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ABSTRACT

Compact High Resolution Imaging Spectrometer onboard the Project for On-board Autonomy, or CHRIS/Proba,
represents a new generation of satellite images that provide different acquisitions of the same scene at five different
angles. Given the hyperspectral-oriented waveband configuration of the CHRIS images, the scope of its application
would be much wider if the present 17m nadir resolution could be refined. This paper presents the results of three
superresolution methods applied to multiangular CHRIS/Proba data. The CHRIS images were preprocessed and then
calibrated into reflectance using the method described in [1][2]. Automatic registration using an intensity variation
approach described in [3] was implemented for motion estimation. Three methods, namely non-uniform interpolation
and de-convolution [4], iterative back-projection [5], and total variation [6] are examined. Quantitative measures
including peak signal to noise ratio [7], structural similarity [8], and edge stability [9], are used for the evaluation of the
image quality. To further examine the benefit of multi-frame superresolution methods, a single-frame superresolution
method of bicubic resampling was also applied. Our results show that a high resolution image derived from
superresolution methods enhance spatial resolution and provides substantially more image details. The spectral profiles
of selected land covers before and after the application of superresolution show negligible differences, hinting the use of
superresolution algorithm would not degrade the capability of the data set for classification. Among the three methods,
total variation gives the best performance in all quantitative measures. Visual inspections find good results with total
variation and iterative back-projection approaches. The use of superresolution algorithms, however, is complex as there
are many parameters. In this paper, most of the parameter settings were tuned manually or decided empirically.

Keywords: CHRIS/Proba, hyperspectral, superresolution, non-uniform interpolation and de-convolution, iterative back-
projection, total variation

1. INTRODUCTION

Hyperspectral remote sensing images are effective in many application domains where conventional broadband multi-
spectral imagery finds its limits. For examples, in a study of mapping detailed ecotopes, hyperspectral images are 10%
higher in overall accuracy compared to simulated Landsat images [10]. Hyperspectral analyses in urban land cover types
draw similar conclusions. In a detail study on spectrometry for urban area [11], Herold et al. concluded that current
multispectral systems such as IKONOS and Landsat ETM+ only provide marginal ability to resolve the separation of
important urban land features. Despite the comparative advantages of hyperspectral images for land cover mapping in
both rural and urban areas, their use for operational mappings remains limited. One reason is that the availability of
hyperspectral data at high resolutions is still scarce. Though airborne hyperspectral acquisitions provide very fine
resolution data, its use for large-scale mapping, at national or continental scales for examples, is not practical not just
because of cost, but also because of technical issues concerning data consistency. Comparing with spaceborne data,
airborne acquisitions are less flexible in regular revisiting, and the mosaicking of airborne data are often not
straightforward due to distortions in spectral properties at the edge of the scans. Hence, for the mapping of large areal
coverage, satellite images are still a preferred option. Among the more well-known spaceborne hyperspectral-oriented
data is CHRIS/Proba which provides multiple observations of the same scene at five different angles (+55, +36, 0, -36, -
55). The mode 3 (land channel) acquisition consists of 18 bands between 0.4-1um. Its multiple acquisitions can be used
as inputs for superresolution image reconstruction which is a technique to produce a high resolution (HR) image from
several low resolution (LR) images [12]. Superresolution methods have been applied to remote sensing images such as
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Landsat [13][14], SPOT [15], Quickbird [14], multi-looking thermal data [16], as well as hyperspectral data [17]. Most
of the previous studies are based on multitemporal data. To date there is no work on SR’s application on CHRIS/Proba
images. In this paper, we present the latest results of applying different SR methods on CHRIS/Proba images. The
objective is to further our understanding of a high resolution CHRIS image derived from conventional SR methods.
Quantitative indices as well as visual assessments are used to evaluate the SR image results. The pros and cons of the
conventional methods are also discussed.

2. SUPERRESOLUTION METHODS

SR techniques are closely related to the problems of image restoration and image interpolation. The purpose of image
restoration is to recover a degraded image without changing the dimension of the image. Based on similar theories as
image restoration, SR can be considered as a second generation of image restoration techniques which also change image
dimension. Image interpolation techniques can be used to increase the size of an image. However, the quality of a single
LR image is limited and interpolation based on an undersampled image does not allow recovering the lost high-
frequency information. Hence multiple observations of the same scene are needed.

Superresolution refers to the reconstruction methods that can be applied to obtain an image with higher spatial resolution
through the use of several lower-resolution (LR) images. The main objective is to achieve the best image quality possible
from several LR images. However, not all LR images are useful for SR. The application of SR algorithms is possible
only if aliases exist, and the images have sub-pixel shifts. There are many different SR techniques and they can be
applied in the frequency domain or the spatial domain. However, the latter provides better flexibility in modeling noise
and degradation, we focus our analysis in the spatial domain [18]. Conventional spatial domain methods include the non-
uniform interpolation approach, the regularization reconstruction approach, the projection onto convex sets approach,
hybrid approaches and others [12]. SR can also be applied on a single-frame LR image [19], which is more commonly
referred to as image scaling, interpolation, zooming and enlargement.

An important step in SR is to provide a model of the relationship between the original high resolution image and a set of
LR images of the same scene. If we have p LR images, then the relationship between the LR images Yy and the HR image
X can be formulated as follows:

Y =D C R X +n ,for I<k<p (1)
or
Y1 DCH n
= X+ 2)
Yp DyCpFyp Np

where y, stands for the k™ LR image written in lexicographical notion as the vector y, = [Yi1s Yk2oYioN 1", Nis the
pixel number of LR image, X stands for the high resolution image, Dy is sub-sampling matrix, C, represents the blur

matrix, Fy is a warp matrix and n, is the image noise.

The mathematical formulation of SR problem is well suited for the description of image degradation, namely, blurring,
noise and sub-sampling. Only by modelling this degradation in a rigid way can we conquer these constraints and enhance
image resolution in the end. Based on the model given above, different approaches can be formulated. We have chosen
three of the more classic and intuitive methods for our experiments.

2.1 Registration

The main procedure of SR consists of three steps: registration, interpolation and restoration. Registration is an important
step and a prerequisite for successful SR implementations. The method we used is an intensity-based approach which
considered also intensity variations of the same location in LR images. The method was first proposed in medical
imaging and the affine transform is automatically estimated. We use the toolbox provided by the authors for our



registrations and motion estimation [http://www.cs.dartmouth.edu/farid/research/registration.html]. For the details of the
method, the reader is referred to [3].

2.2 Non-uniform Interpolation and De-convolution

As the relative shifts between the LR images are arbitrary, it is natural that the interpolation is non-uniform. This is the
most intuitive method of SR. The first step is to estimate the shift. It is followed by a non-uniform interpolation to
produce a HR image. The last step is a deblurring process [4].

Interpolation and de-convolution methods treat SR as a resampling problem where a high resolution (HR) image is first
simulated and then interpolation was carried out. To further reduce the blurring effects of the result of interpolation, a de-
convolution process is needed. We used a constrained least squares de-convolution technique based on Tikhonov
regularization, where the priori information makes sure the second derivative of the solution image is minimized [20].

Comparing to other techniques, this method is cheaper in computational costs. However, since the errors at the
interpolation process is not accounted for during the de-convolution, it does not guarantee an optimal solution.
Furthermore, this approach applies only to the case when the blur and the noise effects are constant over the lower
resolution images. Hence, the use of degradation models is limited in this approach.

Our implementation

We estimated the shift using the automatic intensity-based method [3]. For the interpolation, the griddata function in
Matlab is used with the option of triangle-based cubic interpolation. This interpolation function is based on the Quickhull
algorithm described in [21]. The de-convolution step is done using a point spread function decided empirically.

2.3 Iterative Back-Projection (IBP)

First proposed in [5], IBP is based on a similar idea as the computer-aided tomography where a 2-D object is
reconstructed from its 1-D projections. The method involves a registration procedure, an iterative refinement for
displacement estimation, and a simulation of the imaging process (the blurring effect) using a point spread function.

This approach begins by guessing an initial HR image. This initial HR image can be generated from one of the LR
images by decimating the pixels. This initial HR image is then downsampled to simulate the observed LR images. The
simulated LR images is subtracted from the observe LR images. If the initial HR image was the real observed HR image,
then the simulated LR images and the observed LR images would be identical and their differences zero. Hence, the
computed differences can be “back-projected” to improve the initial guess. The back-projecting process is repeated
iteratively to minimize the difference between the simulated and the observed LR images, and subsequently produce a
better HR image.

The iterative procedure is described by

XM= X" GBP(HX -Y) (3)
Y DCH

where Y = and H =
Yp DpCpFyp

cha represents the back-projection filter, X "1is the improved HR image at the n+1 iteration, and X" is the HR image
at the n iteration.

IBP is intuitive hence easy to understand. However, its ill-posed nature means that there is no unique solution. The
choice of back-projection filter is arbitrary. Compared to other approaches such as regularization approaches, it is more
difficult to incorporate prior information.



Our implementation

The same intensity-based registration is used [3]. We treated the back-projection filter as a transpose of a PSF which is
approximated by a 7 x 7 kernel with variance set at 1.6.

2.4 Total Variation

Superresolution is a typical ill-posed problem because of the insufficient LR images and ill-conditioned blurring factors.
There are infinite solutions satisfying (1). Regularization is not only a means to pick up a stable solution, but also helps
to improve the rate of convergence. One of the most successful regularization methods is total variation (TV). TV is a
conventional approach that uses maximum a posteriori (MAP) method and a regularization function to regulate the
degree of smoothness of the HR image. In reference [6] a L, norm for estimation of high resolution image is proposed,

and the overall solution for robust SR is expressed as

p R R
X = ArgMin| " [DC R X -y, +4 3 Y@ |x - sisPx| )
X | k=l I=-Rm=0

1+m>0

where A is a scalar to weight properly the first term (similarity cost) against the second term (regularization cost). « is

the scalar weight factor to give a spatially decaying effect to the summation of the regularization term. SL and S;,n are

shifts of X by | and m pixels in horizontal and vertical direction, respectively. R is the maximum shift. The solution to
the minimization problem in (6) can be found by steepest descent algorithm:

P R R
Xt = X = B R CLDEsign(D,CyF Xy =y )+ 4 Y > ™M1 —8.™s Hsign(X, - 387X ) )
k=1 |=—Rm=0

1+m>0

where [ is a scalar defining the step size in the direction of the gradient. S, ! and Sy M define the transposes of matrix

S'X and S;," , respectively, and have a shifting effect in the opposite directions as S)'< and S;,n .

The use of regularization means that incorporation of a priori knowledge is possible. The regularization component of
TV stabilizes the inversion of the ill-posed SR problem, putting a constraint to the space of solutions and subsequently
enables a fast convergence. The use of the L, norm, instead of L, norm, to measure data fidelity improves robustness to

outliners. Parameter tuning and long computing times are disadvantages of this method.

Our implementation

The procedure of TV is similar to IBP with an addition of a regularization factor. Our implementation followed closely
the descriptions in [6]. The parameter settings used in our experiments are as follow: « = 0.6, f#=0.004 ,4=0.02 and

R =2. The blurring effect is estimated by a Gaussian PSF using a 7 by 7 kernel with a variance value of 1.6.

3. DATA

A CHRIS image set from Ginkelse of the Netherlands was acquired on the 20" Oct., 2007. The images were acquired
with Mode 3 (land channel) with 18 bands at 17m spatial resolution (Fig. 1). The CHRIS images were first preprocessed
to filter noise and then calibrated to reflectance using algorithms described in [1][2]. A HR airborne AHS hyperspectral
data acquired on the 10™ Oct., 2007 of the same area was available for the evaluation of the SR derived images. The
AHS data have 20 bands between 0.4-1um with a spatial resolution of 2.5m (Fig. 1). The airborne data is of good quality
with perfect weather condition and was acquired within 10 days of the CHRIS acquisition. Due to the differences in band
configurations, some adaptations have been made for the comparison (Table 1).



-55° nadir overlapping area with AHS
Fig. 1. Atmospherically corrected CHRIS images at five different acquisition angles. The figure at the lower right corner shows the
overlapping area between the CHRIS and the airborne AHS data which are masked out for the calculation of the quantitative
measures. The red box is the zoom used in Figure 2.

4. EVALUATION METHODS

Evaluation of SR techniques with real remote sensing examples are difficult due to the fact that a higher resolution image
during the same period of time does not always exist or available. Our investigation of hyperspectral images makes it
more complicated since the evaluation have to be done on each band with presumably matching band configurations.
The AHS data was downscaled and then re-projected on the SR image. Hence, the measures were calculated at the
resolution of the SR images at 8.5m. Furthermore, some bands are combined and then averaged to make comparison
possible (Table 1). For instances, bands 3 and 4 of CHRIS are merged into one band, and so are bands 9, 10 and 11,
bands 12 and 13, and bands 15 and 16. The bands were combined in a way that their bandcenters are as close to those of
the HR airborne data as possible.

Very little has been done concerning the evaluation of SR techniques on hyperspectral images. In this study, we use
quantitative measures as well as visual assessment. In order to understand the additional advantages of using multi-frame
SR image reconstruction, we also present the SR results using only one LR image. The single-frame SR is performed on
the nadir image set which is with the highest quality. Below are the three measures recommended in [19].

a. Peak signal to noise ratio (PSNR).
PSNR is based on the mean squared error (MSE), which is the mean of the squared differences for every pixel

between the SR image and our airborne image [7]. Let z stands for the observed (airborne) image, Z is the SR image,
and s is the maximum pixel value,

PSNR = 10log—
MSE

©)



Table 1. Matching bands between the CHRIS/Proba and airborne AHS data. Shaded cells represent bands that have been merged for
the sake of comparison. Units are in nanometer.

CHRIS/Proba AHS
Band From To bandcenter | bandwidth | Band | From To bandcenter | bandwidth
1 438 447 442 9 1 420.0 | 494.3 457.2 74.3
2 486 495 490 9 2 450.0 | 522.2 486.1 72.2
3 470.0 | 550.0 510.0 80.0
3 526 534 530
4 546 556 551 10
3+4 526 556 541 30 4 498.2 | 580.0 539.1 81.8
5 566 573 570 8 5 530.0 | 607.6 568.8 77.6
80.5
6 627 636 631 9 7 583.0 | 664.8 623.9 81.8
7 656 666 661 11 8 612.2 | 694.0 653.1 81.8
8 666 677 672 11 9 640.3 | 722.3 681.3 82.0
9 694 700 697 6
10 700 706 703 6
11 706 712 709 6
9+10+11 | 694 712 703 18 10 670.0 | 751.5 710.8 81.5
12 738 745 742 7
13 745 752 748 7
12+13 738 752 745 14 11 700.0 | 778.6 739.3 78.6
14 773 788 781 15 12 730.0 | 807.9 769 77.9
75.4
76.1
81.7
15 863 881 872 18
16 891 900 895 10
15+16 863 900 882 37 16 850.0 | 924.2 887.1 74.2
17 900 910 905 10 17 871.1 | 9544 912.8 83.3
82.8
85.4
18 1002 | 1035 1019 33 20 960.0 | 1044.8 1002.4 84.8

A2
where MSE :@. The N here represents the pixel number in the HR images. Higher PSNR values represent
better image quality.
b. Structural similarity (SSIM).
SSIM calculates the similarity in a linked local window by combining differences in average and variation and

correlation [8]. The use of SSIM is recommended because of its higher correlation with the visual degradation as
compared to MSE. SSIM is formulated as follow:

SSIM = (Zmzmi +Cl)(2522 +C2)

)

(MZ +m? +¢,)(67 + 57 +¢,)

05, is the covariance between z and Z, and m; and m, are their means. 6, and J; are the variances of the

image z and Z respectively. The value of the two small constants ¢, and C, are there to avoid zeros at the
denominator. The window size is set at 11 x 11 and parameters ¢, and C, are 0.01 and 0.03, respectively. The local
similarity measures are then averaged over all possible window offsets and all channels to obtain the mean structural
similarity (MSSIM) for the whole image. The value of MSSIM ranges between 0 and 1. A higher value means a
higher structural similarity and hence better image quality.



c. Edge Stability (ES)

Since blurring distortion is the most common distortion in SR, edge stability which is most sensitive to blurring is
found to be suitable as an evaluation criterion [9]. ES is formulated as follow:

1Nz —er )2
ES—n%“(ez, ez;) (8)

where ez is the original (airborne HR) consecutive edge map, ez (SR) is the compared consecutive edge map, nis
equal to the number of edges that are detected in at least one of these two edge maps. ES measurement uses five
canny edge detectors with different blur deviations to obtain an ordered set of five edge maps. The blur deviations
used in this paper are 1.19, 1.44, 1.68, 2.0 and 2.38. Lower ES values represent higher image qualities.

5. RESULTS AND DISCUSSION

Since CHRIS/Proba has five acquisitions at angles + 55°, + 36° and nadir, it is possible to use all 5 multi-angle images. In
our initial experiments, we tried all different inputs and the results show that better results are always with the images
acquired at = 36° together with the nadir image, but not the whole set with five angles. It is noted in the simulated results
of [16] that images acquired at angles higher than 40° will have to be treated differently (e.g. special atmospheric
correction is needed), otherwise it could bring serious distortions. It is not conclusive whether or not CHRIS images at +
55° are redundant for SR because there might be other ways to incorporate them. We have not investigated further in that
respect and all the results in this paper are derived from 3 LR images, + 36° and nadir.

All three methods are applied and HR images from different SR method are generated. The result SR images of Band 18
are presented in Figure 2. In order to see the benefits of using multi-frame SR methods, we also generated a HR image
with only one LR image, using the nadir image. Each of the three quantitative measures, namely PSNR, ESSIM, and ES
are calculated. Only the overlapping area between the CHRIS images and the airborne AHS images is used which
accounts for 437,340 pixels covering approximately 21.5 km? (Fig. 1). Table 2 lists the scores and the last row shows the
average result. The average results of PSNR show that multi-frame SR methods are at best at par (in the case of TV) with
single-frame method. However, for some bands, especially starting from band 12 (738 nm), PSNR improves with both
TV and non-uniform approaches. The two other measures which are more sensitive to motion distortion (MSSIM) and
structure similarity (ES) show better enhancements with multi-frame approaches. TV improved image quality in both
measures. Though IBP improved image quality in most of the bands with ES, its averaged value is lower than that of TV.
TV approach also has more consistent results over all the three measures making it a preferred technique. More
experiments with additional data sets are needed for more conclusive statements.

Visual comparison between the original image (17m) and the SR images (8.5m) finds significant improvements in terms
of details. The differences between one-frame and multi-frame SR methods are more subtle. Better enhancements are
found at the edges and boundaries of objects. Visual inspections also conclude that the bands that show improvements
with multi-frame SR methods are those with good image quality. Hence, quality multi-angle acquisition seems to be a
prerequisite for superior performance with multi-frame SR methods.

While non-uniform interpolation method is simple and easy to implement, it is most sensitive to registration errors and it
needs more LR images to perform well. When the interpolation was performed using only three inputs, many pixels in
the HR image have no values. The interpolation hence becomes difficult. Even after de-convolution which is used to
remove artifacts and noise caused by insufficient LR images, our results are not satisfactory.

IBP is an intuitive method which can be thought of as a maximum a posteriori (MAP) approach by assuming the
difference between the LR images and the HR image can be statistically modeled. It incorporates more information from
the LR images than the other two methods. It also has a faster computing time than TV. Its performance, however, relies



b. Bicubic image (8.5m

c. Non-uniform (8.5m) d. IBP (8.5m)

e. Total Variation (8.5m) f. Airborne AHS (8.5m)

Fig. 2. The results of band 18 are presented (b to e). (a) The original CHRIS image at 17m resolution. (b) High resolution images by
single-frame method. (c) HR image by non-uniform interpolation and de-convolution. (d) HR image by iterative back-
projection method. (¢) HR image from total variation. (f) Airborne AHS image.




Table 2. A comparison of image quality measures between single-frame bicubic resampling method and multi-frame SR
methods. Higher values of PSNR and SSIM, and lower values of ES represent better image quality. The bolded
figures represent results that are better than the single-frame SR method.

PSNR MSSIM

Band no. | Bicubic IBP TV NON band no. | Bicubic IBP TV NON

1 24.8730 | 25.7612 | 23.8349 | 23.6816 | 1 0.99951 | 0.99960 | 0.99938 | 0.99936
2 27.1724 | 26.0084 | 26.2319 | 26.1833 | 2 0.99972 | 0.99963 | 0.99965 | 0.99965
3+4 24.6721 | 25.8949 | 24.7693 | 23.9201 | 3+4 0.99950 | 0.99963 | 0.99951 | 0.99940
5 30.2272 | 29.9900 | 29.9795 | 28.5382 | 5 0.99989 | 0.99988 | 0.99988 | 0.99982
6 29.2417 | 25.5282 | 29.1638 | 27.7063 | 6 0.99984 | 0.99959 | 0.99983 | 0.99976
7 29.6473 | 26.7050 | 28.9162 | 28.2011 | 7 0.99985 | 0.99969 | 0.99982 | 0.99979
8 30.1961 | 25.8745 | 29.4657 | 28.9583 | 8 0.99987 | 0.99962 | 0.99985 | 0.99983

9+10+11 | 26.0727 | 25.5275 | 25.9783 | 24.8499 | 9+10+11 | 0.99967 | 0.99962 | 0.99966 | 0.99955
12+13 21.0831 | 22.8465 | 23.4538 | 23.6025 | 12+13 0.99895 | 0.99935 | 0.99945 | 0.99947

14 22.9871 | 22.8684 | 23.2921 | 23.3211 | 14 0.99938 | 0.99936 | 0.99944 | 0.99944
15+16 20.2785 | 19.8265 | 20.3865 | 20.5053 | 15+16 0.99872 | 0.99857 | 0.99877 | 0.99879
17 19.8348 | 19.2460 | 19.9554 | 20.0003 | 17 0.99856 | 0.99834 | 0.99862 | 0.99862
18 18.0474 | 18.0565 | 18.1719 | 18.6861 | 18 0.99778 | 0.99779 | 0.99786 | 0.99809

average | 24.9487 | 24.1641 | 24.8923 | 24.4734 | average | 0.99933 | 0.99928 | 0.99936 | 0.99935

ES

band no. | Bicubic IBP TV NON

1 5.9978 5.9298 | 5.6959 | 6.1549
2 6.2306 6.0898 | 6.1634 | 6.2214
3+4 6.2370 6.1836 | 6.3458 | 6.2614
5 6.1028 6.1558 | 6.2112 | 6.1851
6 6.2077 6.1523 | 6.2348 | 6.2758
7 6.3268 6.3675 | 6.2924 | 6.4210
8 6.2273 6.2982 | 6.2772 | 6.3442

9+10+11 | 5.8023 5.8093 | 5.8087 | 5.8529
12+13 5.9972 55268 | 5.4109 | 5.6964

14 5.6375 5.5399 | 5.4286 | 5.7306
15+16 5.6132 5.5133 | 5.3967 | 5.6944
17 5.6339 5.5369 | 5.4117 | 5.7210
18 5.9118 5.8217 | 5.7004 | 5.9632

average | 5.9943 5.9173 | 5.8752 | 6.0402

on an accurate registration process. By assuming all the LR images have the same importance, it utilizes maximum
information. But this could become a disadvantage if the image quality was bad and noise existed. Another difficulty of
IBP is related to the back-projection filter which has no fixed definition and the choice of it seems to be rather arbitrary.
In our case, we have used a PSF’ which could be a suboptimal choice. TV is a regularization approach which chooses a
L, norm fidelity measure within the regularization component. It also belongs to the category that uses Partial

Differential Equations (PDE). One of the LR images, normally the one with the best quality, is chosen as the reference
image. TV incorporates information from the LR images into the HR image only when they are similar to the reference
image. Compared with non-uniform method and IBP, TV is less sensitive to registration errors. By posing the SR
problem as an inverse problem, it is also easier to incorporate a priori information. However, it has more parameters to
set and takes longer to run. In our study, we used a fix set of parameters for all the bands. Varying the parameters for
each band might further improve the results.

Finally, an important question about application of SR on hyperspectral imagery is how it is going to affect the spectral
profile of land cover classes. Possible change, or distortion, of the spectral signatures would have negative effects on the
SR image’s capability for land cover classification. Figure 3 compares the spectral profiles of several typical land cover
classes extracted from the original nadir image and the SR images. The plots show almost no changes in the profiles
meaning that the original signatures have been preserved. Closer examinations show that signatures extracted from the
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Fig. 3. Spectral profiles of selected land covers extracted from the original CHRIS images and superresolution images.

original image sets acquired at different angles resemble closely to each other. This might explain the minor effect after
SR. Further experiments to use the SR image for land cover classification can shed more lights on this issue.

6. CONCLUSIONS

Hyperspectral data are more effective than conventional multispectral data in many application domains. Multiangular
CHRIS imagery offers the possibility of applying SR algorithms which can increase its spatial resolution. In this study,
we compared the spatially enhanced images derived from three SR methods. We also provide the result of single-frame
SR method. Visual assessments show that the results from IBP and TV are comparable and both are better than the
single-frame SR image with better contrasts at object boundary. The results from the three commonly-used image quality
measures show that TV approach has more consistent results compared to the non-uniform interpolation and de-
convolution, and the IBP approaches. When compared with the single-frame SR image, TV scores better in MSSIM and
ES, but only on par in PSNR. Non-uniform interpolation does not generate the same quality images as the other two SR
methods. A possible reason is that three LR images are too few to generate adequate information for a proper
interpolation. Visual assessments also suggested that a condition for multi-frame SR methods to outperform single-frame
SR method is good LR image quality.

The use of SR, unfortunately, is not straightforward and there are many parameters to tune. Common to all is the Point
Spread Function (PSF) which is used to estimate the system blurring. Though IBP and TV can produce quality results,
parameter settings which are required to be tuned manually are an obvious disadvantage for these methods. Even more
efforts in parameter settings are required for the regularization approach with TV. Future research efforts should try to
automate or semi-automate this tuning process.

In general, the results are quite encouraging. The HR images derived from different SR reconstruction methods are with
good quality. Examination of the spectral profiles of selected land cover classes from the SR images did not find
significant distortions. Given the importance of hyperspectral data, CHRIS images at higher spatial resolutions will
substantially expand its application possibilities. Our experiments show that that might be possible by the use SR



methods. More experiments with additional data sets are needed to examine the usefulness of the SR enhanced CHRIS
images.
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