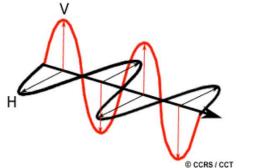
UNIVERSITY OF TROMSØ UIT

A Comprehensive Analysis of Polarimetric Features for Oil Spill Characterization

Stine Skrunes, Camilla Brekke, Torbjørn Eltoft


Department of Physics and Technology Barents Remote Sensing School (BARESS)


This presentation discusses the use of multi-polarization SAR for oil spill purposes

Polarimetry

Data collection

Multi-polarization analysis

Data was collected at the NOFO oil-on-water exercise, June 2011

Three different slicks were produced:

- Emulsion
- Crude oil
- Plant oil

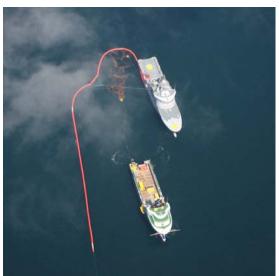


Photo: Kustbevakningen

3

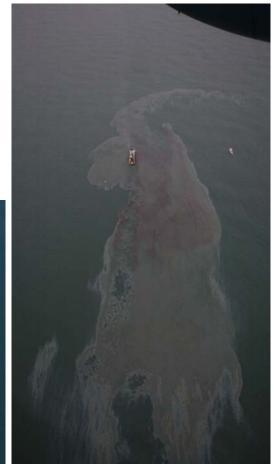


Photo: Kustbevakningen

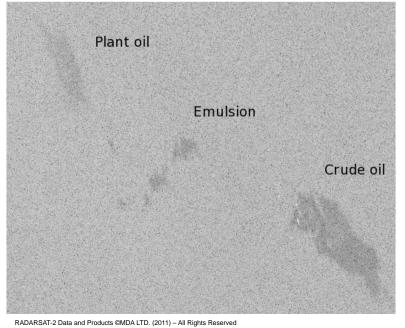


Photo: Stine Skrunes

RS-2 and TS-X data with all three slicks were acquired ~16 minutes apart

Radarsat-2

Plant oil ~13 hours old Emulsion ~29 hours old Crude oil ~9 hours old

TerraSAR-X Plant oil Emulsion Crude oil Copyright ©2011 DLR

Multi-polarization data may improve the potential for oil spill characterization

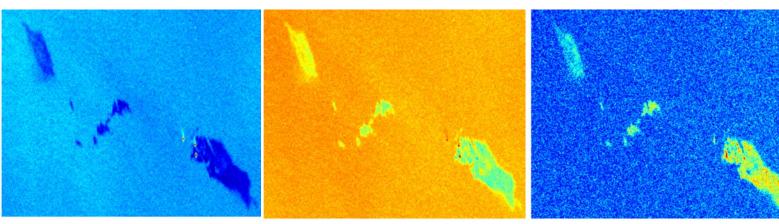
Noise analysis shows that co-polarization signal is more reliable than cross-polarization Radarsat-2, VV: Radarsat-2, VH: -10 -10 -15 Plant oil.VV Plant oil.VH -15 Emulsion, VV Emulsion, VH * Crude oil, VV Crude oil, VH -20 Sigma nought [dB] -30 -35 * Water, VV Water, VH Noise floor Noise floor -35 -40 -40 -45 -45 35.5 34.5 35 36 34.5 35 35.5 36 Incidence angle [deg] Incidence angle [deg]

7

UNIVERSITY OF TROMSØ UI

Multi-polarization features have been extracted from the two scenes

Feature	Definition
Entropy ¹	$H = -\sum_{n=1}^{2} p_n \log_2 p_n$
Mean scattering angle ¹	$ar{lpha}=p_1lpha_1+p_2lpha_2$
Alpha angle of the largest eigenvalue ¹	$\alpha_1 = \arccos(\mathbf{e}_1(1))$
Covariance scaling factor	$\mu = (det(\mathbf{C}))^{1/d}$
Magnitude of co-polarization correlation coefficient	$\rho_{CO} = \left \frac{\langle S_{HH} S_{VV}^* \rangle}{\sqrt{\langle S_{HH} ^2 \rangle \langle S_{VV} ^2 \rangle}} \right $
Real part of co-polarization correlation ²	$r_{\scriptscriptstyle CO} = \Re(< S_{HH}S_{VV}^*>)$
Standard deviation of co-polarized phase difference ³	$\sigma_{\phi CO} = \sqrt{(<(\phi_{HH} - \phi_{VV})^2 > -(<\phi_{HH} - \phi_{VV} >)^2)}$

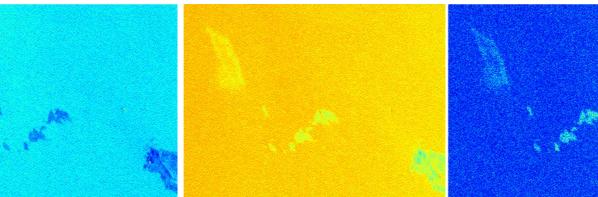

References

 ¹Cloude, S.R.; Pottier, E.: An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR, IEEE Trans. on Geosci. and Rem. Sensing, Vol. 35, No. 1, 1997
²Nunziata, F., Gambardella, A. and Migliaccio, M., On the Mueller Scattering Matrix for SAR Sea Oil Slick Observation, IEEE Geosc. And Rem. Sens. Letters, Vol. 5, No. 4, p. 691-695, 2008
³Migliaccio, M; Nunziata, F.; Gambardella, A.: On the co-polarized phase difference for oil spill observation, Int. J. of Rem. Sens., Vol. 30, p. 1587-1602, 2009

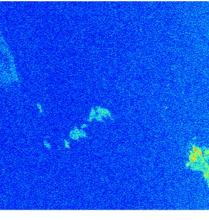
UNIVERSITY OF TROMSØ UIT

8

Interesting variations are seen between and within the slicks



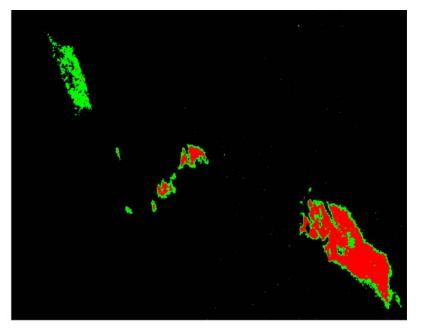
Covariance scaling factor $\mu = (det(\mathbf{C}))^{1/d}$


Low

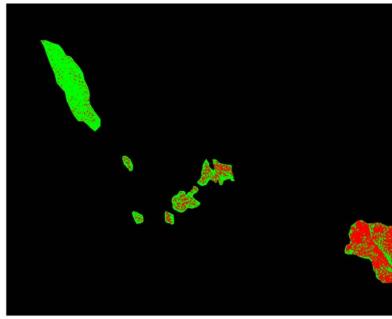
Real part of co-pol correlation $r_{CO} = \Re(\langle S_{HH}S_{VV}^* \rangle)$

Std of co-polarized phase difference $\sigma_{\phi CO} = \sqrt{(<(\phi_{HH}-\phi_{VV})^2>-(<\phi_{HH}-\phi_{VV}>)^2)}$

High

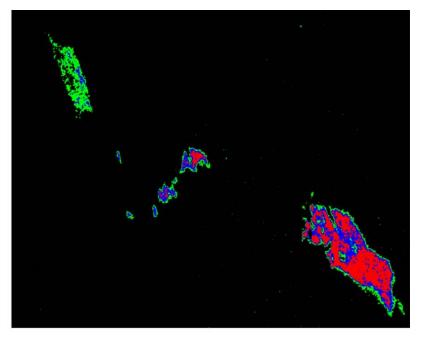

UNIVERSITY OF TROMSØ UIT

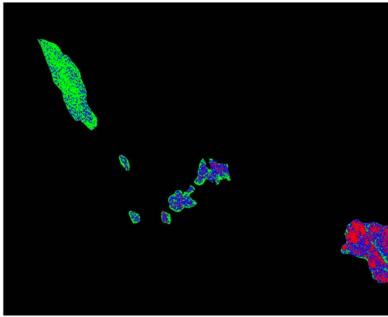
9


TerraSAR-X

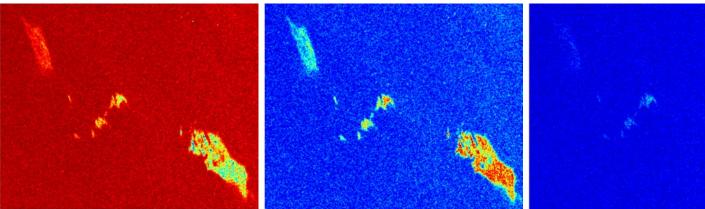
A potential for discrimination between mineral oil and biogenic slick is found

Radarsat-2


TerraSAR-X

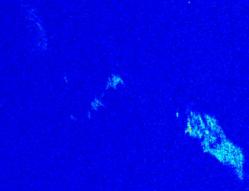

RSITY OF TROMSØ UIT

Classifications show interesting zoning along the edge of mineral oil spills


Radarsat-2

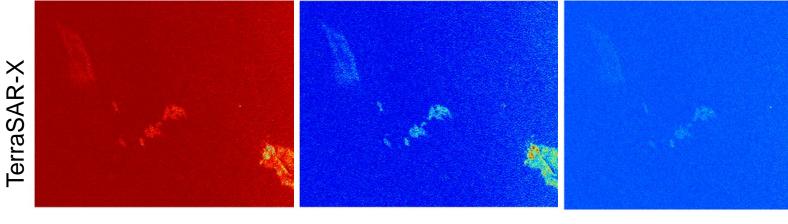
TerraSAR-X

Interesting variations are seen between and within the slicks



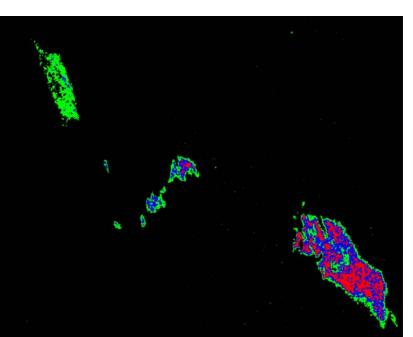
Mag. of co-pol correlation coefficient

$$\rho_{CO} = \left|\frac{<\!\!S_{HH}S_{VV}^*\!\!>}{\sqrt{<\!|S_{HH}|^2\!>\!<\!|S_{VV}|^2\!>}}\right|$$


$$H = -\sum_{i=1}^{2} p_i \log_2 p_i$$

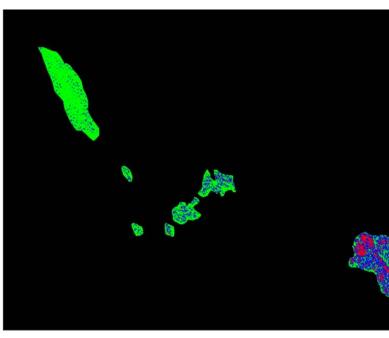
Entropy

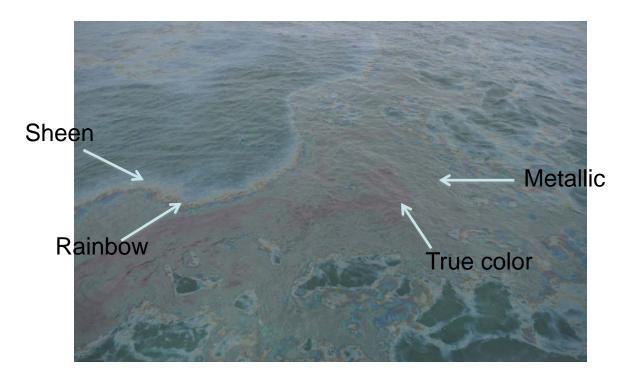
Mean scattering angle $\bar{\alpha} = p_1 \alpha_1 + p_2 \alpha_2$



High

VERSITY OF TROMSØ Ui


Low


Zones along the edges and internal zoning could be related to thickness variations

Radarsat-2

Internal oil spill variations are classified into thickness zones according to the BAOAC

Appearance	Thickness (µm)
Sheen	0,04 - 0,3
Rainbow	0,3 – 5,0
Metallic	5,0 - 50
Discontinuous True Colour	50 - 200
Continuous True Colour	>200

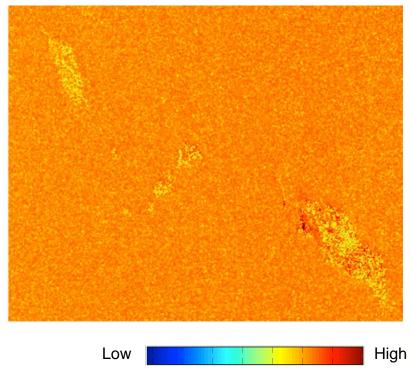
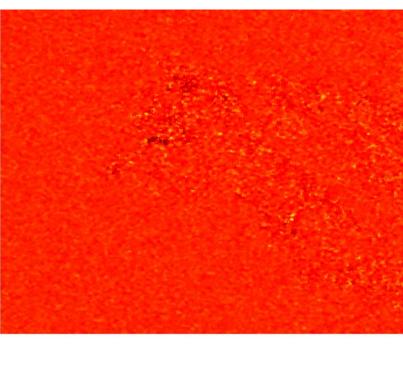

Aerial photos can be used to interpret the results

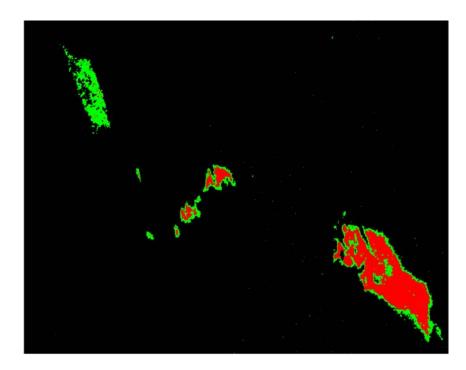
Photo: Kystverket/NOFO/Sundt Air


α_1 may be used to detect variations in dielectric constant, ϵ

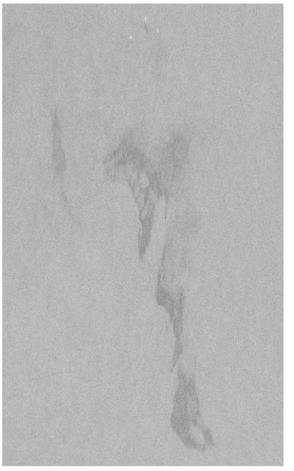
Radarsat-2

- Sea water: ε ~ 80
- Oil: ε ~ 3

TerraSAR-X



Allain, S., Ferro-Famil, L. & Pottier, E. (2003). Surface parameters retrieval from polarimetric and multi- frequency SAR data. Proc. of IEEE Int. Geosc. and Rem. Sens. Symp., 2003


Conclusion: Multi-polarization features show potential for oil spill characterization

- Mineral oil vs biogenic film discrimination
- Internal variations possibly related to physical parameters
- Co-polarization channels most reliable for characterization
- Better results with Radarsat-2 compared to TerraSAR-X

Further work: OPV-2012 (June 11-15)

RADARSAT-2 Data and Products ©MDA LTD. (2012) - All Rights Reserved

NOFO

Photo: Stine Skrunes

Photo: Stine Skrunes

Questions?

Thanks to:

infoterra

Meteorologisk institutt met.no UNIVERSITY OF TROMSØ UIT

