Moho depth inversion from gravity and gravity gradient data

Zhourun Ye, Nico Sneeuw, Lintao Liu

Institute of Geodesy, University of Stuttgart, Germany Institute of Geodesy and Geophysics, CAS, China

26.11.2014

5th Internationale GOCE User Workshop · GIS ·

Outline

Background introduction

Development methodology

Application of Moho inversion

► Summary

Background introduction

Schematic of irregular interface

Figure 1: Schematic of irregular interface

$$T(r,\theta,\lambda) = G\Delta\rho^{c/m} \iiint_{\sigma'} \int_{r'=R-D}^{R-D_0} l^{-1}(r,\theta,\lambda) r'^2 dr' d\sigma'$$
(1)

Development methodology

Moho inversion from gravity data

$$D(\theta,\lambda) = -\frac{1}{4\pi} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{2n+1}{n+1} \left(\frac{r}{R}\right)^{n+2} h_{nm}^{\delta g} Y_{nm}(\theta,\lambda) + \frac{D^2(\theta,\lambda)}{R} - \frac{1}{32\pi R} \iint_{\sigma'} \frac{D^2(\theta',\lambda') - D^2(\theta,\lambda)}{\sin^3(\psi/2)} d\sigma'$$
(2)

$$D(\theta,\lambda) = -\frac{2R+3H}{4\pi R}h^{\delta g}(\theta,\lambda) + \frac{H}{32\pi^2 R} \iint_{\sigma'} \frac{h^{\delta g}(\theta',\lambda') - h^{\delta g}(\theta,\lambda)}{\sin^3\left((\psi/2)\right)} d\sigma' + \frac{R+H}{16\pi^2 R} \iint_{\sigma'} h^{\delta g}\left(\theta',\lambda'\right) \left(\frac{1}{\sin(\psi/2)} - \ln\left(1 + \frac{1}{\sin(\psi/2)}\right)\right) d\sigma' + \frac{D^2(\theta,\lambda)}{R} - \frac{1}{32\pi R} \iint_{\sigma'} \frac{D^2(\theta',\lambda') - D^2(\theta,\lambda)}{\sin^3(\psi/2)} d\sigma'$$
(3)

Moho inversion from vertical gravity gradient data

$$D(\theta,\lambda) = \frac{R}{4\pi} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{2n+1}{(n+1)(n+2)} \left(\frac{r}{R}\right)^{n+3} h_{nm}^{\Gamma} Y_{nm}(\theta,\lambda) + \frac{D^{2}(\theta,\lambda)}{R} - \frac{1}{32\pi R} \iint_{\sigma'} \frac{D^{2}(\theta',\lambda') - D^{2}(\theta,\lambda)}{\sin^{3}(\psi/2)} d\sigma'$$
(4)

$$D(\theta,\lambda) = \frac{H}{2\pi}h^{\Gamma}(\theta,\lambda) - \frac{R+2H}{16\pi^{2}}\iint_{\sigma'}h^{\Gamma}\left(\theta',\lambda'\right)\left(\frac{1}{\sin(\psi/2)} - \ln\left(1 + \frac{1}{\sin(\psi/2)}\right)\right)d\sigma' + \frac{3(R+H)}{16\pi^{2}}\iint_{\sigma'}h^{\Gamma}\left(\theta',\lambda'\right)\left(\frac{1}{\sin(\psi/2)} - 3\left(2\sin(\psi/2) - 1 + \cos\psi\ln\left(1 + \frac{1}{\sin(\psi/2)}\right)\right)\right)d\sigma' + \frac{D^{2}(\theta,\lambda)}{R} - \frac{1}{32\pi R}\iint_{\sigma'}\frac{D^{2}(\theta',\lambda') - D^{2}(\theta,\lambda)}{\sin^{3}(\psi/2)}d\sigma'$$
(5)

Application of Moho inversion

Process of Moho inversion

Figure 2: Process of Moho inversion

Data for Moho inversion (gravity)

Figure 3: Data for Moho inversion (10 km, step-wise correction)

Data for Moho inversion (vertical gravity gradient)

Figure 4: Data for Moho inversion (10 km, step-wise correction)

Statistics

Moho difference	Max(km)	Min(km)	Mean(km)	STD(km)
$D_{\delta g}^{\text{spect}} - D_{\text{CRUST1.0}}$	16.75	-28.42	-3.92	4.74
$D_{\Gamma}^{\text{spect}} - D_{\text{CRUST1.0}}$	16.75	-28.42	-3.92	4.74
$D_{\delta g}^{\text{spat}} - D_{\text{CRUST1.0}}$	16.51	-28.23	-3.96	4.71
$D_{\Gamma}^{\text{spat}} - D_{\text{CRUST1.0}}$	16.46	-23.09	-3.55	4.24

Table 1: Statistics of Moho depth differences with CRUST1.0

Table 2: Statistics of Moho depth differences with different methodologies

Moho difference	Max(km)	Min(km)	Mean(km)	STD(km)
$D_{\Gamma}^{\text{spect}} - D_{\delta g}^{\text{spect}}$	0	0	0	0
$D_{\delta g}^{\text{spat}} - D_{\delta g}^{\text{spect}}$	2.06	-2.05	0.04	0.18
$D_{\Gamma}^{s pat} - D_{\delta g}^{s pect}$	5.57	-15.52	-0.37	1.32
$D_{\Gamma}^{\text{spat}} - D_{\delta g}^{\text{spat}}$	6.07	-14.69	-0.41	1.27

Comparison

Figure 6: Comparison with CRUST1.0 model

Comparison

Figure 7: Moho depth differences with different methodologies

Summary

- Global Moho from spectral expressions are close to CRUST1.0 model with a mean difference of -3.9 km and a standard deviation of 4.74 km.
- Spectral methodologies of gravity and vertical gravity gradient have the same accuracies because of the same approximation during the formulae derivations.

Thanks for your attention!