

→ SEASAR 2012

The 4th International Workshop on Advances in SAR Oceanography

Field experiments on SAR detection of film slicks

S. Ermakov⁽¹⁾, J.C.B. da Silva⁽²⁾, I. Kapustin⁽¹⁾,

I. Sergievskaya (1)

⁽¹⁾Institute of Applied Physics, Russian Academy of Sciences,

(2) University of Porto

18-22 June 2012 | Tromsø, Norway

Motivation

Better understanding of possibilities to use SAR for detection and characterization of surface films (including oil spills) on the sea surface.

Previous experiments:

- 1. UoH: radar probing of film slicks with SAR (Gade, W. Alpers, Huehnerfuss et.al., JGR, 1 1998) and with L-C-X-Ku-scatterometer (Gade, Alpers, Huehnerfuss, Wismann, Lange, Rem. Sens. Env. 1998)
- 2. IAP RAS experiments on optical&radar probing of film slicks **simultaneous** with SAR : the Black Sea, Envisat ASAR 2008, the Gorky Water Reservoir, TerraSAR-X, 2009. Mostly low winds and very few scatterometer measurements.

New experiments:

SAR contrasts in a wide range of wind velocities, comparison with simultaneous scatterometer measurements from a boat

IAP RAS experiments on slick remote sensing. GWR, 2011

X-, Ka- band scatterometers on board a research vessel

GWR: width 15 km, length 70 km, mean depth 10 m

eesa Physical characteristics of artificial surfactant films

NERSC

oleic acid (OLE), oleyl alcohol (OLA), Emkarox (Emk), vegetable oil (VO), dodecyl alcohol (DA)

→ SEASAR 2012 | The 4th International Workshop on Advances in SAR Oceanography 18-22 June 2012 | Tromsø, Norway

Norsk Romsenter

Slicks of OLE and DA. Inc. angle 36^o. Wind velocity 3 m/s, N.(350 deg)

TS-X 16.08.2011. 14.44 UTC inc.angle 36-39^o Bragg wavenumber k~2.5 rad/cm, Wind 5-6 m/s, East. Boat dir West-East, and East-West

TS-X 17.08.2012, 03.40 UTC, inc. angle 20-23⁰, Bragg wavelength ~4 cm, k~1.57 rad/cm

Contrasts in experiments of 2011 on GWR

NERSC

Experiment	TS-X contrast	X-band scat contrast (inc. angle 60 ⁰)	Ka-band scat contrast (inc. angle 60 ⁰)
16/08/11, 14.44 UTC, Wind 5-6 m/s, East	3 (k V), inc. angle~37 ⁰	12.5 (kV~165 ⁰) 9.4 (kV~-115 ⁰) 7.5 (kV~110 ⁰)	19 (kV~165 ⁰) 8.5 (kV~-115 ⁰) 5.5 (kV~110 ⁰)
17/08/11, 03.40 UTC,	2 (k V)	9(kV~165 ⁰)	14.5 (kV~165 ⁰)
Wind 6-7 m/s, East	inc. angle~21 ⁰	2(kV~ 25 ⁰)	8.2 (kV~25 ⁰)
22/08/11, 14.35 UTC,	4 (k [⊥] V)	7 (kV~-155 ⁰)	4.4 , 10.4 (kV~-115 ⁰)
Wind 6-8 m/s, North	inc. angle~23 ⁰	6.2 (kV~ 155 ⁰)	8.2 (kV~25 ⁰)

Norsk Romsenter NORWEGIAN SPACE CENTRE

Contrasts in slicks. Experiments of 2008-2011.

NERSC

X-scat, 2009, OLE ΣĴ X-scat, 2011, OLE ΣŢ TS-X, 2009, OLE * TS-X, 2011, OLE TS-X, OLE, BlackSea'08 EnvisatASAR, OLE, BlackSea'08 \blacktriangleright Composite Model, 35 deg Composite model, 22 deg.

esa

Norsk Romsenter

Norsk Romsenter Northern Space centre Models of wind wave damping and SAR contrast in slicks

NERSC

Composite model of radar cross section (low-to-moderate inc. angles)

$$\sigma_0 = \sigma_{0Bragg} + \sigma_{0Specular}$$

 $\sigma_{0Bragg} = 16\pi k_{radar}^4 G(\theta) F(k_{Bragg} = 2k_{radar} \sin \theta, \varphi)$

$$\sigma_{0specular} = \frac{\pi R^2}{s_u s_c \cos^4 \theta} \exp(-\frac{\tan^2 \theta}{2s_{sp}^2}) \qquad S_{u,c,sp} - \text{mean square slopes of wind waves}$$
(with k<1/4 k_{bragg})

$$K_{radar} = \frac{\sigma_{0Bragg} + \sigma_{0Specular}}{\sigma_{0BraggSlick} + \sigma_{0SpecularSlick}}$$

Models of wind wave damping and SAR contrast in slicks

NERSC

$$\frac{dN(k, x, t)}{dt} = \Pi_{a} + \beta(u_{*}, k)N - \gamma(E, \sigma, k)N + I_{nl}(N)$$

 $N(\mathbf{k}, \mathbf{x}, t) = \rho F(\mathbf{k}, \mathbf{x}, t) \omega(\mathbf{k}) / |\mathbf{k}|$ *F* - the wavenumber spectrum of wind waves

 β - wind wave growth rate, γ - wave damping coefficient, σ - surface tension, E - film elasticity, u_* - friction velocity

A local balance model for the spectrum of wind waves (Pelinovsky, Donelan&Pierson, Ermakov et.al..)

$$I_{nl} = -\delta N^m$$
 m=2

lorsk Romsenter

Contrast $K(k) = F_{nsl}(k)/F_{sl}(k)$ in the wavenumber spectrum of wind waves

$$K(k) = \left[\frac{\beta(u_{*nsl}, k) - \gamma(0, \sigma, k)}{\beta(u_{*sl}, k) - \gamma(E, \sigma, k)}\right]^{n}$$

esa

$$\beta > \gamma$$
 n=1; $\beta < \gamma$ n=-1

A non local model (Kudrjavtsev et.al)

$$I_{nl} = -\delta N^m + I_{nl}^{sw}(k) \qquad I_{nl}^{sw}(k) = \frac{\omega}{k^5} c_b \iint_{k' < k_{mb}} \beta(k', \varphi) k'^4 \cdot N(k') / \omega(k') \cdot dk' d\varphi$$

Damping of wind waves due to films

NERSC

OLE films (E= 25 mN/m) strongly (>10 times) depresses the Bragg component, and weakly affects the specular component

 $\sigma_{0 BraggSlick} << \sigma_{0 BraggNonslick}$

 $\sigma_{0 \, specularSlick} \approx \sigma_{0 \, specularNonslick}$

Wind wave damping=Radar Bragg Contrast vs. wavenumber of wind waves. K* - max wavenumber for specular model.

On possibilities of film characterization

NERSC

$$K_{radar} = \frac{\sigma_{0Bragg} + \sigma_{0Specular}}{\sigma_{0BraggSlick} + \sigma_{0SpecularSlick}}$$

Low inc. angles (<20⁰): Specular>>Bragg
 Contrast is almost insensitive to film elasticity

(at moderate wind >5 m/s)

Romsente

2. Inc. angles ~ 25⁰: Specular≈Bragg

Contrast weakly depends on film elasticity

3. Inc. angles >25-30⁰: Specular<Bragg
Bragg(Slick)<<Specular(Slick): contrast weakly depends on film elasticity
BraggSlick>>SpecularSlick: contrast K=K(E),

and E varied in some limited range can be estimated

$$K_{radar} = rac{\sigma_{0.SpecularNonslick}}{\sigma_{0.SpecularSlick}} \approx 1$$

$$K_{radar} = \frac{\sigma_{0Bragg} + \sigma_{0Specular}}{\sigma_{0SpecularSlick}} \ge 2$$

$$K_{radar} = \frac{\sigma_{0Bragg}}{\max\{\sigma_{0BraggSlick}, \sigma_{0SpecularSlck}\}} >>1$$

Summary

NERSC

- SAR contrasts (inc. angles ~22-36 deg.) are smaller than scat-contrasts (inc. angles ~ 60 deg.)
- SAR contrasts for films with strongly different elasticity values (OLE, E≈22 mN/m and DA, E≈70 mN/m) are close to each other.
- Rough estimates using a composite radar model (Bragg + Specular) at lowto-moderate angles are consistent with experimental SAR contrasts

- SAR (at low-to-moderate inc. angles) can be used to detect slicks, but probably is not very effective for film characterization, since the contrasts weakly depend on film elasticity
- More experiments&data analysis are needed, however.

orsk Romsenter

TerraSAR-X. 03.06.2012, inc. angle 22-25^o ,wind 8 m/s, VO-slick

Wind vel 7:10 local time 2.5 – 3 m/s, 290-300 deg (NW) Inc angle 31.9 deg.

Radar contrasts in slicks. Experiments by Gade etabsa

Radar contrasts for OLA artificial slicks a) wind 5m/s, θ =35⁰, b) wind 7 m/s, θ =31⁰. «o»- SAR L-C-X-band (Gade et.al., 1998), «x» - L-S-C-X-Ku-band scatterometer simultaneous with SAR (Gade et.al., 1998)