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1. Introduction – Integral Kernels 
When dealing with the relationship between the disturbing  
potential  T  and gravity disturbances gδ , we known that 
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which sometimes is called  Hotine-Koch function. 

 Naturally, global gravity field models allow a modification, e.g. 
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where we compute the disturbances gδ  with respect to an 
adopted model, put  0nT =   for  0,1, 2, , 1n N= −…   and 
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subsequently work with the reduced Hotine-Koch kernel 
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Graphically the kernel is illustrated in the following figures. 
 
 
 
 
 
 
 
 
 
 
 
 
The approach as above is straightforward, but not the only  
possible.  
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GOCE data and terrestrial gravity measurements are  
two different sources of information. Their combination has  
a tie to potential theory and boundary value problems. 

 In the sequel Ω  means a solution domain bounded by two 
surfaces. We can even suppose that Ω  is bounded by two 
spheres of radius iR  and eR ,  i eR R< . 
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2. Boundary Value Problem 
If we continue in our considerations, we e.g. can formulate the  
following problem  
                                             0T∆ =   in  Ω  

T g
r

δ∂
= −

∂
  for  ir R=        and        T t=   for  er R=  

where  gδ   is the gravity disturbance  and  t   means the input 
from an available satellite-only model . 
 The domain Ω  is bounded. ⇒ Therefore, the solution 

( , , )T r ϕ λ= ,  we are looking for, has generally the following form 
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where  ( )i
nT   and  ( )e

nT   are the surface spherical harmonics. 
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Using the orthogonality of spherical harmonics, we obtain a  
linear system for  ( )i

nT   and  ( )e
nT ,  that for and individual  n  yields 
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where  
2 1(1 ) 1n

nD n q += + +   is the determinant,  /i eq R R=  

while ngδ  and nt  are surface spherical harmonics in the  
developments of  gδ   and  t  , respectively, i.e. in 

0( , ) Σ ( , )n ng gδ ϕ λ δ ϕ λ∞
==       and      0( , ) Σ ( , )n nt tϕ λ ϕ λ∞

== . 
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3. Compatibility 
The solution  T   is harmonic in  Ω .  However, the continuation  
of T  for er R>  need not be regular at infinity, i.e.,  
if analytically extended, then for r →∞  it does not decrease  
as   /c r    (c  is a constant)  or  faster.  
 This is a consequence of errors in data. 
 The data given for  ir R=  are enough to determine a harmonic 

function in  3{ ; }ext ir RΩ ≡ ∈ >x R   and thus in  extΩ Ω⊂  .  
 The data for er R=  have the nature of excess data and give 

rise to the  (“internal”) term  ( )( / )n e
e nr R T   not regular at infinity.  

 Thus  
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is a general solution in the domain Ω , but from the physical 
point of view its justification rests on a formal basis.  
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Nevertheless the term  ( )eT   gives a possibility to confront the 
two data sources considered.  To see  an example  suppose that,  
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are the disturbing potentials related to the EGM2008 and to a 
GOCE based satellite-only model, respectively.  

 Subsequently, we can simulate the input surface spherical 
harmonics   ngδ   and   nt   in the following way 
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Hence from Eq. (4b) we get that  
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and the coefficient   nc    is illustrated in the following  Fig. 1 
 
 
Figure 1. 
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A better insight offers a plot of degree variances ( )var{ }e
nT  .  

Recall, therefore, that 

   ( ) ( ) ( )
0

( , ) cos sin (sin )nEGM EGN EGN
n nm nm nmm

T C m S m Pϕ λ δ λ δ λ ϕ
=
⎡ ⎤= +⎣ ⎦∑  

and 

   ( ) ( ) ( )
0

( , ) cos sin (sin )nGOC GOC GOC
n nm nm nmm

T C m S m Pϕ λ δ λ δ λ ϕ
=
⎡ ⎤= +⎣ ⎦∑  

where, ( )EGN
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nmSδ  and ( )GOC
nmCδ , ( )GOC

nmSδ  are coefficients 
of fully normalized surface spherical harmonics.  Hence 
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Here  M   stands for the average over the whole unit sphere . 
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Figure 2.  Two parts of this figure now show: 

  (Left) the diagram of  ( ) ( ) ( )var{ } | | var{ }e GOC EGM
n n n nT c T T= −  

  (Right) the diagram of  ( ) ( )var{ }GOC EGM
n nT T−   - for comparison 

computed for 3 subsequent GOCE gravity field solutions (TIM) 
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We also add a global charts of   ( )eT   and of  ( ) ( )GOC EGMT T−   for  
gravimetry (EGM 2008)  and  GO_CONS_GCF_2_TIM_R5  model. 
 
                                                                  Figure 3a.  ( )eT  for ir R=  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3b.  ( )eT  for er R= . 
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  Figure 4a. 
  ( ) ( )GOC EGMT T−  for ir R=  
 
  Here the scale is  
  75 times as large. 
 
 
 
 
 
 
 
 
 
 
 
Figure 4b. 

( ) ( )GOC EGMT T−  for er R= . 
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4. Optimization 
In solving the incompatibility (overdetermined problem) above, 
we will look for a harmonic function f , regular at infinity that 
minimizes the functional 

2( ) ( )f f T d
Ω

Φ = −∫ x  

We suppose that 2( )extf H Ω∈ , where 2( )extH Ω  is a space of 
harmonic functions with inner product 

2
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The functional Φ  attains its minimum in 2( )extH Ω . Hence,  
assuming Φ  has its minimum at a point 2( )extf H Ω∈ , its  
Gâteaux’ differentials equals zero at  f  .  This yields 
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for all  2( )extv H Ω∈  .  
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Eq. (18) represents Euler’s necessary condition for Φ  to have a 
minimum at f .  It is a starting point for obtaining the function f  .  
 We put  1( / ) ( , )n

nm i nmv R r Y ϕ λ+=  , denoting by  nmY  Laplace’ 
surface spherical harmonics.  
 Subsequently, 0Σ Σm n

n m n nm nmf f v∞ =
= =−=  , while nmf  are scalar  

coefficients. After some algebra we easily obtain 

 
1

( ) ( )

0

n
i ei

n n n
n

Rf T T
r

α
+∞

=

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎣ ⎦⎝ ⎠∑     with   
2

2
2 1

(2 1)(1 )
2(1 )

n
n n

n q q
q

α −
−

− −
=

−
 

 
Figure 5.   Values of  nα   for 

6378,136iR km=  
and 

224e iR R km= +  
i.e., for 

0.966071588q =  
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The optimized solution f  is partially generated by ( )e
nT , but in 

contrast to the original Eq. (3), i.e., ( ) ( )i eT T T= +  the  
influence of  ( )e

nT  is now attenuated by the factor  nα .  

This is illustrated for GO_CONS_GCF_2_TIM_R5  model in Fig. 6.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6  Figure 2 – for comparison 
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5. Optimized Solution – Influence of Input Data 
To see the influence of the input data  gδ   and  t   on the  
optimized solution  f   we have to return to the original structure 
of the harmonics  ( )i

nT   and  ( )e
nT .  

 Therefore, we insert from Eqs (4a) and (4b) and subsequently 
obtain 
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where 
2 1(1 ) 1n

nD n q += + +  

The values of  ( )i
nA   and  ( )e

nA   are in Fig. 7  that follows.  
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Figure 7.  The coefficients ( )i

nA  and ( )e
nA  for 0.966071588q =  

( i.e.  224e iR R km= +  ) in case that gravity disturbances gδ  are 
combined with t  representing the input from a satellite-only 
model. 
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4. Optimization in (1)
2H  - Energetic Concept 

Let (1)
2 ( )extH Ω  be the space of harmonic functions on extΩ  which 

is equipped with inner product  
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f g f g d
Ω

= 〈 〉∫ grad grad x  

where  .,.〈 〉   is the scalar product of two vectors in 3R . We look 
for a function  (1)
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Interpreting the identity in terms of our function basis, we again 
write  0Σ Σm n

n m n nm nmf f v∞ =
= =−=  ,  but now we arrive at 
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The values of  ( )i
nA   and  ( )e

nA   are in Fig. 8  that follows. 
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Figure 8. The coefficients  ( )i

nA  and  ( )e
nA  for  224e iR R km= +  

in case that gravity disturbances gδ  are combined with 
t  representing the input from a satellite-only model and  
(Left)  an energetic norm is applied  in the optimization concept. 
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6. Terrestrial Term and the Integral Kernel 
Recall that we obtained the following result - optimized solution:  

1
( ) ( )

0 1

n
i ei i

n n n n
n

R Rf A g A t
r n

δ
+∞

=

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎢ ⎥+⎝ ⎠ ⎣ ⎦
∑  

Our aim is to find an integral representation for  
1

( )

0 1

n
ii i

terr n n
n

R Rf A g
r n

δ
+∞

=

⎛ ⎞= ⎜ ⎟ +⎝ ⎠
∑   ,     

1
( )

2 1
( 1)(1 )

(1 ) 1

n
i n

n n
n qA
n q

α +

+

+ −
=

+ +
 

which is the terrestrial term in the structure of the optimized  
solution.  We get 
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Of course, we are interested in a closed form of the kernel 
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Here we confine ourselves just to an illustration showing how 
the kernel ( , )K r ψ∗  depends on the angle  ψ   in case that ir R=  . 
The dependence is shown in the two figures below. 
 
 
 
 
 
 
 
 
 
 
 

Smooth curve in the middle that does not oscillate!
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The kernel was used practically. The dominant part of the  
terrestrial term terrf  (with respect to EGM2008) was computed for 
data from the territory of the Czech Republic and it is plotted in 
the following figure. 
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The composition of 
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is then here. 
 
 
 f  =  fterr +  fsat 
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