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Motivation

• Noise covariance in individual interferograms 

has been well studied. (Hanssen, 2001)

• Extend the noise model  to networks of 

interferograms – time-series applications.

• Develop uncertainty measures for time-series 

InSAR products.

• Build an InSAR noise covariance model from 

first principles.



• Is information contained in interferogram BC different 

from information in AB and AC?

• Is information at X,Y and Z pixels independent?

• Conventionally any covariances are ignored.

– Simplicity.

– Ease of implementing algorithms.
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Pixel x in interferogram (i,j)

i and j are indices of SAR acquisitions.



Vector Phase model

M Interferograms, N SAR scenes, P pixels

A represents the incidence matrix [+1,0,-1].

Pixel-by-pixel stack of phase observations.



Phase Covariance model

Assuming statistical independence of the noise terms.

Total covariance matrix is a combination of three models.

 Atmosphere

 Scattering / decorrelation

 System noise

In absence of deformation, our noise estimate is 



Atmospheric Phase Models

S. Jonsson (PhD thesis)

Derived from the data itself 

using radon transform.

Hanssen (2001)

Emardson et al. (2003)

Lohman & Simons (2005)



APS Covariance model 

1) Spatial covariance 

for a SAR scene.

2) Covariance of all 

pixels in one SAR 

scene.

3) Covariance of all 

pixels in all SAR 

scenes. 

4) Covariance of all 

pixels in all IFGs.



Decorrelation model

B

• Zebker and Villasenor (1992), Bamler and Just (1993).

• SAR pixel made up of infinite Gaussian scatterers.



Observable: InSAR coherence

Just and Bamler (1994)

Gaussian signal model

• InSAR coherence is a 

function of phase noise.

• We derive a model to relate 

coherence directly to noise 

covariance matrix.

• Actual temporal behavior 

of scatterers not known.

• We use a signal model 

instead.



Coherence => Signal Model => Stats

Number of looks taken into account for the mapping.

SAR phase correlation InSAR phase variance

Observed InSAR coherence 



Decorrelation covariance model

1) SAR phase correlation

of one pixel from 

InSAR coherence.

2) Pseudo-correlation of 

one pixel in all 

interferograms. 

3) Covariance of one 

pixel in all IFGs. (Pixels 

are uncorrelated with 

each other.)

4) Repeat for every pixel.



• Two SAR scenes – A and B.

• Form two interferograms AB, BA.

• AB * BA = 0 (theoretically).

• We observe a noise pattern.

• Noise levels for ALOS => 

0.15 rads or 8 degs.

• Estimates using Stanford 

mocomp processor over 

Parkfield, CA.

• Diagonal structure.

System (processor) noise 



Spatial structure: Implication

• SBAS => pixel-by-pixel inversion.

• MInTS => wavelet coefficient-by-coefficient.

Poster Today: Multi-scale InSAR Time Series (MInTS) analysis of 
the creeping section of the San Andreas Fault



What does MInTS do?

Cd= A exp(L/Lc)

Lc= 25 km

Corresponding wavelets coefficients 

nearly uncorrelated



Temporal correlation: Implication

Hanssen (2001)

• is the only correlated noise component in a 

network of IFGs.

• =>  diagonal covariance matrix.

Our model

• Consistent with decorrelation models.

• Even if the atmospheric phase signal could be 

perfectly corrected, scatterer noise would still be 

correlated in time. 

• Weighting scheme for InSAR observations in time 

domain. (Not in MInTS yet)



Thus far …

• We have a presented a covariance model in space and 

time

• Accounts for

 System noise 

 Interferograms with common scene

 Decorrelation phase model

 Atmospheric propagation delays

• Does not yet account for 

 Orbit errors

 Tropostatic delays

 Ionospheric delays



Application: Optimal IFG networks

• is the temporal baseline matrix.

• is the LOS velocity.

• C is the uncertainty in estimated velocity.

Questions of Interest for data centers

1. Given M SAR scenes, what is the optimal IFG network 

of size N?

2. Given a network of IFGs, how do I augment it optimally 

with new SAR scenes?



• M SAR scenes   =  2^(M2/2) IFG networks. Impossible to 

evaluate all networks.

• Subset of observations (Reeves and Zhe, 1999). 

• Sequential Backward Selection (SBS) – Remove IFG that 

contributes the least at each step.

• Sequential Hybrid Selection (SHS) – Allows IFG already 

removed to re-enter optimal solution at later stage.

• Any reasonable metric chosen to optimize network – we 

choose LOS velocity uncertainty for this work.

Algorithms: Subset of Observations



Total number of viable IFGS = 21

• 8 one hop IFGs    (blue)

• 7 two hop IFGs     (green)

• 6 three hop IFGs   (red)

Example: 9 SAR scenes

Monthly acquisitions with zero geometric baseline.

Decorrelation time constant of 0.36 yr and 1 cm atmosphere. 



Example: Pruning networks

Optimal 15/21 IFG network using SBS/ SHS.

Uncertainty ratio = 1.05

Optimal 8/21 IFG network using SBS/ SHS.

Uncertainty ratio = 1.12



Network design 

9 SAR scenes 30 SAR scenes

1. SBS/ SHS allows us to design networks of any size.

2. Allows us to prioritize processing of IFGs. 

3. Great for designing networks with large number of 

acquisitions.



Example: Augmenting networks

Adding 1 new SAR scenes and 2 IFGs to existing 

networks.



Conclusions

• InSAR phase observations are correlated over space 

and time - not independent observations.

• Accounting for spatial correlation significantly improves 

deformation estimates (e.g. MInTS).

• Observed InSAR coherence can be directly translated 

to a temporal covariance matrix using a model.

• A noise covariance model allows us to provide 

conservative error estimates with time-series products.


