

Doc. No.: Issue: Date: Sheet: PO-RS-ESA-GS-00245 3.3 1 July 1997 1

ENVISAT GROUND SEGMENT

ASAR PROCESSING and PRODUCT QUALITY REQUIREMENTS

Prepared by: Y-L DESNOS - NWP

11

))

.

Approved by: G.LEVRINI - NWP Cau della un J.LOUET - NW 19

Authorised by: JP.GUIGNARD - H/RS/P

Distribution list:

Envisat Project

·e	esa
----	-----

Project:

Doc. No:PO-RS-ESA-GS 00245 Issue : 3,3 Date : 1 July 1997 Sheet: 2

DOCUMENT CHANGE RECORD

Issue/ Rev Date Page		Page	Description of Changes	Approved by: (same signature as on the cover page	
1.0	27.2.95		new document		
2.0	3.10.95		Stripline processing definition updated Phase preserving processing Test definition update Phase error for point target test definition and specifica- tion Suppresssion of requirement to process auxiliary modes of ASAR (done in the ECC) Requirement of phase preserving processing for wave mode added Requirement of mosaiking GEC product added (previously in PO-RS-ESA-GS0162) Requirement of relative phase error suppressed(covered by Phase error for point target test definition and specifi- cation)		
2.1	24.10.95		Update Reference and applicable Documents Updated list of characterisation parameters/downlink processing parameters Definition of radiometric resolution/ENL added (previously in PO-RS-ESA-GS0162)		
3.0	10.11.95		Document revision following ESRIN comments (JP GUIGNARD & H.LAUR)		
3.1	15.11.95		Update following TH-CSF comments		
3.2	23 .04.96		Update according to red marked copy Reference PO- MN-MDA-GS2063 agreed by T4S/MDA. Additional modifications : BAQ option for energy con- scrvation restricted to 8/2 and 8/3 compression ratios. Information on number of Bytes per pixels added as per PO-TN-ESA-GS-00231 issue 2.0 with exceptions of ASAR_APM,ASAR_GM1 and ASAR_IMM which are coded on 2 bytes per pixel.		
3.3	01 .07.97		Update according to Action Item agreed by T4S/MDA at OSAT; page 9 update of Applicable Reference docu- ments; page 12 update figure 1; p 29 TBC removed; page 50 browse pixel spacing IM and AP; page 45 ENL updated for APP and APG (waiver PO-RW-CSF-GS- 1584)		

Doc. No:PO-RS-ESA-GS-00245 Issue : 3.3 Date : 1 July 1997 Sheet: 3

Table of Contents

1.1. BACK	GROUND	************
1.2 SCOP	Е	
13 ASAR	instrument design implications	
1.J. AGAN		************
1.4. ACKC	JN I MS	
1.5. REFE	RENCE and APPLICABLE DOCUMENTS	
	1.5.1. Applicable documents	9
	1.5.2. Reference documents	9
2. DEFINITION	YS	
2.1. ASAR	modes of operation	
	211 Image Mode	10
	2.1.2 Alternating Polarisation Mode	10
	2.1.3. Wide swath mode	
	2.1.4. Global Monitoring Mode	
	2.1.5. Wave Mode	10
	2.1.6. External characterisation mode	
	2.1.7. Module Stepping Mode (auxiliary mode)	11
2.2. ASAR	Generic Processor	
2.3. INPU	T PROCESSING PARAMETERS	
	2.3.1 FIXED PROCESSING PARAMETERS	.15
	2.3.1.1. Parameters fixed for the lifetime of the instrument	15
	2.3.1.2. Parameters fixed for the instrument baseline	
	2.3.1.3. Parameters defined for the reference orbit and the instrument bas	eline 16
	2.3.1.4. ASAR antenna elevation pattern	
	2.3.1.5. Other parameters of the Instrument characterisation data base	
	2.3.2. DOWNLINK PROCESSING PARAMETERS	
	2.3.3. PRODUCT GENERATION PARAMETERS	20
	2.3.4. EXTERNAL CHARACTERISATION DATA	
	2.3.5. EXTERNAL CALIBRATION DATA	22
	2.3.6. OTHER PARAMETERS	23
. ASAR PROC	ESSING REQUIREMENTS	
3.1. DEFIN	NITIONS of ASAR Processing Parameters	
	3.1.1. Level 0 product	25
	3.1.2. Stripline processing	
	3.1.3. Doppler centroid estimate	25
	3.1.4. Doppler ambiguity estimator	25
	3.1.5. Point target misregistration	25
	3.1.5.1. Absolute Point Target Geometric Misregistration	25
	3.1.5.2. Relative Point Target Geometric misregistration	25
	3.1.6. Point target radiometric linearity	26
	3.1.7. Point target linear output dynamic range	
	3.1.8. SAR processor gain	26
	3.1.9. Range Cell Migration Correction Artifact.	26
	3.1.10. Missing Range Lines	

571

))

Doc. No;PO-RS-ESA-GS-00245 Issue : 3.3 Date : 1 July 1997 Sheet: 4

Table of Contents

	3.1.1.1. These preservation of abase accessing and testing	
	3.1.11.7. Officer processing test description:	24
	2.1.11.2. Criset processing test description.	
	3.1.12 Shart to Ground Bange Conversion	
	3.1.13. Zero Dopplet Coordinates	21
3.2 Operatio	nal Requirements	
J.Z. Operade	3.2.1 Modes of Operation	21
33 Innut De	J.2.1. Modes of Operation	
5.5. mput Re		
	3.3.2. Input Data Type	
3.4. Processi	ng Requirements	
	3.4.1. Data Decompression.	
	3.4.2. Processing Algorithm	
	3.4.3. SAR imagery Geometric representation	
	3.4.4. Phase Preserving.	
	3.4.5. Interpixel spacing of products	
	3.4.6. Stripline Processing	
	3.4.7. Missing Range Lines	
	3.4.8. Level 0 Data Analysis	
	3.4.9. Level 0 Data Corrections	
	3.4.10. Range spreading loss compensation	
	3.4.11. Orbit propagator	
	3.4.12. Range Antenna Patterns Correction	
	3.4.13. Sampling Window Start Time Change	
	3.4.14. Doppler Frequency Modulation Rate Estimator	
	3.4.15. Doppler Centroid Estimator	
	3.4.10. Doppler Ambiguity Estimator	
	3.4.17. Kange Cell Migration Correction	
	3.4.10 Azimuth Interpolation	
>	3.4.19. Azimum Interpolation	
	3.4.21. Processing Gain	
	3.4.22. Analogue-to Digital Converter Non linearity Correction	31
	3.4.23. Internal Calibration processing	
	3.4.24. Alternating Polarisation Image Co-registration	
	3.4.25. Geocoding processing (IM/AP modes)	
	3.4.26. Point Target Linear Output Dynamic Range	
	3.4.27. Point target relative geometric misregistration	
	3.4.28. Range Matched Filter Generation	
3.5. Output p	roduct confidence measures	
	3.5.1. Downlink Parameter Confidence	
	3.5.2. Chirp Replica quality	34
	3.5.3. Input data statistic	
	3.5.4. Doppler centroid estimator	3
	3.5.5. Doppler Ambiguity Estimator Measures	3
	3.3.0. Output Data Statistic	3

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue : 3.3 Date : 1 July 1997 Sheet 5

Table of Contents

4.1. lm	age Quality Definitions	***********
	4.1.1. Weighted theoretical range resolution	
	4.1.2. Weighted theoretical azimuth resolution	
	4.1.3. Point Target Peak Power	
	4.1.4. Maximum side lobe levels	
	4.1.5. Two-Dimensional Integrated Sidelobe Ratio	
	4.1.6. Radiometric Error	
	4.1.7. Absolute location accuracy	
	4.1.8. Product ENL (Radiometric Resolution)	
	4.1.9. Radiometric Accuracy	
4.2. Im	age Quality Requirements	
	4.2.1. Measurement	
	4.2.2. Range Impulse resolution	
	4.2.3. Azimuth Impulse resolution	
	4.2.4. Range/ Azimuth Maximum sidelobe levels	
	4.2.5. Two dimensional Integrated Sidelobe Ratio	
	4.2.6. Point target linearity	
	4.2.7. Absolute location accuracy (independent of orbit data)	
	4.2.8. Ground Processor Radiometric Error	
4.3. Ima	age Quality Requirements Tables	
	4.3.1. ASAR_IMS Image Quality requirements	
	4.3.2. ASAR_APS Image Quality requirements	
	4.3.3. ASAR_WV1 Imagette Image Quality requirements	
	4.3.4. ASAR_IMP Image Quality requirements	
	4.3.5. ASAR_APP Image Quality requirements	
	4.3.6. ASAR_IMG Image Quality requirements (Requirements iden	itical to ASAR
	437 ASAR APG Image Quality requirements (Province ite	tical to ASAT
	astra to the stand and a second redunction (vedancinents last	ILLCAL IU ASAR
	4.3.8. ASAR_WSM Image Quality requirements	
	4.3.9. ASAR_GM1 Image Quality requirements	
	4.3.10. ASAR_IMM Image Quality requirements	
	4.3.11. ASAR_APM Image Quality requirements	
	4.3.12. ASAR Browse quality requirements	

ENVISAT-1 - Project

) }

Doc. No:PO-RS-ESA-GS-00245 Issue : 3,3 Date : 1 july 1997 Sheet: 6

List of Tables

table 1. : Fixed Processing Parameter	15
table 2. : Downlink Processing Parameters	19
table 3. Product Generation Parameters	21
table 4. External characterisation data	22
table 5. : External calibration data	23
table 6. Orbit state vector	23
table 7. Earth model parameters	24
table 8. Data encoding on ASAR	29
were of 2 and encours of the literation	-T-

Doc. No:PO-RS-ESA-GS-00245 Issue : 3,3 Date : 1 July 1997 Sheet 7

List of Figures

figure	1. ASAR modes schematic	.2
figure	2. ASAR Generic Processing Functional Block Diagram	4

ENVISAT-1 - Project

) 1

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :8

1 INTRODUCTION

1.1 BACKGROUND

The ASAR Generic Processor (ASAR-GP) is responsible for the processing of various type of High Rate ASAR signal data referred as Regional mission and Low rate ASAR signal data referred as Global mission to form various output products.

This consists primarily of processing image modes signal data (image mode alternating polarisation mode, wide swath mode, global monitoring mode, wave mode) to form different required scene products defined in Applicable document 3.

The ASAR GP is to be installed in PDHS (Kiruna and ESRIN) and to be procured by IACs and National Stations (NS-E) offering services to ESA standards.

1.2 SCOPE

This document states the detailed requirement specifications for the processing and the quality of the products to be generated by the ASAR GP. Applicable documents are listed in Section2.

1.3 ASAR instrument design implications

The starting point in deriving processing schemes for ASAR is to consider the ASAR instrument high level designs aspects and their implication for processing. In particular it is useful to identify the features of ASAR which are significantly different from the ERS-1 SAR.

- ASAR includes an active phased array antenna that provides distinct transmit and receive beams
- ASAR includes a complex calibration scheme with 4 calibration pulses embedded in the instrument mode timeline to provide instrument dependant correction factors
- ASAR includes digital waveform generation for pulse ("chirp") modulation with mode and swath dependant variable bandwidth
- ASAR includes a Block Adaptive Quantisation scheme
- ASAR includes SCANSAR modes
- ASAR includes an External Characterisation scheme with a Ground receiver to be used as part of the internal calibration corrections in the ground processor

1.4 ACRONYMS

ASAR GP = ASAR Generic Processor

- AP = Alternating Polarisation
- GM = Global Monitoring (Mode)
- WS = Wide Swath
- IM = Image Mode
- PDS = Payload Data Segment

PAC = Processing and Archiving Centre

- LRAC = Low Rate Archive Centre
- PDHS = Payload Data Handling Centre

Project	ctr.		ASA	AR	Date : 1 July 1997 Sheet :9
rioje	ENVISA	T-1			
		PDHS-E = Payloa PDHS-K = Payloa FD = Fast Deliver NRT = Near Real DRS = Data Relay ISP = Instrument PCD = Product Co MPH = Main Prod SPH = Specific Pr OGRC= On Grou RCMC=Range Ce TBD = To Be Defin TBC = To Be Cont	Id Data Handling Cer ad Data Handling Cer y Time y Satellite Source Packets onfidence Data duct Header oduct Header nd Range Compresse all Migration Correcti ned firmed	ntre ESRIN ntre KIRUNA	
1.5	REFE	RENCE and AF	PPLICABLE DOCU	JMENTS	
1.5.1	Арр	licable docume	nts		
	[A - 1]	PO.WS.ESR.GS. ITT-AO/2-1383/9	.0001Envisat-1 payloa 95/NL/CN)	id data segment Dev	velopment S.O.W. (Appendix
	[A - 2]	PO-RS.ESA.GS.(lix 1- Annex D -II	0239Envisat-1 payloa T-AO/2-1383/95/N	id data segment Tec L/CN)	chnical Requirements.(Apper
	[A - 3]	PO-RS-MDA-G	5-2009 Issue 3 Envisa	t Product Specificat	tions
	[A - 4]	PO-RS-ESA-GS-	-0242 Issue 5 Nov1990	6 Envisat Product F	ormat Guidelines
1.5.2	Refe	rence documen	nts		
	[R - 1] s	PO-RS-DOR-SY-	-0029 Mission prime	assumptions on EN	IVISAT-1 ground
	[R - 2] N	PO-PL-MMS-SR May 1996)	1-0004 Envisat-1 ASA	R calibration and c	haracterisation plan (issue H
	[R - 3] c	PO-ID-DOR-SY-	-0032 issue 3 January Volume 5	97 Envisat 1 payloa	ad to ground segment interfac
	[R - 4] D	PO-TN-MMS-SF Data	R-0248 Issue B Dec 96	Envisat ASAR Inte	erpretation of Source Packet
	[R - 5] b	PO-ID-DOR-SY-	-0037 (issue 1 June 96) Definition of inst	rument characterisation data
	[R - 6]	PO-DW-MMS-S	R-0018/19/20/21/22	2/23/24 issue H no	v95 ASARModes Timelines
	[R - 7]	PO-IS-GMV-GS-	-0558 Envisat Orbit P	ropagator PPF_orb	it version 4.2
	[R - 8] g	DMA-TR-8350.2 codetic systems	World Geodetic Syst	tem 1984 Its definition	on and relationships with loc
	[R - 9]	FBAQ Extended	Study Technical Rep	ort Volume 1 of 3 I	mage mode study Ref. MDA

25:11 26, 907 80

4 K

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :10

2 DEFINITIONS

For the sake of clarity and preciseness in the requirements to follow a number of definitions are listed below.

2.1 ASAR modes of operation

A schematic illustrating ASAR different modes is given document figure 1.

2.1.1 image Mode

In image mode the flexible swath position allows the choice between seven swaths covering a range of incidence angles from 17 to 45 degrees. The choice between HH or VV polarisation is possible.

2.1.2 Alternating Polarisation Mode

In alternating polarisation mode a scansar technique described in Reference Document 6 allows half the looks of an image to be acquired in horizontal polarisation HH and half the looks to be acquired in vertical polarisation VV so that in a single pass an image in HH polarisation and an image in VV polarisation will be acquired from the same scene.TH is mode is referred as co-polar mode.

Additionally two cross-polarisation sub-modes have been introduced:

- cross-H Mode where all Tx pulses are in H polarisation. The receiver alternates between H and V polarisations in blocks as in current Alternating Polarisation Mode.
- cross-V Mode where all Tx pulses are in V polarisation. The receiver alternates between H and V polarisations in blocks as in current Alternating Polarisation Mode.

In Alternating polarisation mode the flexible swath position allows the choice between seven swaths covering a range of incidence angles from 17 to 45 degrees.

2.1.3 Wide swath mode

In Wide Swath mode using the SCANSAR technique ASAR can switch very quickly between Subswaths. so that an overall swath of more than 400 km width can be imaged. The choice between HH or VV polarisation is possible.

2.1.4 Global Monitoring Mode

This mode is a scansar mode operated in the same geometry as the wide swath mode but with a reduced spatial resolution (1000m approximately) to allow on board storage of the measurement data and possibly up to 100% orbit operation. The choice between HH or VV polarisation is possible.

2.1.5 Wave Mode

The wave mode is a single mode operated up to 100% of the orbit with the following char-

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :11

acteristics: 100 km separation between vignettes, vignette positioned anywhere within an Image mode swath, two vignette positions may be defined for each mode (in one swath or in different swaths)

The choice between HH or VV polarisation is possible.

2.1.6 External characterisation mode

The external characterisation mode provides absolute calibration measurements by transmitting on each of the 32 elevation rows of the antenna according to a predefined sequence

Additionally some internal calibration measurements are made simultaneously in order to provide comparative values.

2.1.7 Module Stepping Mode (auxiliary mode)

Module stepping mode provides an internal health checking facility on an individual Transmit Receive module basis. The purpose of the mode is primarily to identify any malfunctioning modules to allow them to be switched-off if necessary, and to identify modules for which calibration offsets are to be applied.

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :13

2.2 ASAR Generic Processor

The system which is responsible for the following:

2.8

From Level 0 data

- processing narrow swath mode signal data to image products
- processing alternating polarisation mode signal data to image products
- processing systematically all acquired data(IM,AP,WS,GM) to low resolution compressed image product for browse purpose only
- processing systematically all acquired data at PDHS from narrow swath mode, alternating polarisation mode and wide swath mode to medium resolution image product for NRT applications
- processing low Rate Signal data coming from Wave mode, Global monitoring mode

2.3 INPUT PROCESSING PARAMETERS

The input processing parameters are a base set of processing parameters from which all other control parameters necessary for proper ASAR GP operation can be derived.

These are further distinguished as:

- fixed parameters (ASAR sensor parameters described in Reference Document 5);
- downlink parameters (extracted from the downlink data and available in Level0 product);
- product generation parameters (updated for each product generated).
- external characterisation data (generated by ESA from the data received on a ground receiver built-in ASAR transponders when the instrument is in external characterisation mode)
- external calibration data (external calibration scaling factors mode and swath dependant provided by ESA)

đĚ

other parameters: orbit data, Earth model, Yaw Steering Law Identifier

A functional breakdown of the overall processing data flow is given document figure 2

ENVISAT-1 - Project

))

.)

11

ENVISAT-1

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :15

2.3.1 FIXED PROCESSING PARAMETERS

The instrument data are measured on ground before launch and are provided via the characterisation data base Reference Document 5.

2.3.1.1 Parameters fixed for the lifetime of the instrument

PARAMETERS	VALUES	ACCURACY	UNITS	NOTE
Radar Frequency	5.331	=/-100Hz	GHz	1
Radar Sampling Rate	19.208	2ppm	MHz	2
Offset frequency for wave mode calibration pulses	document [R - 5]			3
Nominal values of amplitude and phase of calibration pulses 1,1A,2 and 3	document [R - 5]			4
Two way Antenna Azimuth Pattern	document [R - 5]			5
Range gate bias	document [R - 5]			6
ADC characterisation LUT	document (R-4]			7
Antenna embedded row pat- tern	document [R - 4] document [R - 5]			8

table 1 : Fixed Processing Parameter

Notes:

1. The ASAR centre frequency is different from ERS1/ERS2 centre frequency

2. This is the complex sampling rate; each sample has a real part and an imaginary part.

3. Because of Data Rate limitation ASAR use a CW signal for calibration pulses in wave mode

4. To be used for ground processor internal calibration and performance monitoring appendix B

5. The antenna pattern is supplied (prior to launch) to ASAR GP in a form of a file or polynomial coefficient

6. Time delay of a pulse through the instrument.

7. ADC characterisation LUT consisting of measured voltage threshold values for both I and Q channels on the real non-ideal ADC. The LUT is used to estimate the output voltage level as per Reference Document 4.

8. This is the gain and phase of each antenna row when embedded in the array as a function of elevation angle . They are used in the internal calibration function described appendix B

2.3.1.2 Parameters fixed for the instrument baseline

Tables assumed to be fixed for the lifetime of the instrument. Nevertheless it is possible to

Doc. No:PO-RS-ES A-GS-002 5 Issue :3.3 Date : 1 July 1997 Sheet :16

modify the instrument settings by macro-command. so that these tables are no longer valid. In this case the tables have to be updated accordingly.

PARAMETERS	VALUES	ACCURACY	UNITS	NOTE
Default FBAQ reconstruction- LUT	document [R - 4]			1
Instrument mode data process- ing configuration Table	document [R - 4]			2
default swath identification table	document [R - 4]			3
calibration row sequence table	document [R - 4]			4
mode timelines	document [R - 5] document [R - 6]			

1. Default BAQ Reconstruction level associated with the default BAQ LUT stored on board the data Subsystem

2. Quantisation type for Echo, Calibration, Noise data and resampling subswath by subswath when applicable

3. The swaths, subswaths corresponding to Antenna beam Set parameters are programmable by macrocommand from the ground

4. During the initial calibration sequence the row number parameter is not updated in the source packet data field header. This is why a knowledge of the order in which the calibration rows are stepped is important.

2.3.1.3 Parameters defined for the reference orbit and the instrument baseline

The parameter values have to be modified when the satellite is in an orbit different from the reference orbit. They depend on the swath, subswath and mode.

PARAMETERS	VALUES	ACCURACY	UNITS	NOTE
Pulse window number	9 to 14			1
Reference elevation angles	parameter C26 of document [R - 5]	exact		2
Center of swath elevation angles	IS1 = 16.6 IS2=20.11 IS3/SS2=25.22 IS4/SS3=29.46 IS5/SS4=32.8 IS6/SS5=35.58 IS7=38.0 SS1=19.14		degree	3
Return time for the scansar modes	document [R - 1]			

,)

ENVISAT-1

1. This value is the number of pulse repetition intervals between transmission of pulse and receipt of the return from that pulse

2. Reference value used for internal calibration in the ground processor

3. Used for swath definitons, these values are taken from ASAR Instrument Requirement Specifications

2.3.1.4 ASAR antenna elevation pattern

The ASAR two way antenna patterns for SS1,IS1,IS2,IS3,IS4,IS5,IS6,IS7 will be characterised on ground before launch and will be provided as part of the instrument characterisation data base Reference Document 5. They will be updated as part of the External calibration activities described Section 2.3.5

2.3.1.5 Other parameters of the Instrument characterisation data base

For the seek of completeness the other parameters of the instrument characterisation data base are listed here under:

- Update Period for Complete Row Cycle Calibration
- Update Period for Noise Measurement
- Number of Samples per Pulse
- Duty Cycle in OGRC Modes
- Chirp Bandwidth (OGRC)
- Pulse Rise and Fall Time
- Reference Elevation Angle
- Calibration Loop Paths Characterisation Factor
- Peak Power Two Way Gain Product of Instrument in Image Mode
- Peak Power Two Way Gain Product of Instrument
- Auxiliary Transmit Power Monitor Nominal Level
- I & Q Channel DC Offset
- I/Q Ratio
- Non-orthogonality between I & Q
- Receiver Step Attenuator Characteristic
- Antenna pointing nominal wrt Nadir
- Second Local Oscillator frequency

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :18

2.3.2 DOWNLINK PROCESSING PARAMETERS

Parameters detailed definition and default values are given in Reference Document 4

PARAMETERS	VALUES	ACCURACY	UNITS	NOTE
mode ID				0
antenna beam set number	0 to 63			1
Pulse Repetition Interval(PRI)	PRF = 1/PRI = 1580-2150		Hz	2
On Board Time (epoch of received range pulse)		200	micros.	3
Sampling Window Start Time	Reference Document 4		sample	4
Tx pulse length	11.6 - 41.3		μs	5
Tx Pulse Bandwidth	0.4 to 16		MHz	6
Echo window length: echo data cal data noise data	parameters definition and range given in Reference Document 4	2ppm	sample sample sample	7
Upconverter level				8
Downconverter Level (Receiver Attenuation)				9
Auxiliary transmit monitor level				
Beam Adjustment Delta				10
Calibration row number				11
source packet number				12
Echo, noise, or calibration data flag				13
Tx Polarisation (V/H flag) Rx Polarisation (V/H flag)				14
Mode packet count				15
Cycle packet count				16
Compression Ratio Calibration Type Global Monitoring Mode Resa- mpling Factor				17 18 19

;)

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :19

table 2 : Downlink Processing Parameters

Notes:

0.Defined Reference Document 4

1. This parameter is indicating the beam set to which the packet data applies. This parameter will be updated during an operating mode

2 PRF defined by the pulse repetition interval in sample clock interval

2.5. and 6. For PRF, Tx pulse length and Tx Chirp, respectively will be updated simultaneously. An approach called "fixed PRF modes" is used:

- when any mode is entered the PRF for each individual swath or subswath will not be changed for the duration of the commanded mode (Requirement of PRF change for round orbit operation will be managed by the ground segment operations in the form of limited mode operation on certain part of the orbit)

- the transmit pulse length for each individual swath or subswath will always remain constant (the operational procedures to ensure that the pulse lengths are compatible with instrument operations will be implemented in the ground segment)

- there will be a single Chirp No parameter for each swath subswath

3. Absolute error in the epoch time will cause the processor to use the wrong orbit ephemeris data.

4. This value will be updated at nominally fifteen second intervals during an operation mode for each beam set. Samples at sample clock frequency given document table 1.

6. The chirp bandwidth will be in the range 0.4 Mhz to 16 Mhz, the precise value is given by the chirp pulse bandwidth codeword in the source packet Data Field Header described in Reference Document 4

7. Different echo window length for Echo Noise or Calibration data. Samples at sample clock frequency given document table 1.

8. and 9. values supplied and not updated during a mode

10. Parameter describing the delta phase shift applied for beam adjustment. Will be updated during an operation mode

11. Defined Reference Document 4

12. Information used to check missing data

13. Indicates if the packet contains echo calibration or noise data respectively

14. transmit respectively receive polarisation of the source packet

13. Defined Reference Document 4

15. Mode packet count = counter reset to zero only on entry into an operation mode and wraps around when full

16. Cycle packet count = parameter updated during an operating mode

17. Compression ratio = compression ratio used in quanrtisation averaging mode (8/4,8/ 3,8/2)

18. Calibration Type = indicates Initial calibration or Periodic Calibration

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :20

2.3.3 PRODUCT GENERATION PARAMETERS

PARAMETERS	TYPICAL values	UNITS	NOTE
Processing Mode	processing for narrow swath image mode (PRI,SLC,GEC)		
	processing alternating polarisation mode (PRI,SLC,GEC)		
	Stripline processing to Medium resolution for wide swath mode, image mode, alter- nating polarisation mode		
	Stripline processing to Browse for wide swath mode, image mode, alternating polarisation mode, Global Monitoring		
	stripline processing for global monitoring mode		
	processing for wave mode		
Product type	see document [A - 3]		1
Raw Data Analysis Flag	Yes or No described appendix A		
Antenna elevation correction Flag	Yes or No		
Slant range to ground range projection flag	Yes or No		
Azimuth weighting factor	To Be Optimised to achieve required prod- uct Quality defined section 4		
Range weighting factor	To Be Optimised to achieve required prod- uct Quality defined section 4		
Range Look bandwidth	To Be Optimised to achieve required prod- uct Quality defined section 4.Nominal val- ues are given section 4		
Replica pulse construction	from internal calibration appendix B		2
nominal output pixel spacing - slant range - ground range - azimuth	section 4		
Number of range looks	To Be Optimised to achieve required prod- uct Quality defined section 4		3
Number of azimuth looks	To Be Optimised to achieve required prod- uct Quality defined section 4		3
Azimuth Look Bandwidth	To Be Optimised to achieve required prod- uct Quality defined section 4. Nominal val- ues are given section 4		

ENVISAT-1 - Project

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :21

PARAMETERS	TYPICAL values	UNITS	NOTE
Default raw data correction parameters:			4
. I bias	0.0		
. Q bias	0.0		
. IQ gain imbalance	1.0		
. IQ quadrature departure	0.0		

table 3 Product Generation Parameters

Notes:

1. see product definitions and specifications

2. see document [R - 2]

3. Not applicable to Medium resolution and Browse products

4. Raw data correction are described appendix A

2.3.4 EXTERNAL CHARACTERISATION DATA

External Characterisation Data are determined at the beginning of ASAR operation and thereafter updated at regular intervals (typically 6 months).

External characterisation parameters shall be used by the Ground Processor as part of the internal calibration processing correction described appendix B.

External characterisation is a dedicated mode within ASAR performed overflying a receiver setup for H (or V) polarisation) located on the ground (built in the ASAR Transponder). During the mode ASAR transmits a sequence of pulses from each antenna row in turn. These pulses are received and digitized on the ground and the data recorded for off line analysis in the Engineering Calibration Computer. Simultaneously during the mode the calibration loop in the instrument is used to couple transmit pulses which are then sampled within a calibration window in order to provide comparative values.

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :22

PARAMETERS	DEFAULT VALUE	ACCURACY	UNITS	NOTE
Complex loop paths Character- isation Factors relative to free space g_{np}	s _{np} =1			1
n is the index of the row n=32 p is the index of the polarisa- tion (H or V)	-	, 		
Antenna pointing error ΔP_1	0			2

table 4 External characterisation data

Notes:

1. g_{np} is a measure of the departure from the ideal responses for the calibration loop and the path from the calibration coupler to the antenna face for the different rows document [R-2].

2. ΔP_1 elevation pointing error (instrument contribution)

2.3.5 EXTERNAL CALIBRATION DATA

External calibration is performed by ESA against three calibrated Transponders at the beginning of ASAR operation and thereafter at regular intervals specified as at least 6 months. The External Calibration Scaling Factor will be provided to the processor at the End of the ASAR Commissioning Phase and shall be annotated in the product.

In flight elevation antenna pattern estimate will be performed by ESA using natural targets with known properties like the rain forest.

The In Flight elevation Antenna pattern estimate will be provided to the processor in the form of a file or polynomial coefficients and will be used to perform antenna elevation radiometric corrections.

The antenna pattern used for antenna pattern radiometric correction shall be annotated in the product.

4

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :23

PARAMETERS	VALUE	ACCURACY	UNITS	NOTE
External Calibration Scaling Factor (mode /swath/polarisa- tion dependant)	TBD		none	
In flight antenna patterns esti- mate	TBD			

table 5 : External calibration data

Notes:

1. The in flight antenna patterns are supplied to ASAR GP as a file or polynomial coefficient

2.3.6 OTHER PARAMETERS

1)

))

 ORBIT DATA: The five considered orbit state vector sources are listed hereafter in order of time availability but also accuracy from the earliest predicted to the best restituted:

the FOS predicted orbit state vectors (NRT processing)

the DORIS level 0 navigator product acquired at PDHS (NRT processing)

the FOS restituted orbit state vectors (off-line processing)

the DORIS preliminary orbit (off-line processing)

the DORIS level 2 Precise orbit (off-line processing)

The instrument ground processing software uses the orbit propagator software module and an orbit state vector as input to compute all along the orbit the satellite position with other geometrical parameters (i.e range), for a given UTC time, within an earth fixed reference frame.

The Orbit state vector is a data structure containing 8 elements described in [A - 4] and recalled hereafter:

Field	Bytes	Туре	Description
UTC	25	char	UTC time of ascending node state vector
Δυτι	6	char	ΔUT1 = UT1 - UTC. Format: ± Example:9430
x	4	long	X position in Earth-fixed reference frame. Unit in 10^{-2} m
Y	4	long	Y position in Earth-fixed reference frame. Unit in 10 ⁻² m
Z	4	long	Z position in Earth-fixed reference frame. Unit in 10 ⁻² m

table 6 Orbit state vector

ENVISAT-1 - Project

table 6 Orbit state vector

Field	Bytes	Туре	Description
X velocity	4	long	X velocity in Earth-fixed reference frame. Unit in 10 ⁻⁵ m/s
Y velocity	4	long	Y velocity in Earth-fixed reference frame. Unit in 10^{-5} m/s
Z velocity	4	long	Z velocity in Earth-fixed reference frame. Unit in 10 ⁻⁵ m/s

ESA will provide as CFI software:

For NRT:

- GENOPS software & PPFORB (Reference Document 7)ingest DORIS NAVIGATOR - PPFORB ingest FOS predicted State Vectors to produce State Vector at a user requested time

For Off Line:

- INTERPOL software & PPFORB ingest DORIS preliminary or precise orbit or ESOC restituted to produce State Vector at a user requested time

EARTH MODEL WGS84 assumed ellipsoid defined by Length of semi major axis. flattening factor Reference Document 8.

table 7 Earth model parameters

Parameter	value
Semi major Axis	6378137 m
Flattening Factor	1/298.257223563

Steering law identifier: if any change during lifetime of the instrument

Doc. No:PO-RS-ESA-GS-00245 Issue 3.3 Date : 1 July 1997 Sheet :25

3 ASAR PROCESSING REQUIREMENTS

ASAR

3.1 DEFINITIONS of ASAR Processing Parameters

3.1.1 Level 0 product

As defined in applicable document [A - 2].

3.1.2 Stripline processing

,)

))

Whenever systematic processing of a data segment is performed, the resulting product segment shall be processed and formatted such that it provides no discontinuity in geometry and radiometry along and across the processed data segment.

Geolocation information and auxiliary data shall be such that users can request extraction of any part of the product segment by multiple of the predefined scene size without any framing constraint on the along track position of the scene within the segment.

3.1.3 Doppler centroid estimate

This is an estimate of that frequency in the Doppler frequency spectrum which has maximum signal power. Due to the geometry and earth rotation this value varies with slant range. It can be estimated to within a PRF ambiguity by an examination of Doppler spectra data attitude information or a Doppler ambiguity estimator is normally used to solve the ambiguity issue.

3.1.4 Doppler ambiguity estimator

When the attitude information is not precise enough or not available to settle the ambiguity issue, a Doppler ambiguity estimator may be used. The estimator uses the offset of the correlation peak after correlating two looks in the range direction. This estimator's performance is terrain dependent and is known to be ineffective over water areas or areas of low contrast

3.1.5 Point target misregistration

3.1.5.1 Absolute Point Target Geometric Misregistration

This is the misregistration of a point target's energy from its assumed zero doppler location caused by approximations in the SAR processor. The zero doppler location of the point target is specified in term of its zero doppler range time and zero doppler azimuth time.

The absolute misregistration is the zero doppler range and azimuth time differences between the measured and expected location of the point target. Misregistration due to orbit data and terrain height error is not included.

3.1.5.2 Relative Point Target Geometric misregistration

This is the relative misregistration between two point targets. It is calculated by substracting the absolute misregistration of the two point targets.

	esa	ASAR	Doc. No:PO-RS-ESA-GS-002 Issue :3.3 Date :1 July 1997
Project: EN	VISAT-1	ADAM	Sneet :25
3.1.6	Point target radio	metric linearity	
	The point targ output point t point target lin	et linearity is measured by the coefficien arget peak power over input point targe near output dynamic range.	it of correlation of the regression o et power. It is measured within the
3.1.7	Point target linea	r output dynamic range	
	The point targ processed point	et linear output dynamic range is the ran nt target peak power is linearly proportio	ge of the output powers over which onal to input point target power.
3.1.8	SAR processor go	ain	
	SAR processor (measured in	r gain is defined as the intercept of a line dB) output over point target power (dB)	ear regression of point target power input to the processor.
3.1.9	Range Cell Migro	ntion Correction Artifact	
	The RCMC art pressed target tory introduce	tifact is the spurious compressed energy t t. It occurs as a result of amplitude modu ed by RCMC operation.	hat appears on either side of a com lation in the corrected target traje
3,1.10	Missing Range Lir	185	
	A missing ran ing range line range line has	ge line is detected when the line number may also be detected when an incorre been received.	increments by two or more. A mis
3.1.11	Phase preservation	on Processing and testing	
3.1.11.1	Definition of phase The procession shall be observed	te preserving processing; Ig shall be phase preserving, which mea ved:	ns that the following requiremen
	1) The azimu phase equal to the phase at D	th reference function (when represented o zero at its zero Doppler point (time ori)oppler centroid.	l in the time domain) must have gin) and must not be normalized (
	2) The signal azimuth spect	spectrum must not be shifted (i.e. no bas trum, this means that it must be left at th	eband conversion applied). For the Doppler centroid frequency.
			ne must be sufficiently updated (
	3) The proces avoid the intro formed with t rithm, this imp	oduction of focusing errors .All correction he necessary accuracy to avoid focusing plies a proper FM rate update and a perfo	ns and compensations must be pe errors (for the Range-Doppler algo ect range migration compensation
	3) The process avoid the intro- formed with the rithm, this imp All data maning caling, data ali	oduction of focusing errors .All correction he necessary accuracy to avoid focusing plies a proper FM rate update and a perfo pulations which lead to phase corruption asing)	ns and compensations must be pe errors (for the Range-Doppler algo ect range migration compensation n have to be avoided. (e.g.data re

1)

)

ASAR

Mean of the interferometric phase \$ 0.1 degrees

- Standard deviation of the interferometric phase ≤ 5 degrees (the minimum achievable phase noise depends on the inherent SNR of the ASAR system)

- No obvious phase noisy strips shall be observable in the interferogram (in particular, this implies that the structure of the processing blocks shall not be distinguished in the phase noise pattern).

5) The simulated point target test must be performed with the following results:

- The phase error at the correlation peak shall not exceed a systematic phase error of 0.1 degrees.

- The phase of the 2D Fourier transform contains no terms other than linear ones and a constant.

3,1.11.2 Offset processing test description:

Test Principle

Generate two complex products by processing independently twice the same raw data, but starting at different azimuth and range positions (i.e. the products will be shifted by y lines in azimuth and x samples in range).

Using the same raw data prevents from interferometric phase aberrations (phase bias and standard deviation) due to inherent SAR system effects. The obtained interferometric phase should ideally have a constant phase of zero. Thus, detected phase aberrations will reveal processor induced artifacts.

Practical considerations:

a. Both products must be processed using the same Doppler centroid frequency.

b. The number of offset lines and samples between both products should not be an integer multiple of the processing block dimension (nor in azimuth nor in range). Furthermore, if an "overlap & save" technique is used to process the data blocks, the offset value between products should not be either an integer multiple of the number of valid lines (samples in range) of each processed data block.

c. It is recommended that the scene shifts in both directions are chosen in such a way that the relative azimuth and range offset between the products are integer multiples of the azimuth and range sampling intervals respectively. This avoids the coregistration step before interferometry generation, which is critical for the test, since it tends to introduce additional phase noise.

d. The best available chirp should be used to perform the range compression

e. Data manipulations which lead to phase corruption (in particular data rescaling and data resampling by short interpolation kernels) should be avoided. In particular the interferogram should be generated using non rescaled complex products (i.e. with their floating point representation if available), in order to avoid the quantisation noise associated to the rescaling. (Guideline)

f. The interferometric phase analysed must include areas generated from the same processing block for each generated product as well as areas corresponding to consecutive processing blocks. The statistical values should be independently measured over both areas.

Doc. No:PO-RS-ESA-G8-00245 Issue 3.3 Date : 1 July 1997 Sheet :28

g. The test being carried out using real SAR data, those regions with very low backscatter intensity (either due to the local terrain properties or to the shadow effect) should be avoided (since the noise level inside them is already higher in each product of the interferometric pair).

3.1.11.3 Simulated point target test description:

Test principle:

Simulate a raw data scene with a number of point targets at varying range and azimuth positions including processing block boundaries. Process this simulated scene and analyse the peak phases as well as the 2D Fourier Transforms of the focused point targets

3.1.12 Slant to Ground Range Conversion

The image shall be projected on a WGS 84 earth ellipsoid .

3.1.13 Zero Doppler Coordinates

The zero-doppler image coordinate system is further specified by the property that the focused energy of any point target appears in the image at the pixel whose range and absolute time are exactly those of the target when the doppler frequency is 0. This corresponds to the closest point of approach between target and sensor.

Note: Assuming perfect yaw steering each image range-lines thus represent at fixed time the intersection of Earth Surface with that plane which contains both the satellite and the sub-satellite point and which is also orthogonal to the earth satellite relative velocity vector.

3.2 Operational Requirements

3.2.1 Modes of Operation

- 1. The ASAR Géneric Processor(GP) shall have the following modes of operations:
 - high resolution processing of ASAR image mode, alternating polarisation mode
 - stripline processing of ASAR image mode, wide swath mode, alternating polarisation mode to medium resolution and browse
 - stripline processing of ASAR GM mode
 - wave mode processing of ASAR Wave mode

to produce from the level 0 data the different products as defined in document [A - 3].

3.3 Input Requirements

3.3.1 Processing parameters

1. The ASAR GP shall receive product generation parameters and the level 0 data. The users parameters (defined in document table 3) are specified by the user before the start of each processing. The processing parameters (defined in document table 2) are extracted and decoded from the Level 0 data.

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :29

2. PRF, sampling window start time, Tx pulse parameters shall be extracted from the data contained in the Source Packet Header.

3.3.2 Input Data Type

1. The input Level 0 data to the ASAR GP shall include the following instrument modes;

- Image mode data
- Wide swath mode data
- Alternating polarisation mode data
- Global Monitoring Mode data
- Wave Mode data

3.4 Processing Requirements

3.4.1 Data Decompression

.)

))

1. The ASAR GP shall uncompress the (I,Q) data compressed on-board the instrument using a Bloc Adaptive Quantisation Scheme described in Reference Document 4

2. the ASAR GP shall perform an ADC nonlinearity correction based on the ADC characterisation LUT given as part of the instrument characterisation data base and described Reference Document 4.

3. The ASAR FBAQ decoding algorithm shall have the option of input /output gain equalisation described in appendix A

The following table summarizes the different compressions used on ASAR:

OPERATIONAL MODE	ECHO	CAL	NOISE
IMAGE /	3	5	4
WIDE SWATH	3	5	4
ALTERNATING POLARISATION	3	5	4
WAVE	6	2+5	4
GLOBAL MONITORING	1+2+3	1+2+5	1+2+4
External Characterisation		5	
Module Stepping		5	

table 8 Data encoding on ASAR

1= Analog Filtering, 2 = resampling, 3=quantisation averaging (BAQ 8/4), 4= quantisation sign + magnitude mode, 5=full 8 bit quantisation, 6= quantisation averaging (BAQ 8/2)

3.4.2 Processing Algorithm

0	esa	ASAR	Doc. No:PO-HS-ESA-GS-00 Issue 3.3 Date : 1 July 1907 Sheet : 30
Project: El	IVISAT-1	ADAM	
	The ASAR GP product quality	algorithm(s) shall be selected to gen parameters described section 4.	erate the products within specified
3.4.3	SAR imagery Geo	metric representation	
	The geometric system.	representation of the SAR imagery sha	11 be the zero Doppler coordinate
3.4.4	Phase Preserving		
	The ASAR_IMS of ASAR wave	o and ASAR_APS processing shall be p mode imagette shall be phase preservi	phase preserving and the processin ing:
	1. The CEOS of	fset processing test shall be passed wit	th the following results:
	• the mean	of interferogram phase shall be ≤ 0.3	ldegrees
	• the stand	ard deviation of interferogram phases	shall be $\leq 5.degrees$
	• there sha within a	processing block)	boundaries of processing blocks of
	2. The simulate	d point target phase test shall be passe	ed with the following result
	 The phase 0.1 degree 	e error at the correlation peak shall no es.	ot exceed a systematic phase error
	 The phase and a contract 	e of the 2D Fourier transform shall connistant.	ntain no terms other than linear on
3.4.5	Interpixel spacing	of products	
	The following and ASAR way	requirements are applicable to all prod ve mode imagette	lucts except ASAR_IMS , ASAR_AI
	1. Nominal int shall be specifi	erpixel spacing (defined in image qua ed at mid -swath (defined section 2.3.1	ality requirements tables section 4. 3)
	2. The across to soid to the non sion approxim	rack (slant range) interpixel spacing sh ninal pixel spacing .The error due to S ation shall be maintained to better that	nall be projected on the WGS84 ellip lant Range to Ground Range conve n five meters.
	3. Along Track pact relative to	interpixel spacing at Near and Far swa mid-swath.	th is governed by earth curvature in
	4. For stripline fined at mid-s scene. The sele spacing at mid	processing the interpixel spacing along wath shall be a fixed time interval w cted time interval shall be a fixed valu -swath is fulfilled at a given latitude.	; track(zero doppler time spacing) d hatever the latitude of the acquire ue calculated such that the interpix
3.4.6	Stripline Processin	g	
	1. The ASAR G (10') acquisitic products).	P shall be able to operate in stripline on segment for the products generated	processing mode over a ten minute d systematically (except wave mod
	2.The ASAR G	P stripline processing shall be complia	nt with the processor radiometric

ASAR

error as defined Section 4.2.8

3. The ASAR GP stripline processing shall be compliant with the interpixel spacing of products requirements as defined section 3.4.5

3.4.7 Missing Range Lines

The ASAR GP shall insert a line of zeroes when it detects missing lines.

3.4.8 Level 0 Data Analysis

)

))

The ASAR GP shall perform Level0 data analysis (I/Q statistics) as described in appendix A after data decompression:

The I and Q data samples shall be analysed to determine the bias, imbalance and phase orthogonality.

3.4.9 Level 0 Data Corrections

The ASAR GP shall perform level 0 data corrections (I/Q corrections) as described in appendix A after data decompression:

Any I and Q echo data bias, imbalance, phase orthogonality shall be corrected using the calculated parameters.

3.4.10 Range spreading loss compensation

1. The ASAR GP shall be able to compensate the range compressed data for range spreading loss

3.4.11 Orbit propagator

1. The ASAR GP shall use the ESA CFI orbit propagator programs to compute the satellite state vectors (3 axis position and velocity) for each product

2. The ASAR GP shall be able to receive from the different sources identified Section 2.3.6 and use state vectors to initialize the propagator.

3.4.12 Range Antenna Patterns Correction

1. The ASAR GP shall be able to perform range antenna patterns correction.

2. The antenna patterns will be provided by ESA in a form of a file.

3. This file will have sufficient vectors such that accurate antenna patterns can be derived by linear interpolation between two vectors (error less than 0.05dB).

4. The ASAR GP shall be able to turn this function on/off on user request.

5. The antenna pattern file shall be annotated in the product.

.0	esa	ASAD	Issue :3.3 Date : 1 July 1997
Project: EN	IVISAT-1	ASAN	Sheet :32
3.4.13	Sampling Window	Start Time Change	
	The ASAR GP source packet l	shall be able to detect the sampling neader and shift the range line according	window start time change from th ng to the start time change.
3.4.14	Doppler Frequenc	y Modulation Rate Estimator	
	1. The ASAR G and velocity ve	P shall estimate the Doppler (azimuth ectors computed by the Orbit Propagat	i) FM rate using the satellite position.
	2.The estimate ter (SLC produ quality require	shall be updated in range often enough (cts) .The estimate shall be updated in ments (other products).	to give an accuracy of 1 Hz/s or be range often enough to fullfill imag
3.4.15	Doppler Centroid	Estimator	
	1. The ASAR (based on the az	GP shall employ a Doppler centroid e zimuth Doppler spectra.	stimator that estimates the centroi
	2. The estimato	r shall use all the data from near range	e to far range.
	3. The estimate (wide swath m other modes (I	e shall be updated in azimuth often e ode, Alternating Polarisation mode, G mage mode Wave mode)	nough to give an accuracy of 25 H lobal Monitoring Mode and 50 Hz i
	4. A confidence able for a produ	measure for this Doppler Centroid est uct confidence report	imation shall be generated and avai
3.4.16	Doppler Ambiguit	y Estimator	
	1. The ASAR (presence of PR	SP shall employ a Doppler ambiguity F ambiguities on the Doppler centroid	estimator to assess and correct the estimate.
	2 A confidence available for a	e measure for this Doppler Ambiguit product confidence report	y estimation shall be generated an
3.4.17	Range Cell Migrat	ion Correction	
	The ASAR GP	shall apply both integer and fractional	RCMC to the image data.
3.4.18	Look Delection an	d Summation	
	1. the ASAR GI	shall detect and sum looks in power.	
	2. the ASAR C summed data.	P shall compute the magnitude (by	taking the square root) of the loo
3.4.19	Azimuth Interpolat	ion	
	1. The ASAR ASAR_IMS and	GP shall be able to perform azimu ASAR_APS and ASAR_WV1 (image	ith interpolation.(not applicable to te) products)

e	esa	ASAR		Issue :3.3 Date : 1 July 1997 Sheet :33
Project: El	NVISAT-1			
3.4.20	Ground Range C	onversion and interpolation	and the state	in the
	1. The ASAR spacing.	GP shall be able to perform grou	nd range convers	sion to the required pix
	2. the ASAR C version is not age line has a	P shall be able to perform interp required. The pixel spacing in slav number of pixel equivalent to the	olation in slant ra nt range shall be s ground range im	inge if ground range co such that the resulting ir lage.
	3. The slant-ra far range.	nge to ground-range conversion	table shall be calcu	ulated from near range
	4. Interpolatio	n shall be done on adequately sa	npled data.	
	5. The ASAR (generating AS	SP shall not perform ground range AR_IMS and ASAR_APS and AS	e conversion nor a AR_WV1 (image	range interpolation whe tte) products.
3.4.21	Processing Gain			
	1. The ASAR	GP shall not adjust the gains with	in a product gene	ration
			~ 77	1
3 4 77	Anglegue-to Dici	tal Converter Non linearity Co	rection	
J.4.22	1. the ASAR G	P shall perform an ADC nonlinea	rity correction bas	sed on a non linearity co
J.4.22	1. the ASAR G rection table Document 5 a	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer	rity correction bas ment characterisat at 4.	sed on a non linearity co tion data base Referen
0.4.22	1. the ASAR G rection table Document 5 a	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer	rity correction bas nent characterisat nt 4.	sed on a non linearity co tion data base Referen
3.4.23	1. the ASAR G rection table Document 5 a	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer on processing	rity correction bas nent characterisat nt 4.	sed on a non linearity co tion data base Referen
3.4.22	1. the ASAR G rection table Document 5 a Internal Calibration The ASAR GE	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer on processing shall perform instrument depen	rity correction bas nent characterisat at 4. dant correction ap	sed on a non linearity co tion data base Referen
3.4.23	1. the ASAR G rection table Document 5 a Internal Calibration The ASAR GF • calibration	P shall perform an ADC nonlinea provided as part of the instrum and described Reference Documer on processing shall perform instrument depen ion pulse processing	rity correction bas nent characterisat at 4. dant correction ap	sed on a non linearity co tion data base Referen
3.4.23	1. the ASAR G rection table Document 5 a Internal Calibration The ASAR GR • calibration • elevation	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer on processing shall perform instrument depen ion pulse processing n gain function calculation	rity correction bas nent characterisat at 4. dant correction ap	sed on a non linearity co tion data base Referen
3.4.23	1. the ASAR G rection table Document 5 a Internal Calibration The ASAR GE . calibration . noise es The ASAR GE	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer on processing shall perform instrument depen ion pulse processing n gain function calculation timation	rity correction bas nent characterisat at 4. dant correction ap	sed on a non linearity co tion data base Referen
3.4.23	1. the ASAR G rection table Document 5 a Internal Calibration The ASAR GE . calibration . elevation . noise es The ASAR GE	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer on processing shall perform instrument depen on pulse processing n gain function calculation timation shall perform replica construction	rity correction bas nent characterisat at 4. dant correction ap	sed on a non linearity co tion data base Referen
3.4.23	1. the ASAR G rection table Document 5 a Internal Calibration The ASAR GE elevation noise es The ASAR GE Alternating Polori	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer on processing shall perform instrument depen ion pulse processing in gain function calculation timation shall perform replica construction soliton Image Co-registration	rity correction bas nent characterisat at 4. dant correction ap	sed on a non linearity co tion data base Referen
3.4.23	1. the ASAR G rection table Document 5 a	P shall perform an ADC nonlinea provided as part of the instrum and described Reference Documer on processing shall perform instrument depen ion pulse processing in gain function calculation timation shall perform replica construction schion Image Co-registration shall insure a co-registration of the m 0.25 pixels	rity correction bas nent characterisat at 4. dant correction ap in in view of rang ne two images (HI	sed on a non linearity co tion data base Referen opendix B: te processing H/VV or HH/HV or VV
3.4.23 3.4.24 3.4.25	1. the ASAR G rection table Document 5 a Internal Calibration The ASAR GE . calibration . noise es The ASAR GE Alternating Polant The ASAR GP VH) better that	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer on processing shall perform instrument depen ton pulse processing n gain function calculation timation shall perform replica construction softion Image Co-registration shall insure a co-registration of the m 0.25 pixels	rity correction bas nent characterisat at 4. dant correction ap on in view of rang ne two images (HI	sed on a non linearity co tion data base Referen opendix B: re processing H/VV or HH/HV or VV
3.4.23 3.4.24 3.4.25	1. the ASAR G rection table Document 5 a Internal Calibration The ASAR GF • calibration • noise est • The ASAR GF • VH• better that • Geocoding proces • 1. The ASAR GF	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer on processing shall perform instrument depen ion pulse processing n gain function calculation timation shall perform replica construction sofion Image Co-registration shall insure a co-registration shall insure a co-registration of the m 0.25 pixels SSSing (IM/AP modes) SP shall handle different map pr	rity correction bas nent characterisat at 4. dant correction ap in in view of rang ne two images (HI ojections (UTM,U	sed on a non linearity co tion data base Referen opendix B: Te processing H/VV or HH/HV or VV
3.4.23 3.4.24 3.4.25	1. the ASAR G rection table Document 5 a Internal Calibration The ASAR GE elevation noise es The ASAR GE Alternating Polari The ASAR GE VH) better that Geocoding proce 1. The ASAR (C tions) 2. The absolute products (ASA	P shall perform an ADC nonlinea provided as part of the instrum nd described Reference Documer on processing " shall perform instrument depen ion pulse processing n gain function calculation timation " shall perform replica construction scation Image Co-registration shall insure a co-registration of the m 0.25 pixels Bessing (IM/AP modes) GP shall handle different map pr a calibration of GEC products shall APP).	rity correction bas nent characterisat at 4. dant correction ap on in view of rang ne two images (HI ojections (UTM,U nall be the same a	sed on a non linearity co tion data base Referent opendix B: The processing H/VV or HH/HV or VV DPS,National Map project as the corresponding P
3.4.23 3.4.24 3.4.25 3.4.26	1. the ASAR G rection table Document 5 a Internal Calibration The ASAR GF • calibration • noise est The ASAR GF Alternating Polarion The ASAR GF VH) better that Geocoding procession 1. The ASAR (Constructions) 2. The absolute products (ASA	P shall perform an ADC nonlinea provided as part of the instrum and described Reference Documer on processing "shall perform instrument depen ton pulse processing in gain function calculation timation "shall perform replica construction shall insure a co-registration shall insure a co-registration shall insure a co-registration of the m 0.25 pixels Desing (IM/AP modes) SP shall handle different map pr a calibration of GEC products shar (IMP, ASAR_APP).	rity correction bas nent characterisat at 4. dant correction ap on in view of rang ne two images (HE ojections (UTM,U nall be the same a	sed on a non linearity co tion data base Referent opendix B: re processing H/VV or HH/HV or VV DPS,National Map project as the corresponding P.

3.5.5 Doppler Ambiguity Estimator Measures

1. The confidence measure of the doppler ambiguity estimation shall be reported.

3.5.6 Output Data Statistic

1. the mean and standard deviation of output data shall be computed and reported.

))

))

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :36

4 IMAGE QUALITY REQUIREMENTS

4.1 Image Quality Definitions

4.1.1 Weighted theoretical range resolution

The weighted theoretical range resolution is the theoretical distance between the minus 3 dB points of the range IRF from a point target.

The maximum allowed range resolution for slant range image or ground range image is defined as,

 $\rho_r = 0.886(1 + W/100)(1 + x_r/100)(F_s/BW_r)\delta$

Where

- ρ_r = maximum range resolutiom (meters)
- W = % broadening induced by the weighting used in range compression
- x, = allowed processor induced percent broadening
- F_s = range sampling rate (Hz)
- BW, = range look bandwith (Hz)
- δ = pixel spacing which is the slant range or ground range distance between input data sample

The formula for slant range pixel spacing is,

 $\delta_{sr} = c/(2Fs)$

where,

- $\delta_{s_r} \approx$ pixel spacing in slant range
- c = speed of the light
- F_s = range sampling frequency

The formula for ground range pixel spacing is

$$\delta_{sr} = \delta_{sr}/(\sin\theta)$$

where

- δ_{er} = pixel spacing in ground range (m)
- δ_{sg} = pixel spacing in slant range (m)
- θ = incidence angle in degrees

4.1.2 Weighted theoretical azimuth resolution

The weighted theoretical azimuth resolution is the theoretical distance between the minus 3dB points of the azimuth response from a point target.

The maximum allowed azimuth resolution (for slant range image or ground range image) is defined as,

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :35

spaced at nominally 2 resolution cells apart in both range and azimuth direction and arranged in a grid form. The integrated energy for each cluster shall be measured over a region of fixed size chosen to fully and exclusively encompass the target of each cluster. As a minimum, the area chosen shall extend at least three resolution cells beyond the center of the last target of the cluster in that direction and no closer than three resolution cells to any other point target not in the cluster.

The radiometric error is calculated as follows:

 $\rho = |\mu_A - \mu_B|$

where,

 $\rho = radiometric error (dB)$

 μ_A = integrated energy of area A

 μ_{B} = integrated energy of area B

4.1.7 Absolute location accuracy

The absolute location error is specified as the distance along the ground between measured and predicted position of point targets within a processed image independent of orbit data.

The requirement is stated as a procedure for calculating the absolute location error of a point target and the maximum error permitted.

The predicted latitude and longitude of the point targets must be known.

The measured latitude and longitude is obtained from the processed image by measuring the range and azimuth pixel position.

4.1.8 Product ENL (Radiometric Resolution)

The radiometric resolution of the final processed image is a measure of the ability to ditinguish between uniform distributed targets with different backscattering coefficients (sigma nought).

Its standard definition is the measure of the width of the probability distribution function of the signal power received from an uniform distributed target.

 $\Upsilon = 10\log(1+q_r)$

where the parameter q_r is the normalised standard deviation (or coefficient of variation) of the value of the signal power of a uniform distributed target.

 $q_r = \frac{\sigma}{u}$

 μ and σ are the sample mean and standard deviation of the signal power in the image of an homogeneous distributed target

The distributed target shall be uniform (without spatial variability of the sigma nought) and large enough to ensure statistical accuracy.

ITOCCOCT ! TO:

Project	esa	ASAR	Issue :3.3 Date : 1 July 1997 Sheet :40
E	NVISAT-1		
	ed theoretical a	zimuth resolution (Image mode and Wa	ve Mode)
	The azimuth im ed theoretical a Global Monitor	pulse response resolution shall be less th zimuth resolution (Wide Swath mode,4 ing Mode)	an or equal to 1.1 times the weigh Alternating Polarisation Mode ar
4.2.4	Range/ Azimuth M	aximum sidelobe levels	
	The range or az oretical side lob	imuth maximum sidelobe levels shall no e level.	ot be higher than 2dB plus the th
4.2.5	Two dimensional In	ntegrated Sidelobe Ratio	
	The two dimens sional ISLR.	tional ISLR shall be less than or equal to 2	dB plus the theoretical two dime
4.2.6	Point target linearli	y .	
	The coefficient point target por	of correlation of the regression of outp wer over the linear dynamic range shall	out point target power over inp be greater than 0.97
4.2.7	Absolute location	accuracy (independent of orbit data	0
	The absolute loo pixel lengths.	cation accuracy of a point target shall be	equal to or less than two nomin
4.2.8	Ground Processor	Radiometric Error	
	The ground pro mode and shall	cessor radiometric error shall be equal to be equal to or less than 0.2 dB in WS, G	o or less than 0.1 dB in IM and way M, and AP modes.
4.3	Image Quality Re	equirements Tables	
	The following ta and nominal att	ables are a summary of processing param ributes for each of the required output p	neters, image quality requiremen products.
	Image quality sl	hall meet the requirements in these table	. .
	The processing quoted there ar	parameters shall be configurable in th e just initial values.	e ASAR processor and the value
	The processing	parameters shall be optimised during th	e ASAR processing developmen

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :41

4.3.1 ASAR_IMS Image Quality requirements

ASAR_IMS Image Qu	uality requirements
PROCESSING P	ARAMETERS
pulse bandwith(IS1 to IS7(Mhz))	16/16/12.67/10.79/9.54/8.85/8.22
Number of range looks	1
Range weighting	To Be Optimised
Number of azimuth looks	1
Azimuth look Bandwith	1332 Hz (To Be Optimised)
Azimuth sampling frequency(IS1 to IS7 (Hz))	1677/1645/2096-2070/1680-1667/ 2082-2047/1698-1684/2070-2035
Azimuth weighting	To Be Optimised
Nominal Incidence angle	section 2.3.1.3
IMAGE QUALITY I	REQUIREMENTS
Range IRF broadening	10%
Azimuth IRF broadening	10%
PSLR degradation	2dB
ISLR degradation	2dB
Radiometric error	0.1dB
Radiometric linearity	0.97
Absolute location Accuracy	10m
Point target phase error test	< 0.1 degrees
Offset processing test: mean & standard deviation interferogram phase	mean < 0.1 degrees standard deviation < 5 degrees
PRODUCT QUALITY	REQUIREMENTS
Range resolution	Section 4.1.1
Azimuth resolution	Section 4.1.2
Pixel Spacing	Natural sampling
Pixel Encoding	2 bytes I, 2 bytes Q

))

))

e roject E	esa NVISAT-1	R	Doc. No:PO-RS-ESA-GS-C Issue :3.3 Date : 1 July 1997 Sheet :42	
3.2	ASAR_APS Image Quality requireme	ents is a standard standard		
Γ	ASAR_APS Image Q	uality requirements		
	PROCESSING PARAMETERS			
	Pulse bandwith(IS1 to IS7(Mhz))	16/16/12.67/10.79	/9.54/8.85/8.22	
	Number of range looks	· 17	$= \int dx = \int dx $	
T	Range weighting	To Be Opt	imised	
Γ	Number of azimuth looks	2 scan looks per	polarisation	
	Azimuth look Bandwith	254 Hz (app	roximate)	
	Azimuth sampling frequency (IS1 to IS7 (Hz))	1677/1645/2096-20 2082-2047/1698-1	070/1680-1667/ 684/2070-2035	
	Azimuth weighting	g To Be Optimised		
	Nominal Incidence angle	section 2.3.1.3		
	IMAGE QUALITY REQUIREMENTS			
	Range IRF broadening	10%		
	Azimuth IRF broadening	109	6	
	PSLR degradation	2dB		
	ISLR degradation	2dB		
	Radiometric error	0.2dB		
	Radiometric linearity	0.97		
	Absolute location Accuracy	10m		
	Point target phase error test	< 0.1 degrees		
	Offset processing test: mean & standard deviation interferogram phase	mean < 0.1 standard deviation	degrees on < 5 degrees	
	PRODUCT QUALITY REQUIREMENTS			
	Range resolution	Section	4.1.1	
	Azimuth resolution	Section	4.1.2	
	Pixel Spacing	multiple of natu	ural sampling	
-	Pixel Encoding	2 bytes I, 2	bytes Q	

ENVISAT-1 - Project

.

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :43

4.3.3 ASAR_WV1 Imagette Image Quality requirements

ASAR_WVI Imagette Ima	ige Quality requirements	
PROCESSING P	ARAMETERS	
pulse bandwith(IS1 to IS7(Mhz))	16/16/12.67/10.79/9.54/8.85/8.22	
Number of range looks	1	
Range weighting	To Be Optimised	
Number of azimuth looks	1	
Azimuth look Bandwith	1332 Hz	
Azimuth sampling frequency(IS1 to IS7 (Hz))	1677/1645/2096-2070/1680-1667/ 2082-2047/1698-1684/2070-2035	
Azimuth weighting	To Be Optimised	
Nominal Incidence angle	section 2.3.1.3	
IMAGE QUALITY	REQUIREMENTS	
Range IRF broadening	10%	
Azimuth IRF broadening	10%	
PSLR degradation	2dB	
ISLR degradation	2dB	
Radiometric error	0.1dB	
Radiometric linearity	0.97	
Absolute location Accuracy	10m	
Point target phase error test	< 0.1 degrees	
Offset processing test: mean & standard deviation interferogram phase	mean < 0.1 degrees standard deviation < 5 degrees	
PRODUCT QUALITY	REQUIREMENTS	
Range resolution	Section 4.1.1	
Azimuth resolution	Section 4.1.2	
Pixel Spacing	Natural sampling	
Pixel Encoding	2 bytes I, 2 bytes O	

))

,)

ENVISAT-1 - Project

~ ~ ~ ~

Project:

ASAR_IMP Image Quality requirements 4.3.4 ASAR_IMP Image Quality requirements PROCESSING PARAMETERS 16/16/12.67/10.79/9.54/8.85/8.22 Pulse bandwith(IS1 to IS7(Mhz)) Number of Range looks 1 Range weighting To Be Optimised Azimuth look Bandwith Hz 320 null to null Number of Azimuth looks 3 non overlapping looks Azimuth sampling frequency 1677/1645/2096-2070/1680-1667/ (IS1 to IS7 (Hz)) 2082-2047/1698-1684/2070-2035 Azimuth weighting To Be Optimised Nominal Incidence angle section 2.3.1.3 **IMAGE QUALITY REQUIREMENTS** Range IRF broadening 10% Azimuth IRF broadening 10% **PSLR** degradation 2dBISLR degradation 2dBRadiometric error 0.1 dB**Radiometric linearity** 0.97 Absolute location Accuracy 25 m PRODUCT QUALITY REQUIREMENTS Range resolution < 30m Azimuth resolution <30m **Pixel Spacing** 12.5m*12.5m PRODUCT ENL >3 **Pixel** encoding 2 bytes

))

))

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :45

4.3.5 ASAR_APP Image Quality requirements

ASAR_APP Image	Quality requirements				
PROCESSING	PROCESSING PARAMETERS				
Pulse bandwith(IS1 to IS7(Mhz)) 16/16/12.67/10.79/9.54/8.85/8.2					
Number of Range looks	1				
Range weighting	To Be Optimised				
Azimuth look Bandwith (Hz)	254 Hz (To Be Optimised)				
Number of Azimuth scan looks	2				
Azimuth sampling frequency (IS1 to IS7 (Hz))	1677/1645/2096-2070/1680-1667/ 2082-2047/1698-1684/2070-2035				
Azimuth weighting	To Be Optimised				
Nominal Incidence angle	section 2.3.1.3				
IMAGE QUALITY	REQUIREMENTS				
Range IRF broadening	10%				
Azimuth IRF broadening	10%				
PSLR degradation	2dB				
ISLR degradation	2dB				
Radiometric error	0.2dB				
Radiometric linearity	0.97				
Absolute location Accuracy	25 m				
PRODUCT QUAL	ITY REQUIREMTS				
Range resolution	< 30m				
Azimuth resolution	<30m				
Pixel Spacing	12.5m*12.5m				
PRODUCT ENL	>1.8				
Pixel encoding	2 bytes				

4.3.6 ASAR_IMG Image Quality requirements (Requirements identical to ASAR_IMP)

4.3.7 ASAR_APG Image Quality requirements (Requirements identical to ASAR_APP)

Doc. No:PO-RS-ESA-GS-00245 issue :3.3 Date : 1 July 1997 Sheet :46

ASAR_WSM Image Quality requirements PROCESSING PARAMETERS 7.1/5.28/4.36/2.97/2.8 (TBC*) To Be Optimised To Be Optimised To Be Optimised Azimuth look Bandwith (Hz) 50 Number of Azimuth Scan looks 3 Azimuth sampling frequency 1662-1659/2096-2070/1680-1667/ (SS1 to SS5 (Hz)) 2082-2047/1698-1684 Azimuth weighting To Be Optimised Nominal Incidence angle section 2.3.1.3 **IMAGE QUALITY REQUIREMENTS** Range IRF broadening 10% Azimuth IRF broadening 10% **PSLR** degradation 2dB**ISLR** degradation 2dBRadiometric error 0.2dBRadiometric linearity 0.97 Absolute location Accuracy 150 m PRODUCT QUALITY REQUIREMTS < 150m Range resolution Azimuth resolution <150m **Pixel Spacing** 75m*75m PRODUCT ENL >15 (TBC*) Pixel Encoding 2 bytes

Note *: Pulse Bandwidth and Product ENL are linked together

))

;)

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :47

4.3.9 ASAR_GM1 Image Quality requirements

ASAR_GM1 Imag	e Quality requirements
PROCESSING	G PARAMETERS
Pulse bandwith (SS1 to SS5(Mhz))	0.941/0.627/0.565/0.502/0.439 (TBC*) To Be Optimised
Number of Range looks	To Be Optimised
Range weighting	To Be Optimised
Azimuth look Bandwith (Hz)	9Hz
Number of Azimuth Scan looks	4
Azimuth sampling frequency (SS1 to SS5 (Hz))	1662-1659/2096-2070/1680-1667/ 2082-2047/1698-1684
Azimuth weighting	To Be Optimised
Nominal Incidence angle	section 2.3.1.3
IMAGE QUALIT	Y REQUIREMENTS
Range IRF broadening	10%
Azimuth IRF broadening	10%
PSLR degradation	2dB
ISLR degradation	2dB
Radiometric error	0.2dB
Radiometric linearity	0.97
Absolute location Accuracy	1000 m
PRODUCT QUA	LITY REQUIREMTS
Range resolution	< 1000m
Azimuth resolution	<1000m
Pixel Spacing	500m*500m
PRODUCT ENL	>15 (TBC*)
Pixel encoding	2 bytes

Note *: Pulse Bandwidth and Product ENL are linked together

. 0

ENVISAT-1 - Project

Doc. No:PO-RS-EDA-GS-00245 Issue :3,3 Date : 1 July 1907 Sheet :48

4.3.10 ASAR_IMM Image Quality requirements

PROCESSING	PROCESSING PARAMETERS		
pulse bandwith(IS1 to IS7(Mhz))	16/16/12.67/10.79/9.54/8.85/8.22		
Number of Range looks	To Be Optimised		
Range weighting	To Be Optimised		
Azimuth look Bandwith Hz	To Be Optimised		
Number of Azimuth looks	To Be Optimised		
Azimuth sampling frequency (IS1 to IS7 (Hz))	1677/1645/2096-2070/1680-1667/ 2082-2047/1698-1684/2070-2035		
Azimuth weighting	To Be Optimised		
Nominal Incidence angle	section 2.3.1.3		
IMAGE QUALITY	REQUIREMENTS		
Range IRF broadening	10%		
Azimuth IRF broadening	10%		
PSLR degradation	2dB		
ISLR degradation	2dB		
Radiometric error	0.1dB		
Radiometric linearity	0.97		
Absolute location Accuracy	150 m		
PRODUCT QUAL	ITY REQUIREMTS		
Range resolution	<150m		
Azimuth resolution	<150m		
Pixel Spacing	75m*75m		
PRODUCT ENL	>30		
Pixel encoding	2 bytes		

ENVISAT-1 - Project

70

))

,)

Project: ENVISAT-1

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue 3.3 Date : 1 July 1997 Sheet :49

4.3.11 ASAR_APM Image Quality requirements

ASAR_APM Image	Quality requirements		
PROCESSING PARAMETERS			
pulse bandwith(IS1 to IS7(Mhz))	16/16/12.67/10.79/9.54/8.85/8.22		
Number of Range looks	To Be Optimised		
Range weighting	To Be Optimised		
Azimuth look Bandwith Hz	To Be Optimised		
Number of Azimuth looks	To Be Optimised		
Azimuth sampling frequency (IS1 to IS7 (Hz))	1677/1645/2096-2070/1680-1667/ 2082-2047/1698-1684/2070-2035		
Azimuth weighting	To Be Optimised		
Nominal Incidence angle	section 2.3.1.3		
IMAGE QUALITY	Y REQUIREMENTS		
Range IRF broadening 10%			
Azimuth IRF broadening	10%		
PSLR degradation	2dB		
ISLR degradation	2dB		
Radiometric error	0.1dB		
Radiometric linearity	0.97		
Absolute location Accuracy	150 m		
PRODUCT QUAL	ITY REQUIREMTS		
Range resolution	< 150m		
Azimuth resolution	<150m		
Pixel Spacing	75m*75m		
PRODUCT ENL	>30		
Pixel encoding	2 bytes		

I

ENVISAT-1

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :50

4.3.12 ASAR Browse quality requirements

Table 9: Browse products quality requirements

ASAR mode	Global Monitoring	Wide Swath	Image Mode	Alternating Polarisation
Pixel Spacing (m)	1000	900*	225*	225*
Product ENL	> 15(TBC)	> 15	>15	>15

Note *Multiple of Medium Resolution Products pixel spacing

))

,)

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :51

appendix AData Handling and Data Reformatting

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :52

A.1 Raw Data Correction

The ASAR GP is required to perform raw data analysis and use the result to perform raw data correction. The raw data correction is done as follows:

• Correct for bias:

$$I' = I_{in} - Bi$$

$$Q' = Q_{in} - Bq$$

where:

 I_{in} , Q_{in} = complex input data after nominal bias is subtracted

Bi = I-channel bias

Bq = Q-channel bias

Correct Q-channel for gain imbalance:

I'' = I'Q'' = Q' G

where G is the IQ gain imbalance.

Correct Q-channel for nonorthogonality:

Iout = Γ' Qout = $Q''/cos(A) - \Gamma'tan(A)$

where A is the IQ quadrature departure.

The input parameters and flag for raw data analysis and correction are:

Parameters and Flag	Symbols	
Raw data analysis flag		
I-channel bias preset value	bi	
Q-channel bias preset value	bq	
IQ gain imbalance preset value	g	
IQ quadrature departure preset value	a	
No of range lines to be used in raw data analysis	N	
No of complex samples per line	М	

The output parameters and flags from raw data analysis are:

Parameters and Flag	Symbols	
I-channel bias	μi	
Q-channel bias	μq	
I-channel standard deviation	σί	
Q-channel standard deviation	Q	
IQ gain imbalance	τ	
IQ gain lower bound	τ1	
IQ gain upper bound	72	
IQ quadrature departure	θ	
IQ quadrature departure lower bound	θ1	
IQ quadrature departure upper bound	θ2	
I bias significant flag	I_BIAS_FLAG	
Q bias significant flag	Q_BIAS_FLAG	
IQ gain significant flag	IQ_GAIN_SIG_FLAG	
IQ quadrature departure significant flag	IQ_QUAD_SIG_FLAG	

ITOCOCT I

42

ENVISAT-1 - Project

eesa

Project: ENVISAT-1

))

The specifications for calculating the output parameters and flags are given below.

I-channel bias:

$$\mu i = \left[\frac{1}{NM}\sum_{k=1}^{N}\sum_{j=1}^{M}I_{j}\right] - b_{nom}$$

where:

N = number of lines used

M = number of pixels used per line

 $b_{nom} = nominal bias$

Q-channel bias:

$$\mu q = \left[\frac{1}{NM} \sum_{k=1}^{N} \sum_{j=1}^{M} Q_j\right] - b_{nom}$$

I-channel standard deviation:

$$\sigma i = \sqrt{\frac{1}{NM} \sum_{k=1}^{N} \sum_{j=1}^{M} I_{j}^{2} - (\mu i + b_{nom})^{2}}$$

Q-channel standard deviation:

$$\sigma q = \sqrt{\frac{1}{NM} \sum_{k=1}^{N} \sum_{j=1}^{M} Q_j^2 - (\mu q + b_{nom})^2}$$

ENVISAT-1 - Project

EE:ET 26, 907 80

))

))

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :55

IQ gain imbalance:

 $\tau = \frac{\sigma i}{\sigma q}$

IQ gain lower bound:

 $\tau 1 = 1 - \frac{3}{\sqrt{NM}}$

IQ gain upper bound:

$$\tau 2 = 1 + \frac{3}{\sqrt{NM}}$$

IQ quadrature departure, upper and lower bounds θ , θ 1, θ 2:

For each range line k, calculate the correlation coefficient between I and Q channels:

$$ck = \frac{Siq}{\sqrt{Sii \cdot Sqq}}$$

where:

$$Siq = \sum_{j=1}^{M} (I_j \cdot Q_j) - \left(\frac{1}{M} \sum_{j=1}^{M} I_j \sum_{j=1}^{M} Q_j\right)$$

$$Sii = \sum_{j=1}^{M} (I_{j}^{2}) - \left(\frac{1}{M} \sum_{j=1}^{M} I_{j} \sum_{j=1}^{M} I_{j}\right)$$

LOT I TODODTI

ML 1730 /

-107

10

ENVISAT-1 - Project

בפובר היסביאא 80 רפי גר גבאילא

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :56

$$Sqq = \sum_{j=1}^{M} (\mathcal{Q}_j \cdot \mathcal{Q}_j) - \left(\frac{1}{M} \sum_{j=1}^{M} \mathcal{Q}_j \sum_{j=1}^{M} \mathcal{Q}_j\right)$$

From the correlation coefficient ck, calculate Zk as follows:

$$Zk = 0.5 \ln\left(\frac{1+ck}{1-ck}\right)$$

From the N values of Zk (derived from N range lines) calculate - the mean value of Z:

$$\mu z = \frac{1}{N} \sum_{k=1}^{N} Zk$$

- the standard deviation of Z:

$$\sigma z = \sqrt{\frac{1}{N} \sum_{k=1}^{N} Zk^2 - \mu z^2}$$

 $C = \tanh \mu z$ σ + = tanh (μ z + σ z) - C $\sigma = C - \tanh(\mu z - \sigma z)$ $\theta = \arcsin(C)$ $\theta 1 = \arcsin (C - \sigma)$ $\theta 2 = \arcsin (C + \sigma +)$

I Bias Significant Flag:

$$IF \qquad \frac{-3\sigma i}{\sqrt{NM}} \le \mu i \le \frac{3\sigma i}{\sqrt{NM}} \qquad THE$$

N

ENVISAT-1 - Project

DB FNC . 34 13:33

esa	Δ	SAR	Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997
Project: ENVISAT-1		OAN	Sheet :57
se	t flag = .FALSE.	ELSE set flag =	= .TRUE.
Q	Bias Significant Flag:		
	$IF \qquad \frac{-3\sigma q}{\sqrt{NM}}$	$\leq \mu q \leq \frac{3\sigma q}{\sqrt{NM}}$ TH	IEN
S	et flag = FALSE.	ELSE set flag	= .TRUE.
IC	Q Gain Significant Flag:		
	IF t	$l \leq \tau \leq \tau 2$ THEN	
Se	et flag = .FALSE.	ELSE set flag	= .TRUE.
I	Quadrature Departure S	Significant Flag:	
	IF 30-	$\leq C \leq 3\sigma + TH$	IEN
Se	et flag = .FALSE.	ELSE set flag	=.TRUE.
T fl	he parameters for raw dat ag as follows:	ta correction are set acc	ording to the raw data analysis
Г	Raw Data Analysis Fla	ng is Raw Data An	alysis Flag is

 $Bi = \mu i$

 $Bq = \mu q$

 $G = \tau$

 $A = \theta$

Bi = bi

 $\mathbf{Bq} = \mathbf{bq}$

G = g

 $\mathbf{A} = \mathbf{a}$

ENVISAT-1 - Project

-[]-

.

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :58

The output parameters and flags from raw data analysis are inserted in the product annotation. If the raw data analysis flag is FALSE, these parameters and flags are set as follows:

Parameters and Flag	Raw Data Analysis Flag is FALSE	
I-channel bias	bi	
Q-channel bias	bq	
I-channel standard deviation	0.0	
Q-channel standard deviation	0.0	
IQ gain imbalance	g	
IQ gain lower bound	0.0	
IQ gain upper bound	0.0	
IQ quadrature departure	a	
IQ quadrature departure lower bound	0.0	
IQ quadrature departure upper bound	0.0	
I bias significant flag	.FALSE.	
Q bias significant flag	.FALSE.	
IQ gain significant flag	.FALSE.	
IQ quadrature departure significant flag	.FALSE.	

A.2 FBAQ DECODING

Standard Decoding A.2.1 Described in document [R-4]

Energy conservation Decoding A.2.2

the state of the s

and the second states a · is a stand of the second s

ENVISAT-1 - Project

))

)

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :60

appendix B: Internal Calibration and Chirp Replica Processing

1 Objective

The objective of the internal calibration function is to process the calibration pulses, and to provide instrument dependent correction factors (i.e. elevation gain factor, noise estimation), which are used elsewhere in the ground processing to produce a calibrated image.

The elevation gain function calculation results in the determination of the elevation gain factor.

The phase and amplitude of the compressed calibration pulses from each row of modules is used to calculate the antenna gain as a function of elevation. This is then converted to a function of look angle by use of the elevation bias characterisation data. The orbit geometry and earth model shall be used to convert it to a function dependent on slant range.

The internal calibration scheme involves characterising the active part of the antenna on a row by row basis for both transmit and receive, using calibration pulses. As the replica must represent the response from the complete antenna, this part of the ground processing is assumed to generate the replica from the calibration pulses by coherent summations.

The I/Q corrected noise data is used to estimate the instrument noise power within the image. The noise data is scaled by a factor representing any normalisation that may have been used in the data processing.

Doc. No:PO-RS ESA-GS-002-5 Issue :3.3 Date : 1 July 997 Sheet :62

3 Definition of Variable(s)

The variables are defined in Table 1

VARIABLES	DESCRIPTIVE NAME	INPUT/OUTPUT	VALUE/UNITS/REFERENCE	
$Z_{1,n.m}(t)$	Calibration pulse 1 complex sample	Input	From Data handling and reformatting	
Z _{1A,n,m} (t)	Calibration pulse 1A complex sample	Input	From Data handling and reformatting	
Z _{2,n,m} (t)	Calibration pulse 2 complex sample	Input	From Data handling and reformatting	
Z _{3,n,m} (t)	Calibration pulse 3 complex sample	Input	From Data handling and reformating	
Z _{wl,m} (t)	Chirped calibration pulse 1 complex sample	Input	From Data handling and reformatting (only wave mode)	
Zw2,m()	Chirped calibration pulse 2 complex sample	Input	From Data handling and reformaning (only wave mode)	
Z _{w3,m} (t)	Chirped calibration pulse 3 complex sample	Input	From Data handling and reformatting (only wave mode)	
Z _{N,k,m} (t)	Noise complex sample	Input	From Data handling and reformatting	
D	Antenna row number	Input	From Data handling and reformatting (Values 1-32)	
m	Calibration cycle label	Ιαρυτ	From Data handling and reformalting	
SWL(cal)	Sampling window length (of calibration pulses)	Input	From Data handling and reformatting [given in number of samples]	
SWL(noise)	Sampling window length (of noise pulses)	Input	From Data handling and reformating (given in number of samples)	
t	Time variable within sampling window	Input	From Data handling and reformanting (Values t=t_0,t_SWL-1)	
k	Noise sample window label	Input	From Data handling and reformatting	
a ₁ (nom)	Nominal value of a ₁	Input	From instrument data	
fo	Offset frequency for wave mode calibration data	Input	From instrument data	
G _e O	Elevation gain pattern	Input	From instrument data	
G2(a)nom	Nominal value of G2(0)	Input	From instrument data	

 Table 1
 Internal Calibration Variables

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :63

1

VARIABLES	DESCRIPTIVE NAME	INPUT/OUTPUT	VALUE/UNITS/REFERENCE
P	Nominal elevation pointing of antenna mechanical boresight	Constant	26.2°
PI	Elevation pointing bias estimate		From External Characterisation
P _{at} (m)	Auxiliary transmit power measurement	Input	From data handling and reformatting
k _n	Normalisation factor to image pixel for instrument noise measurement	Input	Processor design dependent
K	Number of noise windows averaged	Constant	8
S	Centre of swath elevation angle	Input	From instrument data
0	Reference clevation angle	Input	From instrument data
f _{n,p} ()	Complex factor characterising the path through the calibration loop and from the calibration coupler to the antenna face for row n, polarisation p	Input	From instrument data
g _{a,p}	Calibration loop paths characterisation factors relative to free space	Input	From External Characterisation
Pt	Label for Tx polarisation	Input	p _t =0:V from data Handling p _t =1:H and Formatting
Pr	Label for Rx polarisation	Input	$p_r=0:V$ from data Handling $p_r=1:H$ and Formatting
	Pulse length	Input	From data handling and reformatting
^a 1,n,nom ^{;2} 2,n,nom; a _{3,n,nom} ;Ø _{1,n,nom} ; Ø _{2,n,nom} ;Ø _{3,n,nom} ; ;	Nominal values for amplitudes and phases of calibration pulses 1, 2 and 3	Ιαρυτ	From instrument data
Rep(t)	Replica	Output	
G _{2,mT} (L)	Calibrated antenna elevation gain as a function of the look elevation angle	Output	
N	Noise power correction factor	Output	•

Table 1 Internal Calibration Variables (Continued)

ENVISAT-1 - Project

- ,)

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :64

4 Equation(s)

ENVISAT-1

esa

Project:

Note the following equations apply separately for each swath, sub-swath and polarisation.

4.1 Calibration Pulse Processing

The processor shall:

Calculate amplitude of each sample for each calibration pulse for the mth cycle of calibration data:

$$a_{l,n,m}(t) = \left[Z_{l,l,n,m}^{2}(t) + Z_{Q,l,n,m}^{2}(t) \right]^{\frac{1}{2}}$$

$$a_{lA,n,m}(t) = \left[Z_{l,lA,n,m}^{2}(t) + Z_{Q,lA,n,m}^{2}(t) \right]^{\frac{1}{2}}$$

$$a_{2,n,m}(t) = \left[Z_{l,2,n,m}^{2}(t) + Z_{Q,2,n,m}^{2}(t) \right]^{\frac{1}{2}}$$

$$a_{3,n,m}(t) = \left[Z_{l,3,n,m}^{2}(t) + Z_{Q,3,n,m}^{2}(t) \right]^{\frac{1}{2}}$$

For wave mode:

$$Z_{I,3,n,m}(t) = Z_{I,3,l,m}(t)$$
, All n
 $Z_{Q,3,n,m}(t) = Z_{Q,3,l,m}(t)$, All n

In the above equations Z_I and Z_Q are the I, Q components of Z. For pulses 1, 2 and 3, find the largest amplitude, ie

> $a_{l,n,m}(max) = greatest of a_{l,n,m}(t)$ $a_{2,n,m}(max) = greatest of a_{2,n,m}(t)$ $a_{3,n,m}(max) = greatest of a_{3,n,m}(t)$

For pulses 1, 2 and 3, average those amplitude samples which are greater than a given proportion k = 0.707 of the peak value (those which are within 3 dB of the peak), ie:

$$a_{i,n,m} = \frac{1}{N_i} \sum_{t=t_{i_1}}^{t_{i_1 + N_i - 1}} a_{i,n,m}(t)$$

where $a_{l,n,m}(t_{I_{l}-1}) \le k \cdot a_{l,n,m}(max) < a_{l,n,m}(t_{I_{l}})$ and

$$a_{1,n,m}(t_{1,+N_1}) \leq k \cdot a_{1,n,m}(max) < a_{1,n,m}(t_{1,+N_1-1}).$$

ENVISAT-1 - Project

ASAR

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :65

-

$$\mathbf{a}_{2,n,m} = \frac{1}{N_2} \sum_{t=t_{1_2}}^{t_{1_2-N_2-1}} \mathbf{a}_{2,n,m}(t)$$

))

)

where $a_{2,a,m}(t_{I_2-i}) \le k \cdot a_{2,a,m}(max) < a_{2,a,m}(t_{I_2})$ and

$$a_{2,n,m}(t_{I_2+N_2}) \le k \cdot a_{2,n,m}(max) < a_{2,n,m}(t_{I_2+N_2-1}).$$

$$a_{3,n,m} = \frac{1}{N_3} \sum_{t=t_{1_3}}^{t_{1_7N_{7}t}} a_{3,n,m}(t)$$

where $a_{3,a,m}(t_{I_j-1}) \le k \cdot a_{3,a,m}(max) < a_{3,a,m}(t_{I_j})$ and

$$\hat{a}_{3,n,m}(t_{I_3+N_3}) \le k \cdot a_{3,n,m}(max) < a_{3,n,m}(t_{I_3+N_3-l}).$$

For pulse 1A, average amplitude samples over the sample window, ie:

$$a_{1A,n,m} = \frac{1}{\overline{SWL(cal)}} \frac{t_{SWL(cal)-1}}{\sum_{t=t_0}^{t_{a_{1A,n,m}}(t)}} (t)$$

Except in wave mode, the processor shall compress calibration pulses prior to phase extraction:

$$Z'_{1,n,m}(t) = \int_{-t/2}^{+t/2} \operatorname{Rep}^{*}(t') \cdot Z_{1,n,m}(t+t') dt$$

$$Z'_{1,n,m}(t) = \int_{-t/2}^{+t/2} \operatorname{Rep}^{*}(t') \cdot Z_{1,n,m}(t+t') dt$$

$$Z'_{2,n,m}(t) = \int_{-t/2}^{+t/2} \operatorname{Rep}^{*}(t') \cdot Z_{2,n,m}(t+t') dt$$

$$Z'_{3,n,m}(t) = \int_{-t/2}^{+t/2} \operatorname{Rep}^{*}(t') \cdot Z_{3,n,m}(t+t') dt$$

Find the largest amplitude sample for each pulse, ie:

$$\begin{aligned} \left| Z'_{1,n,m}(\max) \right| &= \text{greatest of } \left| Z'_{1,n,m}(t) \right| \\ \left| Z'_{1A,n,m}(\max) \right| &= \text{greatest of } \left| Z'_{1A,n,m}(t) \right| \\ \left| Z'_{2,n,m}(\max) \right| &= \text{greatest of } \left| Z'_{2,n,m}(t) \right| \\ \left| Z'_{3,n,m}(\max) \right| &= \text{greatest of } \left| Z'_{3,n,m}(t) \right| \end{aligned}$$

Doc. No:PO-RS-ESA-GS-00245 Issue :3.3 Date : 1 July 1997 Sheet :66

In wave mode, the processor shall correlate the pulses with a complex sinusoid at the offset frequency f_0 prior to phase extraction, i.e.:

$$Z_{1,n,m}^{i}(\max) = \int_{-t/2}^{+t/2} \exp(-j2pf_{0}t) \cdot Z_{1,n,m}(t) dt$$

$$Z_{1,n,m}^{i}(\max) = \int_{-t/2}^{+t/2} \exp(-j2pf_{0}t) \cdot Z_{1,n,m}(t) dt$$

$$Z_{2,n,m}^{i}(\max) = \int_{-t/2}^{+t/2} \exp(-j2pf_{0}t) \cdot Z_{2,n,m}(t) dt$$

$$Z'_{3.n,m}(max) = \int_{-\tau/2}^{+\tau/2} exp(-j2pf_0t) \cdot Z_{3,n,m}(t) dt$$

Extract the phase for each pulse, ie:

$$\mathcal{O}_{i,a,m} = \operatorname{ftan}\left[\frac{Z'_{Q,l,n,m}(\max)}{Z'_{I,l,n,m}(\max)}\right]$$
$$\mathcal{O}_{1A,n,m} = \operatorname{ftan}\left[\frac{Z'_{Q,lA,n,m}(\max)}{Z'_{L1A,a,m}(\max)}\right]$$
$$\mathcal{O}_{2,n,m} = \operatorname{ftan}\left[\frac{Z'_{Q,2,n,m}(\max)}{Z'_{I,2,n,m}(\max)}\right]$$
$$\mathcal{O}_{3,n,m} = \operatorname{ftan}\left[\frac{Z'_{Q,3,n,m}(\max)}{Z'_{I,3,n,m}(\max)}\right]$$

where

ENVISAT-1 - Project

FELEC DVOEEVAM 63 LUG '36'40

0.1

Adjust pulse 1 measurements for pulse 1A measurements, and normalise, ie:

$$\mathbf{a}_{tx,n,m}\exp(j\mathcal{D}_{tx,n,m}) = \left[\mathbf{a}_{1,n,m}\exp(j\mathcal{D}_{1,n,m}) - \mathbf{a}_{1A,n,m}\exp(j\mathcal{D}_{1A,n,m})\right] / \mathbf{a}_{1}(nom)$$

Normalise pulse 2 measurements to pulse 3 measurements, ie:

$$a_{rx,n,m} = a_{2,n,m} / a_{3,n,m}$$

 $\mathscr{O}_{rxn,m} = \mathscr{O}_{2nm} - \mathscr{O}_{3,nm}$

4.2 Elevation Gain Function Calculation

Apart from the Elevation Gain Function calculation, the processor shall calculate the mth version of the reference gain function, ie:

$$G_{t,m}(\theta_{o}) = \left| \sum_{n=1}^{32} a_{tx,n,m} \exp(j \emptyset_{tx,n,m}) \cdot f_{n,p_{t}}(\theta_{o}) \cdot g_{n,p_{t}} \right|^{2}$$

$$G_{r,m}(\theta_{o}) = \left| \sum_{n=1}^{32} a_{tx,n,m} \exp(j \emptyset_{tx,n,m}) \cdot f_{n,p_{t}}(\theta_{o}) \cdot g_{n,p_{t}} \right|^{2}$$

$$G_{2m}(\theta_{o}) = G_{tm}(\theta_{o}) \cdot G_{tm}(\theta_{o})$$

Scale two-way elevation gain pattern, ie:

$$G'_{2m}(\theta) = G_{2m}(\theta_0)G_e(\theta)/G_2(\theta_0)$$
 nom

Where $G_{2(0)nom}$ is calculated in an identical way to $G_{2,m(0)}$ except that nominal values of calibration pulse amplitudes and phases are used; that is $a_{1,n,m}$, $a_{1A,n,m}$, $a_{2,n,m}$, $a_{3,n,m}$,

ENVISAT-1 - Project

1)

))

 $\mathscr{O}_{1,n,m}$, $\mathscr{O}_{1A,n,m}$, $\mathscr{O}_{2,n,m}$, $\mathscr{O}_{3,n,m}$ are replaced by $a_{1,n,nom}$, 0, $a_{2,n,nom}$, $a_{3,n,nom}$, $\mathscr{O}_{1,n,nom}$, 0, $\mathscr{O}_{2,n,nom}$ and $\mathscr{O}_{3,n,nom}$

Convert scaled antenna pattern to a function of look angle, i.e.:

$$\mathbf{G}_{2,\mathbf{m},\mathbf{T}}(\mathbf{L}) = \mathbf{G}'_{2,\mathbf{m}}(\boldsymbol{\theta} + \mathbf{P} + \Delta \mathbf{P}_1)$$

(The processor shall update the above function when a new set of calibration pulses for n = 1,32 is obtained. This takes typically 14-31 seconds).

1.

4.3 Replica Construction

In all modes except wave mode, the ASARCP shall be able to use the calibration pulses for the replica construction. In wave mode, where CW pulses are used for the internal calibration, a separate chirped pulse measurement is made for each calibration pulse 1, 2 and 3 exciting the whole antenna. Therefore the processor shall be able to use the different algorithms as described below for the wave mode and the other modes.

FOR ALL MODES EXCEPT WAVE MODE

Calculate time varying phase through calibration pulses, ie

$$\mathcal{O}_{I,n,m}(t) = \operatorname{ftan}\left[\frac{Z_{Q,I,n,m}(t)}{Z_{I,I,n,m}(t)}\right]$$
$$\mathcal{O}_{IA,n,m}(t) = \operatorname{ftan}\left[\frac{Z_{Q,IA,n,m}(t)}{Z_{I,IA,n,m}(t)}\right]$$
$$\mathcal{O}_{2,n,m}(t) = \operatorname{ftan}\left[\frac{Z_{Q,2,n,m}(t)}{Z_{I,2,n,m}(t)}\right]$$
$$\mathcal{O}_{3,n,m}(t) = \operatorname{ftan}\left[\frac{Z_{Q,3,n,m}(t)}{Z_{I,3,n,m}(t)}\right]$$

where Z_I and Z_O are the I,Q components of Z and f tan (y/x) is defined in Section 4.3.5.4.1.

Using within pulse amplitudes as determined in Section 4.3.5.4.1, calculate mth replica.

$$\operatorname{Rep}(t) = \operatorname{F}^{1}\left[\frac{\operatorname{F}[\operatorname{R}_{1,m}(t)] \cdot \operatorname{F}[\operatorname{r}_{2,m}(t)]}{\left\langle \operatorname{F}[\operatorname{a}_{3,n,m}(t) \exp(j \mathcal{O}_{3,n,m}(t))] \right\rangle_{n}}\right]$$

where F[] indicates Fourier Transform F⁻¹[] indicates Inverse Fourier Transform <>n indicates an average over n

ENVISAT-1 - Project

SE:ET 26, 907 80

$$r_{2,m}(t) = \sum_{n=1}^{\infty} a_{2,n,m}(t) \exp(j \emptyset_{2,n,m}(t)) f_{n,p_r}(\theta_s) g_{n,p_r}$$

$$\mathbf{a}_{tx,n,m} \exp(j \mathcal{O}_{tx,n,m}(t)) = \left[\mathbf{a}_{1,n,m}(t) \exp(j \mathcal{O}_{1,n,m}(t)) - \mathbf{a}_{1A,n,m}(t) \exp(j \mathcal{O}_{1A,n,m}(t))\right]$$

Rep (t) shall be updated when a new set of calibration pulses (for n = 1, 32) is obtained (This takes typically 14-31 seconds operating in the mode).

FOR WAVE MODE

In wave mode the processor shall be able to use the chirped calibration pulses 1.2 and 3 for the construction of the replica.

$$\operatorname{Rep}(t) = \operatorname{F}^{1}\left[\frac{\operatorname{F}[Z_{w1,m}(t) \cdot fg] \cdot \operatorname{F}[Z_{w2,m}(t) \cdot fg]}{\operatorname{F}[Z_{w3,m}(t)]}\right]$$

where

$$fg = \sum_{n=1}^{32} f_{n,p}(\theta_s) \cdot g_{n,p}$$

F[] indicates Fourier Transform

F-1[] indicates Inverse Fourier Transform

Rep (t) shall be updated when a new set of calibration pulses is obtained, i.e. for each vignette.

4.4 Noise Estimation

Average power over a noise window, ic:

$$P_{N,k}(m) = \frac{1}{SWL(noise)} \sum_{t=t_0}^{t} (Z_{I,N,k,m}^2(t) + Z_{Q,N,k,m}^2(t))$$

where ZI and ZO are the I, Q components of Z. Average over noise windows, ie

$$P_{N}(m) = \frac{1}{K} \sum_{k=l}^{K} P_{N,k}(m)$$

In the Image and Alternating Polarisation Modes, only PN (1) is calculated as above. Thereafter

ASAR

$$P_N(m) = P_N(1) \cdot RG(m) / RG(1)$$

where

1

$$RG(m) = \left(\sum_{n=1}^{32} a_{2,n,m}^2\right) / P_{at}(m)$$

 $P_N(m)$ is then normalised to the image pixel to give the mth value of the noise power estimate N specifically;

r.

$$N = k_n P_N(m)$$

 $(P_N(m) \text{ is updated typically after 3-31 seconds})$ A noise estimate shall be done by scheme 4.