Depth sensitivity of GOCE gravity gradients for lithospheric modelling

<u>J. Ebbing¹</u>, J. Bouman², M. Fuchs², S. Gradmann¹, R. Haagmans³ and F. Provost¹

1-Geological Survey of Norway (NGU), Trondheim, Norway 2-Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Germany 3: ESA/ESTEC, Noordwijk, The Netherlands

GOCE Solid Earth workshop Enschede October, 17th 2012

GOCE satellite data for lithospheric modelling

Data sets from the GOCE mission have two main advantages compared with earlier global gravity models:

- (1) The GOCE gravity model has higher resolution in the transitional wavelength between earlier satellite and terrestrial gravity data.
- The second and more revolutionary novelty is that GOCE measures gravity gradients. (2)

How useful for geophysical research and exploration?

- \Rightarrow What is the error if we calculate planar and not spherical?
- What is the depth extent visible in \Rightarrow gradient data?
- \Rightarrow How can we combine gradients with gravity and geoid to model upper mantle structures?

Depth sensitivity of GOCE gravity gradients

- What is the error if we calculate planar and not spherical?
- What is the depth extent visible in gradient data?
- How can we combine gravity gradient with gravity and geoid to model upper mantle structures?

Effects on Geophysical Observables

Self-consistent 3D Subsurface Model LitMod3D, Fullea et al. (2009)

kg/m³

--- measured

Proterozoic

Proterozoic

calculated

-100

Forward modelling with LitMod3D

A detailed look at the uppermost mantle and crust

Conclusions and outlook

GOCE gravity gradients are sensitive to upper 100 km of the lithosphere

- low sensitivity to thickness of the lithosphere
- Not affected by regional trends

GOCE gradients can complement seismic tomography

- Seismic tomography has low resolution from Moho to 100 km depth
- GOCE gradients are sensitive to this depth range

Satellite gradients should be used jointly with gravity and geoid data to model the entire lithosphere

