param_Hapke	$\begin{array}{l}\text { Hapke's parameters } \\ (\omega, g, S, h) \text { for all } \\ \text { DDV BRDF models }\end{array}$	CESBIO	$\begin{array}{c}\text { ASCII } \\ \text { file }\end{array}$	n.u.	-	$\begin{array}{l}- \text { Hapke's parameters: } \\ 1 \text {-single scattering albedo (} \omega) \\ 2 \text {-assymmetry factor of phase } \\ \text { function }(g)\end{array}$
3 -amplitude of the hot-spot (S)						
4-width of the hot-spot (h)						

Output description:

RTC/lut_rhob_agddv - Outputs

Output	Descriptive name	Source	Format	Unit	Range	Remarks
rhob_aG_ LUTXX	LUTs with Fourier series coefficients (5) of $\bar{\rho}_{a G}$ computed at 412.5, 442.5, 490, 665 nm and for each of 12 Gaussian angles	-	ASCII file	n.u.	-	$X X$ stands for DDV model \# $\left(N_{\lambda} \times N_{a e r} \times N_{\mu_{s}} \times N_{\mu_{v}} \times N_{s}\right)$ values
rhob_aG_ LUTXX.bin	LUTs with Fourier series coefficients (5) of $\bar{\rho}_{a G}$ computed at 412.5,	-	Binary file	n.u.	-	$X X$ stands for DDV model \# $\left(N_{\lambda} \times N_{a e r} \times N_{\mu_{s}} \times N_{\mu_{v}} \times N_{s}\right)$

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref.: Issue Date:	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } 143 \end{aligned}$	

Output	Descriptive name	Source	Format	Unit	Range	Remarks
	$442.5,490,665 \mathrm{~nm}$ and for each of 12 Gaussian angles					values

11.3 RTC/LUT RHOB RGDDV

Description:

This code allows one to generate the Rayleigh-ground DDV coupling bidirectionality term ($\bar{\rho}_{R G}$) at 4 MERIS wavelengths ($412.5 \mathrm{~nm}, 442.5 \mathrm{~nm}, 490 \mathrm{~nm}$ and 665 nm) for each of 20 DDV models defined by the CESBIO institute. The latters are represented by the Hapke's model parameters.

Processing:

The MERIS LUT-320 is generated with the following steps:

- Step 1: Compute DDV BRDF $R_{\mathrm{DDV}}\left(d d v, \lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right)$ using Hapke's parameters provided by the CESBIO institute, for each DDV model ($N_{D D V}=20$), for each MERIS wavelength $\lambda \quad\left(N_{\lambda}=4\right)$, and for each illumination and viewing configuration $\left(\vartheta^{\prime}, \vartheta_{v}\right)$ and $\Delta \phi^{\prime} \quad\left(N_{\vartheta^{\prime}}=24 ; N_{\vartheta^{\prime}}=12 ; N_{\Delta \phi^{\prime}}=72\right)$. Note that the zenithal angles $\left(\vartheta^{\prime}, \vartheta_{v}\right)$ (within $\left[0^{\circ} ; 90^{\circ}[\right.$) derive from Gauss quadratures and the relative azimuthal differences $\left(\Delta \phi^{\prime}\right)$ (within $\left.\left[-180^{\circ} ; 180^{\circ}\right]\right)$ follow a parabolic distribution centred at 0°.
- Step 2: Compute the Rayleigh-ground DDV coupling bidirectionality term $\bar{\rho}_{\mathrm{RG}}\left(d d v, \lambda, \vartheta_{v}\right)$ for each DDV, each λ, and each viewing angle $\vartheta_{v}\left(N_{\vartheta_{v}}=12\right)$, using the numerical angular integration of $R_{\mathrm{DDV}}\left(d d v, \lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right)$ on μ^{\prime} and $\Delta \phi^{\prime}$:

$$
\bar{\rho}_{\mathrm{RG}}\left(d d v, \lambda, \vartheta_{v}\right)=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi 1} \int_{0} R_{D D V}\left(d d v, \lambda, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right) \cdot d \mu^{\prime} \cdot d \Delta \phi^{\prime}
$$

This angular integration on μ^{\prime} is performed using a Gauss quadrature whereas the azimuthal integration on $\Delta \phi^{\prime}$ is completed with the Newton-Cotes method.

Tool:

'lut_rhob_Rgddv.f'

Input description:

RTC/lut_rhob_Rgddv - Inputs

Input	Descriptive name	Source	Format	Unit	Range	Remarks
param_Hapke	Hapke's parameters (ω, g, S, h) for all DDV BRDF models	CESBIO	ASCII file	n.u.	-	- Hapke's parameters: 1 -single scattering albedo (ω) 2-assymmetry factor of phase function (g)
3 -amplitude of the hot-spot (S)						
4-width of the hot-spot (h)						

Output description:

RTC/lut_rhob_Rgddv - Outputs

Output	Descriptive name	Source	Format	Unit	Range	Remarks
rhob_RG_- LUTXX	LUTs with $\bar{\rho}_{R G}$ computed at 412.5, $442.5,490,665 \mathrm{~nm}$ and for each of 12 Gaussian angles	-	ASCII file	n.u.	-	$X X$ stands for DDV model \# $\left(N_{\mu_{v}} \times N_{\lambda}\right)$ values
rhob_RG_ LUTXX.bin	LUTs with $\bar{\rho}_{R G}$ computed at 412.5, $442.5,490,665 \mathrm{~nm}$ and for each of 12 Gaussian angles	-	Binary file	n.u.	-	$X X$ stands for DDV model \# $\left(N_{\mu_{v}} \times N_{\lambda}\right)$ values

11.4 RTC/LUT_RHOB_AR

Description:

This code allows one to generate the 4 polynomial coefficients fit $k_{i}^{(s)}\left(i_{a e r}, \vartheta_{s}, \vartheta_{v}\right)$ for the aerosolmolecule coupling bidirectionality term ($\bar{\rho}_{a R}$) retrieval for 78 Junge's models (or 78 SAMs over land) and 12 Gaussian angles. These coefficients derived from a third order polynomial fit as function of the aerosol optical thickness (τ^{a}) applied to a set of $\bar{\rho}_{a R}$ values.

Processing:

Based on the database derived from the MOS ground segment (see Section 7.3.6 for more details), the MERIS LUT-324 is generated with the following steps:

- Step 1: Set a table with 4 pre-computed polynomial coefficients $k_{i}^{(s)}\left(i_{\text {aer }}, \vartheta_{s}, \vartheta_{v}\right) \quad(i=[1 ; 4])$ for each term s of the Fourier series decomposition $\left(N_{s}=6\right)$ of the multiplicative aerosol scattering function $f_{a}\left(\vartheta_{s}, \vartheta_{v}, \tau^{a}\right)$, for each SAM over land $i_{\text {aer }}\left(N_{\text {aer }}=78\right)$,

and each illumination and viewing geometries $\vartheta_{s} \times \vartheta_{v}\left(N_{\vartheta_{s}}=12 ; N_{\vartheta_{v}}=12\right)$. These coefficients were determined for the MERIS ground segment and tabulated values were saved in several files for each of 78 SAMs over land. The latters were provided by the CESBIO institute.
- Step 2: Interpolate linearly the 4 pre-computed MERIS polynomial coefficients $k_{i}^{(s)}\left(i_{\text {aer }}, \vartheta_{s}, \vartheta_{v}\right)$ for each Fourier term s, each aerosol model $i_{\text {aer }}$, and each viewing angle ϑ_{v}, to the predefined set of 17 Gaussian angles $\left(\vartheta^{\prime}\right)$ for the MERIS segment.

- Step 3: Generate the aerosol-molecule coupling bidirectionality term ($\bar{\rho}_{a R}$) by recombination of the first 6 Fourier terms.
- Step 4: Determine the $3^{\text {rd }}$ order polynomial fit as function of the aerosol optical thickness (τ^{a}) on the $\left(\bar{\rho}_{a R}\right)$ values in order to remove the explicit dependence on τ^{a}.

$$
\begin{aligned}
& f_{a}^{(s)}\left(i_{a e r}, \tau^{a}, \vartheta_{s}, \vartheta_{v}\right)=\sum_{i=0}^{3} k_{i}^{(s)}\left(i_{a e r}, \vartheta_{s}, \vartheta_{v}\right) \cdot\left(\tau^{a}\right)^{i} \\
& f_{a}\left(i_{a e r}, \tau^{a}, \vartheta_{s}, \vartheta_{v}\right)=\sum_{s=0}^{5}\left(2-\delta_{0, s}\right) \cdot f_{a}^{(s)}\left(i_{a e r}, \tau^{a}, \vartheta_{s}, \vartheta_{v}\right) \cdot \cos (s . \Delta \phi) \\
& \rho_{a, P}^{(s)}\left(i_{a e r}, \tau^{a}, \vartheta_{s}, \vartheta_{v}\right)=P_{a}^{(s)}\left(\vartheta_{s}, \vartheta_{v}, \Delta \phi, i_{a e r}\right) \cdot \frac{\left(1-e^{-M \cdot \tau^{a}}\right)}{4 \cdot\left(\cos \vartheta_{s}+\cos \vartheta_{v}\right)}
\end{aligned}
$$

with M the airmass defined as:

$$
\begin{gathered}
M=\frac{1}{\cos \vartheta_{s}}+\frac{1}{\cos \vartheta_{v}} \\
\rho_{a}^{(s)}\left(i_{a e r}, \tau^{a}, \vartheta_{s}, \vartheta_{v}\right)=\rho_{a, P}^{(s)}\left(i_{a e r}, \tau^{a}, \vartheta_{s}, \vartheta_{v}\right) \cdot f_{a}^{(s)}\left(i_{a e r}, \tau^{a}, \vartheta_{s}, \vartheta_{v}\right) \\
\bar{\rho}_{\mathrm{aR}}\left(i_{a e r}, \vartheta_{v}, \tau^{a}\right)=\frac{\int_{0}^{2 \pi 1} \int_{0} R_{D D V}\left(i_{a e r}, \tau^{a}, \vartheta^{\prime}, \vartheta_{v}, \Delta \phi^{\prime}\right) \cdot P\left(\vartheta_{s}, \vartheta^{\prime}, \Delta \phi, \Delta \phi^{\prime}, i_{a e r}\right) \cdot d \mu^{\prime} \cdot d \Delta \phi^{\prime}}{\int_{0}^{2 \pi 1} \int_{0}^{1} P\left(\vartheta_{s}, \vartheta^{\prime}, \Delta \phi, \Delta \phi^{\prime}, i_{a e r}\right) \cdot d \mu^{\prime} \cdot d \Delta \phi^{\prime}}
\end{gathered}
$$

Tool:

'Iut_rhob_AR.f'

Input description:

RTC/lut_rhob_aR - Inputs

Input	Descriptive name	Source	Format	Unit	Range	Remarks
phase_aer78	Scattering phase functions for 78 Junge's models (SAMs over land)	LISE	ASCII file	n.u.	-	$\Rightarrow\left(N_{\text {scat }} \times N_{\text {aer }}\right)$ values
fa_XX	78 SAMs phase function files, with 4 polynomial coefficients fit for each of the first 6 Fourier series terms and for each of the 78 SZA-VZA geometries.	LISE	ASCII file	n.u.	-	$X X$ stands for aerosol model \#

Output description:

RTC/lut_rhob_aR - Outputs

Output	Descriptive name	Source	Format	Unit	Range	Remarks
rhob_aR_LUT	LUTs with 4 polynomial coefficients fit for $\bar{\rho}_{a R}$ retrieval, computed for each aerosol model and each Gaussian angles	-	ASCII file	n.u.	-	$\Rightarrow\left(N_{\text {aer }} \times N_{\mu_{v}} \times N_{\text {coeff }}\right)$ values
rhob_aR_LUT.bin	LUTs with 4 polynomial coefficients fit for $\bar{\rho}_{a R}$ retrieval, computed for each aerosol model and each Gaussian angles	-	Binary file	n.u.	-	$\Rightarrow\left(N_{\text {aer }} \times N_{\mu_{v}} \times N_{\text {coeff }}\right)$ values

LUT_file will contain polynomial coefficients fit $\left(k_{0}, k_{1}, k_{2}, k_{3}\right)$ for $\bar{\rho}_{a R}$ retrieval, given for each SAM and each Gauss angle

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: 16-Dec-10
Page: 147

12. APPENDIX-4: SPECIFICATION OF TOOLS FOR MERISAT

The following algorithms are given as processing units included in MERISAT (see [AD-7] for more details) to be used in conjunction with the two RTCs (FUB \& UdL) for the final assemblage of MERIS LUTs. Each algorithm is briefly described and I/O are listed in an associated table.

12.1 LINEAR FITTING

Description:

This function is used to determine the slope and the ordinate of a straight line through a set of data points. A general description is given here for the implementation of the algorithm which is independent of the type of data used as input.

Processing:

Variable	Descriptive Name	I/O	Type	Ranges / References / Remarks
N	Dimension of vectors to fit	I	int	No restriction on the size of N
x_{i}	Abscissa data values	I	float	Could also be specified by x_{0} and Δx
y_{j}	Ordinate data values	I	float	-
m	Computed slope of the fitted line	O	float	-
b	Computed ordinate at origin of the fitted line	O	float	

One of the simplest implementation of the linear fitting is defined as follows:

$$
\begin{gathered}
y=m \cdot x+b \\
t=N \cdot \sum_{i=0}^{N-1} x_{i}^{2}-\left(\sum_{i=0}^{N-1} x_{i}\right)^{2} \\
m=\frac{1}{t} \cdot\left[N \cdot \sum_{i=0}^{N-1} x_{i} \cdot y_{i}-\sum_{i=0}^{N-1} x_{i} \cdot \sum_{i=0}^{N-1} y_{i}\right] \\
b=\frac{1}{t} \cdot\left[\sum_{i=0}^{N-1} y_{i} \cdot \sum_{i=0}^{N-1} x_{i}^{2}-\sum_{i=0}^{N-1} x_{i} \cdot \sum_{i=0}^{N-1} x_{i} \cdot y_{i}\right]
\end{gathered}
$$

When the abscissa data is uniformly distributed at Δx intervals, the previous expression can be further simplified:

$$
\begin{aligned}
& y=m \cdot x+b \\
& x=x_{0}, x_{0}+\Delta x, x_{0}+2 \Delta x, \ldots, x_{0}+(N-1) \Delta x \\
& =x_{0}+[0,1,2, \ldots,(N-1)] \cdot \Delta x
\end{aligned}
$$

$$
\begin{aligned}
& t_{1}=\frac{6}{N(N+1) \Delta x}, \\
& t_{2}=t_{1} \cdot \sum_{i=0}^{N-1} y_{i}, \\
& t_{3}=\frac{2 t_{1}}{N-1} \cdot \sum_{i=0}^{N-1} i \cdot y_{i}, \\
& m=t_{3}-t_{2}, \\
& b=t_{2} \cdot\left(x_{0}+\frac{2 N-1}{3} \cdot \Delta x\right)-t_{3} \cdot\left(x_{0}+\frac{N-1}{2} \cdot \Delta x\right)
\end{aligned}
$$

Software:

Module name: LinearFit

Validation:

Pre-validation of algorithm with test data sets.

MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003
Issue: 4 Rev.: A
Date: 16-Dec-10
Page: 149

12.2 POLYNOMIAL FITTING

Description:

This function computes coefficient of polynomial of order n passing through N points given in x_{i} and y_{i} vectors. If the order of the polynomial is 1 , use linear fitting instead (see Section 12.1).

Processing:

Variable	Descriptive Name	I / O	Type	Ranges / References / Remarks
N	Dimension of vectors to fit	I	int	$i=0 . . N-1$
m	Order of the polynomial to fit	I	int	$1<m<N$
x_{i}	Abscissa data values	I	float	-
y_{j}	Ordinate data values	I	float	-
c_{j}	Computed polynomial coefficients	O	float	$j=0 . . m$

Proceeds by resolving the following system:

$$
\text { A. } X=B
$$

using matrix inversion algorithm

$$
\left[\begin{array}{ccccc}
N & \sum x_{i} & \sum x_{i}^{2} & \cdots & \sum x_{i}^{m} \\
\sum x_{i} & \sum x_{i}^{2} & \cdots & & \sum x_{i}^{m+1} \\
\sum x_{i}^{2} & \cdots & & & \sum x_{i}^{m+2} \\
\cdots & & & & \cdots \\
\sum x_{i}^{m} & \cdots & \cdots & \cdots & \sum x_{i}^{2 m}
\end{array}\right] \times\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=0}^{N-1} y_{i} \\
\sum x_{i} y_{i} \\
\sum x_{i}^{2} y_{i} \\
\vdots \\
\sum x_{i}^{m} y_{i}
\end{array}\right]
$$

The polynomial is written as:

$$
\sum_{j=0}^{m} c_{j} \cdot x^{j}
$$

Software:

Module name: PolynomialFit

Validation:

Pre-validation of algorithm with test data sets.

12.3 LINEAR INTERPOLATION IN ONE DIMENSION

Description:

This function is used to interpolate a value in a vector corresponding to a given abscissa value using a straight line model.

Processing:

Variable	Descriptive Name	I / O	Type	Ranges / References / Remarks
N	Dimension of input vectors	I	int	$k=0 . . N-1$
x_{k}	Abscissa data values	I	float	Is specified by x_{0} and Δx
$f\left(x_{k}\right)$	Ordinate input data points	I	float	-
x	Interpolation abscissa point	I	float	point at which interpolation is to be computed. Must be between input vector limits. Otherwise, extrapolation must be computed
$f(x)$	Interpolated value	O	float	-

The following description supposes an uniform points distribution:

For a given vector $f\left(x_{k}\right)$ defined on N points, linear interpolation can be expressed as:

$$
f(x)=f\left(x_{k}\right)+\delta\left[f\left(x_{k+1}\right)-f\left(x_{k}\right)\right]
$$

with the following definitions:

$$
\begin{array}{ll}
x \text { is limited inside the vector: } & x_{0} \leq x \leq x_{N-1} \\
k \text { is the interpolation coefficient index: } & k=F l o o r\left\{\frac{x-x_{0}}{\Delta x}\right\}, 0 \leq k \leq N-1 \\
\delta \text { is the offset between two discrete points: } & \delta=\frac{x-x_{k}}{\Delta x}, 0 \leq \delta \leq 1
\end{array}
$$

The values of the interpolation function at arbitrary positions within integer sampling positions, occur at fractional δ values.

Software:

Module name: Linearl nterpolation

Validation:

Pre-validation of algorithm with test data sets.

12.4 PARABOLIC INTERPOLATION IN ONE DIMENSION

Description:

This function is used to interpolate a value in a vector corresponding to a given abscissa value using a parabolic fit model.

Processing:

Variable	Descriptive Name	I/O	Type	Ranges / References / Remarks
N	Dimension of input vectors	I	int	$k=0 . . N-1$
x_{k}	Abscissa data values	I	float	Is specified by x_{0} and Δx
$f\left(x_{k}\right)$	Ordinate input data points	I	float	
x	Interpolation abscissa point	I	float	point at which interpolation is to be computed. Must be between input vector limits. Otherwise, extrapolation must be computed
$f(x)$	Interpolated value	O	float	

The following description supposes an uniform points distribution:

For a given vector $f\left(x_{k}\right)$ defined on N points, parabolic interpolation can be expressed as:

$$
f(x)=A \cdot \delta^{2}+B \cdot \delta+C
$$

with the following definitions:
x is limited inside the vector:
k is the interpolation coefficient index:
δ is the offset between two discrete points:
A, B and C, the parabolic coefficients:

$$
x_{0} \leq x \leq x_{N-1}
$$

$$
k=\text { Floor }\left\{\frac{x-x_{0}}{\Delta x}\right\}, 0 \leq k \leq N-1
$$

$$
\delta=\frac{x-x_{k}}{\Delta x}, \quad 0 \leq \delta \leq 1
$$

$$
\left\{\begin{array}{l}
A=0.5\left[f\left(x_{k-1}\right)-2 f\left(x_{k}\right)+f\left(x_{k+1}\right)\right] \\
B=0.5\left[f\left(x_{k+1}\right)-f\left(x_{k-1}\right)\right] \\
C=f\left(x_{k}\right)
\end{array} .\right.
$$

The values of the interpolation function at arbitrary positions within integer sampling positions, occur at fractional δ values.

A special care must be taken at the extremities of the vector, where indication can exceed the numerical limits. In this case, a linear interpolation can be used at the extremity points, or a cyclic indiciation can be supposed with the use of modulus.

Software:

Module name: Parabolicl nterpolation

Validation:

Pre-validation of algorithm with test data sets.

12.5 INTERPOLATION IN MULTI-DIMENSIONS

Multi-dimensions (linear) interpolation [RD-65] (for Section 9.4.3)

12.6 NUMERICAL INTEGRATION

Description:

This function numerically integrates a distribution of points contained in tabulated vectors (containing abscissa and ordinate points) between specified limits.

When we talk about numerical integration (which is also called 'quadrature') we immediately think about Simpson's rule or Trapezoidal rule. The classical formulas for integrating a function for which values are known at equally spaced steps have a certain elegance about them, and they are redolent with historical association. But computing methods evolve and times change; with the exception of two of the most modest formulas ('extended trapezoidal rule' and 'extended midpoint rule', see [RD-65] for more details), the classical formulas are almost entirely useless. They are museum pieces, but beautiful ones.

- Integration with Gaussian Quadratures

Gaussian quadratures are among the most powerful methods for numerical integration [RD-66]. The theory behind these methods goes back to Karl F. Gauss (1777-1885), who used in 1814 continued fractions to develop the subject. In 1826, Karl G. Jacobi (1804-1851) re-derived Gauss results by means of orthogonal polynomials. The systematic treatment of arbitrary weight functions $W(x)$ using orthogonal polynomials is largely due to Elwin B. Christoffel (1829-1900) in 1877.

The basic idea of Gaussian quadratures is to give ourselves one more degree of freedom with respect to traditional methods by an enlightened choice of the location of the abscissa points at which the function is to be evaluated: these points will no longer be equally spaced.

Instead of studying the usual class of integrals of simple polynomial functions, we now study the class of integrands 'polynomial times some known function $W(x)$ '. The function $W(x)$ can then be chosen to remove integrable singularities from the desired integral. Given $W(x)$, in other words, and given an integer N, we can find a set of weights w_{i} and abscissas x_{i} such that the following approximation becomes exact if $f(x)$ is a polynomial:

$$
\int_{a}^{b} W(x) \cdot f(x) d x \approx \sum_{i=0}^{N-1} w_{i} \cdot f\left(x_{i}\right)
$$

The fundamental theorem behind N-point Gaussian quadratures comes from the fact that the abscissas of this equation together with the weighting function $W(x)$ in the interval (a, b) are precisely the roots of an orthogonal polynomial $P_{N}(x)$ for the same interval and weighting function. Without going into more mathematical details, let mention that many known quadratures exist for different forms of the $W(x)$ function. The most general case where $W(x)=1$ and with $-1<x<1$, implying Legendre polynomials P_{N} : these specific integrals are called Gauss-Legendre quadratures. This category is well suited for boundary conditioned physical problems like wave guides or resonators.

$$
\begin{aligned}
& W(x)=1 \text { and }-1<x<1 \\
& w_{i}=\frac{2}{\left(1-x_{i}^{2}\right) \cdot\left[P_{N}^{\prime}\left(x_{i}\right)\right]^{2}}
\end{aligned}
$$

MERIS/ ENVISAT-1
MEdium Resolution Imaging Spectrometer

Ref.: PO-RS-PAR-GS-0003

Issue: 4 Rev.: A
Date: $\quad 16-$ Dec-10 \quad Page: 155

- Legendre polynomialrecurrence relation

$$
(n+1) \cdot P_{n+1}=(2 n+1) \cdot x P_{n}-n P_{n-1}
$$

One important extension of the Gaussian quadrature is the case of 'preassigned nodes': Some points are required to be included in the set of abscissas, and the problem is to choose the weights and the remaining abscissas to maximize the degree of exactness of the quadrature rule. The most common cases are Gauss-Radau quadrature, where one of the nodes is an endpoint of the interval, either a or b, and Gauss-Lobatto quadrature, where both a and b are nodes. The Gauss-Lobatto x_{i} and w_{i} are defined as:
where

$$
x_{i}=x_{i}-1 \quad \text { zero of } \quad \frac{d P_{N-1}(x)}{d x}
$$

$$
\begin{gathered}
\frac{d P_{N}(x)}{d x}=\frac{N \cdot P_{N-1}(x)-N \cdot x \cdot P_{N}}{\left(1-x^{2}\right)} \\
w_{i}=\frac{2}{N(N-1) \cdot\left[P_{N-1}\left(x_{i}\right)\right]^{2}}
\end{gathered}
$$

Definite algorithms give abscissa points and weighting function for these specific quadrature (see GaussLegendre and GaussLobatto functions). Because of the inherent central symmetry, only half of the distribution can be computed. Knowing these two series, one proceeds by the integration of a function $f(x)$ by computing a simple summation of products as given by the first equation of this section.

As one can see, this method is time simple and elegant at the same from a theoretical and numerical point of view. It is difficult to imagine a more efficient method. Let us mention to finish that despite the various advantages of the integration method by Gaussian quadratures, they can not be easily applied in the presence of discontinuities, where we must resort to traditional methods.

Processing:

Variable	Descriptive Name	I / O	Type	Ranges / References / Remarks
N	Dimension of input vectors	I	int	$i=0 . . N-1$
x_{i}	Abscissa vector data values	I	float	Is specified by x_{0} and Δx
y_{i}	Ordinate vector data values	I	float	-
X_{i}	Quadrature abscissa values	I	float	defined for Gauss-Legendre or Gauss- Lobatto integration
W_{i}	Quadrature weighting function	I	float	-
a, b	Limits of integration	I	float	$x_{0} \leq a \leq x_{N-1}, x_{0} \leq b \leq x_{N-1}$ and $a<b$
I	Integral value	O	float	-

For tabulated data to be integrated with Gauss-Legendre quadrature between limits $[a, b]$, abscissa x_{i} and ordinate y_{i} points must be sampled according to the Gauss-Legendre decimation scheme. This will be true for most of the RTC raw output tables.

Another alternative method for uniform grid sampled data is integration by quadratic sub-intervals approximation. This is an excellent method for smooth and continuous data distributions, and can be applied on arbitrarily distributed data points.

Software:

Module names: GaussLegendre

GaussLobatto

Gaussl ntegrate
I ntegrateData

Validation:

Pre-validation of algorithm with test data sets.

Validate the generated coefficients through the Gauss-Legendre or Gauss-Lobatto integration on theoretical data sets to check that the obtained precision is within expected limits.

12.7 SIMPLEX MINIMIZATION

Description:

For the solution of arbitrary algebraic equations, it is often useful to use minimization algorithms. This strategy, based on a convergent minimization of residuals between the reference data and the fit, enables the resolution of complex equations that sometimes would be unsolvable.

Different algorithms can be used for the minimization of residuals between experimental points and a mathematical model according to a set of independent parameters. The most common alternatives for the search of a minimum are [RD-65], [RD-66], [RD-67] and [RD-68]:

1 - The stepwise descent strategy Easy to program and converges virtually all the time, but can be extremely slow to run.

2 - The steepest descent methods
Involve fewer iterations, but require knowledge or computation (by numerical differentiation) of the first derivative of the sum of square residuals.

3 - The Newton-Raphson algorithm
The most popular non-linear least-square fitting algorithm today; it is fast, but always prone to divergence (if started from inaccurate initial guesses).

4 - The Marquart algorithm
This algorithm and more recent methods (like Powell's quadratically convergent method) are mathematically equivalent to a mixture of methods 2 and 3. They avoid divergence problems of Newton-Raphson without unacceptable losses in speed. The amount and complexity of code generated can become substantial.

5 - The simplex algorithm Proposed in 1965 [RD-69], this method has the following advantages.

- Divergence is impossible
- Response value needs to be computed only once or at most a few times for each iteration.

	MERIS/ ENVISAT-1 MEdium Resolution Imaging Spectrometer	Ref. Issue Date	$\begin{aligned} & \text { PO-RS-PAR-GS-0003 } \\ & 4 \quad \text { Rev.: A } \\ & \text { 16-Dec-10 } \quad \text { Page: } 157 \end{aligned}$	

- No previously required knowledge of derivatives or numerical differentiation. This avoids rounding-off errors and allows the handling of non continuous functions.
- The number of data points and the number of parameters (η) are only limited by the speed and memory limitations of the computer on which the program will be run.
- Very generally speaking, the simplex algorithm usually converges in less than $20 \eta^{2}$ iterations.

Note that even if the simplex never diverges, this does not guarantee that no problem will develop. Failure to converge and premature conclusion are usually the results of using the wrong input parameters (or with truncation/round-off errors in the computer arithmetic when working with single precision numbers). But with appropriate guesses, this should never happen.

Sometimes, the simplex gives results far from expected, but the fitted curve matches the experimental data excellently. This happens when a particular function can be equally satisfied with more than one set of parameters.

The big advantages of the simplex algorithm are its remarkable speed, the fact that the program can never diverge, and the compactness of its implementation. Implemented in a curve-fitting algorithm, it is capable of handling virtually any function, no matter how complex, with any number of variables and parameters. It is the chosen tool for the current task of spectral calibration and instrument line shape retrieval, because of its remarkable speed, simplicity, and reliability.

Processing:

Variable	Descriptive Name	I / O	Type	Ranges / References / Remarks
N	Dimension of input vectors	I	int	$i=0 . . N-1$
Ncoeffs	Number of coefficients to fit	I	int	Ncoeffs <10
p_{j}	Initial values for coefficients	I	float	
x_{i}	Abscissa input data values	I	float	
y_{i}	Ordinate input data values	I	float	
E	Merit value	T	float	Sum of squared residuals
tol	Tolerance for convergence	I	float	Relative convergence definition; $10^{-10}<$ tol $<10^{-3}$
model_fit	Residual minimization function	I	fonct	Sub-function computing SSR
p_{j}	Fitted coefficients	O	float	$j:$ 0.. Ncoeffs -1
ftol	Residual error of fit	O	float	information parameter
iters	Number of iterations for convergence	O	int	informs about the speed of convergence

The simplex method presumes the existence of a 'black-box' sub-algorithm, the role of which is to compute the merit value, or the amplitude of what one is trying to minimize. In our case, we want to lessen the sum of the squares of the differences (δ) between the fitted model and the reference data points. For random errors randomly distributed, this is the best criterion of all.

$$
\delta=\sum_{i=0}^{N-1}\left[\text { model_fit }\left(i, p_{0}, p_{1}, p_{2}, \ldots\right)-y_{i}\right]^{2}
$$

where p_{1}, p_{2}, \ldots are a set of input parameters that characterize the theoretical model. For such an algorithm to work correctly, one must set initial values for these parameters. These initial values will be computed according to the physics of each specific problem.

By setting a suitable precision or a maximum number of iterations, the simplex algorithm will modify the parameters and compute a residual value for each set until a minimum residual (or least square) is produced, yielding to the optimum set of parameters for the considered case.

Software:

Module names: SimplexFit

Validation:

Pre-validation of algorithm with test data sets.

12.8 DETERMINATION OF THE GOODNESS OF FIT

Description:

After a given fit has been computed, the standard deviation can be computed to evaluate the dispersion of the fit. The standard deviation is the root mean square of the deviations, and is associated with the second moment of the data about the mean [RD-70].

A goodness of fit indicator can also be computed between the reference points and the fit to determine with which validity they are similar. A useful operator used to evaluate the goodness of fit criteria is mathematically derived as follows:

Abstract

where f_{i} is the fitted data, or the experimental spectrum y_{i} is the model data, or the reference spectrum and $\quad \bar{f}$ and \bar{y} are the means of the vectors f and y.

- Correlation coefficient r

r is the linear-correlation coefficient, also called the 'product-moment correlation coefficient', or Pearson's r. It indicates the strength of the association between the dependent and independent variables. The magnitude of the coefficient is not easy to interpret (see definition of determination coefficient), but the sign (+ or -) indicates the direction of the relationship. The correlation coefficient varies from -1 to +1 , with -1, for example, indicating a reversed relationship (as one grows larger, the other grows smaller).

- Coeffiecient of determination r^{2}

r^{2} measures the proportion of the variation of the dependent variable about its mean that is explained by the independent or predictor variable(s). The coefficient r^{2} can vary between 0 and 1 . If the regression model is properly applied and estimated, higher is the r^{2} value greater is the explanatory power of the regression equation and better is the prediction of the criterion variable [RD-71]. It takes a value of 1, termed 'complete correlation', when the model and the experimental points match one-by-one.
r^{2} has the following properties:
$r^{2}=1 \quad$ when input functions (the model and the experimental points) match perfectly.
$r^{2}=0 \quad$ when input functions are completely uncorrelated.
When a correlation is known to be significant, r^{2} is one conventional way of summarizing its strength. In fact, the value of r^{2} can be translated into a statement about what residuals (root mean square deviations) are to be expected if the data are fitted to a straight line by the least-squares method. This value is always bounded, but it does not indicate when a fit starts linearly from the reference.

Another similar determination coefficient is R^{2}, that is closely related to the r^{2} criteria, and is defined as:

$$
\begin{gathered}
R^{2}=1-\frac{\sum_{i=0}^{N-1}\left(f_{i}-\bar{f}\right)^{2}}{\sum_{i=0}^{N-1}\left(y_{i}-\bar{y}\right)^{2}} \\
R^{2}=1-\frac{\text { unexplained variation }}{\text { total variation about the mean }} \quad[-\infty \ldots 1]
\end{gathered}
$$

R^{2} has the following properties:
$R^{2}=1 \quad$ when input functions (the model and the experimental points) match perfectly.
$R^{2}=0 \quad$ when input functions are completely uncorrelated.
$R^{2}=-\infty \quad$ when input functions are completely anti-correlated.
An ill-conditioned case occurs when the model y is distributed around zero in a horizontal line: this causes both correlation factors to take small values even in the presence of good fits.

In summary, r and R are the correlation coefficients, while r^{2} and R^{2} are the determination factors. It is on the last two values that the present analysis is based. The squared values are used to simplify the understanding, and both r^{2} and R^{2} are used to get as much information as possible for the goodness of the fit. At the end of the study, maybe it will be judged that only one identificator is sufficient for a correct identification.

Further details regarding the correlation/determination coefficient can be found at the following references: [RD-65], [RD-70] and [RD-72].

Processing:

Variable	Descriptive Name	I / O	Type	Ranges / References / Remarks
N	Dimension of input vectors	I	int	$i=0 . . N-1$
y_{i}	Ordinate values of reference data points	I	float	-
f_{i}	Ordinate values of fitted data	I	float	-
s	Standard deviation	O	float	-
r^{2}	Determination coefficient	O	float	$0 \leq r^{2} \leq 1$
R^{2}	Determination coefficient	O	float	$-\infty<R^{2} \leq 1$

The expression for the standard deviation s of the sample fit is given by:

$$
s=\sqrt{\frac{1}{N-1} \cdot \sum_{i=0}^{N-1}\left(f_{i}-y_{i}\right)^{2}}
$$

where f_{i} is the fitted data
$y_{i} \quad$ is the model data, or the reference points

Software:

Module name: ComputeStats

Validation:

Pre-validation of algorithm with test data sets.

[^0]: - 'scamat.f' : for the Mie's computations,

