

PROBA-V radiometric calibration Sindy Sterckx, Stefan Adriaensen QWG12, 27-28 October 2020

CONTENT

- Investigation LEFT BLUE issue
 - ➤ The issue
 - Differences in LEFT-CENTER overlapping region
 - OSCAR Libya-4 VZA dependencies
 - DCC interband results vs Pixel/VZA
 - Polarisation sensitivity
 - ➤ C1 : Degradation model applied since May 2017
- Trend model

THE ISSUE

• Analyses from Rayference (presented at QWG 11)

Suggested corrections to be applied

•								
	PROBA-V							
	ALL	1.024	1.005	0.997	1.004			
+/- 3%	LEFT	1.040	1.005	0.997	1.001			
difference	CENTRAL	1.011	1.012	1.001	1.003			
	RIGHT	1.010	0.999	0.993	1.014			
		BIUF	RFD	NIR	SW/IR			

For PROBA-V, it is suggested to apply a correction per camera

THE ISSUE (CON'T)

• Analyses from Rayference (presented at QWG 11)

ANALYSES : OVERLAP REGION

- Using desert scenes for which CENTER and LEFT camera overlap over the desert ROI
- Comparison of mean reflectance within overlapping ROI (not pixelby pixel)
- 10 scenes selected in period 2015 -2018

ANALYSES : OVERLAP REGION

Small difference observed in overlap region

in average LEFT BLUE TOA reflectance values 0.7% lower than CENTER TOA reflectance

- Using desert scenes for which CENTER and LEFT camera overlap over the desert ROI
- Comparison of mean reflectance within overlapping ROI (not pixelby pixel)
- 10 scenes selected in period 2015 -2018

VITO remote sensing

ANALYSES : OSCAR LIBYA-4 VZA DEPENDENCIES

vito.be

vito.be

ensing.vito.be

DCC INTER-BAND VS PIXEL/VZA

DCC INTER-BAND VS PIXEL/VZA

POLARISATION INFORMATION

Polarisation Pre-launch design values for single camera :

		blue	red	nir	swir
DoP	0 mm	1.24%	0.31%	0.05%	0.69%
DoP	12 mm	1.53%	0.37%	0.07%	0.69%
DoP	26 mm	2.74%	0.45%	0.21%	0.73%
DoP	edge	3.92%	0.35%	0.39%	0.89%

Center

Center+/- 923 VNIR pixels Center +/- 2000 VNIR pixels

Distance towards center of

camera

Polarisation Pre-launch FAR measured values single camera :

		blue	red	nir	swir
DoP	0 mm	1.08%	0.10%	0.03%	0.57%
DoP	12 mm	1.37%	0.13%	0.06%	0.58%
DoP	26 mm	2.48%	0.11%	0.18%	0.63%
DoP	edge	3.53%	0.11%	0.33%	0.82%

POLARISATION INFORMATION

Polarisation Pre-launch design values for single camera :

MODIS-TERRA ISSUE POLARISATION

A. Wu, X. Geng, A. Wald, A. Angal, and X. Xiong, "Assessment of Terra MODIS On-Orbit Polarization Sensitivity using Pseudo-invariant Desert Sites," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 4168–4176, Jul. 2017.

COLLECTION 1 : DEGRADATION MODEL SINCE MAY 2017

Underestimation of PROBA-V vs MODIS BLUE TOA reflectance partly due to degradation of BLUE response which is not fully corrected for in C1

PRELIMINARY CONCLUSIONS LEFT BLUE ISSUE

- ▶ BUE TOA reflectance about 1~2 % lower than MODIS AQUA band 9 TOA reflectance (C5)
 - Partly due to absolute bias
 - > Partly due to degradation of BLUE response not fully corrected for in C1
- Inter-camera biases LEFT-CENTER BLUE :
 - In overlap region ~0.7 %
 - > Polarisation sensitivity might explain some of larger uncertainties near edge

➢ In C2 :

- Degradation model from start
 - Reprocessing scenes re-evaluation biases
- Correction for overall bias : ~1% (TBC)
- > 0.7-1% (TBC) extra correction to LEFT-BLUE to correct for inter-camera bias

CONTENT

- Investigation LEFT BLUE issue
 - ➤ The issue
 - Differences in LEFT-CENTER overlapping region
 - OSCAR Libya-4 VZA dependencies
 - DCC interband results vs Pixel/VZA
 - Polarisation sensitivity
 - ➤ C1 : Degradation model applied since May 2017

Trend model

TREND MODEL

LUNAR LIME

Lime_lunar NIR C2 model

LUNAR LIME

Lime_lunar BLUE (A fixed)

LIME lunar BLUE fixed A vs polynomial model

CENTER (2nd degree polynomial model)

PRELIMINARY CONCLUSIONS TREND MODEL

- FOR CENTER CAMERA
 - Lunar LIME results for validation degradation model
 - RED & NIR trends in Lunar Lime results corrected for by degradation model
 - BLUE trends in Lunar Lime results corrected for until +/- day 1500by degradation model
 - BLUE trends in Lunar Lime results undercorrected for > day 1500 Similar observations in DCC BLUE interband results

=> ACTION : more strict selection of scenes for degradation trending BLUE

THANKS FOR YOUR ATTENTION

