

CNES POD Activities

Timothée BRAZ², Alexandre COUHERT¹, Vincent DEBOUT², Katsigianni GEORGIA³, Sabine HOURY¹, Flavien MERCIER¹, John MOYARD¹, Eléonore SAQUET³

¹Centre National d'Etudes Spatiales

²CS-SI, Toulouse, France

³Collecte Localisation Satellites, Toulouse, France

A proven expertise

Precise Orbit Determination (POD) aims at deriving satellite trajectories with highest accuracy

Last achievement: 5 mm in the radial direction / 9 mm 3D (DORIS+GNSS orbits)

A team of 7 people from the CNES Orbit Determination Department defines and computes precise and homogeneous orbit solutions for the following satellite altimetry missions:

CryoSat-2 ESA

Saral/AltiKa

Jason-3 ISRO/CNES CNES/NASA **EUMETSAT/NOAA**

Sentinel-3A **ESA**

Sentinel-3B ESA

CFOSAT CNSA/CNES

HY-2B **NSOAS**

HY-2C **NSOAS**

Sentinel-6A **ESA/NASA EUMETSAT/NOAA**

Experience gained with the past altimeter missions initiated by TOPEX/Poseidon (1992) and continued through Jason-1, Envisat, OSTM/Jason-2, HY-2A, and with the currently flying satellites

- State of the art force and geometric models implemented in CNES ZOOM orbit estimation software
- **Expertise on DORIS/GNSS/SLR measurements** (member of the IDS/IGS/ILRS Working Groups)
- Periodically define and produce an **updated set of orbits and geophysical standards** to address short-term and long-term orbit errors impacting mean sea level change estimates

POE-F Orbital Standards

Comparison for ENVISAT CNES POE-F versus CNES POE-E

Used dataset

Reference data: all cycles from 6 to 113 (May 2002 to April 2012) reprocessed into a homogeneous standard (so called V3.0 version)

Analysis span over cycle 007 (17/06/2002) to cycle 113 (08/04/2012)

Reference orbit : CNES POE-E
Studied orbit : CNES POE-F

Direct comparison
between
CNES POE-F
and
CNES POE-E
with FLAG_VAL

Difference between orbits throughout time

Global bias : \sim -0,03cm 22/10/2010 : Envisat moved to a new lower orbit No significant trend (\sim 0.02mm/yr.)

Standard deviation of CNES_POE_F - CNES_POE_E

Maps of differences of orbit

Geographically correlated difference with a maximum of ~0.2 cm

Differences of orbits per year

4 months available for 2012

Geographical patterns are higher for 2005-2006 compared to other years

Impact on along-track SLA performances

Difference of SLA variance

→ No significant impact on global SLA std, But geographically correlated patterns

VAR(SLA with CNES_POE_F) - VAR(SLA with CNES_POE_E)

Percentage of X_SLA error reduction

2

-2

Impact of CNES POE-F on performances at crossovers

Temporal evolution at crossover

Standard deviations of SSH crossovers for SL2 selection

22/10/2010: Envisat moved to a new lower orbit

Means at crossovers (selection on |latitude|<50°, bathy<-1000m, oceanic variability < 0,2):

CNES POE-F	-0,36 cm
CNES POE-E	-0,47 cm

Mean of SSH difference at Crossover per year (CNES POE-E)

6 months available for 2002

4 months available for 2012

Mean of SSH difference at Crossover per year (CNES POE-F)

22/10/2010 : Envisat moved to a new lower orbit

Mean (cm)

Mean (cm)

Small reduction of geographical patches of mean difference at crossovers from POE-E (previous slide) to POE-F in pacific ocean and indian ocean

available

for 2012

Mean (cm)

Difference of variance at crossover

1 crossovers: VAR(SSH with CNES_POE_F) - VAR(SSH with CNES_POE_E) (S

Slight decrease (-0,13cm²) of the variance of SSH at crossovers for CNES POE-F wrt CNES POE-E:

cycle 95 (drifting orbit): not significant wrt coverage cycles 108 & 109 (end of 2011)

Impact of
CNES POE-F on
long term drift of
SLA (MSL)

Periodogram

Small impact on annual signal, Higher in southern hemisphere than in northern

Periodogram of north hemisphere SLA (reference period = 1 year)

Periodogram of south hemisphere SLA (reference period = 1 year)

Global and regional MSL trends

No significant impact on global MSL trend

North/South patterns (~0,5mm/yr)

EnviSat POE-F vs POE-E

Conclusions

No significant impact on GMSL trend and regional trends differences up to +/-0.5mm/yr

Mean of the difference of SSH at crossover is slightly reduced (from 0.47cm to 0.36cm in average)

Variance at crossovers is slightly reduced using POE-F instead of POE-E for cycle 016 onwards

