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Renewable Energy Resources - Wave Energy

Over the last years, the use of renewable resources for energy production is
receiving increased attention as a result of the threat posed by climate change and
the strict environmental policies regarding the production of greenhouses gases.

Within this framework, wave energy (the energy that can be captured by sea
waves) is a promising alternative energy resource with critical advantages:

Low variability (easier integration to the general grid)
High predictability
Good seasonal load for the most energetic seas (NW Europe)

It can be produced even in the case of low winds by exploiting the swell
component of waves

Ocean energy technologies produce no emissions of harmful pollutants or
greenhouse gasses



What kind of information the energy production industry needs ?

- o Wave Energy is dependent on the joint
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distribution of Significant Wave Height (H,)
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The use of the full wave spectrum is critical
for the estimation of the wave energy
~ potential over deep and shallow water areas:
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where c, is the group velocity:

:;nf_l, for deep water

Cg(f» h) =

Vv gh, for shallow water



Wave Resource Assessment-Methodology

Resource mapping
Resource analysis identifying areas where “hot spots” of high intensity exist
Mean wave conditions (Hs, T, 8) — 10 year mean values
Spatial and temporal variability of wave parameters at different time scales
Inter-annual
Seasonal

Monthly

Statistical measures for the asymmetry and the impact of non frequent values of
the analysis results

Multivariate distribution fitting

Analysis taking into account constraints such as bathymetry, distance from shore,
marine structures, local commercial activities, fisheries, military areas, ship routes, etc.
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Wave Resource Assessment-Numerical Models

Difficulties in obtaining wide coverage (spatial and temporal) of observed wave

data over sea areas.

The main tool for accurate environmental predictions is today the use of Numerical

Weather Prediction (NWP) models that simulate successfully the general weather

conditions with average accuracy reaching 80-90%.

Such models are able to provide accurate short or long term forecasts for

environmental parameters that are crucial for wave energy estimation:

Wave Height and Direction
Swell Height and Direction
Wave Period

Extreme Values



Wave Resource Assessment-Resource Mapping

The EU Projects
Marina Platform (http://www.marina-platform.info/) and
E-Wave (http://www.oceanography.ucy.ac.cy/ewave/)

focus on the monitoring and exploitation of the wave energy potential over the
Atlantic and Mediterranean coastline of Europe.

A 10-year (2001-2010) high spatial and temporal resolution reanalysis data-set was
derived for wind, wave and tidal parameters providing a wealth of information for
marine resource assessment for the entire coastline of Europe.

|
MARINR
—

PLATFORM




> The wave model includes data assimilation

systems that can utilize satellite altimetry data.

» A new advection scheme (Corner Transport
Upstream) has been adopted providing a more
uniform propagation in all directions

» The maximum wave height is estimated by
means of the probability distribution of sea
surface elevation

——

The models used

Atmospheric model
Characteristics

Horizontal Resolution

Initial and Boundary
Conditions

Vertical Levels

Output at:

Timestep

SKIRON

0.05°x 0.05°

High Resolution Reanalysis
{(15x15 Km}

45
{up to 50hPa)

10, 40, 80, 120, 180 m as.|

15 sec

Full set of meteorological variables - every 1h

Wave model
Characteristics

Model's domain

Horizontal Resolution

Frequencies

Directions

Timestep

WAM ECMWF CY33R1
Marina Platform

20-75°N, 50°W—30°E

0.05°x 0.05°
{1601 x 1101 grid Points)

25
{min 0.055Hz}

24
{equally spaced}

45 sec

WAM ECMWF CY33R1
E-WAVE

30— 41°N, 15°-37°E
1/60 °x 1/60°
{1.667 km approximately}

25
0.0417-0.54764Hz
logarithmically spaced
24
{equally spaced)

45 sec



Seasonal evaluation against ASAR records
UK Atlantic coastline
WAM England 2010
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Seasonal evaluation against ASAR records
UK Atlantic coastline
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WAM evaluation against ASAR records (annual)
Spanish Atlantic coastline

Model results
WAM Spain 2010
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More uniform correlation between WAM modeled data and
ASAR records is recorded over the Atlantic Spanish coastline



Seasonal evaluation Spanish Atlantic coastline
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SAR
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Evaluation based on the full wave spectra
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The frequency band of the SAR records is steeper than the corresponding model

results while the directional distribution of modeled and recorded data are comparable



Seasonal Distribution of Significant Wave Height

University of Athens DEC—JAN-FEB University of Athens MAR—-APR-MAY
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Seasonal Distribution of Wave Period

University of Athens DEC—-JAN-FEB University of Athens MAR—-APR-MAY

Mean Wave Period (sec) Mean Wave Period (sec)

27 32, 37 47 - 5. - 5. . - . . . . 32, 37 47

University of Athens JUN-JUL-AUG University of Athens SEP-0CT-NOV

Mean Wave Period (sec) Mean Wave Period (sec)




Wave climatology: Is it enough for supporting efficiently the
resource assessment?

Monthly variability of the Mean Hs in Med Sea

University of Athens 1 /2010
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Statistical measures for the asymmetry and the
kurtosis of the data could be essential
Skewness (3" standardized moment) provides
information for the tails of the distributions
Areas with potential impact from extreme values
can be spotted based on the kurtosis (4t
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On site statistical analysis

Spectra (M? sec )

WAM Spectra(Freq)

0.055 0.0732 0.0974 0.1297 0.1726 0.2297 0.3058 0.407

Frequencies (Hz)

For a set of preselected points of interest along
the coastline of Europe, the full wave spectrum
derived without adopting any preselected
standard forms, like e.g. JONSWAP, has been
stored to provide the full package of information

needed

0.5417



On site statistical analysis

Wave Rose
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On site statistical analysis
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The optimal distribution with its corresponding parameters are spatially dependent and not predefined/fixed by any way

Weibull distribution could be a good choice for fitting wind speed and significant wave height values but Lognormal 3P

provides an interesting alternative with even better convergence.

Thresholds for extreme values are equivalently estimated by the two PDFs as the corresponding 95-percentiles.

The joint Hs/Te distribution is a statistical information of primary importance for wave resource characterization

Different local wave climatology is depicted in the bivariate plots
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Wave Power Potential distribution

The wave energy potential can be also analyzed by a PDF fitting point of view.

In the present work, a series of independent statistical tests proved that the
Lognormal distribution optimally fits the modeled data.

Equally good fit can be also succeeded by the Generalized Extreme Value PDF.

The corresponding parameters have a non trivial spatial distribution and provide
information of potential value for grid designers and researchers.
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Energy Potential Mapping

University of Athens 2010

Wave Power Potfential (kw/m)
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The available potential for Wave Power in deep water is
defined as:
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is considered by the research and technical community as an
important tool for monitoring the wave power potential.

The theoretical approach can be misleading since no
constrains relevant to the converter used are taken into
account

The actual power that can be extracted is dependent on the
available technology.

The use of (Hs/Te) Power Transform Matrices could be
utilized and (Hs, Te) - surfaces should be developed

Pelamis - Power Transform Matrix (generic performance). output in kW
‘Wave Peniod - Tpow (s)




Some Concluding Remarks

The estimation of the wave energy available potential is not as straight forward as in wind power

case being directly dependent on two wave parameters (Hs-Te).

The lack of a dense observational network over sea areas poses further difficulties revealing the

increased role that satellite data may have.
Numerical wind/wave models, with optimization post processes, is considered as a good approach.
The suitability od an area for wave energy exploitation cannot be based on a Yes/No answer.

The local wave characteristics and the corresponding energy potential should be analyzed on

different time scales and by employing statistical indexes measuring not only averages but also the

variation, asymmetry and potential impact of extreme values as well as the 1 or 2-D optimally

fitted distributions.

The use of SAR information could be critical in energy estimation and monitoring since the wave
directional spectrum gives full-package information avoiding averaging and/or smoothing over

frequencies and directions.

The specific characteristics of the technology that will be employed for the translation of the wave

energy to power are crucial and should be taken into account.
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