

→ SEASAR 2012

The 4th International Workshop on Advances in SAR Oceanography

Sentinel-1 Processor and Core products

N. Miranda, B. Rosich ESA/ESRIN

18-22 June 2012 | Tromsø, Norway

Presentation layout

- S-1 Acquisition Modes (recall)
- S-1 Instrument Processing Facility (IPF)
- S-1 L1 Product Family description
- S-1 L2 Product Family description

S-1 acquisition modes

- S-1 can be operated in 4 exclusive acquisition modes
- High Bit Rate Modes:
 - Stripmap (SM)
 - Interferometric Wide Swath (IW)
 - Extra Wide Swath (EW)

IW and EW are operated under the TOPS acquisition mode

- Low bit Rate Mode
 - Wave Mode (WV)
- HBR are single or dual polarisation, LBR is single polarisation only

Sentinel-1 Wave Model

- S-1 WV mode is the default mode over open ocean where no other mode is requested by a GMES/national services
- S-1 WV is the direct continuation of ERS and ASAR WV mission with several differences:

	Sentinel-1	ASAR
swath	Alternating (<i>leap-frog</i>): WV1: 23° equivalent to SM/S2 WV2: 36.5° equivalent to SM/S4	Single IS2 : 23° equivalent to IM/IS2
Imagette size	20x20 Km (gd rg x azi)	10x20 Km
Imagette sampling	100 Km	100 Km
Polarisation ¹	Single (HH or <u>VV</u>)	Single (HH or <u>VV</u>)
Resolution	WV1: 74.5MHz WV2: 48.2MHz	16MHz

1) For WV, the default polarisation is VV for continuity purposes. Recommendations are welcome!

•

•

Presentation layout

- S-1 Acquisition Modes (recall)
- S-1 Instrument Processing Facility (IPF)
 - S-1 L1 Product Family description
 - S-1 L2 Product Family description

S-1 IPF development

- S-1 Instrument Processing Facility (IPF) development started in 2008:
 - Definition of algorithm for core Level-1 (L1) and Level-2 (L2) products
 - Definition of product family and format
 - Development of the processor for L1 and L2

Contract awarded to a consortium composed by MDA and Aresys for L1 and Norut and CLS for the L2 part

- First phase almost completed (Acceptance review by September at latest):
 - Including acceptance of L2
- Second Phase: synchronize the IPF with latest changes coming mainly from the instrument should start right after.

S-1 IPF architecture

S-1 IPF architecture

Multi-stage architecture:

- Ingest:
 - FDBAQ decoding
 - Source Packet de-multiplexing (echo, noise, calibration)
 - Raw Data Correction
- Doppler Centroid estimation
 - Absolute and relative Doppler centroid estimation
- SAR focusing (3 modules)
 - SM focusing
 - TOPS Focusing
 - WV Focusing

• L1 post-processing

- Radiometric correction
- Slant to ground range projection
- Detection and multi-looking
- Burst and Swath merging

Thermal denoising for L1 GRD

L2 post-processing

- Ocean swell spectra
- Ocean wind fields
- Ocean Surface Radial Velocity

S-1 IPF project documentation esa

The following items will be opened to the users in the second half of 2012:

- S-1 Product Definition
- S-1 Product Format Specification
- S-1 Detail Processing Model
 - For L1 and L2
- S-1 Auxiliary Data File format Specification
- S-1 IPF interface control document
- S-1 L0, L1 and L2 samples products

S-1 processing scenario

- S-1 will acquire data-takes according to a predefined planning.
- For SM, IW and EW the L0 products will be generated as <u>slices</u> and systematically processed to L1 and L2 <u>slice</u> products.
- L1 (slices) products are of seamless quality and are directly concatenable:
 - No data gap or duplicated lines
 - No geometric, radiometric, phase discontinuity
 - Annotations are concatenable
- Concatenation is let to the user appreciation and is not performed by the PDGS
- WV data is not sliced and the full segment is processed into L2.
 - ightarrow WV L1 products are not systematically generated

S-1 IPF throughput

- Throughput¹ achieved by one IPF processing node (preliminary numbers):
 - 14s of IW LO dual pol \rightarrow L1: ~ 3.25 4 mins
 - − 60s of EW L0 dual pol \rightarrow L1: ~5.73mins
 - 60s of WV L1 single pol \rightarrow L1: ~38.1s
- At PAC/CGS several processing nodes are available to process the LO slices in parallel

1) Performance achieved with:

- CPU: Intel Xeon 5680, 3.33 GHz, with 2 sockets and 6 cores per socket
- RAM: 96 GB DDR3-1333 RAM (48 GB per socket)

Presentation layout

- S-1 Acquisition Modes (recall)
- S-1 Instrument Processing Facility (IPF)
- S-1 L1 Product Family description
 - S-1 L2 Product Family description

Sentinel-1 core product family

esa

S-1 Level-1 Product Family

LEVEL-1 PRODUCTS

- Slant-Range Single-Look Complex Products (SLC)
 - Focused data in slant-range geometry
 - Single look with phase and amplitude information
 - Complete geo-reference information corrected for the azimuth bi-static delay
 - Elevation antenna Pattern and Range Spreading Loss natively corrected

Ground Range Detected Products (GRD)

- Focused data projected to ground range using an Earth ellipsoid model and with original satellite path direction preserved
- Detected and multi-looked. Several resolution classes are possible depending on the product type:
 - Full Resolution (FR): ~9m resolution
 - High Resolution (HR): ~20-50m resolution
 - Medium Resolution (MR): ~85-95m resolution
- Complete geo-reference information corrected for the azimuth bi-static delay
- Elevation antenna Pattern and Range Spreading Loss natively corrected
- Thermal noise removal

ASAR WS after / before thermal noise remov

S-1 L1 product characteristics esa

Acq. Mode	Produc t Type	Resol. Class	Resol. [m] [rg x az] (1)(2)	Spacing [m] [rg x az] (2)	No. Looks	polarisation	Data Volume [MB] (3)	Ground coverage [km]	PSLR [dB]	ISLR [dB]	DTAR [dB]	PTAR [dB]	NESZ [dB]
SM	SLC		[1.7 x 4.3]	[1.5 x 3.6]	A STA	Single: (H or V) or Dual (HH/HV or VV/VH)	3300		<- 21.2	< -16.7 <-22.3 <			4
			to	to	1			80					
			[3.6 x 4.9]	[3.1 x 4.1]			1600				. 20.2	- 22	
		FR	9 x 9	4 x 4	4		265				<-22.3	.3 <-32.3	<-22
	GRD	HR	23 x 23	10 x10	36								
		MR	84 x 84	40 x 40	484		18						
IW	SLC		[2.7 x 22] to [3.5 x 22]	2.3 x 17.4	1	single or dual	3100	250	< -	< -167	7 - 22 5 -	< 77 7	<-77
	GRD	HR	20 x 22	10 x 10	5	single of dual	822	250	21.2	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		MR	88 x 89	40 x 40	110		52						
	SLC		[7.9 x 42] to	5.9 x 34.7	1	single or dual	2200		< -	<-16.7 <-23		3.1 <-27.4	<-22
EW			[14.4 X 44]					400	21.2		<-23.1		
	GRD	HR	50 x 50	25 x 25	3		504						
		MR	93 x 87	40 x 40	12		199	•					
WV	SLC		[2.0 x 4.8] to [3.1 x 4.8]	[1.7 x 4.1] to [2.7 x 4.1]	1	Single	400	20	<- 21.2	< -16.7	<-23.1	<-27.4	<-22

(1) For GRD, the resolution given at mid-range, mid-orbit and value at mid-orbit altitude, averaged over all swaths.

(2) For SLC, given in slant-range.

(3) Volume given for a single pol and for a product duration of 25s for SM and IW, 60s for EW and WV. To be multiplied by 2 in dual pol case

NESZ performance

S-1 SLC product format overview

* A channel is a polarisation or a sub-swath or an imagette

IW Product: first samples

- IW SLC data block follows the convention introduced by the ASAR WSS:
 - Collection of focussed burst separated by 0-padding
- IW SLC Data provided in slices of 25s:
 - ~9 bursts in each slice covering ~250x170km
- Data block is composed by:
 - 3 (6) images (geotiff) for single (dual) pol
- Focused burst duration (2.75s) is just enough overlap to ensure continuous ground coverage in azimuth
 - Burst overlap: ~[405, 230, 180]m
- Sub-swath overlap < 2km
- Pixel sampling common in azimuth and range Longer burst than for ASAR

IW SLC: collection of focused burst per sub-swath

S-1 GRD product format overviewesa

IW GRD : first sample

Presentation layout

- S-1 Acquisition Modes (recall)
- S-1 Instrument Processing Facility (IPF)
- S-1 L1 Product Family description
- S-1 L2 Product Family description

S-1 L2 OCEAN product

- The S-1 Level-2 product family is composed by the OCEAN (OCN) product designed to deliver geophysical parameters related to the wind, waves and surface velocity to a large panel of users
- The OCN product strongly inherits from ESA projects (i.e. globWave and WWC, Soprano):
 - Provides continuity of global SAR swell measurements at C-band SAR (using WV mode)
 - Complements the swell fields with wind and Radial Velocities
 - Extends the algorithms to the SM and TOPS mode (when possible)*
- Each L2 OCN product contains up to three geophysical components:
 - radial surface velocity (RVL)

High precision Doppler frequency estimation for ocean applications, H. Johnsen, G. Engen, Wave retrieval and applications, **Day 2, PM**

- ocean surface wind field (OWI)
- ocean swell wave spectra (OSW): <u>OSW is not available for TOPS (IW/EW) mode</u>
 SAR Wave Mode Processing Improvements towards Sentinel-1 Mission, H. Johnsen, F. Collard, Wave retrieval and applications, Day 2, AM

*SEASAR 2010 recommendation

S-1 L2 product characteristics esa

OSW component	parameter	unit	SM	wv	IW/EW	Limits		
OSW	swell spectra	[m^4]	V	1				
	Quality cross-spectra	[m^2]	~	~				
	SAR SWH	[m]	Bias<1; F	MSe<0.5				
	Dominant Wave Length	[m]	Bias<-10;	RMSe<50	Not	Within [30, 500]m		
	Dominant Wave direction	[degN]	Bias<10; RMSe<40 [210, 260]m 20x20					
	Mean azi. Cut-off wavelength	[m]				Within [15, 800]m		
	spatial resolution	[km x km]						
OWI	wind speed	[m/s]	RMSe < 2.0			Within [0, 25]m		
	wind direction	[degN]	RMSe < 30					
	spatial resolution	[km x km]	1x1					
RVL	Radial Suface Velocity	[m/s]	RMS within [0.29, 0.38]			Within [-10, 10]		
	Doppler Centroid Frequency	[Hz]	RMS within [2, 5]			Within [0, 60]Hz		
	spatial resolution	[km x km]	[km x km] 1x1					

Details provided in the S-1 product definition

S-1 L2 OCN product overview

esa

L2 OCN: OWI component

- OWI component is new wrt to ERS/ASAR. OWI provides wind fields (Speed and direction) at 10m:
 - SM/TOPS : resolution 1x1km
 - WV: 20x20km (One estimate per imagette)
- Available for all acquisition modes:
 - Over open ocean with WV mode
 - Over coastal areas with TOPS modes
- Algorithm:
 - Bayesian scheme (Kerbaol and al., 2007) using a priori ECMWF winds and CMOD-IFR GMF
 - Estimation based on the co-pol channel (no inversion combining co and cross-pol).
 - The Mouche polarisation ratio model is used (Mouche and al. 2006)¹
- Limitation:
 - Low wind speed estimates are limited by the NESZ (<-22dB)
 - Under-estimation at winds > 25 m/s
 - Current can affect the estimation (Mouche, Seasar 2010)
- Product performance
 - Wind speed (U10)<2 m/s RMSe, for winds within [0, 25] m/s
 - Wind direction(degN) < 30° RMSe

1) As per SEASAR 2010 recommendation

Courtesy of CLS

15.0

L2 OCN: OSW component

esa

- OSW component provides continuity measurement of SAR swell spectra at C-band:
 - 2D ocean surface swell spectra estimated from inversion of the corresponding cross- spectra at spacing of 20x20km (i.e. one per imagette)
- Available for WV (global) and SM (local) acquisition modes
 - Not available for TOPS
- Algorithm scheme:
 - Spectra derivation: Derivation of co and cross-spectra by computed by performing inter-looking (3 looks) in azimuth
 - Spectra inversion: OSW obtained by inversion of the corresponding image cross-spectra using a refined MTF followed by spectra partitioning*
 - Generated from the co-polarisation channel
 - For coastal area a bathymetry model is used for wave dispersion in finite depth

*SAR Wave Mode Processing – Improvements towards Sentinel-1 Mission, H. Johnsen, F. Collard, Wave retrieval and applications, **Day 2, 08:50**

Azimuth cutoff values [m]

ASAR WV azimuth cut-off (03/2012)

OSW partition in 2 wave systems

L2 OCN: RVL component

esa

- ASAR was the first mission providing a Doppler grid to better understand the geophysical signature of the Doppler
- RVL component is the continuity of the ASAR Doppler grid
- RVL is provided for all acquisition modes:
 - SM/TOPS : resolution 1x1km
 - WV: 20x20km (One estimate per imagette)
- Algorithm
 - The core algorithm is a dedicated high-precision and high-resolution algorithm for estimation of Doppler frequency [Hz] and the corresponding standard deviation.

High precision Doppler frequency estimation for ocean applications, *H. Johnsen, G. Engen, Ocean current retrievals and applications,* **Day 2, PM**

Radial Surface Velocity [m/s]

1.0

0.5

1.5

2.0

-2.0

Recommendation from SEASAR 2010

Ocean Current Application Session:

"Accuracy and resolution of Doppler Centroid estimation requires more investigation and preferably improvement"

Work has been carried following two roads:

• Doppler centroid characterization

Recchia, A.; Guarnieri, A.M.; Miranda, N.; Collard, F.; D'Aria, D.; Giudici, D.; , "Impact of the antenna stability on the Doppler Centroid frequency," *Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International*, vol., no., pp.1516-1519, 24-29 July 201

Doppler centroid estimation improvement:

SEASAR 2012 : Session: Ocean current retrievals and applications, Day 2: High precision Doppler frequency estimation for ocean applications, H. Johnsen, G. Engen

The two approaches are implemented in the S-1 IPF

Recommendation from SEASAR 2010

→ SEASAR 2012 | The 4th International 18-22 June 2012 | Tromsø, Norway

Page 33

252

THANK YOU

→ SEASAR 2012 | The 4th International Workshop on Advances in SAR Oceanography 18-22 June 2012 | Tromsø, Norway Page 34

esa