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ABSTRACT 

In areas undergoing large scale constructional 
developments, such as cities in most of developing 
countries, there are abundant scatterers that are only 
partially coherent in some observation period.  In fact 
these scatterers still carry high-quality phase 
information at least in a subset of interferograms 
allowing us to estimate the deformation rates from 
them. Here the partially coherent scatterers as well as 
the persistently coherent scatterers are termed as 
Temporarily Coherent Points (TCPs). In this paper we 
provide two approaches for TCP identification. One is 
based on offset deviations during image pair 
coregistration procedure and the other one is based on 
Ambiguity Mad Median Ratio (AMMR). Since the 
TCPs might keep coherent in a subset of 
interferograms, we propose two deformation parameter 
estimators that can either be performed only with 
coherent phases of TCPs or have the ability to suppress 
the effect of decorrelated phases and phase ambiguities 
that are considered as “outliers” when taking all 
interferograms as observations.  We apply the 
techniques to map land surface deformation over 
Macau, China. The results from our TCPInSAR 
processing have been confirmed by ground 
measurements. 
 
1. INTRUDUCTION 

Multi-temporal InSAR (MT-InSAR) [1][2] is a useful 
tool for remote sensing of ground deformation. As the 
basic observations of current MT-InSAR techniques, 
persistently coherent scatterers can usually be densely 
identified from radar images over well-developed 
urban areas where the townscapes have evolved into a 
stable stage. With the dense coherent scatterers the 
current MT-InSAR techniques can be successfully 
applied. However there are many urban areas, 
especially in developing countries, which are 
undergoing rapid constructional development. 
Urbanization makes it difficult to identify abundant 
persistently coherent scatterers and thereby hampers us 
from achieving a better risk assessment over these 
areas. Over these changing landscapes, many scatterers 
cannot maintain consistently coherence during the 
whole observation time span even though they still 
carry high-quality phase signals at least in a certain 
period to allow for an estimate of land surface 
deformation [3][4].  

 
The coherent points on changing landscapes can 
basically be classified into two types. One type is the 
persistently coherent scatterers (e.g., PS) and the other 
type is partially coherent points. Both of these points 
hereafter are referred to as Temporally Coherent Points 
(TCPs).   In this paper we present a novel MT-InSAR 
analysis technique termed as TCPInSAR to identify the 
TCPs and retrieve ground deformation rates from these 
points. Regarding the identification of TCPs, besides 
the method shown in [5] which is an image pair based 
method, we also propose an image (amplitude) based 
method. The method is similar to the amplitude 
dispersion index [1], but based on the Ambiguity Mad 
Median Ratio (AMMR) that has the ability to isolate 
partially coherent points. To estimate deformation from 
these TCPs, we propose two parameter estimators. One 
is modified from [6] by involving a coherence index to 
remove interferograms where the point pair is not 
coherent simultaneously. The other estimator is 
especially designed for the TCPs selected by AMMR. 
Since AMMR dose not identify interferograms where 
the selected TCPs are coherent, when taking all 
interferograms as the phase times series for a given arc, 
some decorrelated phases might exist.  Therefore we 
need to design a robust estimator that can suppress the 
effects of low-quality phases and the potential phase 
ambiguities at arcs to retrieve the deformation reliably. 
Here we select L1 norm (also called least absolute 
deviations) estimator to meet our purpose, which has 
been used in [7] to improve the robustness of SBAS 
method. The basic observations of the proposed 
estimators are differential phases at arcs (point pairs) in 
multi-master interferograms with small spatial 
baselines, short temporal baselines, and small Doppler 
separations. One significant advantage of our 
estimators is that the deformation parameters can be 
estimated directly from the wrapped phases. In other 
words, there is no need of phase unwrapping. To 
evaluate the performance of the proposed TCPInSAR 
method, we choose the southern part of Macau as the 
test site. The area experienced rapid development from 
2003 to 2010.  Comparison with ground measurements 
has confirmed the validity of the results achieved 
through TCPInSAR method. 
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2. TEMPORARILY COHERENT POINT INSAR 

2.1. TCP identification 

The identification of TCPs is the first core step in 
TCPInSAR processing. Two methods i.e., image pair 
based method and image based method, are introduced 
respectively in this section. 
 
2.1.1  Image pair based method 
 
The TCPs can primarily be identified based on the 
offset deviation in range and azimuth directions. The 
equation derived by Bamler and Eineder [8] indicates 
that standard errors of the estimated offsets from 
stronger scatterers is less sensitive to the window size 
and oversampling factor used in the image cross-
correlation compared with those from distributed 
scatterers. Therefore it is possible to distinguish the 
strong scatterers from distributed scatterers by offset 
statistics. The detailed analysis and test of the method 
can be found in [5]. Here we propose an improved 
processing strategy which can significantly accelerate 
the TCP selection. Using the master image, we first 
identify points that can keep almost the same 
backscattering intensity when processed with fractional 
azimuth and range bandwidth as the TCP candidates. 
Second, TCP candidates are further evaluated by 
changing the size of patches and the oversampling 
factor in image cross-correlation. For the sake of 
simplicity, a fixed oversampling factor can be used. 

We can then obtain an offset vector ( jOT ) for a given 

TCP candidate ( j ) which includes the offsets 

( , 1, ,jiot i N  ) estimated from N windows with 

changing sizes as shown in Eq.1. Points whose 
standard errors of offsets are less than a threshold are 
selected as TCPs. The threshold can be set as 0.1 
considering the fact that when the precision of 
calculated offsets reaches 0.1 pixels or better, the 
coregistration error would be negligible [9]. 
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The precise offsets at TCPs are actually the by-product 
of TCP selection, which can be used to resample the 
corresponding points in the slave images. 
 
Since we identify the TCPs based on image pairs, we 
exactly know in which image pairs the points are 
coherent, which could work as an indicator to select 
interferograms for parameter estimation. 
 
2.1.2  Image based method 
 
Ferretti et al. proposed an amplitude dispersion index 
( v ) to identify the persistent scatterers (PS) according 

to the relationship between the amplitude stability and 

phase stability [1].  The index works well for radar 
targets having high phase stability over the whole 
observation period, however it can not identify 
scatterers behaving as PS only on a subset of images 
(i.e., partially coherent points). Here we propose a new 
index termed as Amplitude Mad Median Ratio 
(AMMR) that can identify the partially coherent points, 
which is defined as 
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Where AMedian is the middle value of sorted intensity 

vector ( A ) corresponding to a given pixel, and 

AMad is the median absolute deviation which is 

expressed as 

( ( ) )AMad Median Median A A             (3) 
Simulation tests indicate that the AMMR can identify 
TCPs efficiently. We also found that if working with a 
criterion on minimum value of SLC intensities, the 
robustness of AMMR can be further improved. It 
should be noted that AMMR dose not indicate 
interferograms where the selected TCPs are coherent. 
Therefore when taking all interferograms as 
observations, we need to design a robust deformation 
parameter estimator that can suppress the effects of 
decorrelated phases and possible phase ambiguities. 
 
2.2. TCP parameter estimator 

In this section we provide two estimators that can 
retrieve deformation signals from wrapped 
interferometric phases without the need of phase 
wrapping.  Since TCPs include the partially coherent 
points, we only estimate the height errors at TCPs and 
their linear LOS deformation rates. 
 
2.2.1 Observation model 
 
Phase differences at arcs constructed from two 
neighbouring TCP pixels are the basic observations of 
the deformation parameter estimators. Considering 
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sequence 0 1( )Jt t t  and I interferograms with 
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where , , ', 'l m l mh is the difference of the topography 

residuals at two TCPs and
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is the corresponding coefficient; , , ', '
i
l m l mw includes 

differential phase related to atmospheric artifact 

( , , , ', '
i
atmo l m l m ), orbital error ( , , , ', '

i
orbit l m l m ), Doppler 

centroid difference ( , , , ', '
i
dop l m l m ), and other noise 

( , , , ' '
i
noise l m l m ). Because the differencing operation can 

significantly reduce the effects of spatially correlated 
atmospheric artifacts and baseline errors, 

, , ', '
i
l m l mw should be small and can be safely taken as a 

random variable with an expectation , , ', '( ) 0i
l m l mE w  . 

The observation model for arcs without phase 
ambiguities can be expressed as 
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where  is a vector containing phase differences 
between two adjacent pixels in a total of 
I interferograms. A is the design matrix including 
height-to-phase conversion factors and time 
combination matrix. W is a stochastic vector. 
 
2.2.2 Least squares estimator with ambiguity 
detector 
 
Before performing least squares on Eq. (5), we need to 
select interferograms for each arc to make sure the 
observations at the two TCPs are both the high quality 
differential phases (Fig.1).  

 
 

Figure 1. Illustration of interferogram selection for 
each arc before least squares. 

 
With the remained observations, we can get the least 
squares solutions for each arc. 
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where the circumflex ̂  denotes estimated quantities; 
ddP  is the weight matrix which can be obtained by 

taking the inverse of the variance matrix of the double-
difference phases and r is the least squares residuals. 
The corresponding covariance matrices of the 
estimated quantities are 
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It should be noted that  might contain phase 
ambiguities at some arcs. The resolved parameters at 
these arcs are obviously wrong and we need to remove 
these arcs before getting the final parameters at TCPs. 
Comparison between least squares residuals of arc with 
and without phase ambiguities indicates that residuals 
can be used to isolate the arcs with ambiguities (Fig. 
2). The details can be found in [6]. 
 
2.2.3 L1 norm estimator  
 
As mentioned before the TCPs selected by AMMR do 
not have a coherence index indicating interferograms  



 

 

 
 
 
where they are coherent. Therefore we have to design a 
roust parameter estimator that can suppress the effects 
of low-quality phases and the potential phase 
ambiguities at arcs.  L1 norm estimator is no doubt a 
promising choice, which has been used in [7] for a 
robust SBAS. The performance of L1 norm estimator 
on observations having decorrelated phases and phase 
ambiguities is shown in Fig. 3. L1 norm estimator can 
be performed in many ways. Two typical ways are the 
iteratively reweighted least squares (IRLS) and linear 
programming. For a linear programming problem, L1 
norm of the observation model, 

, , ,

, , ,minimize l m l mi
l m l m ij

i j

h
A

V
  

 

 
     

      (8) 

can be rewritten as 
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Figure 3. L1 norm estimation on observations with 

decorrelated phases and phase ambiguities 

 
 
 

which is equivalent to the following linear 
programming problem: 
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With a linear programming software package, Eq. (10) 
can be easily solved.  
 
To evaluate the performance of the L1 norm estimator, 
we test it on a set of differential phases at an arc 
(Fig.3). The result indicates that the L1 norm estimator 
can precisely retrieve parameters from observations 
containing decorrelated phases and phase ambiguities. 
 
2.2.4 TCP parameters 
 
After obtaining the parameters (i.e., DEM errors and 
deformation rates) at arcs we can get the parameters at 
TCPs by spatial integration with respect to a given 
reference point, which can also be performed by least 
squares [6]. 
 
3. CASE STUDY 

3.1. Test site and data 

The southern part of Macau (Fig.4), which has 
experienced rapid development in the past ten years, is 
selected as our test site to evaluate the performance of 
the proposed TCPInSAR method.  
 

Figure 2. The least squares residuals at arcs with and without phase ambiguities 



 

 

 
 

Figure 4. Test site 
 

 
 

Figure 5. The location of TCPs selected by offset 
deviation (A), coherence (0.5) (B), amplitude 

dispersion index (0.6) (C) and AMMR (0.25) (D). The 
color bar indicates the appearing times of the TCPs in 

the interferograms 
 
With a maximum spatial baseline of 150m, a maximum 
temporal baseline of 250 days and a maximum Doppler 
centroid difference of 300 Hz, we select 81 

interferograms from 38 Envisat/ASAR images 
acquired in the period of 2003-2010.  
 
3.2. Result 

Offset deviation and AMMR are first employed to 
identify the TCPs shown in Fig. 5 together with the 
results from the coherence threshold and amplitude 
dispersion index.  For TCPs selected by offset 
deviation, we perform the least squares estimation and 
ambiguity detector. The retrieved LOS linear 
deformation rate is shown in Fig.6 (A). For the TCPs 
selected by AMMR, we perform the L1 norm estimator 
and the corresponding solution is shown in Fig.6 (B).  
Comparison with ground measurements provided by 
DSCC of Macau has confirmed the validity of the 
results achieved through TCPInSAR method. 
  
4. CONLUSIONS 

On changing landscapes, there are abundant scatterers 
that are not consistently coherent. However these 
scatterers still carry high quality phases in a subset of 
interferograms which can be used for the retrieval of 
deformation rates. In order to identify both the 
persistently coherent points and partially coherent 
points and reliably estimate the deformation rate at 
these points, we have proposed a new method named 
TCPInSAR consisting of two TCP identification 
thresholds and two robust deformation parameter 
estimators.  The method has been applied to the 
southern part of Macau and the estimated deformation 
map has been validated by the ground measurements. 
Currently the TCPInSAR method is being applied on 
several other test sites with data acquired by different 
SAR sensors. Future work will focus on extensively 
validating the performance of TCPInSAR method.  
 

Test site 



 

 

 
 

Figure 6. Deformation rate over Southern part of 
Macau estimated by least squares estimator with 
ambiguity detector (A) and L1 norm estimator (B) 
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