

Progress in Automatic Ship Detection and Classification

<u>G.Hajduch ⁽¹⁾</u>, N.Longépé ⁽¹⁾, J.Habonneau ⁽¹⁾, JY. Le Bras ⁽²⁾

(1) CLS, Plouzané, France

(2) CLS, Ramonville Saint-Agne, France

Plan of the presentation

- Context of ship detection versus marine applications
- Better estimation of characteristics of detected ships
- Using polarimetric information

Vessel detection versus marine applications (1982)

- The vessel detection is only a technical part of marine applications based on spaceborne SAR
- The vessel detection reports (VDR) usually have to be integrated into a full application chain, based on two kinds of SAR acquisitions modes (*):
 - High resolution / small coverage :
 - "One shot" observation of a limited area of interest with high reactivity
 - Focus on "expected" event : intelligence...
 - Medium resolution / wide coverage
 - Systematic monitoring of very large areas
 - Searching for unpredictable events : oil spill detection...
- The selection of optimal SAR acquisitions modes for vessel detection may not be possible due to requirements of the expected marine applications :
 - High reactivity => low incidence angle products in addition to high incidence angle
 - focusing on <u>systematic monitoring</u> of very large areas with a <u>high revisit frequency</u> => medium resolution products
- (*) The compromise between resolution / coverage will be updated with the Sentinel-1 mission

Example:

Pollution Detection Operational Service

Detection of marine pollution and identification of polluters

Wide swath / Medium resolution products (ASA/WSM, RS1-2/ScanSAR Narrow/Wide...)

SAR Vessel Detection is a by-product

Automatic processing is needed for NRT processing

Optimal characterisation of the detected echoes is needed for an appropriate polluter identification

Low false alarm rate is expected

Example:

Metocean measurement

- Wide swath / Medium resolution products (ASA/WSM, RS1-2/ScanSAR Narrow/Wide...)
- SAR Vessel Detection is an internal by-product
- <u>Fully automated</u> processing needed due to operational requirements and the volume of data
- No characterisation of the detected echoes is needed
- Medium/High false alarm rate is acceptable
- Automatic geographic registration is a expected

Example:

Abnormal marine activity on limited area of interest

- For instance : detection of « go fast »
- Narrow Swath / High Resolution products
- Systematic vessel detection is an internal by-product
- Only the characterisation of a limited number of vessels of interest is needed
- Very low false alarm rate is needed
- <u>Supervised/manual detection</u> and characterisation of the vessels of interest is needed
- Note: we will not develop a vessel detection algorithm in human operators head

BETTER CHARACTERISATION OF THE DETECTED ECHOES

Characterisation of vessel in high resolution products is not a challenge Example: RS2 / Multi Look Fine, 10m resolution

03: NORGAS TRADER

Pavillon : Singapour

Type : Transport de gaz liquéfié

Dimensions : 119 m x 18 m

Dimensions SAR: auto 145 m, manuelle 135 m

Code MMSI : 563662000

04: GRAND SAPPHIRE

Pavillon : Panama

Type : Transport de véhicule

Dimensions : 199 m x 32 m

Dimensions SAR: auto 402 m, manuelle 206 m

Code MMSI : 372516000

05: HARMEN OLDENDORFF

Pavillon : Liberia

Type : Minéralier

Dimensions : 225 m x 32 m

Dimensions SAR: auto 348 m, manuelle 221 m

Code MMSI : 636090932

Characterising the vessel in medium resolution products is the real challenge

- Standard techniques of length estimation :
 - Measurement of the shape of the detected echoes
 - Not best suited for medium resolution products
 - The biggest vessels have an extension of few pixels
 - For most of the vessels, the length is below the resolution of the product

Characterising the vessel in medium resolution products is the real challenge

- New technique of length estimation
 - Fused length estimation based on both geometric and radiometric measurements
- Geometric measurement
 - Measurement of the shape of the echo (as usual)
- Radiometric measurement
 - Inversion of <u>a model of vessel RCS</u> with respect to its length
 - Literature of the domain [Skolnik, Vachon97]
 - Obtained using AIS "ground truth"

Characterisation of AIS data as « ground truth »

Stacked positions

Characterisation of the receiver performances

SAR / AIS correlation

Color code:

- Green: reliable SAR targets matched with AIS position
- Orange: unreliable SAR targets matched with AIS position
- Red: Reliable SAR targets unmatched with AIS position
- Black: Unreliable SAR targets unmatched with AIS position
- Blue: AIS position unmatched

2 main issues

- Many red points: range of AIS reception or false alarms or vessels not equipped?
- Many blue points: non detection by SAR image

Need for a comprehensive understanding of:

- AIS data reception for each station: range, angular aspect, sea state/atmosphere dependency...
- Non detection linked to the SAR image itself

Characterisation: RCS model of vessels esa

Modelling of vessel backscattering

Coupling between SAR & AIS
Empirical modelling of vessel RCS with
respect to it's size and incidence angle

$$\sigma = g(L, \theta)$$

$$L = h(\sigma, \theta)$$

$$L = \frac{\sigma}{a_0(a_1 - a_2\theta)}^{\frac{1}{a_3}}$$

Applies to the max RCS of the vessel:

- -Ensures that there is no dependency on the echo segmentation
- -Implies that the RCS model has to be tuned to each product type

Data Fusion & Distribution of possibilities

- 1 estimation of length = 1 sensor
- Here we have two imprecise sensors
 - One sensor based on geometric measurement
 - One sensor based on radiometric measurement
- Each measurement is characterised by a distribution of possibilities
 - Support corresponding to possible values
 - Kernel corresponding to truthful values
 - Max = 1 for truthful values
 - Min = 0 for unrealistic values
- The distribution is defined based on :
 - The measurement itself and its variability
 - Limits of ship lengths
- Fusion operator
 - T-norm of Zadeh = minimum

Data Fusion & distribution of possibilities

Concording sensors

Contradictions between sensors

measurement

→ SEASAR 2012 | The 4th International Workshop on Advances in SAR Oceanography 18-22 June 2012 | Tromsø, Norway

Results of fuzzy logic size estimation: ASA/WSM/VV

Geometric criteria only

Fused Geometric & Radiometric

- Geometric approach with step effect: related to the geometric estimation + pixel spacing.
- Overestimation of the length
- Improvement of length estimation (better fit of the data, no step effect)
- Effective fusion for medium resolution products
- 6447 vessels for the test, 1930 for the learning of the RCS law and fusion.

Results of fuzzy logic size estimation: ASA/WSM/HHS2

Geometric measurement

Fused geometric & radiometric

762 vessel for the test 290 vessels for learning

POLARIMETRIC DETECTION

Polarimetric signature of a vessel imaged in RS2 Fine Quad Pol mode

Pauli decomposition

Pauli RGB

Pauli RGB with lee filtering

Co-pol and cross-pol power

Synthesis of co-pol power from Muller Matrix

Synthesis of x-pol power from Muller Matrix

H/A/alpha polarimetric decomposition

alpha1

entropy

Optimization of Polarimetric Contrast Enhancement

- SAR based ship detection usually assumes a high contrast between a bright target and the sea clutter -> CFAR principle
 - Not valid for small target « lost » in sea clutter (low contrast)
- Full polarimetric data enables the generation of the target/clutter signature in any polarisation basis $P_b = m{h}^{\mathrm{t}}[K]_b \ m{g}$
 - K polarimetric Kennaugh matrix and g-h the receiving and transmitting antenna polarisation state
- OPCE-like method optimizes the contrast (Kostinski et al 77-78) recent fast implementation by Yang et al. 2004

maximize
$$\left(\frac{\boldsymbol{h}^{\mathrm{t}}[K]_{a}\boldsymbol{g}}{\boldsymbol{h}^{\mathrm{t}}[K]_{b}\boldsymbol{g}}\right)$$

subject to $g_{1}^{2}+g_{2}^{2}+g_{3}^{2}=1$
 $h_{1}^{2}+h_{2}^{2}+h_{3}^{2}=1.$

- Ideas to be developed/tested in the coming months
 - Build a comprehensive polarimetric database from RS2 quad-pol images
 - Various detected ships, incidence angle, sea state ...
 - Extract a limited (if possible) set of g-h polarisation state optimizing the ship-to-clutter ratio
 - Apply this set of vector and apply a CFAR-based method on the simulated power

Conclusion

- Automatic vessel detection is usually only a part of marine applications
 - Help to operators in order to perform ildentification of polluters, or IUU activities...
- Multiple possibilities to measure vessel characteristics
 - Each of them with different reliabilities
 - Interest to combine/fuse them in order to improve the overall accuracy
- Still lots to be done with polarimetric information
 - Even if full polarimetric data will not be systematically available
- Interest of interfacing echo (not vessel) detection with metocean measurement in order to improve their overall performance and accuracy
 - Toward and integrated wind-wave-current +VESSEL inversion

The End

THANK YOU

Bibliography

- [Skolnik] Skolnik, Merrill Ivan. Radar handbook. McGraw-Hill, 1990.
- [Vachon97] Vachon, PW, JWM Campbell, CA Bjerkelund, FW Dobson, et MT Rey. « Ship detection by the RADARSAT SAR: Validation of detection model predictions ». Canadian Journal of Remote Sensing 23, n°. 1 (1997): 48–59.

Acknowledgment

- Part of the results int this presentation where obtained in the framework of the FP7 DOLPHIN Project:
 - http://www.gmes-dolphin.eu/team

Appendix: Minimum detectable ship length for Sentinel-1 HH and HV

Sentinel-1: ESA's Radar Observatory Mission for GMES Operational Services, SP-1322/1, March 2012

Figure 12.4. Minimum detectable ship length for Sentinel-1 HH (blue) and Envisat ASAR HH (green). HH, $U=12\,m\,s^{-1}$, $\phi=0^\circ; \nu=4$; PFA = 2.5e–009; PD = 0.9; margin = 3 dB.

Figure 12.5. Minimum detectable ship length for Sentinel-1 HV (blue) and Envisat ASAR HV (green). HV, $U=12~{\rm m\,s^{-1}}, \phi=0^\circ; v=4;$ PFA = 2.5e–009; PD = 0.9; margin = 3 dB.

