Ref:
 ER-IS-MDA-GS-2010

 Issue/Revision:
 1/3

 Date:
 FEB. 20, 1996

# GS16

# **ERS-2** Kiruna Station User Interface Specification



© Copyright MacDonald, Dettwiler and Associates Ltd. 1996 All Rights Reserved



13800 Commerce Parkway Richmond, B.C., Canada V6V 2J3 Telephone (604) 278-3411 Fax (604) 278-2117

#### RESTRICTION ON USE, DUPLICATION, OR DISCLOSURE OF PROPRIETARY INFORMATION

This document contains information proprietary to MacDonald, Dettwiler and Associates Ltd., to its subsidiaries, or to a third party to which MacDonald, Dettwiler and Associates Ltd. may have a legal obligation to protect such information from unauthorized disclosure, use or duplication. Any disclosure, use or duplication of this document or of any of the information contained herein for other than the specific purpose for which it was disclosed is expressly prohibited, except as MacDonald, Dettwiler and Associates Ltd. may otherwise agree to in writing.

 Ref:
 ER-IS-MDA-GS-2010

 Issue/Revision:
 1/3

 Date:
 FEB. 20, 1996



### THIS PAGE INTENTIONALLY LEFT BLANK

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

(ii)



Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/3 Date: FEB. 20, 1996

# CHANGE RECORD

ì

| ISSUE | DATE     | PAGE(S)                                                                                                                       | DESCRIPTION                                                                                                                         | RELEASE |
|-------|----------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1/0   | 05/04/94 | All                                                                                                                           | SCR #62, CR #62<br>First Issue                                                                                                      |         |
| 1/1   | 04/08/94 |                                                                                                                               | SCR #80, CR #80<br>First Issue - First Revision                                                                                     |         |
|       |          |                                                                                                                               | Reason for Change:                                                                                                                  |         |
|       |          |                                                                                                                               | Incorporate Ivan Petiteville's comments<br>from the May 4, 1994 e-mail 'comments<br>on GS-2010 (Issue 1/0, dated Apr. 5,<br>1994)'. |         |
|       |          | 1-1, 1-2,                                                                                                                     | Description of Change:                                                                                                              |         |
|       |          | 2-1, 3-1 to<br>3-4, 3-9,<br>4-3, 4-4,<br>4-13, 4-16,<br>4-24, 4-34,<br>4-40, 4-41,<br>4-78, 4-89,<br>4-93,<br>4-111,<br>4-113 | Minor updates - mostly relating to<br>product media and distribution.                                                               |         |
| 1/2   | 27/07/95 |                                                                                                                               | SCR #99, CR #99<br>First Issue - Second Revision                                                                                    |         |
|       |          |                                                                                                                               | Reason for Change:                                                                                                                  |         |
|       |          |                                                                                                                               | Addition of wave processing algorithm to the LRDPF.                                                                                 |         |
|       |          |                                                                                                                               | Description of Change:                                                                                                              |         |
|       |          |                                                                                                                               | Addition of wave products being<br>produced optionally on the SAR FDP or<br>the LRDPF.                                              |         |
|       |          |                                                                                                                               |                                                                                                                                     |         |

(iii)



| ISSUE | DATE                                | PAGE(S) | DESCRIPTION                                                      | RELEASE                              |
|-------|-------------------------------------|---------|------------------------------------------------------------------|--------------------------------------|
| 1/3   | 20/02/96                            |         | SCR #103, CR #103<br>First Issue - Third Revision<br>Problem #10 | RELEASED BY<br>CONFIGURATION CONTROL |
|       |                                     |         | Reason for Change:                                               | Acres 6                              |
|       |                                     |         | Modification of wave processing algorithm for the LRDPF.         | og. II.                              |
|       |                                     |         | Description of Change:                                           |                                      |
|       | 4-45-4-47<br>4-49-4-53<br>4-60-4-63 |         | Update SPH fields description of Γ<br>UWA.                       | WA,                                  |
|       | 4-64 - 4-118                        |         | Repagination only.                                               |                                      |



l

# TABLE OF CONTENTS

| 1 | INTR | ODUCT   | ION                                | 1-1  |
|---|------|---------|------------------------------------|------|
|   | 1.1  | Intend  | ed Audience                        | 1-1  |
|   | 1.2  | Scope   | Of Applicability                   | 1-2  |
|   | 1.3  | Docur   | nent Overview                      | 1-2  |
| 2 | DOC  | UMENTS  | 5                                  | 2-1  |
|   | 2.1  | Applic  | cable Documents                    | 2-1  |
|   | 2.2  | Refere  | ence Documents                     | 2-1  |
| 3 | OVE  | RVIEW   |                                    | 3-1  |
|   | 3.1  | ERS S   | System                             | 3-1  |
|   | 3.2  | Groun   | d Segment                          | 3-1  |
|   | 3.3  | Kiruna  | a Station Overview                 | 3-2  |
|   |      | 3.3.1   | System Functions                   | 3-2  |
|   | 3.4  | Instru  | ment Overview                      | 3-3  |
|   |      | 3.4.1   | AMI Image Mode                     | 3-5  |
|   |      | 3.4.2   | AMI Wave Mode                      | 3-5  |
|   |      | 3.4.3   | AMI Wind Mode                      | 3-5  |
|   |      | 3.4.4   | Radar Altimeter                    | 3-9  |
|   |      | 3.4.5   | Along-Track Scanning Radiometer    | 3-9  |
|   |      | 3.4.6   | Global Ozone Monitoring Experiment | 3-10 |
|   |      | 3.4.7   | Microwave Radiometer               | 3-10 |
|   | 3.5  | Satelli | te: X-Band Downlink                | 3-10 |
|   |      | 3.5.1   | High Rate Data (LINK 1)            | 3-10 |
|   |      | 3.5.2   | Low Rate Data (LINK 2)             | 3-11 |
| 4 | PROI | DUCT DE | EFINITIONS                         | 4-1  |
|   | 4.1  | Introd  | uction                             | 4-1  |
|   |      | 4.1.1   | Type of Products                   | 4-1  |
|   |      | 4.1.2   | Structure of Product Format        | 4-5  |
|   |      | 4.1.3   | Product Generation                 | 4-14 |
|   |      | 4.1.4   | Product Quality Control            | 4-20 |
|   | 4.2  | Raw D   | Data Products                      | 4-23 |
|   |      | 4.2.1   | High Rate Data (RH)                | 4-24 |
|   |      | 4.2.2   | Low Rate Data (RL)                 | 4-34 |
|   |      | 4.2.3   | ATSR-1 Data (RATSR)                | 4-36 |
|   |      | 4.2.4   | ATSR-2 Data (EATC2)                | 4-38 |
|   | 4.3  | Fast D  | elivery Products                   | 4-40 |
|   |      | 4.3.1   | AMI Image-16-bit (UI16)            | 4-40 |
|   |      | 4.3.2   | AMI Image-8-bit (UI8)              | 4-53 |

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

(v)

А

В

(vi)



|      | 4.3.3    | AMI Image Noise Statistic and Drift Calibration (UIND) | 4-54       |
|------|----------|--------------------------------------------------------|------------|
|      | 4.3.4    | AMI Image Chirp Replica (UIC)                          | 4-55       |
|      | 4.3.5    | AMI Wave (UWA)                                         | 4-56       |
|      | 4.3.6    | AMI Wave Noise Statistic and Drift Calibration (UWAND) | 4-61       |
|      | 4.3.7    | AMI Wave Chirp Replica (UWAC)                          | 4-62       |
|      | 4.3.8    | AMI Wind (UWI)                                         | 4-63       |
|      | 4.3.9    | Radar Altimeter (URA)                                  | 4-80       |
| 4.4  | Interm   | ediate Products                                        | 4-88       |
|      | 4.4.1    | AMI Wave Intermediate (IWA)                            | 4-88       |
|      | 4.4.2    | AMI Image Mode Intermediate (II16)                     | 4-91       |
| 4.5  | Extract  | ted Data Products                                      | 4-93       |
|      | 4.5.1    | AMI Image Calibration Data (EIC)                       | 4-94       |
|      | 4.5.2    | AMI Wave Calibration Data (EWAC)                       | 4-95       |
|      | 4.5.3    | AMI Wind Calibration Data (EWIC)                       | 4-97       |
|      | 4.5.4    | Radar Altimeter Calibration Data (ERAC)                | 4-99       |
|      | 4.5.5    | GOME Calibration Data (EGOC)                           | 4-101      |
|      | 4.5.6    | Microwave Calibration Data (EMWC)                      | 4-103      |
|      | 4.5.7    | AMI Image Instrument Header (EII)                      | 4-105      |
|      | 4.5.8    | AMI Wave Instrument Header (EWAI)                      | 4-108      |
|      | 4.5.9    | AMI Wind Instrument Header (EWII)                      | 4-108      |
|      | 4.5.10   | Radar Altimeter Instrument Header (ERAI)               | 4-109      |
|      | 4.5.11   | ATSR-1 Instrument Header (EATI1)                       | 4-110      |
|      | 4.5.12   | ATSR-2 Instrument Header (EATI2)                       | 4-111      |
|      | 4.5.13   | GOME Instrument Header (EGOI)                          | 4-112      |
|      | 4.5.14   | General Headers (EGH)                                  | 4-113      |
|      | 4.5.15   | Ephemeris Data (EEP)                                   | 4-114      |
|      | 4.5.16   | Text Product (TP)                                      | 4-115      |
| сом  | PUTER-C  | COMPATIBLE TAPE FORMAT                                 | A-1        |
| EXAF | BYTE TAI | PE FORMAT                                              | B-1        |
| B1.  | DPMC     | Exabyte Format                                         | <b>B-1</b> |
| B2.  | Transci  | ription Exabyte Format                                 | B-6        |
| B3.  | Archive  | e Exabyte Format                                       | B-10       |



# LIST OF FIGURES

| Figure 3-1 | Kiruna Station Block Diagram                                   | 3-4  |
|------------|----------------------------------------------------------------|------|
| Figure 3-2 | Data Collection                                                | 3-6  |
| Figure 3-3 | Scatterometer Antenna Orientations                             | 3-7  |
| Figure 3-4 | Scatterometer System Geometry                                  | 3-8  |
| Figure 4-1 | Wave Product Example                                           | 4-60 |
| Figure 4-2 | Wind Direction Definitions                                     | 4-79 |
| Figure 4-3 | Relation between Ambiguity Removal and Product Confidence Data | 4-80 |
| Figure A-1 | Product-Type-Per-File Format of One Tape Reel                  | A-3  |
| Figure A-2 | Product-Per-File Format of One Tape Reel                       | A-4  |
| Figure A-3 | Product-Per-File Format Multireel Configuration                | A-5  |
| Figure B-1 | Exabyte Tape Format                                            | B-2  |
| Figure B-2 | Small Product Format                                           | B-4  |
| Figure B-3 | Large Product Format                                           | B-5  |
|            |                                                                |      |

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

(vii)

Ref:ER-IS-MDA-GS-2010Issue/Revision:1/3Date:FEB. 20, 1996



# THIS PAGE INTENTIONALLY LEFT BLANK

(viii)



|

# LIST OF TABLES

| Table 4-1  | Product Sizes                                                     | 4-2   |
|------------|-------------------------------------------------------------------|-------|
| Table 4-2  | Data Volume                                                       | 4-3   |
| Table 4-3  | MPH for All Products (Except HDDT Products)                       | 4-6   |
| Table 4-4  | Product Distribution Media                                        | 4-16  |
| Table 4-5  | Organization of Information in a Time Code Frame ("Not Used" Bits |       |
|            | shall be set to Zero)                                             | 4-27  |
| Table 4-6  | Product Confidence Data Definitions                               | 4-32  |
| Table 4-7  | Specific Product Header Record for RATSR, EATC2, EWIC, ERAC       | 4-38  |
| Table 4-8  | Data Set Record for RATSR                                         | 4-38  |
| Table 4-9  | Data Set Record for EATC2                                         | 4-39  |
| Table 4-10 | Specific Product Header for UI16, UI8, UWA, IWA                   | 4-42  |
| Table 4-11 | Data Set Record for UI16                                          | 4-54  |
| Table 4-12 | Data Set Record for UI18                                          | 4-55  |
| Table 4-13 | Specific Product Header for UIND, UWAND                           | 4-56  |
| Table 4-14 | Data Set Record for UIND                                          | 4-56  |
| Table 4-15 | Data Set Record for UIC, UWAC                                     | 4-57  |
| Table 4-16 | Data Set Record for UWA                                           | 4-61  |
| Table 4-17 | Data Set Record for UWAND                                         | 4-64  |
| Table 4-18 | Specific Product Header for UWI                                   | 4-67  |
| Table 4-19 | Data Set Record for UWI                                           | 4-73  |
| Table 4-20 | Specific Product Header for URA                                   | 4-82  |
| Table 4-21 | Data Set Record for URA                                           | 4-85  |
| Table 4-22 | Data Set Record 1-16 for IWA                                      | 4-91  |
| Table 4-23 | Data Set Record 17 for IWA                                        | 4-91  |
| Table 4-24 | Specific Product Header for II16                                  | 4-93  |
| Table 4-25 | Data Set Record for EIC                                           | 4-96  |
| Table 4-26 | Specific Product Header Record for EWAC                           | 4-97  |
| Table 4-27 | Data Set Record for EWAC (OBRC and OGRC)                          | 4-98  |
| Table 4-28 | Data Set Record for EWIC                                          | 4-100 |
| Table 4-29 | Data Set Record for ERAC                                          | 4-101 |
| Table 4-30 | Specific Product Header Record for EGOC                           | 4-103 |
| Table 4-31 | Data Set Record for EGOC                                          | 4-104 |
| Table 4-32 | Specific Product Header Record for EMWC                           | 4-105 |
| Table 4-33 | Data Set Record for EMWC                                          | 4-106 |
| Table 4-34 | Specific Header for EII, EWAI, EWII, ERAI, EATI1, EATI2, EGOI     | 4-107 |
| Table 4-35 | Data Set Record for EII, EWAI, EWII, ERAI, EATI1, EATI2, EGOI     | 4-108 |
| Table 4-36 | Data Set Record for EGH                                           | 4-115 |
| Table 4-37 | Data Set Record for EEP                                           | 4-116 |
| Table 4-38 | Data Set Record for Text Product                                  | 4-117 |
| Table A-1  | Tape Header File Format                                           | A-1   |

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

(ix)

Ref:ER-IS-MDA-GS-2010Issue/Revision:1/3Date:FEB. 20, 1996



| Table B-1 | MPH File Format                                          | B-3         |
|-----------|----------------------------------------------------------|-------------|
| Table B-2 | Transcription Exabyte Contents                           | <b>B-</b> 6 |
| Table B-3 | Tape File Header Format                                  | <b>B-</b> 7 |
| Table B-4 | Production Information File Format (Transcribed Exabyte) | <b>B-</b> 7 |
| Table B-5 | Product Files                                            | B-8         |
| Table B-6 | Directory File Format (Transcribed Exabyte)              | B-9         |
| Table B-7 | Archive Exabyte Contents                                 | B-10        |
| Table B-8 | Production Information File Format (Archived Exabyte)    | B-11        |
| Table B-9 | Directory File Format (Archived Exabyte)                 | B-12        |



Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/1 Date: AUG. 04, 1994

# 1 INTRODUCTION

This document defines all ERS-1 and ERS-2 products generated and disseminated by the Kiruna Station (KS). Products are defined in terms of their structure, content, format and distribution media.

The document serves both as a requirements specification to which the Kiruna Station developers shall design and build, and as a specification for end users of the products.

In this document, the Low-Rate Data Processing Facility (LRDPF) refers to the re-hosted LRDPF for the ERS-2 upgrade as specified in Document R-1. Similarly, the term Mission Management Control Centre (MMCC) refers to the MMCC2 and the term Data Processing, Monitoring and Control (DPMC) refers to the DPMC6 resulting from the ERS-2 upgrade as outlined in Document R-2.

# 1.1 Intended Audience

1

The intended audience of this document is made up of the following:

- Customer (European Space Agency (ESA));
- end users of Kiruna Station products;
- developers involved in the ERS-2 upgrades of the Kiruna Station.



# 1.2 Scope Of Applicability

This document shall be treated as a high-level requirement specification for all products generated by the Kiruna Station. Hence, it shall take precedence over the respective subsystem specifications.

The following items are specifically excluded from this document:

- shipping of Computer-Compatible Tapes (CCTs), Exabyte tapes, and High-Density Digital Tapes (HDDTs);
- outputs transmitted to the MMCC specifically related to the monitoring and control of the Kiruna Station (see Document R-2);
- structure and format of products within Kiruna Station (e.g., as transmitted between subsystems);
- transmission of products over the Broad-band Data Distribution Network (BDDN).

# 1.3 Document Overview

This document is divided into four sections:

- Section 2 lists applicable documents.
- Section 3 provides a general description of the ERS System, the Ground Segment and the Kiruna Station.
- Section 4 gives definition, format and distribution media for all Kiruna Station Products.
- Appendix A provides the CCT tape layout.
- Appendix B provides the Exabyte tape layout.



Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/1 Date: AUG. 04, 1994

# 2 DOCUMENTS

1

2.2

All documents listed below are issued by MacDonald Dettwiler unless otherwise noted.

# 2.1 Applicable Documents

| A-1     | ER-IS-MDA-GS-0010 | ERS-1 Kiruna Station User Interface<br>Specification. Issue 8/0. March 15, 1993.                                       |
|---------|-------------------|------------------------------------------------------------------------------------------------------------------------|
| A-2     | ER-IS-ESA-GS-0002 | ERS-2 Satellite to Ground Segment Interface<br>Specification. European Space Agency.<br>Issue 1/1. February 12, 1993.  |
| A-3     | ER-RS-MDA-GS-2004 | System Requirements Definition for the ERS-2<br>Upgrade. Issue 2/2. March 31, 1994.                                    |
| Referen | ce Documents      |                                                                                                                        |
| R-1     | RH-IC-SPT-SY-0001 | LRDPF Re-host External Interface<br>Specification. Spacetec. Issue 1/3. March 23,<br>1994.                             |
| R-2     | ER-IS-MDA-GS-2020 | ERS-2 Kiruna Station to Mission Management<br>and Control Centre Interface Specification.<br>Issue 3/0. March 9, 1994. |

Ref:ER-IS-MDA-GS-2010Issue/Revision:1/1Date:AUG. 04, 1994



# R-3 ER-TN-MDA-GS-0400

Technical Note on the Upgrade of ERS-1 SAR FDP to Version 4. Issue 1/0. March 8, 1993.



Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/2 Date: JULY 27, 1995

# 3 OVERVIEW

The content of this section is for general information only.

### 3.1 ERS System

1

The ERS system is an end-to-end remote sensing system. Launched in July of 1991, ERS-1 has successfully performed microwave measurements of selected earth surface parameters from space, extracted from these measurements specific environmental and geophysical data, and disseminated the results to the commercial and scientific user communities. The ERS system comprises both a space segment, consisting of the satellite with its ground support equipment and an Ariane launcher, plus a ground segment, consisting of the control facilities and the data processing and dissemination facilities. ERS-2 launched in April of 1995, is very similar to the ERS-1 satellite; differing by one instrument with enhanced functionality and carrying one new instrument.

### 3.2 Ground Segment

The overall ground segment encompasses both facilities to be implemented and controlled by ESA, as well as a number of decentralized facilities to be implemented and operated by the data users.

ERS-1 and ERS-2 are oriented towards ice and ocean monitoring, combining objectives of both a scientific and economic nature in one mission. ERS-2 will also be used to monitor the ozone layer.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

3-1



The principal application objectives are aimed towards improvements in short- and medium-term forecasts of sea ice, weather and ocean conditions of benefit to offshore activities such as the fishing and oil industries, and to ship routing. Furthermore, it is intended to perform, on an experimental basis, all-weather microwave imaging over land areas.

The overall ground segment for the ERS satellites is concerned with all aspects of the satellite operations and the instrument data acquisition and processing. It comprises all ground elements forming part of an end- to-end remote sensing system. The main elements of the ERS ground segment are:

- MMCC in Darmstadt;
- Kiruna Station;
- FDPC Ground Stations;
- Precision Processing Facilities;
- Product Archiving Facilities.

The MMCC is responsible for mission planning and coordination, and for control of the satellite and Kiruna Station.

The Kiruna Station is the dedicated ERS ground station for controlling the satellite (it is the Tracking, Telemetry and Command (TT&C) station), for receiving and processing instrument data, and for distributing data products to primary users of the system.

The ERS-2 ground segment is an upgrade of the ERS-1 ground segment so as to allow handling of both these satellites.

# 3.3 Kiruna Station Overview

#### 3.3.1 System Functions

There are three primary functional requirements of the Kiruna Station:

- Satellite Control and Monitoring: The Kiruna Station provides a two-way S-Band communications link with the satellite.
- **Payload Data Acquisition:** The Kiruna Station receives and records payload data transmitted over the X-Band satellite downlink.
- **Payload Data Processing and Distribution:** The station includes the subsystems required to generate both fast delivery and intermediate products from

1

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



the raw payload data, and to make the products available for dissemination to the user.

The Kiruna Station is comprised of the following subsystems:

- Tracking, Telemetry, Command and Data Acquisition Facility (TTCDAF);
- Low-Rate Data Processing Facility (LRDPF);
- Data Processing Monitor and Control/Product Distribution Facility (DPMC);
- Synthetic Aperture Radar Fast-Delivery Processor (SAR FDP);
- Data Recording and Reproduction (DRR);
- BDDN.

The relationship between the various subsystems within the Kiruna Station is shown in Figure 3-1.

# 3.4 Instrument Overview

Data of the following instruments carried by the ERS satellites are processed in Kiruna:

- The C-Band Active Microwave Instrumentation (AMI) comprising side-looking radar systems with three in-flight selectable functional modes for high resolution imaging, and measurements relating to wave spectra and wind scatterometry over the ocean surface.
- The Ku-Band Radar Altimeter (RA), comprising a nadir-looking instrument for measurements over ocean and ice surface.
- The data from the Along-Track Scanning Radiometer (ATSR), are only extracted at Kiruna Station and sent to Rutherford Appleton Laboratories (RAL) for processing. The ATSR is a passive instrument consisting of an infrared radiometer, a microwave sounder, and an optical spectrometer. All three instruments can be operated at the same time. The third instrument, Global Ozone Monitoring Experiment (GOME), collects light arriving from the sun-illuminated atmosphere and decomposes it into its spectral components. The GOME data are sent to Deutsche Forschunsantalt Für Luft und Raumfahrt (DLR) for processing.

ERS-1 and ERS-2 instrumentation differ in only two ways:

- ERS-2 has a GOME instrument, ERS-1 does not;
- ERS-2 has an enhanced ATSR instrument operating in LR or HR.

Document A-2 contains a detailed description of the ERS-2 instruments.

Ref:ER-IS-MDA-GS-2010Issue/Revision:1/1Date:AUG. 04, 1994









Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/0 Date: APR. 05, 1994

#### 3.4.1 AMI Image Mode

The function of the Image Mode is to produce high-resolution radar images of the earth's surface. In this mode, the instrument operates as a Synthetic Aperture Radar (SAR). A swath of approximately 100 km is illuminated to the side of the satellite (see Figure 3-2).

The high-resolution image requiring both high RF power and a high data rate precludes on-board storage and prolonged measurement. Image mode operation is therefore performed only while in line-of-sight communication with the ground station.

#### 3.4.2 AMI Wave Mode

The function of wave mode is to measure the change in radar reflectivity of the sea surface due to ocean waves. In this mode, the instrument operates as a SAR.

For wave mode, the input signals and the target area are reduced from that of the image mode in both the along-track and across-track directions, having the effect of reducing the output data rate to enable on-board storage of the wave data (see Figure 3-2).

The data acquired is first processed as in the SAR image mode, except that there is no Doppler Ambiguity Estimator. In a second step, the wave image is converted to a spectrum of the SAR image.

#### 3.4.3 AMI Wind Mode

In the AMI wind mode (scatterometer) the sea surface is sequentially illuminated by RF pulses and the backscattered signal is measured to determine the sea surface radar reflectivity. From this, the wind characteristics are determined by using a model which relates wind speed and wind direction relative to the radar beam to sea surface reflectivity. Unambiguous wind measurements require that each ocean patch is illuminated under at least three different directions. This is achieved by using three antennas, one looking sideward (midbeam antenna), one looking 45° forward (forebeam antenna), and one looking 45° aftward (aftbeam antenna) with respect to the spacecraft flight direction (Figure 3-3). All three antennas form a fan beam with a narrow azimuth pattern and a relative wide elevation pattern in order to cover a wide swath (measurement area approximately 500 km) parallel to the subsatellite track (Figure 3-4).

| Ref: ER-IS      | S-MDA-GS-2010 |
|-----------------|---------------|
| Issue/Revision: | 1/0           |
| Date:           | APR. 05, 1994 |







AMI WAVE MODE



Figure 3-2 Data Collection



Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/0 Date: APR. 05, 1994



Figure 3-3 Scatterometer Antenna Orientations

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

3-7



Ref:ER-IS-MDA-GS-2010Issue/Revision:1/0Date:APR. 05, 1994



Figure 3-4 Scatterometer System Geometry

(For clarity, not all nodes and their surrounding areas are shown.)

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

3-8



Inside the swath a regular grid of points, called (measurement) nodes, is defined, the spacing of which is approximately 25 km.

Wind speed and direction can be calculated from either two or three beams. The number of beams used is indicated with each cell.

The conversion from sigma naught to wind speed and direction gives an ambiguous result. In a second step, an attempt is taken to remove the ambiguity. If that is not possible, it is indicated in the output product and the most likely solution is given.

#### 3.4.4 Radar Altimeter

The RA of ERS-2 is a nadir-looking active microwave instrument, which operates over the ocean and over ice. Over ocean it is used to determine the significant wave height, the wind speed and the mesoscale topography. Over ice it is used to determine the ice surface topography and ice type.

The microwave measurements comprise the time delay between transmission and reception of a pulse, the slope of the leading edge of the return pulse, the amplitude of the return pulse and the echo waveforms.

These measurements are used as follows:

- The altitude is determined from the measured delay time after correction of propagation delays caused by ionosphere and troposphere.
- The significant ocean wave height (SWH) is calculated from the slope of the leading edge of the return echo.
- The wind speed over sea surfaces is estimated from the power level of the backscatter signal.

#### 3.4.5 Along-Track Scanning Radiometer

The ATSR-2 instrument is purely passive. It consists of a rotating scan mirror, with a field of view of one kilometer by one kilometer at nadir, and several detectors tuned to specific thermal or visible wavelengths. The instrument was conceived and designed to provide the following main types of data and observations:

• Sea surface temperature with an absolute accuracy of better than 0.5°K with a spatial resolution of 50 km and in conditions of up to 80% cloud-over.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



- Images of surface temperature with1 km resolution and 500 km swath with a relative accuracy of about 0.1°K.
- Observations of clouds, aerosols, and haze.

### 3.4.6 Global Ozone Monitoring Experiment

GOME is an across-track scanning optical spectrometer operating on four channels covering the wavelength range 240 to 790 nm. The instrument collects light arriving from the sun-illuminated atmosphere and decomposes it into its spectral components. From the spectrum the absorbing atmospheric constituents can be determined. The most prominent molecule in this range is ozone but other molecules are also detectable. From GOME data there is the possibility of deriving cloud coverage and properties, aerosol type and properties, and surface reflectance values. The GOME instrument is integrated into and controlled by the ATSR-2.

#### 3.4.7 Microwave Radiometer

The instrument is a microwave sounder operating at either 23.8 GHz or 36.5 GHz. The field of view for the instrument is near nadir: the 23.8 GHz channel pointing slightly backward and the 36.5 GHz channel pointing slightly forward. The results from the two channels are co-registered at nadir to provide water vapor content measurements every 1.2 seconds (8 km). The microwave radiometer instrument is integrated into and controlled by the ATSR-2.

# 3.5 Satellite: X-Band Downlink

The instrument data transmitted by the satellite in the X-Band down link consists of two independent types: High Rate (HR) in Link 1 and Low Rate (LR) in Link 2. These are described below.

#### 3.5.1 High Rate Data (LINK 1)

High Rate data consists of formatted AMI image mode SAR data plus Instrument Data Handling and Transmission (IDHT) General Header. The data is put into frames of 256 bytes each, of which the first 6 bytes are allocated to a frame header generated by the IDHT formatter. One complete SAR data set, corresponding to one pulse return (range line), is contained in a format of 29 frames.



Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/1 Date: AUG. 04, 1994

The IDHT format generation rate is somewhat greater than the SAR data set generation rate, to avoid synchronization problems and to accommodate the variation in SAR pulse generation rate. The IDHT will generate a format or frame with Pseudorandom Noise (PRN)-fill data whenever a data set is not available from the AMI.

IDHT General Header packets are subcommutated in segments of 8 bytes per transmitted format, and are located in the first frame of each format.

### 3.5.2 Low Rate Data (LINK 2)

#### 3.5.2.1 Low Rate Data Contents and Formatting

Low Rate data is generated by five different sources:

- AMI operating in wave-mode
- AMI operating wind-mode
- ATSR (including MW and GOME)
- Radar Altimeter
- IDHT General Header

This data is transmitted in 412-byte transfer frames. The first 10 bytes of each frame are used for the frame header, and the last two for frame checksum, with the remaining 400 bytes available for LR data.

The LR data sources are multiplexed on a frame-by-frame basis by the IDHT, using a round-robin polling sequence. The IDHT transmission rate is intentionally greater than the net data generation rate of the LR data sources, so the IDHT will generate frames of PRN-fill data when none of the LR sources has data available during a polling sequence.

Each of the LR data sources generates data organized as source packets, which contain packet header, auxiliary data, and measurement data. Source packets typically are larger than the transfer frame data field, so that several transfer frames are generally required to transmit a source packet. The size and organization of the source packets are different for each of the data sources.

### 3.5.2.2 Low Rate Real-Time and Playback Data

Two separate streams of LR data are transmitted to the Ground Station: real-time data and playback data.



Real-time data is that which is acquired by the satellite instruments and transmitted directly to the ground station during the period when the satellite is within view of the ground station.

Playback data is that which is acquired during the majority of each orbit, when the satellite is not within view of the ground station. This data is recorded on board the satellite in the downlink format and transmitted to the ground station at a higher rate during the time in which the satellite is within view of the ground station (once per orbit).



Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/0 Date: APR. 05, 1994

# 4 **PRODUCT DEFINITIONS**

# 4.1 Introduction

### 4.1.1 Type of Products

This section gives a description of all products generated in Kiruna. The products are listed in Table 4-1 and Table 4-2, and are grouped in four categories:

- Raw Data Products
- Fast-Delivery (FD) Products
- Intermediate Products
- Extracted Data Products

Each product is described in the following sections.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

4-1



|                                                         |                      | Data Set                |                          |                                   |  |
|---------------------------------------------------------|----------------------|-------------------------|--------------------------|-----------------------------------|--|
|                                                         | SPH Size<br>in Bytes | Record Size<br>in Bytes | Number of<br>Records     | Product Size<br>in Bytes          |  |
| RAW-DATA PRODUCTS                                       |                      |                         |                          |                                   |  |
| ATSR-1 (RATSR)                                          | 282                  | 4,004                   | 1                        | 4,462                             |  |
| ATSR-2 (EATC2)                                          | 282                  | 6,804                   | 1 (for LR)<br>2 (for HR) | 7,262 (for LR)<br>14,066 (for HR) |  |
| FAST DELIVERY PRODUCTS                                  |                      |                         |                          |                                   |  |
| AMI Image 16-bit (UI16)                                 | 260                  | 10,004                  | 6,300                    | 63.025.636                        |  |
| AMI Image 8-bit (UI8)                                   | 260                  | 5,004                   | 6,300                    | 31,525,636                        |  |
| AMI Image Noise Statistics and Drift Calibration (UIND) | 28                   | 1,540                   | 4                        | 6,364                             |  |
| AMI Image Chirp Replica (UIC)                           | N/A                  | 1,540                   | 2                        | 3,256                             |  |
| AMI Wave (UWA)                                          | 260                  | 148                     | 1                        | 584                               |  |
| AMI Wave Noise Statistics and                           | 28                   | 1,540 (G)               | 4                        | 6,364                             |  |
| Drift Calibration (UWAND)                               | 28                   | 124 (B)                 | 4                        | 700                               |  |
| AMI Wave Chirp Replica (UWAC)                           | N/A                  | 1,540                   | 1                        | 1,716                             |  |
| AMI Wind (UWI)                                          | 166                  | 46                      | 361                      | 16,948                            |  |
| Radar Altimeter (URA)                                   | 56                   | 88                      | 77                       | 7,008                             |  |
| INTERMEDIATE PRODUCTS                                   |                      |                         |                          |                                   |  |
| AMI Wave Intermediate Products (IWA)                    | 260                  | 16,004 (G)              | 17                       | 272,504                           |  |
|                                                         | 260                  | 24,004 (B)              | 17                       | 408,504                           |  |
| AMI Image Intermediate Products (II16)                  | 600                  | 10,004                  | 6,300                    | 63,025,976                        |  |
| EXTRACTED DATA PRODUCTS                                 |                      |                         |                          |                                   |  |
| AMI Image Calibration Data (EIC)                        | N/A                  | 11,466                  | 1                        | 11,642                            |  |
| AMI Image Calibration Data (EICM)                       | N/A                  | 11,642                  | 5,400                    | 62,866,976                        |  |
| AMI Wave Calibration Data (EWAC)                        | 4,480                | 4,332                   | 299                      | 1,299,924                         |  |
| AMI Wind Calibration Data (EWIC)                        | 282                  | 7,864                   | 1                        | 8,322                             |  |
| Radar Altimeter Calibration Data (ERAC)                 | 282                  | 3,136                   | 1                        | 3,594                             |  |
| GOME Calibration Data (EGOC)                            | 303                  | 8,004                   | 1                        | 8,483                             |  |
| Microwave Calibration Data (EMWC)                       | 315                  | 900                     | 1                        | 1,391                             |  |
| AMI Image Instrument Headers (EII)                      | 40                   | 234 (M)                 | (V)                      | 1,500,000(MP)                     |  |
| AMI Wave Instrument Headers (EWAI)                      | 40                   | 108 (M)                 | 299                      | 32,508 (MP)                       |  |
| AMI Wind Instrument Headers (EWII)                      | 40                   | 72 (M)                  | (V)                      | 1,500,000 (MP)                    |  |
| Radar Altimeter Instrument Headers (ERAI)               | 40                   | 3,136 (M)               | (V)                      | 1,500,000 (MP)                    |  |
| ATSR-1 Instrument Headers (EATI1)                       | 40                   | 4,004 (M)               | (V)                      | 1,500,000 (MP)                    |  |
| ATSR-2 Instrument Headers (EATI2)                       | 40                   | 13,604 (M)              | (V)                      | 5,000,000 (MP)                    |  |
| GOME Instrument Headers (EGOI)                          | 40                   | 8,004 (M)               | (V)                      | 1,500,000 (MP)                    |  |
| General Headers (EGH)                                   | N/A                  | 260                     | 16                       | 4,336                             |  |
| Ephemeris Data (EEP)                                    | N/A                  | 388                     | 1                        | 564                               |  |
| Text Product (TP)                                       | N/A                  | 84                      | 1                        | 260                               |  |

4-2

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

.



M = maximum number of bytes per record

V = variable number of records

G = OGRC B = OBRC

MP = maximum product size

#### Table 4-2Data Volume

|                                                                | Storage<br>Subsystem | Number of<br>Products per<br>Orbit | Maximum<br>Amount of<br>Data per Orbit<br>in kBytes | KS On-Disk<br>Storage<br>Requirement | Amount of<br>Data per Day<br>in kBytes |
|----------------------------------------------------------------|----------------------|------------------------------------|-----------------------------------------------------|--------------------------------------|----------------------------------------|
| *NOTE: The relevant data for the LRDPF is TBD. *               |                      |                                    |                                                     |                                      |                                        |
| RAW-DATA PRODUCTS                                              |                      |                                    |                                                     |                                      |                                        |
| ATSR-1 (RATSR)                                                 | N/A                  | 40,000                             | 178,480                                             | N/A                                  | 1,784,800                              |
| ATSR-2 (EATC2)                                                 | DPMC                 | 100 (for<br>LR)<br>50 (for<br>HR)  | 726 (for<br>LR)<br>703 (for<br>HR)                  | 2 orbits<br>2 orbits                 | 726,000<br>703,000                     |
| FAST DELIVERY PRODUCTS                                         |                      |                                    |                                                     |                                      |                                        |
| AMI Image 16-bit (UI16) (1)                                    | DPMC                 | 3                                  | 189,078                                             | 2 orbits                             | 1,890,780                              |
| AMI Image 8-bit (U18) (1)                                      | DPMC                 | 3                                  | 94,577                                              | 2 orbits                             | 945,770                                |
| AMI Image Noise Statistics and Drift Calibration (UIND)<br>(1) | DPMC                 | 2                                  | 13                                                  | 2 orbits                             | 130                                    |
| AMI Image Chirp Replica (UIC)                                  | DPMC                 | 3                                  | 10                                                  | 2 orbits                             | 100                                    |
| AMI Wave (UWA) (1)                                             | DPMC                 | 200                                | 117                                                 | 2 orbits                             | 1170                                   |
| AMI Wave Noise Statistics and                                  | DPMC                 | 10                                 | 64(G)                                               | 2 orbits                             | 640                                    |
| Drift Calibration (UWAND) (1)                                  | DPMC                 | 13                                 | 9(B)                                                | 2 orbits                             | 90                                     |
| AMI Wave Chirp Replica (UWAC) (1)                              | DPMC                 | 200                                | 343                                                 | 2 orbits                             | 3,430                                  |
| AMI Wind (UWI)                                                 | DPMC                 | 88                                 | 1,491                                               | 2 orbits                             | 14,910                                 |
| Radar Altimeter (URA)                                          | DPMC                 | 84                                 | 589                                                 | 2 orbits                             | 5,890                                  |
| INTERMEDIATE PRODUCTS                                          |                      |                                    |                                                     |                                      |                                        |
| AMI Wave Intermediate Products (IWA) (1)                       | DPMC                 | 200                                | 54,500(G)                                           | 2 orbits                             | 545,000                                |



#### Table 4-2Data Volume

|                                            | Storage<br>Subsystem | Number of<br>Products per<br>Orbit | Maximum<br>Amount of<br>Data per Orbit<br>in kBytes | KS On-Disk<br>Storage<br>Requirement | Amount of<br>Data per Day<br>in kBytes |
|--------------------------------------------|----------------------|------------------------------------|-----------------------------------------------------|--------------------------------------|----------------------------------------|
|                                            | SAR FDP              | 200                                | 54,500(G)                                           | 2 orbits                             | 545,000                                |
|                                            | DPMC                 | 200                                | 81,701(B)                                           | 2 orbits                             | 817,010                                |
|                                            | SAR FDP              | 200                                | 81,701(B)                                           | 2 orbits                             | 817,010                                |
| AMI Image Intermediate Products (II16) (2) | DPMC                 | 3                                  | 189,101                                             | 2 orbits                             | 1,891,010                              |
| EXTRACTED PRODUCTS                         |                      |                                    |                                                     |                                      |                                        |
| AMI Image Calibration Data (EIC)           | SAR FDP              | 28,000                             | 325,976                                             | 1 orbit                              | 325,976                                |
|                                            | DPMC                 | 750                                | 8,732                                               | 1 orbit                              | 8,732                                  |
| AMI Wave Calibration Data (EWAC)           | SAR FDP              | 200                                | 259,985                                             | 1 orbit                              | 259,985                                |
|                                            | DPMC                 | 11                                 | 14,299                                              | 2 orbits                             | 28,598                                 |
| AMI Wind Calibration Data (EWIC)           | DPMC                 | 1,450                              | 12,067                                              | 2 orbits                             | 24,134                                 |
| Radar Altimeter Calibration Data (ERAC)    | DPMC                 | 564                                | 2,027                                               | 2 orbits                             | 4,054                                  |
| GOME Calibration Data (EGOC)               | DPMC                 | 4,000                              | 33,932                                              | 2 orbits                             | 67,864                                 |
| Microwave Calibration Data (EMWC)          | DPMC                 | 1,375                              | 1,913                                               | 2 orbits                             | 3,825                                  |
| AMI Image Instrument Headers (EII)         | DPMC                 | 10                                 | 1,500                                               | 2 orbits                             | 15,000                                 |
| AMI Wave Instrument Headers (EWAI)         | DPMC                 | 150                                | 1,500                                               | 2 orbits                             | 15,000                                 |
| AMI Wind Instrument Headers (EWII)         | DPMC                 | 10                                 | 1,500                                               | 2 orbits                             | 15,000                                 |
| Radar Altimeter Instrument Headers (ERAI)  | DPMC                 | 10                                 | 1,500                                               | 2 orbits                             | 15,000                                 |
| ATSR-1 Instrument Headers (EATI1)          | DPMC                 | 10                                 | 1,500                                               | 2 orbits                             | 15,000                                 |
| ATSR-2 Instrument Headers (EATI2)          | DPMC                 | 10                                 | 5,000                                               | 2 orbits                             | 50,000                                 |
| GOME Instrument Headers (EGOI)             | DPMC                 | 10                                 | 1,500                                               | 2 orbits                             | 15,000                                 |
| General Headers (EGH)                      | DPMC                 | 375                                | 1,626                                               | 2 orbits                             | 16,260                                 |
| Ephemeris Data (EEP)                       | DPMC                 | . 1                                | 0.6                                                 | 2 orbits                             | 6                                      |
| Text Product (TP)                          | DPMC                 | 10                                 | 2.6                                                 | 2 orbits                             | 26                                     |

**Note:** For calibration data products, the table gives the maximum amount of data which can be accommodated over one day. This data can be stored for ten consecutive orbits.

1 = one SAR FDP in wave, one in image mode

1



2 = the Image intermediate products II16 may be generated as an alternative to the UI16, UI8 products (i.e., not in addition to the FD products)

G =OGRC

B =OBRC

V = Variable Length

#### 4.1.2 Structure of Product Format

Each product, with the exception of the raw data products stored on HDDT, has the same structure. This product structure consists of three parts.

| Main Product Header Record     |            |
|--------------------------------|------------|
| Specific Product Header Record | > OPTIONAL |
| Data Set Record                |            |
|                                |            |
| Data Set Record                |            |

The MPH has a single 176-byte record with an identical format for all products. The format of the Main Product Header record is given in Table 4-3. The Main Product Header contains information applicable to all processing chain products.

The specific product header is optional. The number and length of the record varies by product type.

All products have a product data set, consisting of one or more records. Length and number of records is determined by the product type and is given in the Main Product Header.



#### Data Types

Data is stored in the following formats:

I1 = 1-byte unsigned integer

I2 = 2-byte integer in DEC format

I4 = 4-byte integer in DEC format

A = ASCII

B = 1 byte or bits (flags)

S = Special format, as defined in description field

| Table 4-3 M | PH for A | All Products ( | Except | HDDT | Products) |
|-------------|----------|----------------|--------|------|-----------|
|-------------|----------|----------------|--------|------|-----------|

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                           |  |  |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1               | 17                 | A/I          | 1-17             | Product identifier (for internal operational use<br>only); i.e., a set of characters and integers<br>which form a unique identifier. The set is<br>defined by MMCC and KS as follows: |  |  |
|                 |                    |              |                  | Byte 1 Originator of logical schedule                                                                                                                                                 |  |  |
|                 |                    |              |                  | "I" = MMCC - Immediate Command                                                                                                                                                        |  |  |
|                 |                    |              |                  | "M" = MMCC - Logical Schedule                                                                                                                                                         |  |  |
|                 |                    |              |                  | "J" = Local operator - Immediate Com-<br>mand                                                                                                                                         |  |  |
|                 |                    |              |                  | "K" = Local operator - Logical Schedule                                                                                                                                               |  |  |
|                 |                    |              |                  | Byte 2-5 Sequential Counter of Logical<br>Schedule                                                                                                                                    |  |  |
| •               |                    |              |                  | Byte 6-9 Unique Identification or Schedule<br>Offset                                                                                                                                  |  |  |
|                 |                    |              | 6                | Byte 10-13 Not used, set to 0                                                                                                                                                         |  |  |
|                 |                    |              |                  | Byte 14-17 Sequential Number of Cur-<br>rently Generated Product                                                                                                                      |  |  |
| 2               | 1                  | I1           | 18               | Type of Product:                                                                                                                                                                      |  |  |

4-6



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                 |
|-----------------|--------------------|--------------|------------------|-------------------------------------------------------------------------------------------------------------|
|                 |                    |              |                  | 0 – ATSR Data (RATSR)                                                                                       |
|                 |                    |              |                  | 1 = AMI Image-16-bit (UI16)                                                                                 |
|                 |                    |              |                  | 2 – AMI Image-8-bit (UI8)                                                                                   |
|                 |                    |              |                  | 3 = AMI Image Noise Statistics and<br>Drift Calibration (UIND)                                              |
|                 |                    |              |                  | 4 - AMI Image Chirp Replica (UIC)                                                                           |
|                 |                    |              |                  | 5 = AMI Wave (UWA) (see also Field<br>12)                                                                   |
|                 |                    |              |                  | <ul> <li>6 – AMI Wave Noise Statistics and<br/>Drift Calibration (UWAND) (see<br/>also Field 12)</li> </ul> |
|                 |                    |              |                  | 7 - AMI Wave Chirp Replica (UWAC)                                                                           |
|                 |                    |              |                  | 8 – AMI Wind (UWI)                                                                                          |
|                 |                    |              |                  | 9 - Radar Altimeter (URA)                                                                                   |
|                 |                    |              |                  | 10 - AMI Wave Mode Intermediate<br>(IWA) (see also Field 12)                                                |
|                 |                    |              |                  | <ul><li>11 - AMI Image Mode Intermediate<br/>(II16)</li></ul>                                               |
|                 |                    |              |                  | 12 = AMI Image Calibration Data (EIC)                                                                       |
|                 |                    |              |                  | <ul><li>13 – AMI Wave Calibration Data<br/>(EWAC)</li></ul>                                                 |
|                 |                    |              |                  | 14 = AMI Wind Calibration Data<br>(EWIC)                                                                    |
|                 |                    |              |                  | 15 - Radar Altimeter Calibration Data<br>(ERAC)                                                             |
|                 |                    |              |                  | 16 - AMI Image Instrument Headers<br>(EII)                                                                  |

 Table 4-3
 MPH for All Products (Except HDDT Products)

Ref:ER-IS-MDA-GS-2010Issue/Revision:1/0Date:APR. 05, 1994



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                  |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------|
|                 |                    |              |                  | 17 = AMI Wave Instrument Headers<br>(EWAI)                   |
|                 |                    |              |                  | 18 = AMI Wind Instrument Headers<br>(EWII)                   |
|                 |                    |              |                  | 19 = Radar Altimeter Instrument Head-<br>ers (ERAI)          |
|                 |                    |              |                  | 20 = General Headers (EGH)                                   |
|                 |                    |              |                  | 21 - Ephemeris Data (EEP)                                    |
|                 |                    |              |                  | 22 - Text Product (TP)                                       |
|                 |                    |              |                  | 30 = VI product (VMP)                                        |
|                 |                    |              |                  | 31 = VIC product (VMP)                                       |
|                 |                    |              |                  | 32 = VWA product (VMP)                                       |
|                 |                    |              |                  | 33 = VWAC product (VMP)                                      |
|                 |                    |              |                  | 34 = GOME Calibration Data (EGOC)                            |
|                 |                    |              |                  | 35 - GOME Instrument Headers (EGOI)                          |
|                 |                    |              |                  | 36 = ATSR-2 Instrument Headers<br>(EATI2)                    |
|                 |                    |              |                  | 37 = ATSR-1 Instrument Headers<br>(EATI1)                    |
|                 |                    |              |                  | 38 = ATSR-2 Calibration Data (EATC2)                         |
|                 |                    |              |                  | <ul><li>39 = Microwave Calibration Data<br/>(EMWC)</li></ul> |
|                 |                    |              |                  | 40 = AMI Image Calibration Data<br>(EICM)                    |
| 3               | 1                  | I1           | 19               | Spacecraft                                                   |
|                 |                    |              |                  | 1 = ERS-1                                                    |

 Table 4-3
 MPH for All Products (Except HDDT Products)

4-8



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                                                 |
|-----------------|--------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                    |              |                  | 2 = ERS-2                                                                                                                                                                                                                   |
| 4               | 24                 | А            | 20-43            | UTC time of subsatellite point at beginning of product (see Note 2). Format in ASCII:                                                                                                                                       |
|                 |                    |              |                  | "dd-mmm-yyyy hh:mm:ss.ttt"                                                                                                                                                                                                  |
|                 |                    |              |                  | For example:                                                                                                                                                                                                                |
|                 |                    |              |                  | "30-JAN-1987 14:30:27.123"                                                                                                                                                                                                  |
| 5               | 1                  | I1           | 44               | Station ID, where data was processed                                                                                                                                                                                        |
|                 |                    |              |                  | <ol> <li>1 = Kiruna Station (KS)</li> <li>2 = Fucino Station (FS)</li> <li>3 = Gatineau Station (GS)</li> <li>4 = Maspalomas Station (MS)</li> <li>5 = EECF Station (ES)</li> <li>6 = Prince Albert Station (PS)</li> </ol> |
| 6               | 2                  | В            | 45-46            | Product Confidence Data (described in Subsection 4.1.4)                                                                                                                                                                     |
|                 |                    |              |                  | 1. bit PCD Summary Flag                                                                                                                                                                                                     |
|                 |                    |              |                  | <ul> <li>product correctly generated</li> <li>some problem during acquisition or<br/>product generation. For more detail<br/>see below and SPH.</li> </ul>                                                                  |
|                 |                    |              |                  | 23. bit SPARE                                                                                                                                                                                                               |
|                 |                    |              |                  | 45. bit Performance of Downlink and X-<br>Band acquisition chain. This value summa-<br>rizes the PCD snap shots related to the prod-<br>uct.                                                                                |

 Table 4-3
 MPH for All Products (Except HDDT Products)

4-9



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                                     |
|-----------------|--------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                    |              |                  | <ul> <li>0 = performance better than MMCC-<br/>supplied minimum threshold</li> <li>1 = performance equal to or worse than<br/>MMCC-supplied minimum thresh-<br/>old</li> <li>2 = performance unknown</li> </ul> |
|                 |                    |              |                  | 67. bit HDDT.                                                                                                                                                                                                   |
|                 |                    |              |                  | This value summarizes the PCD snap shots related to the product.                                                                                                                                                |
|                 |                    |              |                  | <ul> <li>performance better than MMCC-<br/>supplied minimum threshold</li> <li>performance equal to or worse than<br/>MMCC-supplied minimum thresh-<br/>old</li> <li>performance unknown</li> </ul>             |
|                 |                    |              |                  | 89. bit Frame Synchronizer                                                                                                                                                                                      |
|                 |                    |              |                  | <ul> <li>0 = performance better than MMCC-<br/>supplied minimum threshold</li> <li>1 = performance equal to or worse than<br/>MMCC-supplied minimum thresh-<br/>old</li> <li>2 = performance unknown</li> </ul> |
|                 |                    |              |                  | 1011. bit FS to Processor I/F                                                                                                                                                                                   |
|                 |                    |              |                  | <ul> <li>0 - no parity error detected</li> <li>1 - parity error detected</li> <li>2 - performance unknown</li> </ul>                                                                                            |
|                 |                    |              |                  | 1213. bit Checksum Analysis on LR Frames                                                                                                                                                                        |
|                 |                    |              |                  | <ul> <li>better than MMCC-supplied mini-<br/>mum percentage threshold</li> <li>worse than MMCC-supplied mini-<br/>mum percentage threshold</li> <li>performance unknown</li> </ul>                              |

| Table 4-3 N | MPH for All | Products ( | Except | HDDT | Products) |
|-------------|-------------|------------|--------|------|-----------|
|-------------|-------------|------------|--------|------|-----------|

4-10


| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                                                                                                                            |  |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                 |                    |              | ÷.               | 1415. bit Quality of Downlinked Formats<br>and Source Packets                                                                                                                                                                                                                                          |  |
|                 |                    |              |                  | <ul> <li>0 = total of complete packets received<br/>were more than the MMCC-defined<br/>minimum percentage threshold</li> <li>1 = total of complete packets received<br/>was less than or equal to the<br/>MMCC-defined minimum percent-<br/>age threshold</li> <li>2 = performance unknown</li> </ul> |  |
|                 |                    |              |                  | 16. bit Quality of Auxiliary Data                                                                                                                                                                                                                                                                      |  |
|                 |                    |              |                  | <ul> <li>auxiliary data (and/or chirp) correctly extracted</li> <li>auxiliary data (and/or chirp) not extracted</li> </ul>                                                                                                                                                                             |  |
|                 |                    |              |                  | For UWI and URA products, this flag is always zero.                                                                                                                                                                                                                                                    |  |
| 7               | 24                 | А            | 47-70            | UTC time when MPH was generated; Format as in field 4.                                                                                                                                                                                                                                                 |  |
| 8               | 4                  | I4           | 71-74            | Size of Specific Product Header Record in Bytes                                                                                                                                                                                                                                                        |  |
| 9               | 4                  | I4           | 75-78            | Number of Product Data Set Records                                                                                                                                                                                                                                                                     |  |
| 10              | 4                  | I4           | 79-82            | Size of each Product Data Set Record in Bytes                                                                                                                                                                                                                                                          |  |
| 11              | 1                  | В            | 83               | Subsystem that generated the product.                                                                                                                                                                                                                                                                  |  |
|                 |                    |              |                  | 12. bit                                                                                                                                                                                                                                                                                                |  |
|                 |                    |              |                  | 0 = SAR FDP 1<br>1 = SAR FDP 2<br>2 = LRDPF<br>3 = VMP                                                                                                                                                                                                                                                 |  |

Table 4-3 MPH for All Products (Except HDDT Products)

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                               |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| 12              | 1                  | В            | 84               | OBRC flag used for SAR products only                                                                                      |
|                 |                    |              |                  | 12. bit                                                                                                                   |
|                 |                    |              |                  | 0 = not used<br>1 = OGRC data<br>2 = OBRC data                                                                            |
| 13              | 24                 | Α            | 85-108           | UTC reference time. Time relation used to<br>convert from satellite to ground, used together<br>with the next two fields. |
| 14              | 4                  | I4           | 109-112          | Reference binary time of satellite clock                                                                                  |
| 15              | 4                  | I4           | 113-116          | Step length of satellite clock in nanoseconds                                                                             |
| 16              | 8                  | I2           | 117-124          | Processor software version used to generate product.                                                                      |
|                 |                    |              |                  | <ol> <li>Byte : Revision Level</li> <li>Byte : Issue Level</li> <li>Byte : Reserved</li> <li>Byte : Reserved</li> </ol>   |
| 17              | 2                  | I2           | 125-126          | Threshold table version number.                                                                                           |
| 18              | 2                  | В            | 127-128          | Spare                                                                                                                     |
| 19              | 24                 | Α            | 129-152          | UTC time of ascending node state vector.                                                                                  |
| 20-25           | 24                 | I4           | 153-176          | Ascending node state vector in earth-fixed reference system (see Note 1).                                                 |
| 20              | 4                  | I4           | 153-156          | State vector; X $10^{-2}$ m                                                                                               |
| 21              | 4                  | I4           | 157-160          | State vector; Y $10^{-2}$ m                                                                                               |
| 22              | 4                  | I4           | 161-164          | State vector; Z $10^{-2}$ m                                                                                               |
| 23              | 4                  | I4           | 165-168          | State vector; X velocity $10^{-5}$ m/s                                                                                    |
| 24              | 4                  | I4           | 169-172          | State vector; Y velocity $10^{-5}$ m/s                                                                                    |
| 25              | 4                  | I4           | 173-176          | State vector; Z velocity $10^{-5}$ m/s                                                                                    |

MACDONALD DETTWILER

4-12



- Note 1. WARNING. Product types which don't need valid orbit state vectors (e.g, UWAND and extracted products) for production, may contain invalid state vectors since these are not verified during production. The state vedor in the MPH will be that from the last C\_ORBIT\_PROP command received prior to the product being generated.
- Note 2. For SAR, the UTC time at beginning of product is the time of the first processing range line (i.e., 0.4 to 0.48 seconds before the zero doppler time of the first line of the product). For UWI, it is the time of the first line of nodes. For URA, it is the time of the first data set record.

### **Nonvalid Fields**

If the Kiruna Station does not have a value for a field, either because the field is not applicable or a value is unavailable the field is set to:

0 for integer numbers

space for ASCII

- 0 for bit fields within a byte
- 0 for special format. Note that there may also exist a "non-value" definition by the special format itself.

If a value exceeds the range of a type, the positive or negative maximum is given.

### Byte + Bit Order

Data which are stored in Digital Equipment Corporation (DEC) internal storage formats have the following layout:

• 16-bit or 32-bit integer numbers have the Least Significant Byte first; for example:



| <u>Byte</u>         |                                                 |                        |   |
|---------------------|-------------------------------------------------|------------------------|---|
| 1<br>2<br>3<br>4    | Least significant byte                          | Integer 1<br>(32 bits) |   |
| 5<br>6<br>7<br>8    | Least significant byte<br>Most significant byte | Integer 2<br>(32 bits) | 2 |
| 9<br>10<br>11<br>12 | Least significant byte<br>                      | Integer 3<br>(32 bits) | 3 |
| •                   | •                                               |                        |   |
| •                   | •                                               |                        |   |
|                     |                                                 |                        |   |

• data addressed on bit level; for example, Product Confidence Data (PCD), have the bit addresses start at the least significant bit of a byte and increase to the most significant bit in the byte; i.e., the data item with the following description:

| 1 3. bit           | PCD_A   |                         |
|--------------------|---------|-------------------------|
| 4.bit              | PCD_B   | · · · · ·               |
| 5 7. bit           | PCD_C   |                         |
| 810. bit           | PCD_D   |                         |
| 1116. bit          | PCD_E   |                         |
| is stored:         | 1. byte | 2. byte                 |
| bit<br>position:   | 7654321 | 0 15 14 13 12 11 10 9 8 |
| storage<br>of PCD: | DCCCBA  | AA EEEEEDD              |

### 4.1.3 Product Generation

Products are generated and distributed according to a schedule which is defined by the MMCC. This schedule contains separate commands to generate and disseminate these

4-14



Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/0 Date: APR. 05, 1994

products. The parameters with which a product is generated, are product-dependent. Details are given for each product type under the heading "Product Generation", in the product description contained in Subsections 4.2 to 4.5.

Products are distributed through a product type-specific media. As backup they may be disseminated through an alternate media; Table 4-4 gives an overview of which product may use which distribution media.

Products are generated by the three Fast Delivery Processors (FDPs). Once completed, they can be output to the DPMC, which provides temporary storage on disk until the products are distributed. The length of time for which products are stored on disk is given under "On-line Storage Spec" in the product descriptions, in Subsections 4.2 to 4.5. Some products produced by the LRDPF can be sent to the BDDN for distribution without first being sent to the DPMC.

In addition to the nominal and alternative distribution media given in Table 4-4, any product type stored in the DPMC database (i.e., all product types except Raw Products) can be stored on CCT or Exabyte 8 mm tape cartridge.

In case there is a loss of data between products, null products may be generated. The interval of null products is determined by the PCD update rate (nominally 2.5 seconds) during ingestion. In terms of satellite time, the interval of null products will be:

- Low Rate Realtime data: 1.25 seconds
- Low Rate Playback data: 17.1 seconds
- High Rate data: 0.078 seconds

This variation is due to the difference between record speed and the speed of reproduction of data for ingestion.



| Product                                                                      | Distribution Media |         |     |        |         |
|------------------------------------------------------------------------------|--------------------|---------|-----|--------|---------|
| * NOTE: The contents of this table are TBC.*                                 | HDDT               | Exabyte | ССТ | BDDN   | MMCC    |
| High-Rate Data (RH)<br>Low-Rate Data (RL)                                    | N<br>N             |         |     |        |         |
| ATSR-1 (RATSR)<br>ATSR-2 (EATC2)                                             |                    | N<br>N  |     |        |         |
| Fast Delivery Products:                                                      |                    |         |     |        |         |
| AMI Image 16-bit (UI16)<br>AMI Image 8-bit (UI8)                             |                    | Ν       |     | N<br>N |         |
| AMI Image Noise Statistic and Drift Calibration                              |                    |         |     | N      | N       |
| AMI Image Chirp Replica (UIC)                                                |                    |         |     |        | N       |
| AMI wave (UwA)<br>AMI Wave Noise Statistics and Drift Calibration            |                    |         |     | A<br>A | N<br>N  |
| (UWAND)<br>AMI Wave Chirp Replica (UWAC)                                     |                    |         |     | A      | Ν       |
| AMI Wind (UWI)<br>Radar Altimeter (URA)                                      |                    | N       |     | A<br>A | N<br>N  |
| Intermediate Products:                                                       |                    | -       |     |        |         |
| AMI Wave Intermediate Product (IWA)<br>AMI Image Intermediate Product (II16) |                    | N       |     | A<br>N | A       |
| Extracted Data Products:                                                     |                    |         |     |        |         |
| AMI Image Calibration Data (EIC)<br>AMI Image Calibration Data (EICM)        |                    | N       | N   | A      | A       |
| AMI Wave Calibration Data (EWAC)                                             |                    | N       |     | А      | А       |
| AMI Wind Calibration Data (EWIC)                                             |                    | Ν       |     | А      | А       |
| Radar Altimeter Calibration Data (ERAC)                                      |                    | Ν       |     | A      | A       |
| Microwave Calibration Data (EGOC)                                            |                    | N       |     | N      |         |
| AMI Image Instrument Headers (EII)                                           |                    | 14      |     |        | N       |
| AMI Wave Instrument Headers (EWAI)                                           |                    |         |     |        | N       |
| AMI Wind Instrument Headers (EWII)                                           |                    |         |     |        | N       |
| Radar Altimeter Instrument Headers (ERAI)                                    |                    |         |     |        | N       |
| ATSR-1 Instrument Headers (EATI1)                                            |                    | A       |     |        | A       |
| GOME Instrument Headers (EGOI)                                               |                    | N       |     |        | N       |
| General Headers (EGH)                                                        |                    | T.M.    |     |        | IN<br>N |
| Ephemeris Data (EEP)                                                         |                    |         |     |        | N       |
| Text Product                                                                 |                    |         |     | N      | N       |

### Table 4-4 Product Distribution Media

N = Nominal, A = Alternative (not to be considered for link sizing)

4-16

1



### 4.1.3.1 SAR FDP Input Data Error Handling

The SAR FDP has two basic schemes for minimizing the effects of bit errors in the highrate and low-rate data:

- for extracted parameters which are relatively static (for example, PRF code, sampling window start time code, gain codes), the processor searches for the same value in two consecutive range lines or source packets;
- for dynamic extracted parameters (for example, range line number, satellite binary time code), the processor compares each value with previous and next values and thereby establishes the validity of each value based on acceptable ranges of change.

Missing or incomplete range lines of image mode data or source packets of wave mode data are replaced with zeroes. No parameters are extracted from the auxiliary data fields of these data sets. Missing data is indicated in the header of each affected product and summarized in the product confidence data field. Duplicate wave mode source packets are detected by the SAR FDP on the basis of the satellite binary time code and are discarded.

If data are not received for the generation of a product, then no product is generated and the SAR FDP indicates so in its status report to the DPMC.

### 4.1.3.2 LRDPF Input Data Error Handling

Error handling within the LRDPF is performed on a product-type basis. The following subsections describe the error handling strategy for each product type.

**Note:** The following subsections regarding error handling on the LRDPF are TBC. The LRDPF's error handling for GOME, MW and Wave data is TBD.

### 4.1.3.2.1 Radar Altimeter Error Handling

A URA Fast Delivery Product will always contain 77 data set records, equally spaced in time, by about one second.

Blank data records or, if necessary, blank products are generated, whenever no valid RA ocean tracking mode data are available at the beginning or between sets of valid data of the specified processing time interval. They are inserted as needed to ensure the above spacing as well as the right number of records per product.



A blank data record has the same structure as normal data record with only valid data for the UTC time, localization and the instrument mode identification byte. All other bytes of the blank data set record will be set to default values.

If a source packet is valid but not error-free, then calibration values contained in the auxiliary data of the packet will be ignored and the previous values, obtained from the last error-free source packet, will be used.

If at the end of a processing interval a product contains less than 77 data set records, then the whole product is discarded.

### 4.1.3.2.2 Wind Scatterometer Error Handling

Wind Scatterometer Fast Delivery Products will always be generated for the complete specified processing time interval with reference to the mid-beam.

Each product will correspond to an array of 19 nodes across-track by 19 nodes along-track with a node spacing of about 25 km.

For each node within the processing interval, the processor will attempt to find and process the corresponding satellite telemetered data of each beam (fore, mid and aft). For each beam and each node, the processor will calculate the corresponding sigma-nought value only if sufficient valid data are available for this node calculation.

The wind extraction algorithm will not be attempted for nodes having less than 2-beam sigma-nought calculated values. For each of the records of the products generated within the processing time interval, the appropriate data fields will be filled or flagged according to the number of processed beams and the possibility of wind vector extraction.

If a source packet is valid but not error-free, then calibration values contained in the auxiliary data of the packet will be ignored and the previous values, obtained from the last error-free source packet, will be used.

If at the end of the processing time interval, the last product is incomplete, it will be completed either by processed data or by blank records to make a complete product.

### 4.1.3.2.3 ATSR Products Error Handling

ATSR products shall be generated for a specified time interval.

The products shall start with the first data which can be extracted for that time interval: as long as no data are available, no products shall be generated.

4-18



Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/0 Date: APR. 05, 1994

In case there is a loss of data in gaps between products or at the end of a requested time period, then null products shall be generated with an update rate corresponding to the receipt of PCDs from the DPMC, normally every 2.5 seconds (see 4.1.3).

### 4.1.3.3 Extracted Data Products

Extracted data products may be generated by the SAR FDPs and the LRDPF. The general error handling strategy is independent of the processor involved.

#### 4.1.3.3.1 General Header and Ephemeris Data Products

For EEP products, the input data are searched from the start time until a complete product is found, that is 16 contiguous frames forming a complete set of ephemeris data without error.

EGH products are generated within the time interval specified in the generation command. Products are generated within the interval corresponding to complete products; that is, sets of 16 contiguous error-free frames. Data which are not error-free are replaced by null data and flagged as erroneous. If no source packets are obtained in the interval then no product is generated.

#### 4.1.3.3.2 Instrument Header and Calibration Data Product

Instrument Header products and Calibration Data products will be generated for a specified time interval.

The products will start with the first data which can be extracted for that time interval: as long as no data are available, no products will be generated.

In case there is a loss of data in gaps between products or at the end of a requested time period, then null products will be generated with an update rate corresponding to the receipt of PCDs from the DPMC, normally every 2.5 seconds (see 4.1.3) for the following products:

- EIC
- EWIC
- ERAC
- EWII
- ERAI
- EGOC (TBC)
- EATC2 (TBC)

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



EMWC (TBC)

Note: Whether or not EGOI, EATI1 and EATI2 products will have null products is TBD.

For the Wave Instrument Headers (EWAI) and Wave Calibration Data Products (EWAC), products will be generated for all wave cells found within the specified time interval.

For the Image Instrument Headers (EII) products will be generated for all formats (one range line per format) found in a specified time interval, products will be generated within the specified interval.

In case of incomplete wave cells, the product EWAI or EWAC will be completed by null records to generate complete products.

### 4.1.4 Product Quality Control

All products disseminated from Kiruna contain information on the quality of the content. This data is referred to as Product Confidence Data (PCD). Six areas are covered:

- performance of downlink and X-Band acquisition chain;
- checksum analysis on LR frames;
- quality of downlinked formats and source packets;
- quality of auxiliary data;
- performance and status of processing chain equipment;
- quality assessment performed during product generation.

#### 4.1.4.1 Location of Product Confidence Data in Product Format

Product confidence data are stored in several places throughout a product. As a general rule, acquisition-related information is stored in the MPH, processing information covering the entire product is given in the SPH, and information affecting the quality of individual cells is recorded on a cell basis together with the other cell contents. The location of the PCD in a product is as follows:

Main Product Header:

PCD summary flag; performance of downlinked and X-Band acquisition chain; performance and status of processing chain; checksum analysis on LR frames; quality of downlinked formats and source packets; quality of auxiliary data;

4-20



quality of auxiliary data;

• Specific Product Header (FD and intermediate products):

product processor hardware equipment;

quality of downlinked formats and source packets (image and wave products only);

performance during product generation;

• Data Set Cell (RA and Wind products only):

checksum analysis on LR frames; quality of downlinked formats and source packets; performance during product generation; quality assessment performed during product generation.

All PCD collected during acquisition and product generation are summarized in a single flag, product confidence factor. This flag is stored in the MPH of every product.

### 4.1.4.2 Performance of Downlink and X-Band Acquisition Chain

During acquisition, the following PCD is collected from the demodulator/bit synchronizer:

- Bit Error Rate (BER) estimate;
- downlink channel signal strength (through the automatic gain control);
- I and Q bit synch lock status;
- demodulator lock status.

These PCD, called PCD\_DEMOD, are passed via the Time Code Generator (TCG) Interface to the TCG, to be embedded in the IRIG time code and passed on to the Data Path Switcher (DPS). The DPS outputs the downlinked data in parallel with the time code for recording on HDDT.

When data are read back from the HDDT for processing, the DPMC collects the PCD\_DEMOD from the time code. It checks the PCD\_DEMOD against limits, and passes the result as PCD flags (correct, incorrect, unknown) every 2.5 seconds on to the LRDPF and SAR FDP.

The LRDPF and the SAR FDPs attach the PCD flags to all products which are generated from the downlinked data associated with the PCD\_DEMOD.



### 4.1.4.3 Checksum Analysis on Low Rate Frames

The LR transfer frame checksums are analyzed by the Frame Synchronizer. Any detected errors are flagged by the Frame Synchronizer. The LRDPF takes action by replacing the noise and calibration pulse data with defaults, and by flagging the event in the MPH.

In the SAR FDP, auxiliary data are checked for self consistency between consecutive source packets. A count of checksum errors is maintained and a flag in the MPH set if the ratio of erroneous frames to total frames exceeds a threshold.

### 4.1.4.4 Quality of Downlinked Formats and Source Packets

The performance of instrument formats and source packets is monitored by the SAR FDPs and the LRDPF through analysis of the data from the Frame Synchronizer.

If a source packet (LR) or format (HR) cannot be reassembled; that is, it is too short or too long, all data are either replaced by "0" (AMI image or wave products) before processing, or totally disregarded (AMI wind and RA products). In addition, a flag is set accordingly in the MPH, the SPH (image and wave products), and in the PCD of the cell (RA and wind products).

### 4.1.4.5 Quality of Auxiliary Data

Auxiliary data in the header of the downlinked data are checked by the processors against predefined limits. If a processor is unable to extract the auxiliary data needed for product generation, a flag is set accordingly in the MPH or in the PCD of the cell (RA and wind products).

### 4.1.4.6 Performance and Status of Processing Chain Equipment

The following equipment is monitored during product generation:

- High-Density Digital Recorders (HDDRs)
- Frame Synchronizers (FSs)
- Frame Synchronizer to product processor interfaces
- SAR FDP and LRDPF processor status

The HDDRs are monitored by the DPMC, which collects status information generated by the Tape Search Units (TSUs). The DPMC also collects Synch Lock status directly from the HDDR Master Formatters every 2.5 seconds, checks the parameters against



predefined limits, and passes the resulting flag (correct, incorrect, unknown) every 2.5 seconds on to the LRDPF and the SAR FDPs.

During the replay of the recorder, the Frame Synchronizers monitor the:

- BER, and
- lock status

of the downlinked data. The DPMC samples the Frame Synchronizer status every 2.5 seconds, checks the parameters against predefined limits, and passes the resulting flag (correct, incorrect, unknown) every 2.5 seconds on to the LRDPF and the SAR FDPs.

The Frame Synchronizers to processor interfaces are monitored in the SAR FDPs and the LRDPF. The processors check the parity bit in the incoming data from the Frame Synchronizer. Performance below a certain threshold is recorded in the MPH of the related products.

Generally, the processing hardware is checked out in the daily or in the prepass test. Each test usually produces a Pass or Fail result, which is reported to the MMCC in the relevant test report. In certain ambiguous cases, where processing is done with uncertain hardware conditions, a flag is set in the SPH of each product.

### 4.1.4.7 Performance During Product Generation

During product generation, algorithm-specific data for product confidence parameters are generated. Depending on whether a PCD applies to an entire product or a product cell, the PCD is stored in the SPH or in the cell PCD. Cell-dependent PCD exist for wind and RA products.

## 4.2 Raw Data Products

Raw data products contain data as received from the ERS-1 or ERS-2 satellite. No processing or reformatting of data has been performed. All raw data products are output on tape, either HDDT, CCT, or Exabyte. The raw data are annotated with the time of data reception at Kiruna and an indication of the quality of reception.

The following raw data products are described below:

- High Rate Data (RH)
- Low Rate Data (RL)
- ATSR-1 Data (RATSR)
- ATSR-2 Data (EATC2)

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



### 4.2.1 High Rate Data (RH)

**Description**: This data is an exact copy of all data downlinked from ERS-1 or ERS-2 on the X-Band High Rate Link.

Satellite Source: X-Band, Link 1; that is, the AMI image mode data (and scrambled zero frames) and IDHT General Header.

Originating Subsystem: DRR

Production Generation: all data received in Kiruna

Command: no specific product generation command

**On-Line Storage Specification**: recorded in parallel on two HDDTs, one HDDT is kept in Kiruna storage until the other HDDT has been accepted at the Product Archive Facility. Note that during the Commissioning Phase recording of ERS-2 data may take place on only one HDDR and hence there would be no redundant recording.

Throughput: all data of every pass

### Format and Media:

The tapes recommended to record the HR (SAR image) downlinked data are 1-inch Sony V1-K compatible video tapes with a reel size of 14 inches, accommodating 9200 feet of tape.

To read these tapes, the same recorder used to generate them is required: Thorn EMI Datatech SE9000 Laboratory 28-Track Tape Recorder/Reproducer and the SE9500 3PM Digital Data Formatter configured for HR data. The units used at Kiruna have been modified by Thorn EMI to accept Sony V1-K compatible video tapes.

For HR data, each tape accommodates a single pass: approximately 11 minutes recording time. The layout of a tape is as follows:



| BLANK TAPE  |
|-------------|
| PRN DATA    |
| HR RAW DATA |
| BLANK TAPE  |

At the beginning of each tape there is some blank space, followed by PRN data used to verify proper performance of the HDDRs prior to acquisition of data from the satellite. Next comes the downlinked X-Band data.

The data is recorded on 27 tracks (24 data plus 3 parity), at 120 ips, yielding a recording density of 39.06 kbps. Possible playback speeds range from 3-3/4 ips to 120 ips. The BER is 1 in 10<sup>6</sup> at any of these IRIG speeds.

On one track, an analogue time code in IRIG-A130 format (10 kHz carrier) is recorded (see Table 4-5). The time is Universal Time, Coordinated (UTC). Embedded in the IRIG format is product quality data.

The exact track allocation is as follows:

|                                  | Odd Headstack    | Even Headstack    |
|----------------------------------|------------------|-------------------|
| D R Channel<br>(time code track) | 1,               |                   |
| Formatter 1                      | 7, 13, 19, 25    | 4, 10, 16, 22, 28 |
| Formatter 2                      | 5, 11, 17, 23    | 2, 8, 14, 20, 26  |
| Formatter 3                      | 3, 9, 15, 21, 27 | 6, 12, 18, 24     |

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



### Tape Label:

- MMCC-supplied information field
- satellite ID
- start time of pass
- stop time of pass
- station ID
- drive on which HDDT was generated

**Comments on Product Confidence**: Product confidence data from the demodulators are stored in the time track (see Table 4-4).

4-26



| Bit<br>Number | Meaning                              |
|---------------|--------------------------------------|
| 0             | PR (Position Identifier - Reference) |
| 1             | 1 second                             |
| 2             | 2 seconds                            |
| 3             | 4 seconds                            |
| 4             | 8 seconds                            |
| 5             | 0 • not used                         |
| 6             | 10 seconds                           |
| 7             | 20 seconds                           |
| 8             | 40 seconds                           |
| 9             | P1 (Position Identifier)             |
| 10            | 1 minute                             |
| 11            | 2 minutes                            |
| 12            | 4 minutes                            |
| 13            | 8 minutes                            |
| 14            | $0 \bullet not used$                 |
| 15            | 10 minutes                           |
| 16            | 20 minutes                           |
| 17            | 40 minutes                           |
| 18            | $0 \bullet not used$                 |
| 19            | P2 (Position Identifier)             |
| 20            | 1 hour                               |
| 21            | 2 hours                              |
| 22            | 4 hours                              |
| 23            | 8 hours                              |

 Table 4-5
 Organization of Information in a Time Code Frame ("Not Used" Bits shall be set to Zero)



| Bit<br>Number | Meaning                  |  |
|---------------|--------------------------|--|
| 24            | 0 • not used             |  |
| 25            | 10 hours                 |  |
| 26            | 20 hours                 |  |
| 27            | 0 • not used             |  |
| 28            | $0 \bullet not used$     |  |
| 29            | P3 (Position Identifier) |  |
| 30            | 1 day                    |  |
| 31            | 2 days                   |  |
| 32            | 4 days                   |  |
| 33            | 8 days                   |  |
| 34            | $0 \bullet not used$     |  |
| 35            | 10 days                  |  |
| 36            | 20 days                  |  |
| 37            | 40 days                  |  |
| 38            | 80 days                  |  |
| 39            | P4 (Position Identifier) |  |
| 40            | 100 days                 |  |
| 41            | 200 days                 |  |
| 42            | $0 \bullet not used$     |  |
| 43            | $0 \bullet not used$     |  |
| 44            | 0 • not used             |  |
| 45            | 0.1 second               |  |
| 46            | 0.2 second               |  |
| 47            | 0.4 second               |  |

## Table 4-5 Organization of Information in a Time Code Frame ("Not Used" Bits shall be set to Zero)

4-28



| Bit<br>Number | Meaning                                     |                                         |
|---------------|---------------------------------------------|-----------------------------------------|
| 48            | 0.8 second                                  |                                         |
| 49            | P5 (Position Identifier)                    |                                         |
| 50            | PC0 1 HR BER estimate (LSB)                 |                                         |
| 51            | PC1 2 HR BER estimate                       |                                         |
| 52            | PC2 4 HR BER estimate                       | Product Confidence                      |
| 53            | PC3 8 HR BER estimate (MSB)                 | given in                                |
| 54            | PC4 1 HR AGC (LSB)                          | Table 4-6)                              |
| 55            | PC5 2 HR AGC                                |                                         |
| 56            | PC6 4 HR AGC                                |                                         |
| 57            | PC7 8 HR AGC (MSB)                          |                                         |
| 58            | PC8 HR carrier lock (1=TRUE)                |                                         |
| 59            | P6 (Position Identifier)                    |                                         |
| 60            | PC10 1 LR BER estimate (PB) (LSB)           |                                         |
| 61            | PC11 2 LR BER estimate (PB)                 |                                         |
| 62            | PC12 4 LR BER estimate (PB)                 | Product Confidence<br>Bits (definitions |
| 63            | PC13 8 LR BER estimate (PB) (MSB)           | given in                                |
| 64            | PC14 HR I bit clock lock (1=TRUE)           | Table 4-6)                              |
| 65            | PC15 HR Q bit clock lock (1=TRUE)           |                                         |
| 66            | PC16 LR I bit clock lock (1=TRUE)           |                                         |
| 67            | PC17 LR Q bit clock lock (1=TRUE)           |                                         |
| 68            | PC18 PCD Source flag (1=chain 1, 0=chain 2) | See Note 1                              |
| 69            | P7 (Position Identifier)                    |                                         |

 Table 4-5
 Organization of Information in a Time Code Frame ("Not Used" Bits shall be set to Zero)

ER-IS-MDA-GS-2010 Ref: Issue/Revision: 1/1 AUG. 04, 1994 Date:

| 1 able 4-5    | Organization of Information in a Time C | Code Frame ("Not Used" Bits shall be set to Zer | 0 |
|---------------|-----------------------------------------|-------------------------------------------------|---|
| Bit<br>Number | Meaning                                 |                                                 |   |
| 70            | PC20 1 LR BER (RT) (LSB)                |                                                 |   |
| 71            | PC21 2 LR BER (RT)                      |                                                 |   |
| 72            | PC22 4 LR BER (RT)                      | Product Confidence                              |   |
| 73            | PC23 8 LR BER (RT) (MSB)                | given in                                        |   |
| 74            | PC24 1 LR AGC (LSB)                     | Table 4-6)                                      |   |
| 75            | PC25 2 LR AGC                           |                                                 |   |
| 76            | PC26 4 LR AGC                           |                                                 |   |
| 77            | PC27 8 LR AGC (MSB)                     |                                                 |   |
| 78            | PC28 LR carrier lock (1=TRUE)           |                                                 |   |
| 79            | P8 (Position Identifier)                |                                                 |   |
|               |                                         |                                                 |   |

| Table 4-5 Organization of Information in a Time Code Frame | ("Not Used" Bits shall be set to Zero |
|------------------------------------------------------------|---------------------------------------|
|------------------------------------------------------------|---------------------------------------|

MACDONALD DETTWILER

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



| Bit<br>Number | Meaning                  |                         |
|---------------|--------------------------|-------------------------|
| 80            | SBS (LSB)                | 1                       |
| 81            | SBS                      |                         |
| 82            | SBS                      |                         |
| 83            | SBS                      |                         |
| 84            | SBS                      |                         |
| 85            | SBS                      |                         |
| 86            | SBS                      |                         |
| 87            | SBS                      |                         |
| 88            | SBS                      |                         |
| 89            | P9 (Position Identifier) | Straight Binary Seconds |
| 90            | SBS                      | Time of Day             |
| 91            | SBS                      |                         |
| 92            | SBS                      |                         |
| 93            | SBS                      |                         |
| 94            | SBS                      |                         |
| 95            | SBS                      |                         |
| 96            | SBS                      |                         |
| 97            | SBS                      |                         |
| 98            | SBS (MSB)                |                         |
| 99            | P0 (Position Identifier) |                         |

Table 4-5 Organization of Information in a Time Code Frame ("Not Used" Bits shall be set to Zero)

Note 1: Bit number 68 (PC18 PCD source flag) changes value every second while the data is being recorded.

Chain 1 indicates demodulators 0 and 2 (HR demod 1 and LR demod 1).

Chain 2 indicates demodulators 1 and 3 (HR demod 2 and LR demod 2).

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/0 Date: APR. 05, 1994



|    | PC3  | PC2  | PC1  | PC0  |       | QPSK  |                        |                        |          |              |       |       |                        |                       |          |              |
|----|------|------|------|------|-------|-------|------------------------|------------------------|----------|--------------|-------|-------|------------------------|-----------------------|----------|--------------|
|    | PC13 | PC12 | PC11 | PC10 |       |       | UQPSK PI               | 3 (15 Mbps)            |          |              |       |       |                        |                       |          |              |
|    | PC23 | PC22 | PC21 | PC20 |       |       |                        |                        |          |              |       |       | UQPSK RT               | (1.1 Mbps)            |          |              |
|    | MSB  |      |      | LSB  | · E/N | ic db | BEF                    | typ.                   | 00<br>0+ | IPUT<br>+10V | E/N   | ic db | BER                    | TYP.                  | OU<br>0+ | TPUT<br>+10V |
|    |      |      |      |      | MIN   | мах   | MIN                    | MAX                    | MIN      | MAX          | MIN   | мах   | MIN                    | MAX                   | MIN      | MAX          |
| 15 | 1    | 1    | 1    | 1    | 0     | 2.77  | 8 x 10 <sup>-2</sup>   | •                      | 0        | 0.642        | 0     | 8.77  | •                      | •                     | 0        | 0.642        |
| 14 | 1    | 1    | 1    | 0    | 2.77  | 3.54  | 4 x 10 <sup>-2</sup>   | •                      | 0.642    | 1.283        | 8.77  | 9.54  | •                      | •                     | 0.642    | 1.283        |
| 13 | 1    | 1    | 0    | 1    | 3.54  | 4.30  | 2.5 x 10 <sup>-2</sup> | 8 x 10 <sup>-2</sup>   | 1.283    | 1.916        | 9.54  | 10.30 | •                      | •                     | 1.283    | 1.916        |
| 12 | 1    | 1    | 0    | 0    | 4.30  | 5.07  | 1.5 x 10 <sup>-2</sup> | 5 x 10 <sup>-2</sup>   | 1.916    | 2.558        | 10.30 | 11.07 | 1 x 10 <sup>-5</sup>   | 3 x 10 <sup>-4</sup>  | 1.916    | 2.558        |
| 11 | 1    | 0    | 1    | 1    | 5.07  | 5.84  | 8 x 10 <sup>-3</sup>   | 3 x 10 <sup>-2</sup>   | 2.558    | 3.199        | 11.07 | 11.84 | 4.5 x 10 <sup>-6</sup> | 8 x 10 <sup>-5</sup>  | 2.558    | 3.199        |
| 10 | 1    | 0    | l    | 0    | 5.84  | 6.60  | 3.5 x 10 <sup>-3</sup> | 1.5 x 10 <sup>-2</sup> | 3.199    | 3.833        | 11.84 | 12.60 | 4 x 10 <sup>-7</sup>   | 2 x 10 <sup>-5</sup>  | 3.199    | 3.833        |
| 9  | 1    | 0    | 0    | 1    | 6.60  | 7.38  | 1.5 x 10 <sup>-2</sup> | 8 x 10 <sup>-3</sup>   | 3.833    | 4.483        | 12.60 | 13.38 | >1 x 10 <sup>-7</sup>  | 3 x 10 <sup>-6</sup>  | 3.833    | 4.483        |
| 8  | 1    | 0    | 0    | 0    | 7.38  | 8.14  | 5 x 10 <sup>-4</sup>   | 3.5 x 10 <sup>-3</sup> | 4.483    | 5.116        | 13.38 | 14.14 | >1 x 10 <sup>-7</sup>  | 4 x 10 <sup>-7</sup>  | 4.483    | 5.116        |
| 7  | 0    | 1    | 1    | 1    | 8.14  | 8.91  | 1.5 x 10 <sup>-4</sup> | 1.5 x 10 <sup>-3</sup> | 5.116    | 5.758        | 14.14 | 14.91 | >1 x 10 <sup>-7</sup>  | >1 x 10 <sup>-7</sup> | 5.116    | 5.758        |
| 6  | 0    | 1    | 1    | 0    | 8.91  | 9.68  | 4 x 10 <sup>-5</sup>   | 5 x 10 <sup>-4</sup>   | 5.758    | 6.399        | 14.91 | 15.68 | >1 x 10 <sup>-7</sup>  | >1 x 10 <sup>-7</sup> | 5.758    | 6.399        |
| 5  | 0    | 1    | 0    | 1    | 9.68  | 10.45 | 1 x 10 <sup>-5</sup>   | 1.5 x 10 <sup>-4</sup> | 6.399    | 7.041        | 15.68 | 16.45 | >1 x 10 <sup>-7</sup>  | >1 x 10 <sup>-7</sup> | 6.399    | 7.041        |
| 4  | 0    | 1    | 0    | 0    | 10.45 | 11.22 | 2 x 10 <sup>-6</sup>   | 4 x 10 <sup>-5</sup>   | 7.041    | 7.683        | 16.45 | 17.22 | >1 x 10 <sup>-7</sup>  | >1 x 10 <sup>-7</sup> | 7.041    | 7.683        |
| 3  | 0    | 0    | 1    | 1    | 11.22 | 11.98 | >1 x 10 <sup>-7</sup>  | 1.5 x 10 <sup>-6</sup> | 7.683    | 8.316        | 17.22 | 17.98 | >1 x 10 <sup>-7</sup>  | >1 x 10 <sup>-7</sup> | 7.683    | 8.316        |
| 2  | 0    | 0    | 1    | 0    | 11.98 | 12.75 | >1 x 10 <sup>-7</sup>  | >1 x 10 <sup>-7</sup>  | 8.316    | 8.957        | 17.98 | 18.75 | >1 x 10 <sup>.7</sup>  | >1 x 10 <sup>.7</sup> | 8.316    | 8.957        |
| 1  | 0    | 0    | 0    | 1    | 12.75 | 13.52 | >1 x 10 <sup>-7</sup>  | >1 x 10 <sup>-7</sup>  | 8.957    | 9.607        | 18.75 | 19.52 | >1 x 10 <sup>-7</sup>  | >1 x 10 <sup>.7</sup> | 8.957    | 9.607        |
| 0  | 0    | 0    | 0    | 0    | 13.52 | •     | >1 x 10 <sup>-7</sup>  | >1 x 10 <sup>-7</sup>  | 9.607    | 10.0         | 19.52 | •     | >1 x 10 <sup>-7</sup>  | >1 x 10 <sup>-7</sup> | 9.607    | 10.0         |
|    |      |      |      |      |       |       |                        |                        |          |              |       |       |                        |                       |          |              |

| <b>Fable 4-6</b> | Product | Confidence | Data | Definitions |
|------------------|---------|------------|------|-------------|
|------------------|---------|------------|------|-------------|

Theoretical Limit:  $4 \times 10^{-5}$  for low-rate RT demodulator

\* Out of range

The absolute accuracy of  $E/N_0$  measurement is:  $\pm 1.0 \text{ dB}$ 

The  $E/N_0$  quantization step size is: 0.77 dB

4-32



| MACDONALD |  |
|-----------|--|
| DETTWILER |  |

|    | PC7  | PC6  | PC5  | PC4  |                 | QPSK        |           |                |  |  |
|----|------|------|------|------|-----------------|-------------|-----------|----------------|--|--|
|    | PC27 | PC26 | PC25 | PC24 | UQPSK (PB) (RT) |             |           |                |  |  |
|    | MSB  | •    |      | LSB  | Input I         | Level (dBm) | O<br>(0 + | utput<br>+10V) |  |  |
|    |      | ·    |      |      | MIN             | MAX         | MIN       | MAX            |  |  |
| 15 | 1    | 1    | 1    | 1    | *               | -47.44      | 0         | 0.624          |  |  |
| 14 | 1    | 1    | 1    | 0    | -47.44          | -44.88      | 0.625     | 1.28           |  |  |
| 13 | 1    | 1    | 0    | 1    | -44.88          | -42.32      | 1.28      | 1.925          |  |  |
| 12 | 1    | 1    | 0    | 0    | -42.32          | -39.76      | 1.925     | 2.562          |  |  |
| 11 | 1    | 0    | 1    | 1    | -39.76          | -37.20      | 2.562     | 3.200          |  |  |
| 10 | 1    | 0    | 1    | 0    | -37.20          | -34.64      | 3.200     | 3.837          |  |  |
| 9  | 1    | 0    | 0    | 1    | -34.64          | -32.08      | 3.837     | 4.475          |  |  |
| 8  | 1    | 0    | 0    | 0    | -32.08          | -29.52      | 4.475     | 5.125          |  |  |
| 7  | 0    | 1    | 1    | 1    | -29.52          | -26.96      | 5.125     | 5.762          |  |  |
| 6  | 0    | 1    | 1    | 0    | -26.96          | -24.40      | 5.762     | 6.400          |  |  |
| 5  | 0    | 1    | 0    | 1    | -24.40          | -21.84      | 6.400     | 7.050          |  |  |
| 4  | 0    | 1    | 0    | 0    | -21.84          | -19.28      | 7.050     | 7.675          |  |  |
| 3  | 0    | 0    | 1    | . 1  | -19.28          | -16.72      | 7.675     | 8.325          |  |  |
| 2  | 0    | 0    | 1    | 0    | -16.72          | -14.16      | 8.385     | 8.962          |  |  |
| 1  | 0    | 0    | 0.   | 1    | -14.16          | -11.6       | 8.962     | 9.600          |  |  |
| 0  | 0    | 0    | 0    | 0    | -11.6           | *           | 9.600     | 10V            |  |  |

 Table 4-6
 Product Confidence Data Definitions

Absolute accuracy of Input Level measurement is: ±1 dB

Input Level quantization step size is: 2.56 dB



### 4.2.2 Low Rate Data (RL)

**Description**: This data is an exact copy of all data downlinked from ERS-1 or ERS-2 on the X-Band Low Rate Link.

Satellite Source: X-Band, Link 2; that is, AMI wave mode, AMI wind mode, RA data (and scrambled zero data) and IDHT General Header.

**Originating Subsystem:** DRR

Product Generation: all data received in Kiruna

Command: no specific product generation command

**On-Line Storage Specification**: recorded in parallel on two HDDTs. One HDDT is kept in Kiruna storage until the other HDDT has been accepted at the Product Archive Facility. Note that during the Commissioning Phase recording of ERS-2 data may take place on only one HDDR and hence there would be no redundant recording.

Throughput: all data of every pass

#### Format and Media:

The tapes recommended to record the LR downlinked data are 1-inch Sony V1-K compatible video tapes accommodating 6000 feet of tape.

To read these tapes, the same recorder used to generate them is required: Penny and Giles Datatech SE9000 Laboratory 14-Track Tape Recorder/Reproducer and the SE9500 3PM Digital Data Formatter configured for LR data. The units used at Kiruna have been modified by Penny and Giles to accept Sony V1-K compatible video tapes.

4-34



### LOW RATE



Preceding each pass there is some blank space, followed by PRN data used to verify proper performance of the HDDRs prior to acquisition of data from the satellite. Next comes the downlinked X-Band data.

The data is recorded on 13 of the available 14 tracks: 9 tracks (8 data + 1 parity) for the 15 Mbps PB data and 4 tracks (3 data + 1 parity) for RT data. Data is recorded at 60 ips, yielding packing densities of 33.48 kbpi and 14.28 kbpi for PB and RT, respectively.

The PB data is recorded on the tape in reverse direction from the RT data. Possible playback speeds for the PB data range from 15 to 60 ips. For RT data the playback speed can be 60 or 120 ips.

The BER is 1 in  $10^6$  at any of these IRIG speeds.

On one track, an analogue time code in IRIG-A130 format (10-kHz carrier) is recorded (see Table 4-5). The time is UTC. Embedded in the IRIG format is product quality data.

The exact track allocation is as follows:



|                                  | Odd Headstack | Even Headstack  |
|----------------------------------|---------------|-----------------|
| Formatter 1 (PB)                 | 3, 5, 7, 11   | 2, 6, 8, 10, 12 |
| Formatter 2 (RT)                 | 9, 13         | 4               |
| D R Channel<br>(time code track) | 1             |                 |

#### **Tape Label:**

- MMCC-supplied information field
- satellite ID
- start time of 1. pass
- stop time of 1. pass
- start time of 2. pass
- stop time of 2. pass
- start time of 3. pass
- stop time of 3. pass
- station ID
- drive on which HDDT was generated

Comments on Product Confidence: See High Rate Data.

### 4.2.3 ATSR-1 Data (RATSR)

Description: This product contains one ATSR-1 and one General Header source packet.

Satellite Source: ATSR-1 and General Header

**Originating Subsystem:** LRDPF

**Product Generation:** ATSR-1 products are generated for an MMCC-specified start and stop time.

**Command:** C\_GEN\_RATSR

**On-Line Storage Specification:** none

Throughput: All data collected in one orbit, approximately 40K products, per orbit.

4-36



Format: One product includes:

- Main Product Header: See Table 4-3.
- **Specific Product Header:** General Header information is stored in the SPH record as shown in Table 4-8.

All ATSR-1 products have the same size. If there is no General Header available, the General Header portion of the SPH is padded with zeroes. Note that a General Header packets is received only for every 6th to 7th ATSR-1 package.

The General Header packet is not available for the first RATSR product resulting from the C\_GEN\_RATSR command, unless the times of the General Header and RATSR packets are identical.

• **1 Product Data Set Record:** The product data set consists of one record with one ATSR-1 source packet as specified in Table 4-7.

**Media:** ATSR-1 products are stored on Exabyte. Products of one specified time frame are stored on one or several tapes. Each tape contains a maximum fixed number of products. More information on Exabyte storage is included in Appendix B.

Comments on Product Confidence: See Subsection 4.1.3.2.3.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                               |
|-----------------|--------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 256                | S            | 1-256            | PF Data. This field is identical to the first<br>256 bytes of the "Source Data Field" of the<br>General IDHT Header Source Packet, see<br>Document A-2.                                                   |
| 2               | 1                  | S            | 257              | Ephemeris ID. This field is identical to the<br>Ephemeris ID byte field of the "Source Data<br>Field" of the General IDHT Header Source<br>Packet, see Document A-2.                                      |
| 3               | 1                  | В            | 258              | Spare - not used.                                                                                                                                                                                         |
| 4               | 24                 | S            | 259-282          | Ephemeris data subcommutated. This field is<br>identical to the subcommutated, 24 bytes of<br>Ephemeris Data of the "Source Data Field"<br>of the General IDHT Header Source Packet,<br>see Document A-2. |

### Table 4-7 Specific Product Header Record for RATSR, EATC2, EWIC, ERAC

 Table 4-8
 Data Set Record for RATSR

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                   |
|-----------------|--------------------|--------------|------------------|-------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number, this number is always 1.                                  |
| 2               | 4000               | S            | 5-4004           | One source packet, identical to the down-<br>linked format, see Document A-2. |

## 4.2.4 ATSR-2 Data (EATC2)

**Description:** This product contains one LR or two HR ATSR-2 source packets and one General Header source packet.

Satellite Source: ATSR-2 and General Header



Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/0 Date: APR. 05, 1994

#### Originating Subsystem: LRDPF

**Product Generation:** ATSR-2 products are generated for an MMCC-specified start and stop time.

Command: C\_GEN\_EATC2

**On-Line Storage Specification:** none

Throughput: All data collected in one orbit, approximately 44,000 products, per orbit.

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-8.
- 1 Product Data Set Record for LR, 2 Product Data Set Records for HR: The product data set record consists of one ATSR-2 source packet as specified in Table 4-8.

**Media:** ATSR-2 products are stored on Exabyte. Products of one specified time frame are stored on one or several tapes. Each tape contains a maximum fixed number of products. More information on Exabyte storage is included in Appendix B.

Comments on Product Confidence: See Subsection 4.1.3.2.3.

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                   |
|-----------------|--------------------|--------------|------------------|-------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number.                                                           |
| 2               | 6800               | S            | 5-6804           | One source packet, identical to the down-<br>linked format, see Document A-2. |

 Table 4-9
 Data Set Record for EATC2

Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/1 Date: AUG. 04, 1994



## 4.3 Fast Delivery Products

Fast delivery products include all products which are disseminated over a high-speed or the MMCC link. This includes the following products:

- AMI Image-16-bit (UI16)
- AMI Image-8-bit (UI8)
- AMI Image Noise Statistic and Drift Calibration (UIND)
- AMI Image Chirp Replica (UIC)
- AMI Wave (UWA)
- AMI Wave Noise Statistic and Drift Calibration (UWAND)
- AMI Wave Chirp Replica (UWAC)
- AMI Wind (UWI)
- Radar Altimeter (URA)

#### 4.3.1 AMI Image-16-bit (UI16)

**Description:** SAR processed image covering an area of about  $100 \times 100$  km. This is equivalent to the full azimuth swath width (5000 pixels) and 6300 lines. Pixel size is 20 m (ground range) by approximately 16 m (azimuth). The pixel value, proportional to the square root of the image pixel power (magnitude), is represented by 16 bits. The image specification for the product is given in Document R-1.

Input for this product is On-Ground Range Compressed (OGRC) data. These are data which have been acquired and digitized on the spacecraft prior to range compression and which undergo range compression in the SAR FDP.

Satellite Source: AMI Image mode

**Originating Subsystem:** SAR FDP

Product Generation: The MMCC defines the start time for each product.

Command: C\_GEN\_UI

**On-Line Storage Specification:** 200 minutes

**Throughput:** Three AMI Image products, either 8- or 16-bit output pixels, per orbit and per SAR FDP. If both SAR FDPs are in image mode, only 8-bit images can be produced, if the On-line storage capacity specification is to be met.

The throughput requirements are not applicable if the SAR FDP must produce one or more of the following products:

4-40



- Extracted Data Product
- Instrument Header Product

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-10.
- **6300 Product Data Set Records**: See Table 4-8. One record is one range line. Range lines are stored in ascending time order. Within each range line, pixels closer to the satellite track precede farther range pixels. The intensity of each pixel is represented by 16 bits.

Media: Exabyte; for tape format and label, see Appendix B.

### **Comments on Product Confidence:**

• **Missing Lines**: Missing and corrupted lines are padded with zeroes before processing.

The number of missing lines is given in the SPH.

- Chirp Replica Quality: The pulse width, first side lobes, and ISLR of the chirp cross-correlation function are checked against specification.
- Input Data Statistic: The mean and variance of the I and Q input data is computed, and compared against norms.
- **Doppler Centroid Confidence:** The goodness of fit of the expected and actual beam profile are computed and compared to norms.
- **Doppler Centroid Value:** The Doppler centroid offset from zero Doppler is compared to a norm.
- **Doppler Ambiguity Estimator Measures:** Statistics based on the correlation peak of two looks in range are used to derive a product confidence measure. UI16 and UI8 products only.
- **Output Data Statistic:** The mean and standard deviations of output data are computed, compared against norms.

Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/0 Date: APR. 05, 1994



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position |                                     | Description                                                                                                                                               | Units |
|-----------------|--------------------|--------------|------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1               | 2                  | В            | 1-2              | Product Co<br>cessing. T<br>MPH sum | onfidence Data for Pro-<br>hese bits do not cause the<br>mary bit to be set.                                                                              | N/A   |
|                 |                    |              |                  | 12. bit                             | Processing equipment status                                                                                                                               |       |
|                 |                    |              |                  |                                     | <ul> <li>0 = equipment working</li> <li>1 = some problems with<br/>equipment</li> <li>2 = equipment failed<br/>during product gen-<br/>eration</li> </ul> |       |
|                 |                    |              |                  | 3. bit                              | PRF code change flag                                                                                                                                      |       |
|                 |                    |              |                  |                                     | <ul><li>0 = same PRF code for<br/>entire image</li><li>1 = PRF code changed</li></ul>                                                                     |       |
|                 |                    |              |                  | 4. bit                              | Sampling window change flag                                                                                                                               |       |
|                 |                    |              |                  |                                     | <ul> <li>0 = same sampling win-<br/>dow for entire<br/>image</li> <li>1 = sampling window<br/>changed</li> </ul>                                          |       |
|                 |                    |              |                  | 5. bit                              | Calibration system and<br>receiver gain change<br>flag                                                                                                    |       |

Table 4-10 Specific Product Header for UI16, UI8, UWA, IWA

4-42



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position |        | Description                                                                                                                                                                                                                                                                                                   | Units |
|-----------------|--------------------|--------------|------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                 |                    |              |                  |        | <ul> <li>0 = same calibration<br/>system and receiver<br/>gain for entire<br/>image</li> <li>1 = calibration system<br/>or receiver gain<br/>changed</li> </ul>                                                                                                                                               |       |
|                 |                    |              |                  | 6. bit | Chirp replica quality<br>flag                                                                                                                                                                                                                                                                                 |       |
|                 |                    |              |                  |        | <ul> <li>0 = cross-correlation<br/>(note 1) pulse<br/>width, first side lobe<br/>and ISLR all less<br/>than MMCC-speci-<br/>fied values</li> <li>1 = the correctly<br/>extracted chirp<br/>quality (pulse<br/>width, first side lobe<br/>and ISLR) exceeds<br/>the thresholds set by<br/>the MMCC.</li> </ul> |       |
| -               |                    |              |                  | 7. bit | Input data statistic flag<br>(see Note 4).                                                                                                                                                                                                                                                                    |       |

## Table 4-10 Specific Product Header for UI16, UI8, UWA, IWA

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/0 Date: APR. 05, 1994



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position |         | Description                                                                                                                                                                                                                                                                                                               | Units |
|-----------------|--------------------|--------------|------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                 |                    |              |                  | 8 bit   | <ul> <li>0 = mean of I and Q<br/>input values are<br/>both within<br/>MMCC-specified<br/>percentage of<br/>dynamic range cen-<br/>tre, and standard<br/>deviation values of I<br/>and Q input values<br/>are both greater<br/>than MMCC-speci-<br/>fied percentage of<br/>dynamic range</li> <li>1 = otherwise</li> </ul> |       |
|                 |                    |              |                  | 8. bit  | Doppler centroid confi-<br>dence measure flag                                                                                                                                                                                                                                                                             |       |
|                 |                    |              |                  |         | 0 = confidence mea-<br>sure ≤MMCC-<br>specified value<br>1 = confidence mea-<br>sure >MMCC-spec-<br>ified value                                                                                                                                                                                                           |       |
|                 |                    |              |                  | 9. bit  | Doppler centroid value flag                                                                                                                                                                                                                                                                                               |       |
|                 |                    |              |                  |         | <ul> <li>0 = centroid absolute<br/>value ≤PRF/2</li> <li>1 = centroid absolute<br/>value &gt;PRF/2</li> </ul>                                                                                                                                                                                                             |       |
|                 |                    |              |                  | 10. bit | Doppler ambiguity con-<br>fidence measure flag                                                                                                                                                                                                                                                                            |       |

| <b>Table 4-10</b> | Specific | Product | Header fo | r UI16, | UI8, | UWA, | IWA |
|-------------------|----------|---------|-----------|---------|------|------|-----|
|-------------------|----------|---------|-----------|---------|------|------|-----|

4-44



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                            |                                                                                                                                 | Units                |
|-----------------|--------------------|--------------|------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                 |                    |              |                  |                                        | 0 = confidence mea-<br>sure ≥MMCC-<br>specified value<br>1 = confidence mea-<br>sure <mmcc-spec-<br>ified value</mmcc-spec-<br> |                      |
|                 |                    |              |                  | 11. bit                                | Output data mean flag (see Note 5).                                                                                             |                      |
|                 |                    |              |                  |                                        | 0 = mean and standard<br>deviation both<br>greater than<br>MMCC-specified<br>percentage of<br>dynamic range<br>1 = otherwise    |                      |
|                 |                    |              |                  | 12. bit                                | Land/Sea Flag (wave mode only)                                                                                                  |                      |
|                 |                    |              |                  |                                        | 0 = Sea image<br>1 = Land image                                                                                                 |                      |
|                 |                    |              |                  | 1316.bit                               | Spare                                                                                                                           |                      |
| 2               | 4                  | I4           | 3-6              | Subsatellite<br>azimuth po             | e Track Heading at mid-<br>sition of product                                                                                    | 10 <sup>-3</sup> deg |
| 3               | 2                  | I2           | 7-8              | Number of<br>PRF chang<br>ing an imag  |                                                                                                                                 |                      |
| 4               | 2                  | I2           | 9-10             | Number of changes                      | sampling window time                                                                                                            |                      |
| 5               | 2                  | 12           | 11-12            | Number of<br>changes plu<br>gain chang | calibration system gain<br>us number of receiver<br>es                                                                          |                      |
| 6               | 2                  | I2           | 13-14            | Number of                              | missing lines                                                                                                                   |                      |

## Table 4-10 Specific Product Header for UI16, UI8, UWA, IWA

| Ref: ER-       | ER-IS-MDA-GS-2010 |  |  |  |  |  |
|----------------|-------------------|--|--|--|--|--|
| Issue/Revision | : 1/3             |  |  |  |  |  |
| Date:          | FEB. 20, 1996     |  |  |  |  |  |



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                                                                                                                                                     | Units                   |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 7               | 2                  | I2           | 15-16            | Incidence angle at imagette centre<br>(wave mode only)                                                                                                                                                                                                                                                                          | 10 <sup>-3</sup> deg    |
| 8               | 4                  | I4           | 17-20            | 3-dB pulse width of chirp replica<br>cross-correlation function (see note<br>1.)                                                                                                                                                                                                                                                | 10 <sup>-3</sup> pixels |
| 9               | 4                  | I4           | 21-24            | First side lobe level of point chirp replica cross-correlation function (see note 1.)                                                                                                                                                                                                                                           | 10 <sup>-3</sup> dB     |
| 10              | 4                  | I4           | 25-28            | ISLR of chirp replica cross-correla-<br>tion function (see note 1.)                                                                                                                                                                                                                                                             | $10^{-3}$ dB            |
| 11              | 4                  | I4           | 29-32            | Doppler centroid confidence mea-<br>sure. This is the goodness of fit<br>between the Doppler data and the<br>beam replica. A value of zero<br>results when there is a perfect match<br>between the Doppler data and the<br>replica. A value of one represents<br>the worst possible fit.                                        | 10 <sup>-3</sup>        |
| 12              | 4                  | I4           | 33-36            | Doppler ambiguity confidence mea-<br>sure. This is a measure of the peak<br>of the matched filter output for the<br>predicted Doppler ambiguity offset.<br>This value is normalized such that it<br>takes a value of one for the best case<br>and a value of zero for the worst<br>case. (Not used in wave mode prod-<br>ucts.) | 10 <sup>-3</sup>        |
| 13              | 4                  | I4           | 37-40            | Unbiased Mean of uncorrected I input data                                                                                                                                                                                                                                                                                       | 10 <sup>-3</sup>        |
| 14              | 4                  | I4           | 41-44            | Unbiased Mean of uncorrected Q input data                                                                                                                                                                                                                                                                                       | 10 <sup>-3</sup>        |
| 15              | 4                  | I4           | 45-48            | Standard Deviation of I input data                                                                                                                                                                                                                                                                                              | 10 <sup>-3</sup>        |

# Table 4-10 Specific Product Header for UI16, UI8, UWA, IWA

4-46


| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                      | Units                |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 16              | 4                  | Ï4           | 49-52            | Standard Deviation of Q input data                                                                                                                                               | 10 <sup>-3</sup>     |
| 17-26           | 40                 | I4           | 53-92            | Scene Latitudes and Longitudes (see Note 6)                                                                                                                                      |                      |
| 17              | 4                  | I4           | 53-56            | Geodetic latitude of the first pixel of<br>the first line of the scene product. A<br>negative value denotes South lati-<br>tude, and a positive value denotes<br>North latitude. | 10 <sup>-3</sup> deg |
| 18              | 4                  | I4           | 57-60            | East longitude (i.e. $360^{\circ}$ from<br>Greenwich to east) of the first pixel<br>of the first line of the scene product.                                                      | 10 <sup>-3</sup> deg |
| 19              | 4                  | I4           | 61-64            | Geodetic latitude of the last pixel of the first line of the scene product.                                                                                                      | $10^{-3}$ deg        |
| 20              | 4                  | I4           | 65-68            | East longitude of the last pixel of the first line of the scene product.                                                                                                         | $10^{-3}$ deg        |
| 21              | 4                  | I4           | 69-72            | Geodetic latitude of the last pixel of the last line of the scene product.                                                                                                       | 10 <sup>-3</sup> deg |
| 22              | 4                  | I4           | 73-76            | East longitude of the last pixel of the last line of the scene product.                                                                                                          | 10 <sup>-3</sup> deg |
| 23              | 4                  | I4           | 77-80            | Geodetic latitude of the first pixel of the last line of the scene product.                                                                                                      | $10^{-3}$ deg        |
| 24 .            | 4                  | I4           | 81-84            | East longitude of the first pixel of the last line of the scene product.                                                                                                         | 10 <sup>-3</sup> deg |
| 25              | 4                  | I4           | 85-88            | Geodetic latitude of the centre pixel of the scene product.                                                                                                                      | 10 <sup>-3</sup> deg |
| 26              | 4                  | I4           | 89-92            | East longitude of the centre pixel of the scene product.                                                                                                                         | $10^{-3}$ deg        |
| 27              | 1                  | В            | 93               | Origin of used chirp (not applicable for OBRC)                                                                                                                                   |                      |
|                 |                    |              |                  | 1. bit                                                                                                                                                                           |                      |

# Table 4-10 Specific Product Header for UI16, UI8, UWA, IWA

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

4-47



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                                                       | Units                         |
|-----------------|--------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                 |                    |              |                  | <ul> <li>0 = chirp replica used</li> <li>1 = Default chirp from<br/>MMCC has been used.<br/>Note: In case of requested<br/>chirp from telemetry and<br/>extraction fails, the<br/>default chirp from MMCC<br/>is used.</li> </ul> |                               |
| 28              | 2                  | I2           | 94-95            | Chirp extraction index                                                                                                                                                                                                            | samples                       |
| 29              | 4                  | I4           | 96-99            | Chirp amplitude coefficient-constant                                                                                                                                                                                              | 10 <sup>-5</sup>              |
| 30              | 4                  | I4           | 100-103          | Chirp amplitude coefficient-linear                                                                                                                                                                                                | sec <sup>-1</sup>             |
| 31              | . 4                | I4           | 104-107          | Chirp amplitude coefficient-qua-<br>dratic                                                                                                                                                                                        | $10^5 \text{sec}^{-2}$        |
| 32              | 4                  | I4           | 108-111          | Chirp amplitude coefficient-cubic                                                                                                                                                                                                 | $10^{10} \text{sec}^{-3}$     |
| 33              | 4                  | I4           | 112-115          | Chirp amplitude coefficient-quartic                                                                                                                                                                                               | $10^{15} \text{sec}^{-4}$     |
| 34              | 4                  | I4           | 116-119          | Chirp phase coefficient-constant                                                                                                                                                                                                  | 10 <sup>-6</sup> cycles       |
| 35              | 4                  | I4           | 120-123          | Chirp phase coefficient-linear                                                                                                                                                                                                    | Hz                            |
| 36              | 4                  | I4           | 124-127          | Chirp phase coefficient-quadratic                                                                                                                                                                                                 | 10 <sup>6</sup> Hz/sec        |
| 37              | 4                  | I4           | 128-131          | Chirp phase coefficient-cubic                                                                                                                                                                                                     | $10^{12}$ Hz/sec <sup>2</sup> |
| 38              | 4                  | I4           | 132-135          | I bias for raw data correction (See Note 3).                                                                                                                                                                                      | 10 <sup>-3</sup>              |
| 39              | 4                  | I4           | 136-139          | Q bias for raw data correction (See Note 3).                                                                                                                                                                                      | 10 <sup>-3</sup>              |
| 40              | 4                  | I4           | 140-143          | I/Q Standard Deviation Ratio for raw data correction                                                                                                                                                                              | 10 <sup>-3</sup>              |
| 41              | 4                  | I4           | 144-147          | Output pixel bit length (8 or 16) applicable for UI16 and UI8 products only:                                                                                                                                                      | -                             |

# Table 4-10 Specific Product Header for UI16, UI8, UWA, IWA

4-48



1

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                       | Units            |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                 |                    |              |                  | 0 = Wave mode products<br>8 = UI8 product<br>16 = UI16 and II16 product                                                                                                                           |                  |
| 42              | 4                  | I4           | 148-151          | For UI8: 16- to 8-bit conversion<br>coefficient for output pixel - con-<br>stant. (See Note 2).                                                                                                   | 10 <sup>-3</sup> |
|                 |                    |              |                  | For wave mode: Imagette size cal-<br>culated as number of samples in<br>range multiplied by 65536 plus the<br>number of samples in azimuth.<br>Interpreted as range (MSBs) and<br>azimuth (LSBs). |                  |
| 43              | 4                  | I4           | 152-155          | For UI8: 16- to 8-bit conversion<br>coefficient for output pixel - linear.<br>(See Note 2).                                                                                                       | 10 <sup>-6</sup> |
|                 |                    |              |                  | For wave mode: Total energy above wavelengths of 731m.                                                                                                                                            | 10 <sup>-3</sup> |
| 44              | 4                  | I4           | 156-159          | For UI8: 16- to 8-bit conversion<br>coefficient for output pixel - qua-<br>dratic. (See Note 2).                                                                                                  | 10 <sup>-9</sup> |
|                 |                    |              |                  | For wave mode: Azimuth clutter cut-off.                                                                                                                                                           | 10 <sup>-3</sup> |
| 45              | 4                  | I4           | 160-163          | Calibration System Gain (telemetry value)                                                                                                                                                         |                  |
| 46              | 4                  | I4           | 164-167          | Receiver Gain (telemetry value)                                                                                                                                                                   |                  |
| 47              | 4                  | I4           | 168-171          | Normalized Clutter noise estimate (wave mode only). (See Note 7).                                                                                                                                 | 10 <sup>3</sup>  |
| 48              | 4                  | I4           | 172-175          | For wave mode: Maximum of<br>UWA spectrum components before<br>normalization (see Note 7). For oth-<br>ers: Reserved for ESA usage.                                                               |                  |

## Table 4-10 Specific Product Header for UI16, UI8, UWA, IWA



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Byte Description                                                                                                    |                               |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 49              | 4                  | I4           | 176-179          | Range pixel spacing<br>Slant range pixel spacing for II16.<br>Ground range pixel spacing for<br>UI16, UI8, and IWA. | 10 <sup>-3</sup> m            |
| 50              | 4                  | I4           | 180-183          | Azimuth pixel spacing                                                                                               | $10^{-3}$ m                   |
| 51              | 4                  | I4           | 184-187          | Pulse Repetition Frequency                                                                                          | $10^{-3}$ Hz                  |
| 52              | 4                  | I4           | 188-191          | Two-way slant range time of the first processed range cell                                                          | nsec                          |
| 53              | 4                  | I4           | 192-195          | Doppler centroid value at near range                                                                                | $10^{-3}$ Hz                  |
| 54              | 4                  | I4           | 196-199          | Slope of Doppler centroid in two-<br>way slant range time                                                           | Hz/sec                        |
| 55              | 4                  | I4           | 200-203          | Azimuth FM rate at near range                                                                                       | 10 <sup>-3</sup> Hz/sec       |
| 56              | 4                  | I4           | 204-207          | Slope of azimuth FM rate in two-<br>way slant range time                                                            | $10^{-3}$ Hz/sec <sup>2</sup> |
| 57              | 2                  | I2           | 208-209          | Doppler ambiguity number                                                                                            |                               |
| 58              | 4                  | I4           | 210-213          | For UI16, UI8: Calibration coefficient (antenna) constant term.                                                     | 10 <sup>-3</sup>              |
|                 |                    |              |                  | For wave mode: Mean wavelength for wavelengths above 731 m.                                                         | 10 <sup>-3</sup> m            |
| 59              | 4                  | I4           | 214-217          | For UI16, UI8: Calibration coefficient (antenna) linear term.                                                       | 10 <sup>-6</sup>              |
|                 |                    |              |                  | For wave mode: Wavelength spread for wavelengths above 731 m.                                                       | 10 <sup>-3</sup> m            |
| 60              | 4                  | I4           | 218-221          | For UI16, UI8: Calibration coefficient (antenna) quadratic term.                                                    | 10 <sup>-9</sup>              |
|                 |                    |              |                  | For wave mode: Mean direction for wavelengths above 731 m.                                                          | 10 <sup>-3</sup> deg          |
| 61              | 4                  | I4           | 222-225          | For UI16, UI8: Calibration coefficient (antenna) spare term.                                                        |                               |

| Table 4-10 | Specific Produc | et Header for UI16, | , UI8, UWA, IWA |
|------------|-----------------|---------------------|-----------------|
|------------|-----------------|---------------------|-----------------|

4-50



1

Ref: ER-IS-MDA-GS-2010 Issue/Revision: 1/3 Date: FEB. 20, 1996

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                        | Units            |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                 |                    |              |                  | For wave mode: Directional spread for wavelengths above 731 m.                                                                                                     | $10^{-3}$ deg    |
| 62              | 4                  | I4           | 226-229          | For UI16, UI8: Calibration coefficient (antenna) spare term.                                                                                                       |                  |
|                 |                    |              |                  | For wave mode: Calibration con-<br>stant for scaling image intensity.                                                                                              | 10 <sup>-3</sup> |
| 63              | 2                  | I2           | 230-231          | EXT_SAR parameter table ID                                                                                                                                         |                  |
| 64              | 1                  | I1           | 232              | Datation improvement (UI16, II16,<br>UI8 only)<br>0 = successfully performed<br>1 = attempted but failed                                                           |                  |
| 65              | 2                  | I2           | 233-234          | SARFDP Static Transfer Function<br>Table ID (wave mode only)                                                                                                       |                  |
| 66              | 2                  | I2           | 235-236          | SARFDP Parameter Database ID                                                                                                                                       |                  |
| 67              | 4                  | I4           | 237-240          | Output image mean<br>(Only valid for UI16, UI8, II16,<br>IWA). (See Note 8).                                                                                       | 10 <sup>-3</sup> |
| 68              | 4                  | I4           | 241-244          | Output image standard deviation<br>(Only valid for UI16, UI8, II16,<br>IWA). (See Note 8).                                                                         | 10 <sup>-3</sup> |
| 69              | 4                  | I4           | 245-248          | Range compression scalar gain                                                                                                                                      | 10 <sup>-5</sup> |
| 70              | 4                  | I4           | 249-252          | Azimuth FFT scalar gain                                                                                                                                            | 10 <sup>-5</sup> |
| 71              | 4                  | I4           | 253-256          | Azimuth compression scalar gain                                                                                                                                    | 10 <sup>-5</sup> |
| 72              | 4                  | I4           | 257-260          | Overall processing gain<br>Includes all the gains in fields 69, 70<br>and 71 and the scaling due to look<br>summation and others. Only valid<br>for 16 bit images. | 10 <sup>-3</sup> |

## Table 4-10 Specific Product Header for UI16, UI8, UWA, IWA



#### Note 1.

Fields 1 (bit 6), 8, 9 and 10 all refer to chirp cross-correlation. This means cross-correlation with an MMCC supplied nominal chirp. These fields are only valid if the chirp replica is successfully extracted. If the chirp replica is not extracted successfully, Fields 8, 9, and 10 will be set to 0. Also, if field 1 (bit 6) is set (i.e., chirp quality failed) then the values in Fields 8, 9 and 10 have no significance. The values given in Fields 8, 9 and 10 are calculated on the assumptions that the chirp baseband and the chirp extraction index are correct.

#### Note 2.

For UI8 these coefficients are used to convert from 16-bit pixels to 8-bit pixels.

#### Note 3.

The values given in Fields 38 and 39 are the same as the biases provided by MMCC (in the EXT\_SAR table) and they include the nominal encoding bias (Image OGRC=16; Image OBRC=32; Wave OGRC=2; Wave OBRC=8).

#### Note 4.

The input data statistics flag (Field 1, bit 7) is set to 1 if:

For image mode:

(abs(in\_mean\_i-dynamic range/2) > (mean i threshold % of dynamic range)
.OR. (abs(in\_mean\_q-dynamic range/2) > (mean q threshold % of dynamic range)
.OR. (in\_stdev\_i > std dev i threshold % of dynamic range)
.OR. (in\_stdev\_q > std dev q threshold % of dynamic range)

For wave mode:

(abs(in\_mean\_i-dynamic range/2) > (mean i threshold % of dynamic range)/2)
.OR. (abs(in\_mean\_q-dynamic range/2) > (mean q threshold % of dynamic range)/2)
.OR. (in\_stdev\_i > std dev i threshold % of dynamic range)
.OR. (in\_stdev\_q > std dev q threshold % of dynamic range)

Where:

in\_mean\_i is SPH bytes 37-40 + ogrc/obrc i bias in\_mean\_q is SPH bytes 41-44 + ogrc/obrc q bias in\_stdev\_i is SPH bytes 45-48 in\_stdev\_q is SPH bytes 49-52

4-52



### The dynamic range is: Image OBRC=63; Image OGRC=31; Wave OBRC=15; Wave OGRC=3.

### Note 5.

The output data statistics flag (Field 1, bit 11) is set to 1 if:

(output mean < mean threshold % of dynamic range)

.OR. (output std dev < std dev threshold % of dynamic range)

The output mean is given in SPH bytes 241-244 and the output standard deviation is given in bytes 245-248.

The dynamic range is 255 for UI8 and 65535 for UI16, II16 and IWA.

#### Note 6.

The latitudes and longitudes always refer to the image frame (6300 by 5000 pixels) independent of the size of the actual data contained within the frame.

#### Note 7.

The clutter noise is computed as the average level in a 50 by 50 pixel window centered in the Cartesian spectrum on the following wave numbers: 0.0 in range, 0.18638 in azimuth. The clutter noise is normalized by multiplying by 255 and dividing by the value reported in Field 48. The UWA spectrum components are also normalized by multiplying by 255 and dividing by the value reported in Field 48.

#### Note 8.

Some variation may exist in the output image mean and output standard deviation for an ERS-1 product processed using a SAR FDP software version prior to 4.0 when compared with processing using Version 4.0 or higher. The cause and magnitude of these differences are explained in Document R-3.



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                              |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number, starting with 1.                                                                                                                                     |
| 2               | 10,000             | I2           | 5-10,004         | Processed image mode data samples. There are 5000 samples per record. A sample is represented as a 16-bit integer. The most significant bit is not used and set to zero. |

Table 4-11Data Set Record for UI16

## 4.3.2 AMI Image-8-bit (UI8)

**Description:** SAR processed image covering an area of about 100 x 100 km. This is equivalent to the full azimuth swath width (5000 pixel) and 6300 lines. Pixel size is 20 m (ground range) by approximately 16 m (azimuth). The pixel value, proportional to the square root of the image pixel power (magnitude), is represented by 8 bits. The data are processed with 16 bits per pixel and are reduced to 8 bits for dissemination. The reduction from 16 to 8 bits is done using coefficients defined by MMCC. Whether an image is to be produced in 8 or 16 bits is determined by the generation command prior to processing.

Input for this product is OGRC data.

All product parameters are the same as for AMI Image (16-bit) FD Product, except that one pixel is represented by 8 bits.

#### Format:

• **Product Data Set:** See Table 4-8. One record is one range line. Range lines are stored in ascending time order. Within each range line, pixels closer to the satellite track precede farther range pixels. The intensity of each pixel is represented by 8 bits.



| <b>Table 4-12</b> | Data Set Record for UI18 |
|-------------------|--------------------------|
|-------------------|--------------------------|

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                        |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number, starting with 1.                                                                               |
| 2               | 5000               | I1           | 5-5004           | Processed image mode data samples. There are 5000 samples per record. A sample is represented as an 8-bit integer. |

## 4.3.3 AMI Image Noise Statistic and Drift Calibration (UIND)

**Description:** The data for one single product can be extracted either at the beginning or at the end of a measurement sequence. The product contains mean magnitude and standard deviation of the extracted noise data, and four calibration pulses.

Satellite Source: AMI Image mode

Originating Subsystem: SAR FDP

**Product Generation:** Generated upon MMCC commands, which must specify from where the data shall be extracted. The UIND product can be generated either as a standalone command or together with a UI16 or UI8 command. In the latter case, the UIND product is done during azimuth processing of the image product.

Command: C\_GEN\_UIND, C\_GEN\_UI

**On-Line Storage Specification: 200 minutes** 

Throughput: maximum two products per orbit

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: Contains the noise data statistics. See Table 4-13.
- **4 Product Data Set Records**: One data set record contains one complete pulse and is described in Table 4-14. The records are stored in ascending time order.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



If a complete pulse cannot be extracted, zeroes are placed in the data set record.

Media: BDDN to user community and MMCC Link

Comments on Product Confidence: Not Applicable

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                               | Units            |
|-----------------|--------------------|--------------|------------------|-------------------------------------------|------------------|
| 1               | 4                  | I4           | 1-4              | Mean of uncorrected I noise data          | 10-3             |
| 2               | 4                  | I4           | 5-8              | Mean of uncorrected Q noise data          | 10-3             |
| 3               | 4                  | I4           | 9-12             | Standard deviation of I noise data        | 10-3             |
| 4               | 4                  | I4           | 13-16            | Standard deviation of Q noise data        | 10 <sup>-3</sup> |
| 5               | 4                  | I4           | 17-20            | Number of noise lines extracted           | -                |
| 6               | 4                  | I4           | 21-24            | Calibration System Gain (telemetry value) | -                |
| 7               | 4                  | I4           | 25-28            | Receiver Gain (telemetry value)           | -                |

#### Table 4-13 Specific Product Header for UIND, UWAND

Table 4-14Data Set Record for UIND

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                  |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number, starting with 1.                                                                         |
| 2               | 1536               | I1           | 5-1540           | 768 Calibration pulse samples. Each sample is represented as 8-bit I, 8-bit Q. Values are unsigned integers. |

# 4.3.4 AMI Image Chirp Replica (UIC)

**Description:** This product contains two chirps, i.e. two sets of samples of the transmitted pulse. For each image scene, one chirp is extracted from the beginning, and one at the end, of the auxiliary data to be processed.

4-56



Satellite Source: AMI Image mode

Originating Subsystem: SAR FDP

**Product Generation:** Automatically generated for every requested AMI Image User FD product; i.e. up to 3 per orbit.

Command: C\_GEN\_UI

**On-Line Storage Specification:** 200 minutes

Throughput: same as AMI Image User FD products

Format: One product includes:

- Main Product Header: See Table 4-3.
- **2 Product Data Set Records**: One record contains one chirp. The first record is from the beginning and the second from the end of the image scene. The records are described in Table 4-15.

Media: MMCC Link

Comment on Product Confidence: Not Applicable.

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                 |
|-----------------|--------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number, starting with 1.                                                                                        |
| 2               | 1536               | I1           | 5-1540           | Chirp replica samples. There are 768 samples. Each sample is represented as 8-bit I, 8-bit Q. Values are unsigned integers. |

Table 4-15Data Set Record for UIC, UWAC

# 4.3.5 AMI Wave (UWA)

**Description**: Power spectrum in polar coordinates. The power spectrum is based on a sample of data covering an area of at least  $5 \times 5$  km. The instrument on the satellite collects data at intervals of approximately 200 to 300 km. The sample patch may be anywhere in the 100-km wide swath in the order of 2 km steps.



Input for this product can be OBRC or OGRC data.

Satellite Source: AMI Wave mode

**Originating Subsystem**: SAR FDP (LRDPF alternatively)

Product Generation: Products are generated for MMCC defined start and stop times.

Command: C\_GEN\_WA

**On-Line Storage Specification: 200 minutes** 

Throughput: 200 products per orbit

The throughput requirements are not applicable if the SAR FDP must also produce one or more of the following products:

- Extracted Data Product
- Instrument Header Product
- General Header Product

Format: One product includes:

- Main Product Header: See Table 4-3.
- **Specific Product Header**: See Table 4-10.
- **1 Product Data Set Record**: For format see Table 4-16. The data set contains the mean square value of the intensity of all pixels in one sector. A sector is defined in Figure 4-1.

Media: MMCC Link.

#### **Comment on Product Confidence:**

• **Missing Lines**: Missing and corrupted lines are padded with zeroes before processing. The occurrence of this is flagged in the MPH.

The number of missing lines is given in the SPH.

• Chirp Replica Quality: The pulse width, first side lobes, and Integrated Side Lobe Ratio (ISLR) of the chirp cross-correlation function are checked against specification.

4-58



- Input Data Statistic: The mean and variance of the I and Q input data is computed and compared against norms.
- **Doppler Centroid Offset:** The Doppler centroid offset from zero Doppler is compared to a norm.
- **Output Data Statistic:** The mean and standard deviations of output data are computed and compared against norms.





SECTOR A HAS A NOMINAL WAVELENGTH OF 432 M AND AN ANGLE OF 45° TO 60° SECTOR B HAS A NOMINAL WAVELENGTH OF 432 M AND AN ANGLE OF 0° TO 15° SECTOR C HAS A NOMINAL WAVELENGTH OF 284 M AND AN ANGLE OF 60° TO 75°

AI-8260-D1/EM





| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position                                                   | Description                                                 |
|-----------------|--------------------|--------------|--------------------------------------------------------------------|-------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4                                                                | Data record number, this number is always 1.                |
| 2-13            | 12                 | <b>I</b> 1   | 5-16 Log scaled spectrum intensity of sector Nominal heading 7.5°. |                                                             |
| 2               | 1                  | <b>I</b> 1   | 5                                                                  | Nominal wavelength 65.8 m<br>Wavelength range 59 m-<73 m    |
| 3               | 1                  | <b>I</b> 1   | 6                                                                  | Nominal wavelength 81.1 m<br>Wavelength range 73 m-<90 m    |
| 4               | 1                  | <b>I</b> 1   | 7                                                                  | Nominal wavelength 100 m<br>Wavelength range 90 m-<111 m    |
| 5               | 1                  | <b>I</b> 1   | 8                                                                  | Nominal wavelength 123.3 m<br>Wavelength range 111 m-<137 m |
| 6               | 1                  | <b>I</b> 1   | 9                                                                  | Nominal wavelength 152.0 m<br>Wavelength range 137 m-<169 m |
| 7               | 1                  | <b>I</b> 1   | 10                                                                 | Nominal wavelength 187.4 m<br>Wavelength range 169 m-<208 m |
| 8               | 1                  | <b>I</b> 1   | 11                                                                 | Nominal wavelength 231.0 m<br>Wavelength range 208 m-<257 m |
| 9               | 1                  | <b>I</b> 1   | 12                                                                 | Nominal wavelength 284.8 m<br>Wavelength range 257 m-<316 m |
| 10              | 1                  | <b>I</b> 1   | 13                                                                 | Nominal wavelength 351.2 m<br>Wavelength range 316 m-<390 m |
| 11              | 1                  | <b>I</b> 1   | 14                                                                 | Nominal wavelength 432.9 m<br>Wavelength range 390 m-<481 m |
| 12              | 1                  | <b>I</b> 1   | 15                                                                 | Nominal wavelength 533.7 m<br>Wavelength range 481 m-<593 m |
| 13              | 1                  | I1           | 16                                                                 | Nominal wavelength 658.0 m<br>Wavelength range 593 m-<731 m |

Table 4-16Data Set Record for UWA

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

4-61



# Table 4-16 Data Set Record for UWA

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                            |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------|
| 14-25           | 12                 | <b>I</b> 1   | 17-28            | Log scaled spectrum intensity of sector 2.<br>Nominal heading 22.5°.<br>Wavelengths as for sector 1.   |
| 26-37           | 12                 | 11           | 29-40            | Log scaled spectrum intensity of sector 3.<br>Nominal heading 37.5°.<br>Wavelengths as for sector 1.   |
| 38-49           | 12                 | 11           | 41-52            | Log scaled spectrum intensity of sector 4.<br>Nominal heading 52.5°.<br>Wavelengths as for sector 1.   |
| 50-61           | 12                 | <b>I</b> 1   | 53-64            | Log scaled spectrum intensity of sector 5.<br>Nominal heading 67.5°.<br>Wavelengths as for sector 1.   |
| 62-73           | 12                 | <b>I</b> 1   | 65-76            | Log scaled spectrum intensity of sector 6.<br>Nominal heading 82.5°.<br>Wavelengths as for sector 1.   |
| 74-85           | 12                 | I1           | 77-88            | Log scaled spectrum intensity of sector 7.<br>Nominal heading 97.5°.<br>Wavelengths as for sector 1.   |
| 86-97           | 12                 | <b>I</b> 1   | 89-100           | Log scaled spectrum intensity of sector 8.<br>Nominal heading 112.5°.<br>Wavelengths as for sector 1.  |
| 98-109          | 12                 | <b>I</b> 1   | 101-112          | Log scaled spectrum intensity of sector 9.<br>Nominal heading 127.5°.<br>Wavelengths as for sector 1.  |
| 110-121         | 12                 | I1           | 113-124          | Log scaled spectrum intensity of sector 10.<br>Nominal heading 142.5°.<br>Wavelengths as for sector 1. |
| 122-133         | 12                 | I1           | 125-136          | Log scaled spectrum intensity of sector 11.<br>Nominal heading 157.5°.<br>Wavelengths as for sector 1. |

4-62



| Field   | Number   | Data | Byte     | Description                                                                                            |
|---------|----------|------|----------|--------------------------------------------------------------------------------------------------------|
| Number  | of Bytes | Type | Position |                                                                                                        |
| 134-145 | 12       | I1   | 137-148  | Log scaled spectrum intensity of sector 12.<br>Nominal heading 172.5°.<br>Wavelengths as for sector 1. |

#### Table 4-16 Data Set Record for UWA

## 4.3.6 AMI Wave Noise Statistic and Drift Calibration (UWAND)

**Description**: Mean magnitude and standard deviation of the noise data, as well as four calibration pulses, extracted at the beginning of a measurement sequence (= scene).

Satellite Source: AMI Wave mode

**Originating Subsystem**: SARFDP (LRDPF alternatively)

**Product Generation**: Generated from data of every 15th scene, within each specified processing interval for AMI Wave FD Product generation, starting with the first scene of every processing interval.

Command: C\_GEN\_WA

**On-Line Storage Specification: 200 minutes** 

Throughput: thirteen products per orbit

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: Contains the noise data statistics. See Table 4-13.
- **4 Product Data Set Records**: One data set record contains one complete pulse and is described in Table 4-17.

If a complete pulse cannot be extracted, zeroes are placed in the data set record.

Media: MMCC Link

Comment on Product Confidence: Not Applicable



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                              |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number, starting with 1.                                                                     |
| 2               |                    |              |                  | Calibration pulse samples. Each sample is represented as 8-bit I, 8-bit Q. Values are unsigned integers: |
|                 | OGRC:              |              |                  |                                                                                                          |
|                 | 1536               | <b>I</b> 1   | 5-1540           | 768 samples                                                                                              |
|                 | <b>OBRC:</b>       |              |                  |                                                                                                          |
|                 | 120                | <b>I</b> 1   | 5-124            | 60 samples                                                                                               |

## Table 4-17Data Set Record for UWAND

## 4.3.7 AMI Wave Chirp Replica (UWAC)

**Description**: This product contains one chirp as extracted from the auxiliary data at the beginning of the data to be processed.

Satellite Source: AMI Wave Mode

**Originating Subsystem**: SAR FDP (LRDPF alternatively)

Product Generation: Automatically generated for every AMI Wave FD Product

Command: C\_GEN\_WA

**On-Line Storage Specification: 200 minutes** 

Throughput: 200 products per orbit

Format: One product includes:

- Main Product Header: See Table 4-3.
- Product Data Set Record: The single data set record is described in Table 4-15.

Media: MMCC Link

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



## Comment on Product Confidence: Not Applicable

#### 4.3.8 AMI Wind (UWI)

**Description**: This product includes the intermediate and final results of the wind product generation. It consists of an array of wind vectors expressed in wind speed and direction. The product corresponds to a 500 x 500-km area. This area is represented by a 19 x 19 array of cells, with nominal 25-km spacing. The produced wind field corresponds to an equivalent neutral stability wind field, referenced to a height of 10 m. For each cell a wind vector is given together with latitude and longitude. The sigma nought and other information needed to convert these to wind fields are also provided for each cell.

Satellite Source: AMI wind mode

Originating Subsystem: LRDPF

**Product Generation**: Products are generated for MMCC-defined start and stop times with reference to the midbeam.

Command: C\_GEN\_WI

**On-Line Storage Specification: 200 minutes** 

Throughput: 88 products per orbit

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-18.
- 361 Product Data Set Records: One cell is stored in one record. See Table 4-19.

Cells are stored in ascending time order within each cell line across-track; cells closer to the satellite track precede farther cells.

Media: MMCC Link.

#### **Comment on Product Confidence:**

Product confidence is monitored on a product-wide and cell basis. Factors which apply to the entire product, are included in the SPH:

- Doppler Compensation accuracy (power spectrum monitoring) for each beam
- Mean power on I and Q Channel for each beam



Internal Calibration level for each beam

Factors which are related to an individual cell are included in the PCD of each cell:

- Checksum Errors in downlinked data are flagged. If a checksum error happens, the calibration and noise data are replaced with defaults.
- Source Packet level errors. If a source packet is incomplete or too long, it is disregarded. Note that wind vectors can be generated from two input beams only. The occurrence of that is flagged in the PCD.
- Beam Flag, i.e. a flag indicating per beam if the number of valid source packets contributing to node is above or below an MMCC-provided threshold. In the latter case, the corresponding beam is not considered for the wind extraction. Wind speed and direction can be calculated from either two or three beams.
- Limit of K<sub>p</sub> values
- Land-Sea Flag. Land coverage above a certain percentage is flagged.
- Ambiguity Removal Confidence. A value for ambiguity removal confidence is given. If the ambiguity cannot be removed, then the rank 1 solution is given, and the corresponding flag is set.

Wind speed (field 4) may lie in the range 0 to 50.8 m/s. The value of 51.0 m/s (field value of 255) is reserved to indicate an invalid wind speed was determined.

For the UWI specific product headers (Table 4-18), the following values shall be used in the event of estimates not being available:

- Averaged power spectrum centre of gravity (fields 6,8,10) : 999
- Averaged power spectrum
   Standard Deviation" (fields 7,9,11) : -1
- I/Q Mean Noise Power (fields 12-17) : -1
- Internal Calibration level (fields 18-20) : -1



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                         | Units |
|-----------------|--------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1               | 2                  | В            | 1-2              | Product Confidence Data for Pro-<br>cessing                                                                                                         | N/A   |
|                 |                    |              |                  | 12. bit Processing equipment sta-<br>tus                                                                                                            |       |
|                 |                    |              |                  | <ul> <li>0 = equipment working</li> <li>1 = some problems with<br/>equipment</li> <li>2 = equipment failed during<br/>product generation</li> </ul> |       |
|                 |                    |              |                  | 3. bit Spare                                                                                                                                        |       |
|                 |                    |              |                  | 4. bit I/Q imbalance flag                                                                                                                           |       |
|                 |                    |              |                  | <ul> <li>0 = all beams better than<br/>MMCC-defined threshold</li> <li>1 = any beam above or equal<br/>to MMCC-defined<br/>threshold</li> </ul>     |       |
|                 |                    |              |                  | 5. bit Internal Calibration level flag                                                                                                              | 0     |
|                 |                    |              |                  | <ul> <li>0 = all beams within MMCC-<br/>defined level window</li> <li>1 = any beam out of MMCC-<br/>defined level window</li> </ul>                 |       |
|                 |                    |              |                  | 6. bit Blank Product Flag                                                                                                                           |       |
|                 |                    |              |                  | 0 = data available<br>1 = no data available                                                                                                         |       |
|                 |                    |              |                  | 7. bit Doppler Compensation:<br>Centre of Gravity flag                                                                                              |       |

 Table 4-18
 Specific Product Header for UWI

4-67



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                           | Units                |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                 |                    |              |                  | 0 = all beams below MMCC<br>defined threshold<br>1 = any beam above or equal<br>to MMCC-defined<br>threshold                          |                      |
|                 |                    |              |                  | 8. bit Doppler Compensation:<br>Standard Deviation flags                                                                              |                      |
|                 |                    |              |                  | <ul> <li>all beams within MMCC defined interval</li> <li>any beam outside MMCC defined interval</li> </ul>                            |                      |
|                 |                    |              |                  | 916. bit Spare                                                                                                                        |                      |
| 2               | 4                  | I4           | 3-6              | Geodetic latitude of Product Cen-<br>tre. A negative value denotes South<br>latitude, and a positive value<br>denotes North latitude. | 10 <sup>-3</sup> deg |
| 3               | 4                  | I4           | 7-10             | East longitude (i.e. 0-360° from Greenwich to East)                                                                                   | 10 <sup>-3</sup> deg |
| 4               | 4                  | I4           | 11-14            | Subsatellite Track Heading at Prod-<br>uct Centre (clockwise with respect<br>to north)                                                | 10 <sup>-3</sup> deg |
| 5               | 2                  | I2           | 15-16            | Mean distance between two succes-<br>sive along track nodes at product<br>centre                                                      | metre                |
| 6               | 2                  | I2           | 17-18            | Centre of Gravity of averaged power spectrum (forebeam)                                                                               | 2.344 Hz<br>Note 1.  |
| 7               | 2                  | 12           | 19-20            | "Standard Deviation" of averaged power spectrum (forebeam)                                                                            | 2.344 Hz<br>Note 1.  |
| 8               | 2                  | I2           | 21-22            | Centre of Gravity of averaged power spectrum (midbeam)                                                                                | 2.344 Hz<br>Note 1.  |

# Table 4-18 Specific Product Header for UWI

4-68

.



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                | Units                         |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 9               | 2                  | I2           | 23-24            | "Standard Deviation" of averaged power spectrum (midbeam)                                                                                                                  | 2.344 Hz<br>Note 1.           |
| 10              | 2                  | I2           | 25-26            | Centre of Gravity of averaged power spectrum (aftbeam)                                                                                                                     | 2.344 Hz<br>Note 1.           |
| 11              | 2                  | I2           | 27-28            | "Standard Deviation" of averaged power spectrum (aftbeam)                                                                                                                  | 2.344 Hz<br>Note 1.           |
| 12              | 4                  | I4           | 29-32            | I Mean Noise Power, forebeam                                                                                                                                               | 10 <sup>-3</sup> *ADC<br>unit |
| 13              | 4                  | I4           | 33-36            | Q Mean Noise Power, forebeam                                                                                                                                               | 10 <sup>-3</sup> *ADC<br>unit |
| 14              | 4                  | I4           | 37-40            | I Mean Noise Power, midbeam                                                                                                                                                | 10 <sup>-3</sup> *ADC<br>unit |
| 15              | 4                  | I4           | 41-44            | Q Mean Noise Power, midbeam                                                                                                                                                | 10 <sup>-3</sup> *ADC<br>unit |
| 16              | 4                  | I4           | 45-48            | I Mean Noise Power, aftbeam                                                                                                                                                | 10 <sup>-3</sup> *ADC<br>unit |
| 17              | 4                  | I4           | 49-52            | Q Mean Noise Power, aftbeam                                                                                                                                                | 10 <sup>-3</sup> *ADC<br>unit |
| 18              | 4                  | I4           | 53-56            | Internal Calibration level monitor-<br>ing factor, forebeam                                                                                                                | 10 <sup>-3</sup> *ADC<br>unit |
| 19              | 4                  | I4           | 57-60            | Internal Calibration level monitor-<br>ing factor, midbeam                                                                                                                 | 10 <sup>-3</sup> *ADC<br>unit |
| 20              | 4                  | I4           | 61-64            | Internal Calibration level monitor-<br>ing factor, aftbeam                                                                                                                 | 10 <sup>-3</sup> *ADC<br>unit |
| 21              | 2                  | В            | 65-66            | Mode of operation - set by the first<br>midbeam source packet contribut-<br>ing to spatial filtering for the first<br>node (near swath) in the centre row<br>of a product. |                               |
|                 |                    |              |                  | 12. bit                                                                                                                                                                    |                               |

# Table 4-18 Specific Product Header for UWI

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

4-69



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                  | Units |
|-----------------|--------------------|--------------|------------------|------------------------------------------------------------------------------|-------|
|                 |                    |              |                  | 0 = wind mode<br>1 = wind/wave mode<br>2 = no data found to identify<br>mode |       |
| 22-71           | 100                | I2           | 67-166           | Parameter Table ID. Details as follows:                                      |       |
| 22              | 2                  | I2           | 67-68            | Global threshold Parameter Table<br>ID                                       |       |
| 23              | 2                  | I2           | 69-70            | Static parameter Parameter Table ID                                          |       |
| 24              | 2                  | I2           | 71-72            | Dynamic parameter Parameter<br>Table ID                                      |       |
| 25              | 2                  | I2           | 73-74            | FR <sub>b</sub> (n) Parameter Table ID                                       |       |
| 26              | 2                  | I2           | 75-76            | T <sub>orbit,ref,D</sub> Parameter Table ID                                  |       |
| 27              | 2                  | I2           | 77-78            | $\phi_F$ Parameter Table ID                                                  |       |
| 28              | 2                  | I2           | 79-80            | $\phi_M$ Parameter Table ID                                                  |       |
| 29              | 2                  | I2           | 81-82            | $\phi_A$ Parameter Table ID                                                  |       |
| 30              | 2                  | I2           | 83-84            | $FT_{b}(n)$ Parameter Table ID                                               |       |
| 31              | 2                  | I2           | 85-86            | $C_{ADC,b}(n)$ Parameter Table ID                                            |       |
| 32              | 2                  | I2           | 87-88            | T <sub>orbit,ref,N</sub> Parameter Table ID                                  |       |
| 33              | 2                  | 12           | 89-90            | F <sub>N,F</sub> Parameter Table ID                                          |       |
| 34              | 2                  | 12           | 91-92            | F <sub>N,M</sub> Parameter Table ID                                          |       |
| 35              | 2                  | 12           | 93-94            | F <sub>N,A</sub> Parameter Table ID                                          |       |
| 36              | 2                  | I2           | 95-96            | $\hat{\theta}_{N,b}(j,k)$ Parameter Table ID                                 |       |
| 37              | 2                  | 12           | 97-98            | $\hat{\phi}_{N,b}$ (j,k) Parameter Table ID                                  |       |

| Table 4-18 | Specific | Product | Header | for | UWI |
|------------|----------|---------|--------|-----|-----|
| 20010 1 20 | opeenie  |         |        |     |     |

4-70



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                           | Units |
|-----------------|--------------------|--------------|------------------|-----------------------------------------------------------------------|-------|
| 38              | 2                  | 12           | 99-100           | M <sub>eff,b</sub> (j,k) Parameter Table ID                           |       |
| 39              | 2                  | I2           | 101-102          | $\overline{N}(j,k)$ Parameter Table ID                                |       |
| 40              | 2                  | I2           | 103-104          | Wind extraction software configu-<br>ration Table ID                  |       |
| 41              | 2                  | I2           | 105-106          | $LA_b$ (i <sub>r</sub> , i <sub>c</sub> ) Parameter Table ID          |       |
| 42              | 2                  | I2           | 107-108          | LZ <sub>b</sub> (i <sub>r</sub> , i <sub>c</sub> ) Parameter Table ID |       |
| 43              | 2                  | I2           | 109-110          | LN <sub>b</sub> Parameter Table ID                                    |       |
| 44              | 2                  | I2           | 111-112          | MA <sub>b</sub> Parameter Table ID                                    |       |
| 45              | 2                  | I2           | 113-114          | MS <sub>b</sub> Parameter Table ID                                    |       |
| 46              | 2                  | I2           | 115-116          | $NA_{F}(v, ic)$ fore Parameter Table ID                               |       |
| 47              | 2                  | I2           | 117-118          | $NA_{M}(v, ic)$ mid Parameter Table ID                                |       |
| 48              | 2                  | I2           | 119-120          | $NA_{A}^{}(V, ic)$ aft Parameter Table ID                             |       |
| 49              | 2                  | I2           | 121-122          | NS <sub>F</sub> (V, ic) fore Parameter Table<br>ID                    |       |
| 50              | 2                  | I2           | 123-124          | $NS_{M}(v, ic)$ mid Parameter Table ID                                |       |
| 51              | 2                  | I2           | 125-126          | $NS_{A}(v, ic)$ aft Parameter Table ID                                |       |
| 52              | 2                  | I2           | 127-128          | $NN_{F}(v, ic)$ fore Parameter Table ID                               |       |
| 53              | 2                  | I2           | 129-130          | $_{ID}^{NN}M$ (V, ic) mid Parameter Table                             |       |
| 54              | 2                  | I2           | 131-132          | $NN_{A}(v, ic)$ aft Parameter Table ID                                |       |
| 55              | 2                  | I2           | 133-134          | l <sub>ref</sub> Parameter Table ID                                   |       |
| 56              | 2                  | I2           | 135-136          | $a_{F}^{(\mu, i_{c})}$ fore Parameter Table ID                        |       |

 Table 4-18
 Specific Product Header for UWI

| MACDONALD<br>DETTWILER |
|------------------------|
|------------------------|

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                      | Units |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------------------------------------|-------|
| 57              | 2                  | I2           | 137-138          | $a_{M}(\mu, i_{c})$ mid Parameter Table ID                                       |       |
| 58              | 2                  | I2           | 139-140          | $a_{A}^{}(\mu, i_{c}^{})$ aft Parameter Table ID                                 |       |
| 59              | 2                  | I2           | 141-142          | av <sub>F</sub> (k, i <sub>r</sub> , i <sub>c</sub> ) fore Parameter Table<br>ID |       |
| 60              | 2                  | I2           | 143-144          | $av_{M}^{k}$ (k, $i_{r}^{i}$ , $i_{c}^{i}$ ) mid Parameter Table                 |       |
| 61              | 2                  | I2           | 145-146          | av <sub>A</sub> (k, i <sub>r</sub> , i <sub>c</sub> ) aft Parameter Table        |       |
| 62              | 2                  | I2           | 147-148          | i <sub>b</sub> Parameter Table ID                                                |       |
| 63              | 2                  | I2           | 149-150          | Spare                                                                            |       |
| 64              | 2                  | I2           | 151-152          | Spare                                                                            |       |
| 65              | 2                  | I2           | 153-154          | Meteo Table ID (table type 83,<br>Forecast F18)                                  |       |
| 66              | 2                  | I2           | 155-156          | Meteo Table ID (table type 84,<br>Forecast F24)                                  |       |
| 67              | 2                  | I2           | 157-158          | Meteo Table ID (table type 85,<br>Forecast F30)                                  |       |
| 68              | 2                  | 12           | 159-160          | Meteo Table ID (table type 86,<br>Forecast F36)                                  |       |
| 69              | 2                  | I2           | 161-162          | Spare                                                                            |       |
| 70              | 2                  | I2           | 163-164          | Spare                                                                            |       |
| 71              | 2                  | I2           | 165-166          | Spare                                                                            |       |

 Table 4-18
 Specific Product Header for UWI

### Note 1.

Fields 6 through 11 have units of 2.344 Hz. This value is derived from  $10^{-2}$ \*234.4 Hz and 234.4 Hz is the unit of frequency spectrum discretisation.



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                 | Units                |
|-----------------|--------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1               | 4                  | I4           | 1-4              | Data record number, starting with 1.                                                                                        |                      |
| 2               | 4                  | I4           | 5-8              | Geodetic latitude of Node. A nega-<br>tive value denotes South latitude,<br>and a positive value denotes North<br>latitude. | 10 <sup>-3</sup> deg |
| 3               | 4                  | I4           | 9-12             | East longitude (i.e. 0-360° from Greenwich to east)                                                                         | 10 <sup>-3</sup> deg |
| 4               | 4                  | I4           | 13-16            | $\sigma^{\circ}$ of forebeam (set to -999 999 999 if the calculation is not possible) (See Note 3).                         | 10 <sup>-7</sup> dB  |
| 5               | 2                  | I2           | 17-18            | Incidence Angle for forebeam                                                                                                | 10 <sup>-1</sup> deg |
| 6               | 2                  | I2           | 19-20            | Look Angle of forebeam with respect to North at grid point (see Note 2.)                                                    | 10 <sup>-1</sup> deg |
| 7               | 1                  | I1           | 21               | Kp Value of forebeam (set to 255 if the calculation is not possible).                                                       | %                    |
| 8               | 1                  | I1           | 22               | Counter of forebeam corrupted or missing source packets (see Note 1)                                                        |                      |
| 9               | 4                  | I4           | 23-26            | $\sigma^{\circ}$ of midbeam (set to -999 999 999 if the calculation is not possible) (See Note 3).                          | 10 <sup>-7</sup> dB  |
| 10              | 2                  | 12           | 27-28            | Incidence Angle of midbeam                                                                                                  | 10 <sup>-1</sup> deg |
| 11              | 2                  | 12           | 29-30            | Look Angle of midbeam with respect to North at grid point (see Note 2.)                                                     | 10 <sup>-1</sup> deg |
| 12              | 1                  | I1           | 31               | Kp Value of midbeam (set to 255 if the calculation is not possible)                                                         | %                    |
| 13              | 1                  | I1           | 32               | Counter of midbeam corrupted or<br>missing source packets (see Note 1)                                                      |                      |

# Table 4-19Data Set Record for UWI

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

4-73

| Ref: ER-IS      | -MDA-GS-2010  |
|-----------------|---------------|
| Issue/Revision: | 1/3           |
| Date:           | FEB. 20, 1996 |



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                       | Units                    |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 14              | 4                  | I4           | 33-36            | $\sigma^{\circ}$ of aftbeam (set to -999 999 999<br>if the calculation is not possible)<br>(See Note 3).                                                                                          | 10 <sup>-7</sup> dB      |
| 15              | 2                  | I2           | 37-38            | Incidence Angle of aftbeam                                                                                                                                                                        | $10^{-1} \deg$           |
| 16              | 2                  | I2           | 39-40            | Look Angle of aftbeam with respect to North at grid point (see Note 2.)                                                                                                                           | 10 <sup>-1</sup> deg     |
| 17              | 1                  | I1           | 41               | Kp Value of aftbeam (set to 255 if the calculation is not possible)                                                                                                                               | %                        |
| 18              | 1                  | I1           | 42               | Counter of aftbeam corrupted or missing source packets (see Note 1)                                                                                                                               |                          |
| 19              | 1                  | I1           | 43               | Wind speed (set to 255 if wind extraction is not possible)                                                                                                                                        | 2 x 10 <sup>-1</sup> m/s |
| 20              | 1                  | I1           | 44               | Wind direction with respect to<br>North at grid point counting clock-<br>wise (set to 255 if wind extraction<br>is not possible). (See Note 4).                                                   | 2 deg                    |
| 21              | 2                  | В            | 45-46            | Product Confidence Data                                                                                                                                                                           | N/A                      |
|                 |                    |              |                  | 1. bit Summary PC factor                                                                                                                                                                          |                          |
|                 |                    |              |                  | <ul> <li>0 = processing of cell according to full specification</li> <li>1 = result to be viewed with limitation, i.e. one of the PCD flags listed below (except bits 11-13) is not 0.</li> </ul> |                          |
|                 |                    |              |                  | 2. bit Forebeam Flag                                                                                                                                                                              |                          |
|                 |                    |              |                  | 0 = beam OK<br>1 = no forebeam calculation                                                                                                                                                        |                          |
|                 |                    |              |                  | 3. bit Midbeam Flag                                                                                                                                                                               |                          |

# Table 4-19 Data Set Record for UWI

4-74



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                  | Units |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                 |                    |              |                  | 0 = beam OK<br>1 = no midbeam calculation                                                                                                    |       |
|                 |                    |              |                  | 4. bit Aftbeam Flag                                                                                                                          |       |
|                 |                    |              |                  | 0 = beam OK<br>1 = no aftbeam calculation                                                                                                    |       |
|                 |                    |              |                  | 5. bit Forebeam Arcing Flag                                                                                                                  |       |
|                 |                    |              |                  | <ul> <li>0 = no arcing detected on<br/>forebeam</li> <li>1 = arcing detected on fore-<br/>beam</li> </ul>                                    |       |
|                 |                    |              |                  | 6. bit Midbeam Arcing Flag                                                                                                                   |       |
|                 |                    |              |                  | <ul> <li>0 = no arcing detected on<br/>midbeam</li> <li>1 = arcing detected on mid-<br/>beam</li> </ul>                                      |       |
|                 |                    |              |                  | 7. bit Aftbeam Arcing Flag                                                                                                                   |       |
|                 |                    |              |                  | <ul> <li>0 = no arcing detected on aft-<br/>beam</li> <li>1 = arcing detected on aft-<br/>beam</li> </ul>                                    |       |
|                 |                    |              |                  | 8. bit Limit of Kp value                                                                                                                     |       |
|                 |                    |              |                  | <ul> <li>0 = all beams below MMCC-<br/>supplied threshold</li> <li>1 = any beam above or equal<br/>to MMCC-supplied<br/>threshold</li> </ul> |       |
|                 |                    |              |                  | 9. bit Land-Sea Flag                                                                                                                         |       |
|                 |                    |              |                  | $\begin{array}{rcl} 0 &=& \text{Sea} \\ 1 &=& \text{Land} \end{array}$                                                                       |       |

# Table 4-19Data Set Record for UWI

 Ref:
 ER-IS-MDA-GS-2010

 Issue/Revision:
 1/3

 Date:
 FEB. 20, 1996



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                                                                                                  | Units |
|-----------------|--------------------|--------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                 |                    | -            |                  | 10. bit Rank one solution flag (see<br>Note 5)                                                                                                                                                                                                                               |       |
|                 |                    |              |                  | 0 = ambiguity removed<br>1 = no ambiguity removal<br>performed or ambiguity<br>removal not successful<br>(See Note 6).                                                                                                                                                       |       |
|                 |                    |              |                  | 1112. bit Ambiguity Removal Method (See Note 5 and 7).                                                                                                                                                                                                                       |       |
|                 |                    |              |                  | <ul> <li>0 = ambiguity removed<br/>autonomously</li> <li>1 = use of meteor tables after<br/>failure of autonomous<br/>ambiguity removal<br/>method</li> <li>2 = ambiguity removed by<br/>using only meteor data.</li> <li>3 = no ambiguity removal<br/>attempted.</li> </ul> |       |
|                 |                    |              |                  | 13. bit Maximum Likelihood Dis-<br>tance Flag (See Note 5).                                                                                                                                                                                                                  |       |
|                 |                    |              |                  | <ul> <li>0 = maximum likelihood distance of the rank one solution is less than or equal to a threshold.</li> <li>1 = maximum likelihood distance of the rank one solution (i.e., solution of minimum residual) is greater than a threshold.</li> </ul>                       |       |
|                 |                    |              |                  | 14. bit Frame Checksum Flag                                                                                                                                                                                                                                                  |       |

Table 4-19 Data Set Record for UWI



#### Table 4-19 Data Set Record for UWI

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                            | Units |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------|-------|
|                 |                    |              |                  | 0 = Checksum correct<br>1 = Checksum error detected,<br>noise and calibration<br>replaced with default |       |
|                 |                    | 4            |                  | 1516. bit Spare                                                                                        |       |

Note 1: (Field numbers 8, 13, and 18)

The counter of corrupted or missing source packets is multiplied by -1 when in wind/wave mode to indicate wind/wave mode operation. The absolute value of the counter, in wind/wave mode, is always greater than two because the wind/wave mode operation causes two FMA sequences to be lost.

Note 2: (Field numbers 6, 11, and 16)

The beam look angle is defined as the angle between the unit vector tangential to the local meridian and pointing North and the projection of the vector from the centre of cell node to satellite onto the local tangential plane, counting clockwise.

Note 3: (Field numbers 4, 9, 14)

The sigma\_0 values given in these fields are derived from the linear values by using: 10log<sub>10</sub> (linearvalue).

Note 4: (Field number 20)

For version 2.502 and onward the wind direction is given in the meteorological sense. The definitions of the wind direction used for version 2.502 and onward and used for versions before 2.502 are shown in Figure 4-2.

Note 5: (Field number 21: bits 10 to 13)

Figure 4-3, corresponding to one run of the ambiguity removal, demonstrates how these flags are set. Note that the case where bit 10=0, bit 11-12=3, and bit 13=0, with the given wind speed solution chosen by the ambiguity removal, may happen. This is because the ambiguity removal is attempted over six consecutive products with a displacement of two products such that when the ambiguity removal is run, it has already been run for two products out of six and these results



are kept. In the case of non-successful ambiguity removal, the old results (after ambiguity removal) are used but the indicator of the method used is last.

Note 6: (Field number 21: bit 10)

When no ambiguity removal is performed or when the ambiguity removal is not successful, the solution with the highest probability (rank one) is given.

Note 7: (Field number 21: bits 11-12)

The ambiguity removal method is set independently of the ambiguity removal as given in bit 10 of Field 21.





Wind Direction Definition before version 2.502



AI-7550-D1R1/CD

Figure 4-2 Wind Direction Definitions

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

4-79





M = Maximum likelihood distance of the rank 1 solution

V = Wind speed of the rank 1 solution

- NB = Nimber of adjacent nodes
- V<sub>1</sub> = V rank 1 solution
- V\* = ambiguity removal solution

AI-7550-D2/WS

#### Figure 4-3 Relation between Ambiguity Removal and Product Confidence Data

4-80



 Ref:
 ER-IS-MDA-GS-2010

 Issue/Revision:
 1/3

 Date:
 FEB. 20, 1996

## 4.3.9 Radar Altimeter (URA)

**Description**: The product contains an averaged wind speed, wave height, and satellite altitude together with the standard deviations (one per quantity) for single cells along the satellite track. One cell is sampled every 6.725 km and there is a maximum of 20 values measured during 1 second. Seventy seven cells are combined in one product and represent an area of approximately 500 km.

Satellite Source: Radar Altimeter

Originating Subsystem: LRDPF

Product Generation: Products are generated for MMCC-defined start and stop times.

Command: C\_GEN\_URA

**On-Line Storage Specification:** 200 minutes

Throughput: 84 products per orbit

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-20.
- 77 Product Data Set Records: See Table 4-21.

Media: MMCC Link. This product is also stored on Exabyte. For tape format and tape label annotation see Appendix B.

#### **Comment on Product Confidence:**

Product confidence is monitored on a cell-by-cell basis and covers:

• Source Packet level errors:

Only ocean mode valid source packets are processed.

Too long or incomplete source packets are discarded.

Non-Ocean mode valid source packets are reported in a blank record (cell time longitude and latitude are calculated).

Time gaps, due to unavailability or nonvalid satellite source packets, are filled with blank records at one-second intervals.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



Checksum errors on valid source packet are reported.

- Lack of data, if there are not enough measurements as input in the averaging process, a flag is raised. The contents of the wind speed, wave height and altitude fields are to be discarded.
- Peakiness of return echo to detect sea ice is added to output data. Mean peakiness is calculated.
- Check of standard deviation or SWH, altitude and wind speed with respect to MMCC-supplied threshold.
- Auxiliary data provides:

mispointing estimate (not calculated at present) noise floor estimate

• A summary of the cell-based PCDs is given in the SPH.

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                 | Units |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1               | 2                  | В            | 1-2              | Product Confidence Data                                                                                                                     |       |
|                 |                    |              |                  | 12. bit Processing Equipment Status                                                                                                         |       |
|                 |                    |              |                  | <ul> <li>0 = equipment working</li> <li>1 = some problems with equipment</li> <li>2 = equipment failed during product generation</li> </ul> |       |
|                 |                    |              |                  | 3. bit Product type                                                                                                                         |       |
|                 |                    |              |                  | 0 = ocean mode<br>1 = non-ocean mode or blank prod-<br>uct                                                                                  |       |
|                 |                    |              |                  | 4. bit Corrupt Data                                                                                                                         |       |
|                 |                    |              |                  | <ul> <li>0 = all processing nominal</li> <li>1 = details of data corruption in<br/>Data Set Record</li> </ul>                               |       |

### Table 4-20 Specific Product Header for URA

4-82


| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | <b>Description</b> Uni                                                                                                         |                      |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                 |                    |              |                  | 5. bit Arithmetic fault                                                                                                        |                      |
|                 |                    |              |                  | 0 = no fault<br>1 = at least one dsr has an arthritic<br>fault flagged in byte 62.                                             |                      |
|                 |                    |              |                  | 616. bit Spare                                                                                                                 |                      |
| 2               | 4                  | I4           | 3-6              | Geodetic latitude of 1. data set record. A negative value denotes South latitude, and a positive value denotes North latitude. | 10 <sup>-3</sup> deg |
| 3               | 4                  | I4           | 7-10             | East longitude (i.e. 0-360° from Green-<br>wich to east) of 1. data set record.                                                | 10 <sup>-3</sup> deg |
| 4               | 4                  | I4           | 11-14            | Subsatellite Track Heading at 1. Data set record.                                                                              |                      |
| 5               | 4                  | I4           | 15-18            | USO offset frequency with respect to 5 MHz                                                                                     | 10 <sup>-3</sup> Hz  |
| 6-23            | 36                 | I2           | 19-54            | Identifier of external tables. Details as follows:                                                                             |                      |
| 6               | 2                  | I2           | 19-20            | Global Threshold Parameter Table ID                                                                                            |                      |
| 7               | 2                  | I2           | 21-22            | Static Parameters Parameter Table ID                                                                                           |                      |
| 8               | 2                  | I2           | 23-24            | Dynamic Parameter Parameter Table ID                                                                                           |                      |
| 9               | 2                  | I2           | 25-26            | $G \\ \tau_{REF}$ Parameter Table ID                                                                                           |                      |
| 10              | 2                  | I2           | 27-28            | $TAB_{\tau 1}$ Parameter Table ID                                                                                              | 3                    |
| 11              | 2                  | I2           | 29-30            | $TAB_{\tau 2}$ Parameter Table ID                                                                                              |                      |
| 12              | 2                  | I2           | 31-32            | Reserved                                                                                                                       |                      |
| 13              | 2                  | I2           | 33-34            | $\sigma_{S,REF}^{G}$ Parameter Table ID                                                                                        |                      |
| 14              | 2                  | I2           | 35-36            | TAB <sub>S</sub> Parameter Table ID                                                                                            |                      |

 Table 4-20
 Specific Product Header for URA

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                          | Units |
|-----------------|--------------------|--------------|------------------|------------------------------------------------------|-------|
| 15              | 2                  | I2           | 37-38            | Reserved                                             |       |
| 16              | 2                  | I2           | 39-40            | G<br>A <sub>REF</sub> Parameter Table ID             |       |
| 17              | 2                  | I2           | 41-42            | Reserved                                             |       |
| 18              | 2                  | I2           | 43-44            | TAB <sub>A2</sub> Parameter Table ID                 |       |
| 19              | 2                  | I2           | 45-46            | TAB <sub>LOC</sub> Parameter Table ID                |       |
| 20              | 2                  | I2           | 47-48            | Spare                                                |       |
| 21              | 2                  | I2           | 49-50            | Pressure table ID (table type 83, Forecast F18)      |       |
| 22              | 2                  | I2           | 51-52            | Pressure table ID (table type 84, Forecast F24)      |       |
| 23              | 2                  | I2           | 53-54            | Pressure table ID (table type 85, Forecast F30)      |       |
| 24              | 2                  | I2           | 55-56            | Pressure Table ID (table type 86, Fore-<br>cast F36) |       |

Table 4-20 Specific Product Header for URA

4-84



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                              | Units                |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------|----------------------|
| 1               | 4                  | I4           | 1-4              | Data record number, starting with 1.                                                                     |                      |
| 2               | 24                 | А            | 5-28             | 5-28 UTC Time at middle of the source packet $(T_{H,LOC})$ in ASCII:                                     |                      |
|                 |                    |              |                  | "dd-mmm-yyyy hh:mm:ss.ttt"                                                                               |                      |
|                 |                    |              |                  | For example:                                                                                             |                      |
|                 |                    |              |                  | "30-JAN-1987 14:30:27.123"                                                                               |                      |
| 3               | 4                  | I4           | 29-32            | Geodetic latitude. A negative value denotes South latitude, and a positive value denotes North latitude. | 10 <sup>-3</sup> deg |
| 4               | 4                  | I4           | 33-36            | East longitude (i.e. 0-360° from Greenwich to east)                                                      | 10 <sup>-3</sup> deg |
| 5               | 2                  | I2           | 37-38            | Average Wind Speed                                                                                       | 10 <sup>-2</sup> m/s |
| 6               | 2                  | I2           | 39-40            | Standard Deviation of Wind Speed                                                                         | 10 <sup>-4</sup> m/s |
| 7               | 2                  | I2           | 41-42            | Average Significant Wave Height                                                                          | 10 <sup>-2</sup> m   |
| 8               | 2                  | I2           | 43-44            | Standard Deviation of Significant<br>Wave Height                                                         | 10 <sup>-4</sup> m   |
| 9               | 4                  | I4           | 45-48            | Average Altitude (Corrected)                                                                             | 10 <sup>-2</sup> m   |
| 10              | 4                  | I4           | 49-52            | Standard Deviation of Altitude                                                                           | 10 <sup>-4</sup> m   |
| 11              | 2                  | I2           | 53-54            | Number of blocks used for averag-<br>ing                                                                 |                      |
| 12              | 1                  | В            | 55               | Product Confidence Data                                                                                  |                      |
|                 |                    |              |                  | 1. bit Summary PC factor                                                                                 |                      |

## Table 4-21Data Set Record for URA

| Ref: EF        | R-IS-MDA-GS-2010 |
|----------------|------------------|
| Issue/Revision | on: 1/3          |
| Date:          | FEB. 20, 1996    |

.



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                   | Units |
|-----------------|--------------------|--------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                 |                    |              |                  | <ul> <li>0 = processing of all according to specification</li> <li>1 = result to be viewed with limitation (details in following bits).</li> </ul>                            |       |
|                 |                    |              |                  | 2. bit Standard Deviation Wind Speed                                                                                                                                          |       |
|                 |                    |              |                  | <ul> <li>0 = Standard Deviation Wind<br/>Speed within MMCC-<br/>supplied limits</li> <li>1 = Standard Deviation Wind<br/>Speed outside MMCC-<br/>supplied limits</li> </ul>   |       |
|                 |                    |              |                  | 3. bit Standard Deviation SWH<br>Limit                                                                                                                                        | Ξ     |
|                 |                    |              |                  | <ul> <li>0 = Standard Deviation SWH<br/>within MMCC-supplied<br/>limits</li> <li>1 = Standard Deviation SWH<br/>outside MMCC-supplied<br/>limits</li> </ul>                   |       |
|                 |                    |              |                  | 4. bit Standard Deviation Altitude Limit                                                                                                                                      |       |
|                 |                    |              |                  | <ul> <li>0 = Standard Deviation Alti-<br/>tude within MMCC-sup-<br/>plied limits</li> <li>1 = Standard Deviation Alti-<br/>tude outside MMCC-sup-<br/>plied limits</li> </ul> |       |
|                 |                    |              |                  | 5. bit Mean Peakiness Limit                                                                                                                                                   |       |

Table 4-21Data Set Record for URA



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                      | Units                                                    |
|-----------------|--------------------|--------------|------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                 |                    |              |                  | <ul> <li>0 = Mean peakiness within limits</li> <li>1 = Mean peakiness outside limits</li> </ul>                  |                                                          |
|                 |                    |              |                  | 6. bit Frame Checksum Flag                                                                                       |                                                          |
|                 |                    |              |                  | 0 = Checksum correct<br>1 = Checksum error detected,<br>no action taken                                          |                                                          |
|                 |                    |              |                  | 7. bit HTL time constant correction (on product localization)                                                    |                                                          |
|                 |                    |              |                  | 0 = correction performed<br>1 = correction not performed                                                         |                                                          |
|                 |                    |              |                  | 8. bit Enough Measurements                                                                                       |                                                          |
|                 |                    |              |                  | <ul> <li>0 = enough measurements to process data</li> <li>1 = not enough measurements to process data</li> </ul> |                                                          |
| 13              | 2                  | I2           | 56-57            | Average Peakiness                                                                                                | 10 <sup>-2</sup>                                         |
| 14              | 2                  | I2           | 58-59            | Average Sigma_0                                                                                                  | 10 <sup>-2</sup> dB                                      |
| 15              | 2                  | I2           | 60-61            | Integrated electron density                                                                                      | 10 <sup>value/1000</sup><br>electrons/<br>m <sup>2</sup> |
| 16              | 1                  | В            | 62               | Open Loop Calibration Status:                                                                                    |                                                          |
|                 |                    |              |                  | 1. bit Height Error Correction                                                                                   |                                                          |
|                 |                    |              |                  | 0 = from open loop calibra-<br>tion<br>1 = default                                                               |                                                          |
|                 |                    |              |                  | 2. bit Reserved                                                                                                  |                                                          |
|                 |                    |              |                  | 3. bit AGC output correction                                                                                     |                                                          |

Table 4-21Data Set Record for URA

Ref:ER-IS-MDA-GS-2010Issue/Revision:1/3Date:FEB. 20, 1996



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                                                                        | Units              |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                 |                    |              |                  | 0 = from open loop calibra-<br>tion<br>1 = default                                                                                                                                                                                                 |                    |
|                 |                    |              |                  | 5. bit Real Arithmetic Error                                                                                                                                                                                                                       |                    |
|                 |                    |              |                  | 0 = No error<br>1 = Overflow or underflow<br>encountered during pro-<br>cessing                                                                                                                                                                    |                    |
|                 |                    |              |                  | 6. bit Integer Arithmetic Error                                                                                                                                                                                                                    |                    |
|                 |                    |              |                  | 0 = No error<br>1 = Overflow encountered<br>during processing                                                                                                                                                                                      |                    |
|                 |                    |              |                  | 7. bit Division by Zero Error                                                                                                                                                                                                                      |                    |
|                 |                    |              |                  | 0 = No error<br>1 = Division by zero encoun-<br>tered during processing                                                                                                                                                                            |                    |
| 17              | 1                  | В            | 63               | Instrument Mode, i.e. 2. byte of packet ID in Primary Header (see Document A-2) <sup>1</sup>                                                                                                                                                       |                    |
|                 |                    |              |                  | <ol> <li>bit Blank data record</li> <li>bit Test</li> <li>bit Calibration (closed loop)</li> <li>bit BITE</li> <li>bit Acquisition on Ice</li> <li>bit Acquisition on Ocean</li> <li>bit Tracking on Ice</li> <li>bit Tracking on Ocean</li> </ol> |                    |
| 18              | 1                  | В            | 64               | Reserved for later use                                                                                                                                                                                                                             |                    |
| 19              | 4                  | I4           | 65-68            | Altitude Correction, ionosphere                                                                                                                                                                                                                    | 10 <sup>-3</sup> m |
| 20              | 4                  | I4           | 69-72            | Altitude Correction, wet tropo-<br>sphere                                                                                                                                                                                                          | 10 <sup>-3</sup> m |

## Table 4-21 Data Set Record for URA

4-88



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                        | Units               |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------|---------------------|
| 21              | 4                  | I4           | 73-76            | Altitude Correction, dry tropo-<br>sphere          | 10 <sup>-3</sup> m  |
| 22              | 4                  | I4           | 77-80            | Altitude Correction, calibration constant          | 10 <sup>-3</sup> m  |
| 23              | 4                  | I4           | 81-84            | Smoothed open Loop HTL calibra-<br>tion correction | 10 <sup>-3</sup> m  |
| 24              | 4                  | I4           | 85-88            | Smoothed open Loop AGC calibra-<br>tion correction | 10 <sup>-3</sup> dB |

#### Table 4-21 Data Set Record for URA

1. 0=no, 1=yes.

Fields 5-15 of this record are only valid if bit 8 of Field 17 is set to "1".

## 4.4 Intermediate Products

Intermediate products are derived during AMI wave FD product generation or as an alternative to the UI16, UI8 product generation. Upon request, products are either put on CCT, Exabyte, or sent to MMCC or user over the BDDN.

The intermediate products generated at Kiruna Station are:

- AMI Wave Mode Intermediate (IWA)
- AMI Image Mode Intermediate (II16)

Note that the RA FD products can also be stored on CCT or Exabyte and can be used like intermediate products.

#### 4.4.1 AMI Wave Intermediate (IWA)

**Description**: This product consists of an intermediate wave image generated prior to conversion to a power spectrum, and the power spectrum, see UWA product. The image contains 320 x 400 pixels for OGRC and 320 in azimuth by 600 in range pixels for OBRC. The intensity of each pixel is represented by 16 bits.

Satellite Source: AMI Wave Mode



**Originating Subsystem**: SAR FDP (LRDPF alternatively)

**Product Generation**: Products are automatically generated, when AMI Wave FD products are generated.

Command: C\_GEN\_WA

**On-line Storage Spec:** 200 minutes

Throughput: Same as AMI Wave FD Product

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-10.
- 17 Product Data Set Records: The data set records of this product are of two different types. The first 16 records contain 20 range lines each of the intermediate image (see Table 4-22). Within each range line, pixels closer to the satellite track precede farther range pixels. The 17. data set record contains the power spectrum (see Table 4-23).

Media: Exabyte; for tape format and tape label annotation see Appendix B.

Comment on Product Confidence: See AMI Wave FD Product



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                          | Units                |
|-----------------|--------------------|--------------|------------------|------------------------------------------------------------------------------------------------------|----------------------|
| 1-72            | 260                |              | 1-260            | As for UI16, UI8 Specific Product<br>Header. See Table 4-10.                                         | ÷.                   |
| 73              | 4                  | I4           | 261-264          | Zero Doppler range time of the first range pixel                                                     | nsec                 |
| 74              | 4                  | I4           | 265-268          | Zero Doppler range time of the cen-<br>tre range pixel                                               | nsec                 |
| 75              | 4                  | I4           | 269-272          | Zero Doppler range time of the last range pixel                                                      | nsec                 |
| 76              | 24                 | А            | 273-296          | Zero Doppler azimuth time of the<br>first azimuth pixel. ASCII format:<br>"dd-mmm-yyyy hh:mm:ss.ttt" |                      |
| 77              | 24                 | А            | 297-320          | Zero Doppler azimuth time of the centre azimuth pixel. Format as for field 76.                       |                      |
| 78              | 24                 | А            | 321-344          | 4 Zero Doppler azimuth time of the<br>last azimuth pixel. Format as for<br>field 76.                 |                      |
| 79-84           | 24                 | I4           | 345-368          | First State Vector: (Earth-fixed reference system)                                                   |                      |
| 79              | 4                  | I4           | 345-348          | State vector; X                                                                                      | 10 <sup>-2</sup> m   |
| 80              | 4                  | I4           | 349-352          | State vector; Y                                                                                      | 10 <sup>-2</sup> m   |
| 81              | 4                  | I4           | 353-356          | State vector; Z                                                                                      | 10 <sup>-2</sup> m   |
| 82              | 4                  | I4           | 357-360          | State vector; X velocity                                                                             | 10 <sup>-5</sup> m/s |
| 83              | 4                  | I4           | 361-364          | State vector; Y velocity                                                                             | 10 <sup>-5</sup> m/s |
| 84              | 4                  | I4           | 365-368          | State vector; Z velocity                                                                             | 10 <sup>-5</sup> m/s |
| 85-90           | 24                 | I4           | 369-392          | Second State Vector. Format as for<br>First State Vector                                             |                      |

### Table 4-24 Specific Product Header for II16

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                  | Units |
|-----------------|--------------------|--------------|------------------|------------------------------------------------------------------------------|-------|
| 91-96           | 24                 | I4           | 393-416          | Third State Vector. Format as for<br>First State Vector                      |       |
| 97-102          | 24                 | I4           | 417-440          | Fourth State Vector. Format as for First State Vector                        |       |
| 103-108         | 24                 | I4           | 441-464          | Fifth State Vector. Format as for First State Vector                         |       |
| 109             | 24                 | A            | 465-488          | UTC time of the first State Vector.<br>Format: "dd-mmm-yyyy<br>hh:mm:ss.ttt" |       |
| 110             | 4                  | I4           | 489-492          | Delta time between each of the above state vectors                           | msec  |
| 111             | 108                | В            | 493-600          | Spare.                                                                       |       |

#### Table 4-24 Specific Product Header for II16

## 4.5 Extracted Data Products

Extracted data products represent raw data over specific areas and are used for instrument calibration and monitoring, e.g. pass over an active transponder. The data are not processed in Kiruna, but passed on to the MMCC via exabyte or dedicated link.

The following extracted data products are defined below:

- AMI Image Calibration Data (EIC)
- AMI Wave Calibration Data (EWAC)
- AMI Wind Calibration Data (EWIC)
- Radar Altimeter Calibration Data (ERAC)
- GOME Calibration Data (EGOC)
- Microwave Calibration Data (EMWC)
- AMI Image Instrument Headers (EII)
- AMI Wave Instrument Headers (EWAI)
- AMI Wind Instrument Headers (EWII)
- Radar Altimeter Instrument Headers (ERAI)
- ATSR-1 Instrument Headers (EATI1)
- ATSR-2 Instrument Headers (EATI2)

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



| <b>Table 4-22</b> | Data Set Record | 1-16 for IWA |
|-------------------|-----------------|--------------|
|-------------------|-----------------|--------------|

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | I                                                                                                                                       | Description    |
|-----------------|--------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1               | 4                  | I4           | 1-4              | Data record number, starting with 1.                                                                                                    |                |
| 2               |                    |              |                  | Processed wave mode data samples. Each sample is represented as a 16-bit integer. The Most Significant Bit is not used and set to zero. |                |
|                 | OGRC:              |              |                  |                                                                                                                                         |                |
|                 |                    | 16,000       | I2               | 5-16,004                                                                                                                                | 8,000 samples  |
|                 | <b>OBRC:</b>       |              |                  |                                                                                                                                         |                |
|                 |                    | 24,000       | I2               | 5-24,004                                                                                                                                | 12,000 samples |

#### Table 4-23 Data Set Record 17 for IWA

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                 |  |  |
|-----------------|--------------------|--------------|------------------|---------------------------------------------|--|--|
| 1-145           | 148                |              | 1-148            | As for UWA data set record. See Table 4-16. |  |  |
| OGRC:           |                    |              |                  |                                             |  |  |
| 146             | 15,856             | В            | 149-16,004       | Spares                                      |  |  |
| <b>OBRC</b> :   |                    |              |                  |                                             |  |  |
| 146             | 23,856             | В            | 149-24,004       | Spares                                      |  |  |

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



#### 4.4.2 AMI Image Mode Intermediate (II16)

**Description**: This product is similar to the UI16 product except that it has not undergone any Slant-Range-to-Ground-Range conversion. This product also contains additional information required for geocoding.

Satellite Source: AMI Image Mode

Originating Subsystem: SARFDP

Product Generation: The MMCC defines the start time for each product.

Command: C\_GEN\_UI

**On-Line Storage Specification:** 200 minutes

**Throughput**: Same as UI16 or UI8 FD Products. Note that the SARFDP produces a single UI16 or II16 product per C\_GEN command (not both).

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-24.
- 6300 Product Data Set Records: See Table 4-11. One record is one range line. Range lines are stored in ascending time order. Within each range line, pixels closer to the satellite track precede farther range pixels. The intensity of each pixel is represented by 16 bits.

Media: BDDN

Comment on Product Confidence: see AMI Image Mode User FD Product

4-92



- GOME Instrument Headers (EGOI)
- General Headers (EGH)
- Ephemeris Data (EEP)

### 4.5.1 AMI Image Calibration Data (EIC)

**Description**: Calibration data for the AMI Image Mode consist of complete downlinked Formats, with the exception of the three Synch Bytes and three IDHT-ID Bytes which have been removed. In addition, all echo data samples are expanded from 5-bit I and Q to 8-bit I and Q.

Satellite Source: AMI Image Mode

Originating Subsystem: SAR FDP

**Product Generation**: Products are extracted for MMCC defined start and stop times. Up to five commands defining different time intervals can be submitted by MMCC per orbit.

Command: C\_GEN\_EIC

**On-Line Storage Specification**: One day

**Throughput**: Maximum storage of 11212 products provided on the DPMC. The SARFDP storage capacity is 28000 products. The SARFDP can ingest, process and archive 28000 products in an orbit (this excludes any Fast Delivery product generation).

Format: One product includes:

- Main Product Header: See Table 4-3.
- **1 Product Data Set Record**: The product data set consists of one downlink format without IDHT-ID, as shown in Table 4-25.

Media: CCT; for tape format and tape label, see Appendix A.

**Comment on Product Confidence**: In case there is a loss of data in gaps between products or at the end of a requested time period, then null products consisting only of the MPH are generated. Null products are generated with an update rate corresponding to the receipt of PCDs from the DPMC, normally every 2.5 seconds (see 4.1.3).



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                         |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number. This number is always 1.                                                                                                                        |
| 2               | 10                 | S            | 5-14             | IDHT Header. This field is identical to "IDHT GEN. HEADER" in the HR format structure of Document A-2.                                                              |
| 3               | 220                | S            | 15-234           | Auxiliary Data and Replica/Calibration<br>pulses. This field is identical to the "Auxiliary<br>Data Field" in the HR format structure of<br>Document A-2.           |
| 4               | 11,232             | I1           | 235-11,466       | Noise and Echo data. This field contains 5,616 complex data samples. Each complex data sample is unsigned extended from the downlink format to 8-bit I and 8-bit Q. |

#### Table 4-25Data Set Record for EIC

#### 4.5.2 AMI Wave Calibration Data (EWAC)

**Description**: This product contains 16 General Header Source Packets comprising one complete OBC format and 299 wave source packets comprising one wave cell. The OBC format is the first complete one following the first frame of instrument data.

Satellite Source: AMI Wave Mode

**Originating Subsystem:** SAR FDP (LRDPF alternatively)

**Product Generation**: Products are extracted for MMCC-defined start and stop times. Up to five commands defining different time intervals can be submitted by the MMCC per orbit.

One product is generated for each wave cell lying within the specified time interval. If a start or stop time lies within a cell, all specified auxiliary data for that complete cell are extracted.

Command: C\_GEN\_EWAC

On-Line Storage Specification: One day

4-96



Throughput: Maximum 15 MBytes of data per orbit and maximum 30 MBytes per day. ⇒ 11 products per orbit and 22 products per day.

Format: One product includes:

- Main Product Header: See Table 4-3.
- **Specific Product Header**: The General Header is stored in the SPH as shown in Table 4-26.
- **299 Product Data Set Records**: Each product data set record consists of one source packet. See Table 4-27.

Media: For SAR FDP: CCT; for tape format and label, see Appendix A. For LRDPF Exabyte, for tape format and label, see Appendix B.

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 4096               | S            | 1-4096           | PF Data. This field contains 16 frames each<br>of 256 bytes of the "Source Data Field" of the<br>General IDHT Header Source Packet, see<br>Document A-2. The first 256 bytes corre-<br>spond to the start of platform data, frame<br>count of 0, and the last 256 bytes to the end of<br>platform data, frame count of 15.                                    |
| 2               | 384                | S            | 4097-4480        | Ephemeris Data. This field is identical to the<br>subcommutated, 24 bytes of Ephemeris Data<br>of the "Source Data Field" of 16 General<br>IDHT Header Source Packets, see<br>Document A-2. The first 24 bytes correspond<br>to the start of ephemeris data, ephemeris ID<br>of 1, and the last 24 bytes to the end of<br>ephemeris data, ephemeris ID of 16. |

| Table 4-26 | Specific Produ | uct Header Record | for EWAC |
|------------|----------------|-------------------|----------|
|------------|----------------|-------------------|----------|



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                        |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number. Data records are num-<br>bered 1-299.                                          |
| 2               | 6                  | S            | 5-10             | Primary Header. This is identical to the packet Primary Header as described in Document A-2.       |
| 3               | 98                 | S            | 11-108           | Secondary Header. This field is identical to the "Secondary Header" as described in Document A-2.  |
| 4               | 4224               | S            | 109-4332         | Source Data. This field is identical to the "Measurement Data Field" as described in Document A-2. |

#### Table 4-27 Data Set Record for EWAC (OBRC and OGRC)

#### 4.5.3 AMI Wind Calibration Data (EWIC)

**Description**: This product contains one AMI wind scatterometer and one General Header Source Packet. The General Header is the one just preceding the first frame of Instrument Data.

Satellite Source: AMI Wind Mode

**Originating Subsystem:** LRDPF

**Product Generation**: Products are extracted for MMCC-defined start and stop times. Up to five commands defining different time intervals can be submitted by MMCC per orbit.

Command: C\_GEN\_EWIC

**On-Line Storage Specification:** One day

Throughput: Maximum 12 MBytes of data per orbit and maximum 24 MBytes per day. ⇒ 1450 products per orbit and 2900 products per day.

Format: One product includes:

4-98



- Main Product Header: See Table 4-3.
- **Specific Product Header**: One General Header frame is stored in the SPH as shown in Table 4-8.

If there is no General Header available the General Header portion of the SPH is padded with zeroes. Note that a General Header packet is received only for every third EWIC packet.

The General header packet is not available for the first EWIC product resulting from the C\_GEN\_EWIC command, unless the times of the General Header and EWIC packets are identical.

• **1 Product Data Set Record:** The product data set consists of one source packet. See Table 4-28.

Media: Exabyte; for tape format and label, see Appendix B.

**Comment on Product Confidence**: In case there is a loss of data in gaps between products or at the end of a requested time period, then null products consisting only of the MPH are generated. Null products are generated with an update rate corresponding to the receipt of PCDs from the DPMC, normally every 2.5 seconds (see 4.1.3).



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number. This number is always 1.                                                                                                                               |
| 2               | 6                  | S            | 5-10             | Primary Header. This is identical to the packet "Primary Header" as described in Document A-2.                                                                             |
| 3               | 62                 | S            | 11-72            | Secondary Header. This field includes the auxiliary data and is identical to the packet "Secondary Header" as described in Document A-2.                                   |
| 4               | 7792               | S            | 73-7864          | Source Data. This field includes calibration<br>and echo data for either forebeam, midbeam<br>or aftbeam. The format is identical to the one<br>described in Document A-2. |

#### Table 4-28Data Set Record for EWIC

#### 4.5.4 Radar Altimeter Calibration Data (ERAC)

**Description**: This product contains one raw Radar Altimeter data and General Header Source Packet. The General Header is the one just preceding the first frame of instrument data.

Satellite Source: Radar Altimeter

**Originating Subsystem:** LRDPF

**Product Generation**: Products are extracted for MMCC-defined start and stop times. Up to five commands defining different time intervals can be submitted by the MMCC per orbit.

Command: C\_GEN\_ERAC

**On-Line Storage Specification**: One day

**Throughput:** Maximum 2 MBytes of data per orbit and maximum 4 MBytes per day.  $\equiv > 564$  products per orbit and 1128 products per day.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



Format: One product includes:

- Main Product Header: See Table 4-3.
- **Specific Product Header**: One General Header frame is stored in the SPH as shown in Table 4-8.

The General Header packet is not available for the first ERAC product resulting from the C\_GEN\_ERAC command unless the times of the General Header and ERAC packets are identical.

• **1 Product Data Set Record**: The product data set consists of one source packet. See Table 4-29.

Media: Exabyte; for tape format and label, see Appendix B.

**Comment on Product Confidence**: In case there is a loss of data in gaps between products or at the end of a requested time period, then null products consisting only of the MPH are generated. Null products are generated with an update rate corresponding to the receipt of PCDs from the DPMC, normally every 2.5 seconds (see 4.1.3).

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                              |
|-----------------|--------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number. This number is always 1.                                                             |
| 2               | 6                  | S            | 5-10             | Primary Header. This field is identical to the "Primary Header" as described in Document A-2.            |
| 3               | 6                  | S            | 11-16            | Secondary Header. This field is identical to the packet "Secondary Header" as described in Document A-2. |
| 4               | 3120               | S            | 17-3136          | Source Data. This field is identical to the<br>"Source Data Field" as described in<br>Document A-2.      |

 Table 4-29
 Data Set Record for ERAC



## 4.5.5 GOME Calibration Data (EGOC)

**Description**: This product contains one complete science packet of GOME data and one General Header Source Packet. The General Header is the one just preceding the first frame of instrument data. A GOME science packet is subcommutated over 10 ATSR-1 source packets.

Satellite Source: GOME

Originating Subsystem: LRDPF

**Product Generation**: Products are extracted for MMCC-defined start and stop times. Up to five commands defining different time intervals can be submitted by the MMCC per orbit.

Command: C\_GEN\_EGOC

**On-Line Storage Specification**: One day

Throughput: All data collected in one orbit, approximately 4400 products per orbit.

Format: One product includes:

- Main Product Header: See Table 4-3.
- **Specific Product Header**: See Table 4-30. Note that if there is no General Header available, the General Header portion of the SPH is padded with zeroes.
- **1 Product Data Set Record**: The product consists of one source packet. See Table 4-31.

Media: All products will be transferred directly from the LRDPF to the BDDN.

Comment on Product Confidence: See Subsection 4.1.3.2.3.



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                                |  |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1-4             | 282                |              | 1-282            | Same as Table 4-8.                                                                                                                                                                         |  |
| 5               | 1                  | В            | 283              | PCD product padding flag                                                                                                                                                                   |  |
|                 |                    |              |                  | 0 = product DSR not padded<br>1 = product DSR padded                                                                                                                                       |  |
|                 |                    |              |                  | Note that padding of the product DSR occurs<br>in the event of missing frames containing<br>GOME science data. The corresponding<br>fields of the DSR are padded with BB hexa-<br>decimal. |  |
| 6               | 20                 | В            | 284-303          | PCD reported at ATSR-2 source packet level<br>one byte PCD for each of 20 GOME frames                                                                                                      |  |
|                 |                    |              |                  | bit 1-2: The percentage of GOME frames<br>with checksum error compared to MMCC-<br>specified threshold.                                                                                    |  |
|                 |                    |              |                  | bit 3-4: Quality of downlinked formats and source packets compared to MMCC-specified threshold                                                                                             |  |
|                 |                    |              |                  | bit 5-8: spare                                                                                                                                                                             |  |
|                 |                    |              |                  | 0 = lower than threshold<br>1 = greater than threshold<br>2 = performance unknown                                                                                                          |  |

 Table 4-30
 Specific Product Header Record for EGOC



| Field<br>Number | Number of<br>Bytes | Data Type | Byte<br>Position | Description                                                                                                                                                                                                                                                                |
|-----------------|--------------------|-----------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4        | 1-4              | Data record number; this number is always 1.                                                                                                                                                                                                                               |
| 2               | 8000               | 8         | 5-8004           | One complete GOME science packet,<br>identical to the downlinked format,<br>see Document A-2. Note that the DSR<br>is padded in the event of missing<br>frames containing GOME science<br>data. The corresponding parts of the<br>DSR are padded with BB hexadeci-<br>mal. |

### 4.5.6 Microwave Calibration Data (EMWC)

**Description**: This product contains Microwave data that was subcommutated over 32 ATSR source packets and one General Header Source Packet. The General Header is the one just preceding the first frame of instrument data.

Satellite Source: Microwave

Originating Subsystem: LRDPF

**Product Generation**: Products are extracted for MMCC-defined start and stop times. Up to five commands defining different time intervals can be submitted by the MMCC per orbit.

Command: C\_GEN\_EMWC

**On-Line Storage Specification:** One day

Throughput: All data collected in one orbit, approximately 1375 products per orbit.

Format: One product includes:

- Main Product Header: See Table 4-3.
- **Specific Product Header**: See Table 4-32. Note that if there is no General Header available, the General Header portion of the SPH is padded with zeroes.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



• **1 Product Data Set Record**: The product consists of one source packet. See Table 4-33.

Media: Exabyte, for tape format and tape label annotation, see Appendix B.

Comment on Product Confidence: See Subsection 4.1.3.2.3.

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position             | Description                                                                                                                                                                         |  |
|-----------------|--------------------|--------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1-4             | 282                |              | 1-282                        | Same as Table 4-8.                                                                                                                                                                  |  |
| 5               | 1                  | В            | 283 PCD product padding flag |                                                                                                                                                                                     |  |
|                 |                    |              |                              | 0 = product DSR not padded<br>1 = product DSR padded                                                                                                                                |  |
|                 |                    |              |                              | Note that padding of the product DSR occurs<br>in the event of missing frames containing<br>MW science data. The corresponding fields<br>of the DSR are padded with BB hexadecimal. |  |
| 6               | 32                 | В            | 284-315                      | PCD reported at ATSR source packet level: one byte for each of 32 MW frames.                                                                                                        |  |
|                 |                    |              |                              | bit 1-2: The percentage of MW frames with checksum error compared to MMCC-specified threshold.                                                                                      |  |
|                 |                    |              |                              | bit 3-4: Quality of downlinked formats and source packets compared to MMCC-specified threshold                                                                                      |  |
|                 |                    |              |                              | bit 5-8: spare                                                                                                                                                                      |  |
|                 |                    |              |                              | 0 = lower than threshold<br>1 = greater than threshold                                                                                                                              |  |

 Table 4-32
 Specific Product Header Record for EMWC

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



| Field<br>Number | Number of<br>Bytes | Data Type | Byte<br>Position | Description                                                                                                                                                           |
|-----------------|--------------------|-----------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4        | 1-4              | Data record number; this number is always 1.                                                                                                                          |
| 2               | 896                | S         | 5-900            | One complete MW science packet, consisting of:                                                                                                                        |
|                 |                    |           |                  | 12-byte ATSR SP header                                                                                                                                                |
|                 |                    |           |                  | 2-byte High/Low Rate Packet ID (zeroes for ERS-1)                                                                                                                     |
|                 |                    |           |                  | 4-byte Synch Protocol (zeroes of ERS-2)                                                                                                                               |
|                 |                    |           |                  | 2-byte Previous Packet Error Code<br>(zeroes for ERS-1)                                                                                                               |
|                 |                    |           |                  | 8-byte MW data                                                                                                                                                        |
|                 |                    |           |                  | Subcommutated over 32 ATSR source packets (see Document A-2).                                                                                                         |
|                 |                    |           |                  | Note that the DSR is padded in the<br>event of missing frames containing<br>MW science data. The corresponding<br>parts of the DSR are padded with BB<br>hexadecimal. |

#### Table 4-33 Data Set Record for EMWC

## 4.5.7 AMI Image Instrument Header (EII)

**Description**: This product contains selected windows or all auxiliary data extracted over a specified time interval.

Satellite Source: AMI Image Mode

Originating Subsystem: SAR FDP

4-106



**Product Generation**: Auxiliary data are extracted for MMCC-specified start and stop times. MMCC can also define whether all auxiliary data or separate windows shall be collected.

A maximum of 10 commands can be submitted per orbit, defining start and stop time and the data extraction window(s) position(s) within the auxiliary data.

Command: C\_GEN\_EII

**On-Line Storage Specification: 200 minutes** 

Throughput: Maximum 1.5 MBytes per orbit and maximum 15 MBytes per day.

Format: One product includes:

- Main Product Header: See Table 4-3.
- **Specific Product Header**: See Table 4-34. SPH defines size and content of the data set records.
- Variable Number of Product Data Set Records: Each data set record corresponds to one source packet. The length of a data set record is variable, the format is defined in Table 4-35. All data of one selected time interval of one command are combined in one product. Up to ten windows can be simultaneously extracted and included in one record.

Media: X.25 link to MMCC

| Table 4-34 | Specific | Header for | EII, EWAI, | EWII, | ERAI, | EATI1, | EATI2, | EGOI |
|------------|----------|------------|------------|-------|-------|--------|--------|------|
|------------|----------|------------|------------|-------|-------|--------|--------|------|

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                  |
|-----------------|--------------------|--------------|------------------|--------------------------------------------------------------|
| 2               | 2                  | I2           | 1-2              | Starting byte position of 1. window in down-<br>linked data  |
| 3               | 2                  | 12           | 3-4              | Length in bytes of 1. window                                 |
|                 |                    |              |                  | •                                                            |
|                 |                    |              |                  |                                                              |
|                 |                    |              |                  | •                                                            |
| 19              | 2                  | I2           | 37-38            | Starting byte position of 10. window in down-<br>linked data |
| 20              | 2                  | I2           | 39-40            | Length in bytes of 10. window                                |

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                         |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4           | 1-4              | Data record number, starting with 1.                                                                                |
| 2               | (n-4)              | S            | 5-n              | MMCC-selected windows:                                                                                              |
|                 |                    |              |                  | • EII: from "IDHT GEN. HEADER" and "Auxiliary Data Field";                                                          |
|                 |                    |              |                  | • <b>EWAI, EWII</b> : from "Primary" and "Sec-<br>ondary" Header;                                                   |
|                 |                    |              |                  | • ERAI, EATI1, EATI2: from "Primary Header", "Secondary Header" and "Source Data Field".                            |
|                 |                    |              |                  | • EGOI: from "Primary Header", "Second-<br>ary Header" and "Auxiliary and Science<br>Data" of GOME science packets. |
|                 |                    |              |                  | as in downlinked formats and source packets, see Document A-2.                                                      |
|                 |                    |              |                  | n = variable from product to product and<br>depends on sizes of selected windows, maxi-<br>mum value for:           |
|                 |                    |              |                  | EII = 234<br>EWAI = 108<br>EWII = 72<br>ERAI = 3136<br>EATI1 = 4004<br>EATI2 = 13604*<br>EGOI = 8004                |

#### Table 4-35 Data Set Record for EII, EWAI, EWII, ERAI, EATI1, EATI2, EGOI

\* Note that byte position 6805-13604 contains the second high rate packet.



Ref: ER-IS-MDA-GS-2010 Íssue/Revision: 1/3 Date: FEB. 20, 1996

#### 4.5.8 AMI Wave Instrument Header (EWAI)

**Description**: This product contains selected windows or all auxiliary data extracted over a specified time interval.

Satellite Source: AMI Wave Mode

**Originating Subsystem**: SAR FDP (LRDPF alternatively)

**Product Generation**: Auxiliary data are extracted for MMCC-specified start and stop times. MMCC can also define whether all auxiliary data or separate windows shall be collected.

One product is generated for each wave cell lying within the specified time interval. If a start or stop time lies within a cell, all specified auxiliary data for that complete cell is extracted.

A maximum of 10 commands can be submitted per orbit, defining start and stop time and the data extraction window(s) position(s) within the auxiliary data.

Command: C\_GEN\_EWAI

**On-Line Storage Specification: 200 minutes** 

Throughput: Maximum 1.5 MBytes per orbit and maximum 15 MBytes per day.

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-34.
- **299 Product Data Set Records**: The length of a data set record is variable; the format is defined in Table 4-35. One product contains the auxiliary data extracted from each of 299 source packets comprising a wave cell. Up to 10 windows can be simultaneously extracted and included in one record.

Media: X.25 link to MMCC

#### 4.5.9 AMI Wind Instrument Header (EWII)

**Description**: This product contains selected windows or all auxiliary data extracted over a specified time interval.



Satellite Source: AMI Wind Mode

Originating Subsystem: LRDPF

**Product Generation**: Auxiliary data are extracted for MMCC-specified start and stop times. MMCC can also define whether all auxiliary data or separate windows shall be collected.

A maximum of 10 commands can be submitted per orbit, defining start and stop time and the data extraction window(s) position(s) within the auxiliary data.

Command: C\_GEN\_EWII

**On-Line Storage Specification: 200 minutes** 

Throughput: Maximum 1.5 MBytes per orbit and maximum 15 MBytes per day.

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-34.
- Variable Number of Product Data Set Records: The length of a data set record is variable, the format is defined in Table 4-35. All data of the selected time interval are combined in one product. Up to 10 windows can be simultaneously extracted and included in one record.

Media: X.25 link to MMCC

**Comment on Product Confidence:** In case there is a loss of data in gaps between products or at the end of a requested time period, then null products consisting only of the MPH are generated. Null products are generated with an update rate corresponding to the receipt of PCDs from the DPMC, normally every 2.5 seconds (see 4.1.3).

#### 4.5.10 Radar Altimeter Instrument Header (ERAI)

**Description**: This product contains selected windows or all auxiliary data extracted over a specified time interval.

Satellite Source: Radar Altimeter

Originating Subsystem: LRDPF

4-110



**Product Generation**: Auxiliary data are extracted for MMCC-specified start and stop times. MMCC can also define whether all auxiliary data or separate windows shall be collected.

A maximum of 10 commands can be submitted per orbit, defining start and stop time and the data extraction window(s) position(s) within the auxiliary data.

Command: C\_GEN\_ERAI

**On-Line Storage Specification:** 200 minutes

Throughput: Maximum 1.5 MBytes per orbit and maximum 15 MBytes per day.

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-34.
- Variable Number of Product Data Set Records: The length of a data set record is variable, the format is defined in Table 4-35. All data of the selected time interval are combined in one product. Up to 10 windows can be simultaneously extracted and included in one record.

Media: X.25 link to MMCC

**Comment on Product Confidence:** In case there is a loss of data in gaps between products or at the end of a requested time period, then null products consisting only of the MPH are generated. Null products are generated with an update rate corresponding to the receipt of PCDs from the DPMC, normally every 2.5 seconds (see 4.1.3).

### 4.5.11 ATSR-1 Instrument Header (EATI1)

**Description**: This product contains selected windows or all auxiliary data extracted over a specified time interval.

Satellite Source: ATSR-1

Originating Subsystem: LRDPF

**Product Generation**: Auxiliary data are extracted for MMCC-specified start and stop times. MMCC can also define whether all auxiliary data or separate windows shall be collected.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



A maximum of 10 commands can be submitted per orbit, defining start and stop time and the data extraction window(s) position(s) within the auxiliary data.

Command: C\_GEN\_EATI1

**On-Line Storage Specification: 200 minutes** 

Throughput: Maximum 1.5 MBytes per orbit and maximum 15 MBytes per day.

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-34.
- Variable Number of Product Data Set Records: The length of a data set record is variable, the format is defined in Table 4-35. All data of the selected time interval are combined in one product. Up to 10 windows can be simultaneously extracted and included in one record.

Media: Exabyte; for tape format and tape label annotation, see Appendix B.

#### 4.5.12 ATSR-2 Instrument Header (EATI2)

**Description**: This product contains selected windows or all auxiliary data extracted over a specified time interval.

Satellite Source: ATSR-2

**Originating Subsystem:** LRDPF

**Product Generation**: Auxiliary data are extracted for MMCC-specified start and stop times. MMCC can also define whether all auxiliary data or separate windows shall be collected.

A maximum of 10 commands can be submitted per orbit, defining start and stop time and the data extraction window(s) position(s) within the auxiliary data.

Command: C\_GEN\_EATI2

**On-Line Storage Specification**: 200 minutes

**Throughput**: Maximum 5.0 MBytes per orbit and maximum 50 MBytes per day.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-34.
- Variable Number of Product Data Set Records: The length of a data set record is variable, the format is defined in Table 4-35. All data of the selected time interval are combined in one product. Up to 10 windows can be simultaneously extracted and included in one record.

Media: X.25 link to MMCC.

## 4.5.13 GOME Instrument Header (EGOI)

**Description**: This product contains selected windows or all auxiliary data extracted over a specified time interval.

Satellite Source: GOME

Originating Subsystem: LRDPF

**Product Generation**: Auxiliary data are extracted for MMCC-specified start and stop times. MMCC can also define whether all auxiliary data or separate windows shall be collected.

A maximum of 10 commands can be submitted per orbit, defining start and stop time and the data extraction window(s) position(s) within the auxiliary data.

Command: C\_GEN\_EGOI

**On-Line Storage Specification: 200 minutes** 

Throughput: Maximum 1.5 MBytes per orbit and maximum 15 MBytes per day.

Format: One product includes:

- Main Product Header: See Table 4-3.
- Specific Product Header: See Table 4-34.
- Variable Number of Product Data Set Records: The length of a data set record is variable, the format is defined in Table 4-35. All data of the selected time



interval are combined in one product. Up to 10 windows can be simultaneously extracted and included in one record.

Media: X.25 link to MMCC.

#### 4.5.14 General Headers (EGH)

**Description**: This product contains 16 sets of platform data included in the Source Data Field of the IDHT General Header Source Packet.

Satellite Source: IDHT

Originating Subsystem: LRDPF, SAR FDP (wave mode processing) as backup.

Product Generation: Products are extracted for MMCC-defined start and stop times.

Command: C\_GEN\_EGH

**On-Line Storage Specification: 200 minutes** 

Throughput: 375 products per orbit

Format: One product includes:

- Main Product Header: See Table 4-3.
- **16 Product Data Set Records**: Each product data set record consists of byte 6 to 261 of the IDHT General Header Source Packet, as shown in Table 4-36. The first record corresponds with the start of the platform data, platform frame count of 0. The last record corresponds to platform frame count of 15.

Media: X.25 link to MMCC

#### **Comment on Product Confidence:**

- In case there is a missing or corrupted Source Packet within a product, the platform data field in the corresponding record is set to 0. In addition, the "Quality of Downlinked Formats and Source Packets" flag in the MPH is set accordingly.
- In case there is a duplicated Source Packet, the second one is ignored.
- In case there is no data at all then no products are generated.

4-114



| Field<br>Number | Number of<br>Bytes | Data Type | Byte<br>Position | Description                                                                                                                                    |
|-----------------|--------------------|-----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4        | 1-4              | Data record number, starting with 1.                                                                                                           |
| 2               | 256                | S         | 5-260            | Platform Data                                                                                                                                  |
|                 |                    |           |                  | The format is identical to the first<br>256 bytes of the "Source Data Field"<br>of the General IDHT Header Source<br>Packet, see Document A-2. |

### Table 4-36Data Set Record for EGH

#### 4.5.15 Ephemeris Data (EEP)

**Description**: This product consists of a complete set of ephemeris data. This data is extracted from 16 usable, noninterrupted consecutive IDHT General Header Source Packets. The first Source Packet used is that for which the Ephemeris ID has value 1.

Satellite Source: IDHT General Header

Originating Subsystem: LRDPF, SAR FDP (wave mode processing) as backup

Product Generation: The product is extracted for a MMCC-defined start time.

Command: C\_GEN\_EEP

**On-Line Storage Specification: 200 minutes** 

Throughput: 1 product per orbit

Format: One product includes:

- Main Product Header: See Table 4-3.
- **1 Product Data Set Record**: For the format of the single data set record. See Table 4-37.

Media: X.25 link to MMCC

Comment on Product Confidence: Not Applicable

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

 Ref:
 ER-IS-MDA-GS-2010

 Issue/Revision:
 1/3

 Date:
 FEB. 20, 1996



| Field<br>Number | Number of<br>Bytes | Data Type | Byte<br>Position | Description                                                                                                                                                                                           |
|-----------------|--------------------|-----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4        | 1-4              | Data record number. This number is always 1.                                                                                                                                                          |
| 2               | 384                | S         | 5-388            | One complete set of Ephemeris data.<br>The internal format is identical to the<br>subcommutated fields; that is,<br>byte 263 to 286 in the IDHT General<br>Header Source Packet, see<br>Document A-2. |

|  | <b>Table 4-37</b> | Data Set Record for EEP |
|--|-------------------|-------------------------|
|--|-------------------|-------------------------|

#### 4.5.16 Text Product (TP)

**Description**: Text messages are generated by the MMCC. They are output over the product distribution link at MMCC-specified times.

Satellite Source: Not Applicable

Originating Subsystem: MMCC/DPMC

Production Generation: Not Applicable

Command: C\_USER\_TEXT

**On-Line Storage Specification**: 200 minutes

Throughput: variable low

Format: One product includes:

- Main Product Header: See Table 4-3.
- **1 Product Data Set Record**: Each record consists of one 80-byte-long text message, see Table 4-38.

Media: Product distribution links



| Tuble 4 00 Dulu bet Record for Text Freduct |                    |           |                  |                                              |
|---------------------------------------------|--------------------|-----------|------------------|----------------------------------------------|
| Field<br>Number                             | Number of<br>Bytes | Data Type | Byte<br>Position | Description                                  |
| 1                                           | 4                  | I4        | 1-4              | Data record number. This number is always 1. |
| 2                                           | 80                 | А         | 5-84             | Text message.                                |

### Table 4-38 Data Set Record for Text Product

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



# THIS PAGE INTENTIONALLY LEFT BLANK

4-118


## A COMPUTER-COMPATIBLE TAPE FORMAT

CCT are recorded with 6250 bpi, using 9-track tapes, with 2400 feet of tape on 10-inch reels. Tape drives used to generate these tapes have built-in error detection and correction.

Products are stored on CCT either directly after product generation, or with a separate command. All products addressed with one generate command (RATSR, IWA) or one archive command are put on one or more tape reels. All tape reels that were generated with one command are referred to as tape set.

CCTs generated in Kiruna have a tape header file. The format of this tape header file is given in Table A-1.

| Field<br>Number | Number<br>of Bytes | Data<br>Type | Byte<br>Position | Description                                                                                                                                                                     |
|-----------------|--------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 8                  | A            | 1-8              | MMCC-supplied tape identifier. This identi-<br>fier is copied to all tape reels generated with<br>the same command. This identifier is also<br>printed on the paper tape label. |
| 2               | 2                  | 12           | 9-10             | Reel counter. For the first reel of a tape set, the value is 1.                                                                                                                 |
| 3               | 4                  | I4           | 11-14            | Spare.                                                                                                                                                                          |

| <b>Fable</b> A- | -1 Ta | pe Head | ler File | Format |
|-----------------|-------|---------|----------|--------|
|-----------------|-------|---------|----------|--------|

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

A-1



For the rest of the tapes there are two tape formats:

- Product-type-per-file
- Product-per-file

In the product-type-per-file all products of the same type are stored in one file. Products consisting of MPH, SPH and data set records, as defined in Section 4, are combined to one record on tape (see Figure A-1). There is only one file per product type on one CCT. The RATSR, UIND, UIC, UWA, UWAND, UWAC, UWI, URA, EIC, EWIC, ERAC, EGH, EEP, EGOC (TBC), EATC2 (TBC), and EMWC (TBC) product types are stored in this format.

In the product-per-file structure, one product corresponds to a file, and the record structure given in Section 4 is maintained on tape (see Figure A-2 for monoreel configuration and Figure A-3 for multireel configuration). The UI16, UI8, IWA, II16, EWAC, EII, EWAI, EWII, ERAI, EGOI (TBC), EATI1 (TBC), and EATI2 (TBC) product types are stored in this format. The last reel of multireel tape set has three EOF marks.

CCTs generated at Kiruna have a paper label containing the following information:

- MMCC-supplied information field
- satellite ID
- list of product types stored on tape
- time interval for which products were taken and stored on tape
- station ID
- tape drive ID
- tape generation type
- tape reel counter
- last reel identification flag

A-2



|                                                                               | Start of Tape                                                                                                                                                                   |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tape Header<br>File                                                           | Tape Label, Tape Reel Counter                                                                                                                                                   |
| r                                                                             | EOF                                                                                                                                                                             |
| Second file<br>containing all<br>products of one<br>type, for example,<br>URA | MPH, SPH, data set record 1data set record m<br>IRG<br>MPH, SPH, data set record.1data set record m<br>IRG<br>MPH, SPH, data set record.1data set record m                      |
| L                                                                             | EOF                                                                                                                                                                             |
| Third file<br>containing all<br>products of one<br>type, for example,<br>UWI  | MPH, SPH, data set record 1data set record m<br>IRG<br>MPH, SPH, data set record.1data set record m<br>IRG<br><br>MPH, SPH, data set record.1data set record m<br>EOF           |
|                                                                               |                                                                                                                                                                                 |
| Last file<br>containing all<br>products of one<br>type, for example,<br>ERAC  | MPH, SPH, data set record 1data set record m<br>IRG<br>MPH, SPH, data set record.1data set record m<br>IRG<br>MPH, SPH, data set record.1data set record m<br>EOF<br>EOF<br>EOF |

## Figure A-1 Product-Type-Per-File Format of One Tape Reel

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

A-3



|                                            | Start of Tape                                                                                                 |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Tape Header<br>File                        | Tape Label, Tape Reel Counter                                                                                 |
| L                                          | EOF                                                                                                           |
| Second file<br>containing first<br>product | MPH<br>IRG<br>SPH<br>IRG<br>1. data set record<br>IRG<br>2. data set record<br>IRG                            |
|                                            | last record of data set<br>EOF<br>EOF                                                                         |
| Last file<br>containing n th<br>product    | MPH<br>IRG<br>SPH<br>IRG<br>1. data set record<br>IRG<br>2. data set record<br>IRG<br>last record of data set |
|                                            | EOF<br>EOF<br>End of Tape                                                                                     |

Figure A-2 Product-Per-File Format of One Tape Reel

A-4



| First Reel                                 | Start of Tape                             |
|--------------------------------------------|-------------------------------------------|
| Tape Header<br>File                        | -<br>Tape Label, Tape Reel Counter        |
|                                            | EOF                                       |
| Second file<br>containing first<br>product | MPH<br>IRG<br>SPH<br>last data set record |
| ·                                          | EOF                                       |
| Third file<br>containing second<br>product | MPH<br>last data set record               |
|                                            | EOF                                       |
| I                                          | - ·                                       |
| Last file of first<br>reel                 | MPH .                                     |
|                                            | last record of data set                   |
|                                            | EOF<br>EOF                                |

## Figure A-3 Product-Per-File Format Multireel Configuration

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.

A-5





Figure A-3 Product-Per-File Format Multireel Configuration

A-6



# B EXABYTE TAPE FORMAT

The Exabyte system uses 8-mm cartridge tapes. The capacity of these tapes depends on the tape length and drive subsystem used. For the ERS Ground Segment, 5 GBytes will be used.

Although the handling of Exabyte Tapes from a software viewpoint is similar to that of CCTs, the format of products stored on Exabyte Tapes is different from the CCT format. This is due to the different optimisation requirements imposed on the Exabyte archive subsystem.

There are three types of Exabyte format:

- 1. products stored from DPMC via the c\_exabyte command;
- 2. transcribed products from the LRDPF;
- 3. archived products from the LRDPF.

Each of these formats is detailed in the sections which follow.

## B1. DPMC Exabyte Format

The Exabyte tape format for products stored locally by the DPMC is given in Figure B-1.

The format of the tape header file is given in Table A-1.

The format of the MPH file is given in Table B-1.





Figure B-1 Exabyte Tape Format



# MACDONALD DETTWILER

Ref: ER-IS-MDA-GS-2010 Itssue/Revision: 1/0 Date: APR. 05, 1994

| Field<br>Number | Number<br>of Bytes | Data Type | Byte Position                     | Description                                                                              |
|-----------------|--------------------|-----------|-----------------------------------|------------------------------------------------------------------------------------------|
| 1               | 4                  | I4        | 1-4                               | Number of Main Product Headers stored in this file (N).                                  |
|                 |                    |           |                                   | Equals zero if the MPH flag selects no MPH file.                                         |
|                 |                    |           |                                   | Has a maximum value of 550.                                                              |
| 2               | 24                 | В         | 5-28                              | Product Type list copied directly from the C_EX-ABYTE command.                           |
| 3               | 24                 | А         | 29-52                             | Start Time of window of product acquisition times.<br>Copied from the C_EXABYTE command. |
| 4               | 24                 | А         | 53-76                             | Stop Time of window of product acquisition times.<br>Copied from the C_EXABYTE command.  |
| 5               | 24                 | В         | 77-100                            | Spare                                                                                    |
| 6               | 176                | В         | 101-276                           | First product MPH                                                                        |
| 7               | 176                | В         | 277-452                           | Second Product MPH                                                                       |
|                 |                    |           |                                   | • • •                                                                                    |
| N+5             | 176                | В         | 101+(N-<br>1)*176 to<br>100+N*176 | The Nth product MPH                                                                      |

#### Table B-1MPH File Format

The format of storage of small (less than or equal to 32 kBytes) products is given in Figure B-2. This includes the UIND, UIC, UWA, UWAND, UWAC, UWI, URA, EIC, EWIC, ERAC, EGH, EEP, EGOC (TBC), EATC2 (TBC), and EMWC (TBC) product types.

The format of storage of large (greater than 32 kBytes) products is given in Figure B-3. This includes the UI16, UI8, IWA, II16, EWAC, EII, EWAI, EWII, ERAI, EGOI (TBC), EATI1 (TBC), and EATI2 (TBC) product types.



ACDONALD

WILER

Figure B-2 Small Product Format

B-4





#### Figure B-3 Large Product Format

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



Exabyte tapes have a paper label containing the same information as that provided on a CCT label. See Appendix A for details.

## B2. Transcription Exabyte Format

Table B-2 shows the file layout on Exabyte for products transcribed on the LRDPF.

| File                        | Contents                                                                                                                                                                                                                                                                                   |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Tape Header File            | <ul> <li>Tape Label</li> <li>Reel Counter</li> <li>Tape type</li> <li>EOF</li> </ul>                                                                                                                                                                                                       |  |
| Production Information File | <ul> <li>Production Date (UTC)</li> <li>Satellite id</li> <li>C_INITIALISE_TRANSCRIBE command</li> <li>C_CONFIGURE_TRANSCRIPTION command</li> <li>EOF</li> </ul>                                                                                                                           |  |
| Extracted product file 1    | MPH, SPH, DSR, IRG<br>MPH, SPH, DSR, IRG<br><br>EOF                                                                                                                                                                                                                                        |  |
| Extracted product file 2    | As for product file 1                                                                                                                                                                                                                                                                      |  |
| Extracted product file N    | As for product file 1                                                                                                                                                                                                                                                                      |  |
| Directory File              | Number of extracted product files<br>Descriptor for each product file:<br>• Number of non-zero products in file<br>• Number of total products in file<br>• MPH of first and last product in file<br>• Raw Data Availability<br>• Acquisition and ingestion PCD monitor<br>• QA info<br>EOF |  |
|                             | [EOF] <sup>1</sup>                                                                                                                                                                                                                                                                         |  |

 Table B-2
 Transcription Exabyte Contents

1. if > 1 physical volume, end of each successive physical volume by 2 x EOF, end of last physical volume by 3 x EOF.

B-6



The Tape Header File Format is detailed in Table B-3.

| Field<br>Number | Number of<br>Bytes | Data Type | Byte<br>Position | Description                                                                                                                                                                                                                          |
|-----------------|--------------------|-----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 8                  | A         | 1-8              | Tape label. Copied to all reels<br>generated from the same command.<br>Also printed on the paper label.<br>This is the tape_id field provided in<br>the device_label field of a c_archive<br>command or a c_config_trans<br>command. |
| 2               | 2                  | I2        | 9-10             | Reel counter. First reel=1                                                                                                                                                                                                           |
| 3               | 1                  | В         | 11               | Tape type where:<br>'A' = Archive tape<br>'T' = Transcription tape                                                                                                                                                                   |
| 4               | 4                  | I4        | 12-14            | Spare                                                                                                                                                                                                                                |

 Table B-3
 Tape File Header Format

The Production Information File is detailed in Table B-4.

#### Table B-4 Production Information File Format (Transcribed Exabyte)

| Field<br>Number | Number<br>of Bytes | Data Type                   | Byte<br>Position | Description                                        |
|-----------------|--------------------|-----------------------------|------------------|----------------------------------------------------|
| 1               | 8                  | utc_time_m <sup>1</sup>     | 1-8              | Production date                                    |
| 2               | 4                  | I4                          | 9-12             | Satellite id                                       |
| 3               | 33                 | c_init_trans <sup>2</sup>   | 13-45            | Command from DPMC/CMS                              |
| 4               | 68                 | c_config_trans <sup>3</sup> | 46-113           | Command from DPMC/CMS that configured this Exabyte |
| 5               | 87                 | В                           | 114-200          | Spare field                                        |

1. The utc\_time\_m structure is defined in Document R-2.

2. c\_init\_trans structure is defined in Document R-2.

3. c\_config\_trans structure is defined in Document R-2.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



The Product File structure is detailed in Table B-5. The field sizes will depend on which product type (i.e., RATSR, EATC2, EWIC, ERAC, EWAC, EMWC or EGOC) the file contains. The product file will contain N extracted calibration data products for a specific product type. The first MPH has to be read in order to determine the actual product type.

| Field<br>Number | Number of<br>Bytes | Data Type        | Byte<br>Position | Description           |
|-----------------|--------------------|------------------|------------------|-----------------------|
| 1               | 176                | MPH <sup>1</sup> | 1-176            | First Product MPH     |
| 2               |                    | SPH              | 177->            | First Product SPH     |
| 3               |                    | DSR              |                  | First Product DSR(s)  |
| 1               | 176                | MPH              |                  | Second Product MPH    |
| 2               |                    | SPH              |                  | Second Product SPH    |
| 3               |                    | DSR              |                  | Second Product DSR(s) |
| •••             |                    | ••••             | ••••             |                       |
| 1               | 176                | MPH              |                  | Last Product MPH      |
| 2               |                    | SPH              |                  | Last Product SPH      |
| 3               |                    | DSR              |                  | Last Product DSR(s)   |

Table B-5Product Files

1. The MPH, SPH and DSR structures are detailed in Section 4.

The Directory File structure is detailed in Table B-6.

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



| Field<br>Number | Number of<br>Bytes | Data Type              | Byte<br>Position | Description                                                                                         |
|-----------------|--------------------|------------------------|------------------|-----------------------------------------------------------------------------------------------------|
| 1               | 4                  | I4                     | 1-4              | Number of extracted product files                                                                   |
| 2               | 4                  | I4                     | 5-8              | Total product data volume                                                                           |
| 3               | 57                 | tape_qa_info           | 9-65             | Transcription tape info as detailed in Section 4.6.2                                                |
| 4               | 435                | В                      | 66-500           | Spare field                                                                                         |
| 5               | 4                  | I4                     | 501-504          | Product File 1:<br>Number of non-zero products                                                      |
| 6               | 4                  | I4                     | 505-508          | Product File 1:<br>Total number of products                                                         |
| 7               | 176                | MPH <sup>1</sup>       | 509-684          | Product File 1:<br>MPH of first product                                                             |
| 8               | 176                | MPH                    | 685-860          | Product File 1:<br>MPH of last product                                                              |
| 9               | 4                  | I4                     | 861-864          | Product File 1:<br>Raw Data availability.<br>Contents is TBD.                                       |
| 10              | 4                  | I4                     | 865-868          | Product File 1:<br>Acquisition PCD monitor.<br>Contents is TBD.                                     |
| 11              | 4                  | I4                     | 869-872          | Product File 1:<br>Ingestion PCD monitor.<br>Contents is TBD.                                       |
| 12              | 8                  | trans_prod_<br>qa_info | 873-880          | Product File 1:<br>Orbit level product QA check as<br>detailed in Section 4.6.2 of<br>Document R-1. |
| 13              | 120                | В                      | 881-1000         | Product File 1:<br>Spare field                                                                      |

 Table B-6
 Directory File Format (Transcribed Exabyte)

Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document.



| byte) |
|-------|
| a     |

| Field<br>Number | Number of<br>Bytes | Data Type | Byte<br>Position | Description                                                                   |
|-----------------|--------------------|-----------|------------------|-------------------------------------------------------------------------------|
| 14-22           | 500                |           | 1001-1500        | Product File 2:<br>Fields for product file 1 repeated for<br>product file 2   |
| ••••            | 500                | ****      |                  |                                                                               |
|                 | 500                |           |                  | Product File N:<br>Field for product file 1 repeated for<br>last product file |

1. The MPH structure is detailed in Section 4.

# **B3.** Archive Exabyte Format

Table B-7 shows the file layout on Exabyte for products archived on the LRDPF.

| File                             | Contents                                                                                                                                                                                       |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tape Header File                 | <ul> <li>Tape Label</li> <li>Tape cassette Counter</li> <li>Tape type</li> <li>EOF</li> </ul>                                                                                                  |
| Production Information File      | <ul> <li>Production Date (UTC)</li> <li>Satellite id</li> <li>c_archive command defined in Section 4.5.1.2 of</li> <li>Document R-1</li> <li>Spare field (zero padded)</li> <li>EOF</li> </ul> |
| Product type 1 file <sup>1</sup> | MPH, SPH, DSR(s), IRG <sup>2</sup><br>MPH, SPH, DSR(s), IRG<br>"<br>EOF                                                                                                                        |
| Product file 2 file              | As for product file 1                                                                                                                                                                          |
| Product type N file              | As for product file 1                                                                                                                                                                          |

| Table | <b>B-7</b> | Archive | Exabyte | Contents |
|-------|------------|---------|---------|----------|
|       | -          |         | 2       |          |

B-10



| Table B-7         Archive Exab | vte Contents |
|--------------------------------|--------------|
|--------------------------------|--------------|

| File           | Contents                                                                                                                                                                                                        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Directory File | Number of product files<br>Descriptor for each product file:<br>• Number of non-zero products in file<br>• Number of total products in file<br>• MPH of first and last product in file<br>• Spare fields<br>EOF |
|                | [EOF] <sup>3</sup>                                                                                                                                                                                              |

1. Products are written to tape in same order as per the prod\_type\_list.

2. The IRG is placed after each product except for Instrument Header products where the IRG in addition is placed after the MPH, the SPH and each DSR.

3. if > 1 physical volume, end of each successive physical volume by 2 x EOF, end of last physical volume by 3 x EOF.

The Tape Header File Format is detailed in Table B-3.

The Production Information File is detailed in Table B-8.

|                 | Table D-           | 5 Troduction mitormation Ph | e Politiat (A    | chived Exabyte)                                                       |
|-----------------|--------------------|-----------------------------|------------------|-----------------------------------------------------------------------|
| Field<br>Number | Number<br>of Bytes | Data Type                   | Byte<br>Position | Description                                                           |
| 1               | 8                  | utc_time_m <sup>1</sup>     | 1-8              | Production date                                                       |
| 2               | 4                  | I4                          | 9-12             | Satellite id                                                          |
| 3               | 85                 | c_archive                   | 13-97            | c_archive command as<br>defined in Section 4.5.1.2 of<br>Document R-1 |

Table B-8 Production Information File Format (Archived Exabyte)

1. The utc\_time\_m structure is defined in Document R-2.

B

103

4

The Product File structure is detained in Table B-5. Note that the product files in the archived Exabyte may contain all types of products, not only extracted calibration data products.

98-200

Spare field (set to zero)

Note also that the following product types will appear as one product per file: ERAI, EWII, EGOI, EWAI, EATI1 and EATI2.

. . . .



## The Directory File structure is detailed in Table B-9.

| Field<br>Number | Number of<br>Bytes | Data Type        | Byte<br>Position | Description                                                 |
|-----------------|--------------------|------------------|------------------|-------------------------------------------------------------|
| 1               | 4                  | I4               | 1-4              | Number of archived product files                            |
| 2               | 4                  | I4               | 5-8              | Total product data volume                                   |
| 3               | 492                | В                | 9-500            | Spare field                                                 |
| 4               | 4                  | I4               | 501-504          | Product File 1:<br>Number of non-zero products              |
| 5               | 4                  | I4               | 505-508          | Product File 1:<br>Total number of products                 |
| 6               | 176                | MPH <sup>1</sup> | 509-684          | Product File 1:<br>MPH of first product                     |
| 7               | 176                | MPH              | 685-860          | Product File 1:<br>MPH of last product                      |
| 8               | 140                | В                | 861-1000         | Spare field (set to zero)                                   |
| 9-14            | 500                |                  | 1001-1500        | Product File 2:<br>Field 4-8 repeated for product file 2    |
|                 | 500                | ****             | •••••            |                                                             |
|                 | 500                |                  |                  | Product File N:<br>Field 3-7 repeated for last product file |

| <b>Table B-9</b> Directory File Format (Archived Exab.) |
|---------------------------------------------------------|
|---------------------------------------------------------|

1. The MPH structure is detailed in Section 4.

B-12

