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Motivation

* Noise covariance in individual interferograms
has been well studied. (Hanssen, 2001)

 Extend the noise model to networks of
Interferograms — time-series applications.

« Develop uncertainty measures for time-series
INSAR products.

 Build an InNSAR noise covariance model from
first principles.




Independent Observations ?

| A X Simple network
Simplest of coherent
interferogram pixels in a single
network Y interferogram.

B

 Is information contained in interferogram BC different
from information in AB and AC?

* Is information at X,Y and Z pixels independent?

« Conventionally any covariances are ignored.
— Simplicity.
— Ease of implementing algorithms.




Single pixel phase model
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Vector Phase model
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M Interferograms, N SAR scenes, P pixels
A represents the incidence matrix [+1,0,-1].

Pixel-by-pixel stack of phase observations.




Phase Covariance model
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In absence of deformation, our noise estimate Is
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Assuming statistical independence of the noise terms.

Total covariance matrix is a combination of three models.
» Atmosphere
» Scattering / decorrelation
» System noise



Atmospheric Phase Models
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Derived from the data itself
using radon transform.
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APS Covariance model
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Decorrelation model

A2

2|B|R,, cos® § s B
Pspatial — 1 - A7
25in 0|do| Re
Protation — 4+ — b\ 02 5
| dor y sin 62 _—y sin 61
Ptemporal = eXP{— 5(7)2(0’; sin” ¢ + 0’3 cos? 9)} Surface P, )
Y

Center of Resolution Element

« Zebker and Villasenor (1992), Bamler and Just (1993).

« SAR pixel made up of infinite Gaussian scatterers.




Observable: InNSAR coherence
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* INSAR coherence is a
function of phase noise.
* We derive a model to relate
coherence directly to noise
covariance matrix.
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 Actual temporal behavior
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Just and Bamler (1994)
Gaussian signal model
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Decorrelation covariance model

1)

2)

3)

4)

SAR phase correlation
of one pixel from
INSAR coherence.

Pseudo-correlation of

one pixel in all
Interferograms.

Covariance of one

pixel in all IFGs. (Pixels
are uncorrelated with
each other.)

Repeat for every pixel.
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System (processor) noise

« Two SAR scenes — A and B.

* Form two interferograms AB, BA.
 AB * BA = 0 (theoretically).
 We observe a noise pattern.
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f MOCOMp Processor over
* Parkfield, CA.

0.02r-

.« Diagonal structure.

0 1




Spatial structure: Implication
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« SBAS => pixel-by-pixel inversion.
« MINnTS => wavelet coefficient-by-coefficient.

Poster Today: Multi-scale INSAR Time Series (MINTS) analysis of
the creeping section of the San Andreas Fault




What does MInTS do?

Cq= A exp(L/Ly) Corresponding wavelets coefficients
L.= 25 km C nearly uncorrelated
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C, = WC;W’' where W is the wavelet transform matrix




Temporal correlation: Implication

Hanssen (2001)
 Y.,s ISthe only correlated noise componentin a

~aps

network of IFGs.

¢« ¥ + 3, => diagonal covariance matrix.
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Our model
 Consistent with decorrelation models.

« Even if the atmospheric phase signal could be
perfectly corrected, scatterer noise would still be
correlated in time.

* Weighting scheme for INSAR observations in time
domain. (Not in MInTS yet)




Thus far ...

* We have a presented a covariance model in space and
time

« Accounts for
v’ System noise
v" Interferograms with common scene
v’ Decorrelation phase model
v' Atmospheric propagation delays

* Does not yet account for
 Orbit errors
 Tropostatic delays
1 lonospheric delays




Application: Optimal IFG networks

Questions of Interest for data centers
1. Given M SAR scenes, what is the optimal IFG network
of size N?

2. Given a network of IFGs, how do | augment it optimally
with new SAR scenes?
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* O Is the temporal baseline matrix.
« v isthe LOS velocity.

« C, Is the uncertainty in estimated velocity.




Algorithms: Subset of Observations

* M SAR scenes = 2(M?4/2) IFG networks. Impossible to
evaluate all networks.

» Subset of observations (Reeves and Zhe, 1999).

« Sequential Backward Selection (SBS) — Remove IFG that
contributes the least at each step.

« Sequential Hybrid Selection (SHS) — Allows IFG already
removed to re-enter optimal solution at later stage.

* Any reasonable metric chosen to optimize network — we
choose LOS velocity uncertainty for this work.




Example: 9 SAR scenes

Monthly acquisitions with zero geometric baseline.
Decorrelation time constant of 0.36 yr and 1 cm atmosphere.

Total number of viable IFGS =21
« 8 one hop IFGs (blue)
« 7two hop IFGs (green)
* 6 three hop IFGs (red)




Example: Pruning networks

Optimal 15/21 IFG network using SBS/ SHS.
Uncertainty ratio = 1.05

Optimal 8/21 IFG network using SBS/ SHS.
Uncertainty ratio = 1.12
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Network design
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1. SBS/ SHS allows us to design networks of any size.

2. Allows us to prioritize processing of IFGs.

3. Great for designing networks with large number of
acquisitions.




Example: Augmenting networks

Adding 1 new SAR scenes and 2 IFGs to existing
networks.




Conclusions

INSAR phase observations are correlated over space
and time - not independent observations.

Accounting for spatial correlation significantly improves
deformation estimates (e.g. MInTS).

Observed INSAR coherence can be directly translated
to a temporal covariance matrix using a model.

A noise covariance model allows us to provide
conservative error estimates with time-series products.



