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1. Introduction - Integral Kernels

When dealing with the relationship between the disturbing
potential T and gravity disturbances 0Q, we known that

© Rn+1 1
T(X)=R — | ——00,., r=|X
(%) ZO(J 99, . r=Ix]

and that for r=R
T-2[ K@)sgdo with K(p)=Y 2t
A <o o nh+1

which sometimes is called Hotine-Koch function.

P, (cosy)

Naturally, global gravity field models allow a modification, e.g.
2 N © n+1
T(x):BTO+(Bj T1+---+(Ej Ty + RZ(EJ iégn
I I I =N \ T

where we compute the disturbances o0Q with respect to an
adopted model, put T, =0 for n=0,1,2,...,N -1 and
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subsequently work with the reduced Hotine-Koch kernel

= 2n+1
Kied () = 2 ——= Py (cosy)
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The approach as above iIs straightforward, but not the only
possible.



GOCE data and terrestrial gravity measurements are
two different sources of information. Their combination has
a tie to potential theory and boundary value problems.

In the sequel {2 means a solution domain bounded by two
surfaces. We can even suppose that (2 is bounded by two
spheres of radius R; and R,, R, <R..

QTOPO 0
R. R

Ri Ri

N N

The transition
IS discussed
In Holota and Nesvadba (2007)




2. Boundary Value Problem

If we continue In our considerations, we e.g. can formulate the
following problem

AT =0 in Q2

8_T:_59 for r=R and T=1for r=R,

or

where o©( is the gravity disturbance and t means the input
from an available satellite-only model .

The domain (2 is bounded. = Therefore, the solution
T =(r,p,A), we are looking for, has generally the following form

T=TW+T® (3)
_ o R n+1 _ 00 r i
T(')=Z(le T"(p,2)  anc T“’=Z(R_j e

n=0 n=0 e

where Tn(i) and Tn(e) are the surface spherical harmonics.



Using the orthogonality of spherical harmonics, we obtain a
linear system for T and T(®| that for and individual n vyields

. R o0, + ng"t
Tn(')— 99 d hy (4a)
Dn
and
R g""6g., — (n+1)t
-I-n(e) _ |q gn ( ) n (4b)
Dn
where
D =n(1+9“"") +1 is the determinant, q= R /R,

while 09, and t, are surface spherical harmonics in the
developments of 0g and t, respectively,i.e.in

09(p, 1) =%, ,00,(p,A) and t(p,A)=% ot (0, 1).



3. Compatibility
The solution T is harmonic in (2. However, the continuation
of T for r>R, need not be regular at infinity, i.e.,
If analytically extended, then for r —> oo it does not decrease
as C/r (cisaconstant) or faster.

This is a consequence of errors in data.

e The datagiven for =R are enough to determine a harmonic
functionin 2, ={xeR’;r>R} andthusin Qc 2,

e The data for r =R, have the nature of excess data and give
rise to the (“internal”)term (r/R,)" T(e) not regular at infinity.

is a general solution in the domain (2, but from the physical

point of view its justification rests on a formal basis.
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Nevertheless the term gives a possibility to confront the
two data sources considered. To see an example suppose that,

o n+1
T (E6M) =Z( j T =M (g, 2) (9a)
n=0
and
o R n+1
L ZZ(T') T.°% (9, 2) (9b)
n=0

are the disturbing potentials related to the EGM2008 and to a
GOCE based satellite-only model, respectively.

Subsequently, we can simulate the input surface spherical
harmonics 0Q, and t, inthe following way

n+1
: -I-(EGM)
R.

09, =

and  t = qn+1 -I-n(GOC)



Hence from Eqg. (4b) we get that

TO = ¢ |:-|-n(GOC) _-I-n(EGM):| with ¢ = (n+1)q

n+1

n(L+g°"™M)+1

and the coefficient C, Is illustrated in the following Fig. 1
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A Dbetter insight offers a plot of degree variances
Recall, therefore, that

T "M (9, 1) = Z:‘nzo[&ﬁfﬁ@“) cosmA + 58S =N gin mi] P._(sing)

and

T899 (p, 1) = Z”mzo[éc_:,ﬁrﬁoc) cosmA£5S % sin m/l] P._(sing)

where, SCFN) | §SECN) gng €8O 55690 are coefficients

of fully normalized surface spherical harmonics. Hence

var{T®} =M { [Tn@]z} _

- (6] X of [005°- 005 T + [65500- 055 |

m=0

Here M stands for the average over the whole unit sphere .
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Figure 2. Two parts of this figure now show:

(Left) the diagram of \/var{Tn(e)} =|c, |Jvar{Tn(GOC)—Tn(EGM)}

(Right) the diagram of Jvar{Tn(GOC)—Tn(EGM)} - for comparison
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We also add a global charts of T® and of TEC)_TEM) ¢4,
gravimetry (EGM 2008) and GO_CONS_GCF 2 TIM_R5 model.

Figure 3a. T® for r=R




Figure 4a.
TEOO_TEM for r =R

Here the scale is
75 times as large.
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4. Optimization
In solving the incompatibility (overdetermined problem) above,
we will look for a harmonic function f, regular at infinity that
minimizes the functional

_ T2
D(f) _Ig(f T )?dx
We suppose that f e H,(£2,,), where H,(£2,,) is a space of
harmonic functions with inner product

(f,9) = [ — fgax

0

ext

The functional @ attains its minimum in H,(£2,). Hence,
assuming @ has its minimum at a point f eH,(£2,), its
Gateaux’ differentials equals zero at f . This yields

_[ fvdx :j T v dx (18)
0 0
forall ve H,(,,) .
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Eq. (18) represents Euler’'s necessary condition for @ to have a
minimum at f. Itis a starting point for obtaining the function f .
We put v =(R/r)"™Y. (@A) , denoting by Y. Laplace’
surface spherical harmonics.
Subsequently, f=%" 2" f v . while f  are scalar
coefficients. After some algebra we easily obtain

© n+1 _ B 2
f :Z(ﬂj |:Tn(l) +anTn(e)] with o = (2n 1)(% 4 )qn—z
2(1-97")

1.2

Figure 5. Values of «, for
R =6378,136 km

and
R, =R +224 km

l.e., for
g =0.966071588
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m2/32

The optimized solution f is partially generated by T(e) but in
contrast to the original Eq.(3), ie.,, T= T(')+ T(e) the
influence of Tn(e) Is now attenuated by the factor «,.

This is illustrated for GO _CONS_GCF_2 TIM_R5 model in Fig. 6.

0.009 . . . 0.009 § .
0.008 | Jvar{e, T} = o oosp Vvar{T7}=
0.007 =a,|C,| \/ var{T, 09T EMy 0007 =|c, | \/ var{T (G00)_T (EGM)y .
0.006 |-* { P 0.006 [
0.005 . \/Var (e TO} = . :e?_ 0.005
0.004 fae P E 0004
n+1 (GOC) —T(EGM)y
=q o, |c, | var{T, —T :
0.003 ...: q n | n |\/ { n n } 0.003
0.002 e : 0.002 - y
0.001 | 2 0.001 \ |
0 120 240 360 : 0 120 240 360
degree n degree n
1
Figure 6 ~. Figure 2 —for comparison

16



5. Optimized Solution - Influence of Input Data

To see the influence of the input data o0g and t on the
optimized solution f we have to return to the original structure
of the harmonics T and T®.

Therefore, we insert from Eqgs (4a) and (4b) and subsequently
obtain

® (R n+1 R
) e L
n=0
with
a _ (N +)(1-a,9™) q (&) _ ng" +a,(n+1) 21
A 5 and A o 1)
where

D =n(1+qg°"™")+1

The values of Argi) and Age) are in Fig. 7 that follows.

17



|
15 i (N +1)(1—05nqn+1)

| A =

wasosestnnc,, Dn
T - i
."-.., o

| "ﬂ# ng" n+1
0,5 ......-" "'-'....... Age) _ q +CZn( T )

1 . D
00 ..,-'" '.""""--.... n '

] degreen
3 A IS S E— |

0 25 50 75 100 125 150

Figure 7. The coefficients A" and A® for q=0.966071588
(i.,e. R,=R +224km) in case that gravity disturbances 5g are
combined with t representing the input from a satellite-only
model.
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4. Optimization in H{" - Energetic Concept

Let H{Y(£2,,) be the space of harmonic functions on (2, . which
IS equipped with inner product

(f,9), = j (grad f,grad g) dx

ext

where (.,.) is the scalar product of two vectors in R*. We look
for afunction f e H{Y(£2,,) that minimizes the functional

7 (f)= | |grad (f -T)[*dx

Similarly as above the functional ¥ attains its minimum in
H(l)( € .)and f isdefined by the integral identity

j(gradf gradv) dx = j(gradT grad v) dx

which holds for all ve HP(2,,).
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Interpreting the identity in terms of our function basis, we again
write f=X" X57" f v . butnow we arrive at

o n+1
f :Z(5j Tn(i)

r
n=0
which is considerably more simple. Subsequently we obtain

i( ) 1{ i) R L 5g, 4 (e)t}

n= n+1
with
n
(i) _ n+1 (e)_nq
= — and = —
A, ) A, D,
where
-n (1_|_ q2n+l)

The values of A" and A® arein Fig. 8 that follows.
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Figure 8. The coefficients A" and A® for R =R +224km
In case that gravity disturbances o6g are combined with
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and

(Left) an energetic norm is applied in the optimization concept.
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6. Terrestrial Term and the Integral Kernel

Recall that we obtained the following result - optimized solution:

o0 R n+1 R
f=) | W 59, + A,
nzz(;( rj [A‘ N+l o
Our aim is to find an integral representation for

2 (R0 R ) (+)(A-a,q™)
Frerr :Z(le Argl) n+|15g” ) 'A&g) - n(1+q2n+1)q+l

n=0

which is the terrestrial term in the structure of the optimized
solution. We get

with

n+1
K* () = ZA,S"Z””(R'] P, (cosy)

n+1 r
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Of course, we are interested in a closed form of the kernel
(i) 2n+1 (R m
K™ (r,p) = Z A

' P (cosy)
n+1 \r "
Here we confine ourselves just to an illustration showing how
the kernel K™ (r,y) depends on the angle i incasethat r =R .
The dependence is shown in the two figures below.
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The kernel was used practically. The dominant part of the
terrestrial term fterlr (with respect to EGM2008) was computed for
data from the territory of the Czech Republic and it is plotted in
the following figure.
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The composition of

© (R n+1
fsat = Z — Age)tn
n=0 r
and
® (R n+1 _
fterr = Z — 'A\gl)
n=0 r
IS then here.

f = fer + fout

15
n+1 In
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Thank you for your attention !
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