

5th GOCE User Workshop 2014

A Gravity Field Model From the Entire GOCE Mission: EGM_TIM_RL05

Jan Martin Brockmann¹, Eduard Höck^{2,4}, Ina Loth¹, Torsten Mayer-Gürr², Roland Pail³, Wolf-Dieter Schuh¹ and Norbert Zehentner²

 1 Institute of Geodesy and Geoinformation \cdot Theoretical Geodesy \cdot University of Bonn 2 Institute of Theoretical Geodesy and Satellite Geodesy \cdot TU Graz 3 Institute for Astronomical and Physical Geodesy \cdot TU München 4 Space Research Institute \cdot Austrian Academy of Sciences

GUW 2014, Paris, 25.11.2014

2 The Time-Wise Gravity Field Models

- SST Data Analysis
- SGG Data Analysis
- Combined Solution EGM_TIM_RL05

The Quality of the EGM_TIM Model Series

Sensors for Gravity Field Determination

The whole GOCE satellite is the sensor!

Three main sensor observations have to be scientifically processed for gravity field determination:

GPS tracking (SST)

APG

Gradiometry (SGG)

Star tracker (STR)

EGG

From Observations to the Gravity Field

GOCE-only gravity field model independent of any other gravity field information

release	timespan	d/o	U	S	epochs
EGM_TIM_RL01	11/2009-01/2010	2–224	50172	1	6161834
EGM_TIM_RL02	11/2009-07/2010	2-250	62997	9	19477946
EGM_TIM_RL03	11/2009-04/2011	2-250	62997	16	31289605
EGM_TIM_RL04	11/2009-06/2012	2-250	62997	41	69692004
EGM_TIM_RL05	11/2009-10/2013	2–280	78957	87	109799264

Time-Wise Approach

SST processing:

- 3D positions as observations
- Setup of least squares NEQs

SGG processing:

- gravity gradients in GRF as time series per component
- Least squares NEQs per component

Constraints: Kaula

- for (near) zonal coefficients (polar gap)
- for high-degree coefficients

Combined solution:

- solution of weighted combined NEQs
- weights derived by VCE
- \Rightarrow time-wise models are only based on GOCE

- Functional model: RL01-03 energy balance approach, RL04-05 short arc integral equation approach, 3D positions as observations
- Stochastic model: RL01-03 position covariance, RL04-05 position covariance + empirical covariance function
- Least squares normal equations

- Progress clearly visible
- Remaining systematic errors in long wavelengths
- for RL05: S/N ratio equals 1.0 at d/o 130

- Functional model: gravity gradients in GRF as time series for gap less segments of the time series
- Components used: V_{xx} , (V_{xz}) , V_{yy} and V_{zz}
- Stochastic model: individually adjusted ARMA filters
- Iterative outlier detection

rel.	input/info	time series	(d/o)		# observ.	# flags	
RL01	XX, YY, ZZ	1 segments	224	3.	6161834	$1.0 \cdot 10^4$	8
RL02	XX, YY , ZZ	9 segments	250	$3 \cdot$	19477946	$5.5\cdot 10^5$	
RL03	XX, YY, ZZ, XZ	16 segments	250	$4 \cdot$	31289605	$4.6\cdot 10^5$	
RL04	XX, YY, ZZ, XZ	41 segments	250	$4 \cdot$	67305785	$2.0\cdot 10^6$	
RL05	XX, YY , ZZ , XZ	87 segments	280	$4 \cdot$	109799264	$4.5\cdot 10^6$	_

Comments

- # flagged outliers: approximate values for flagged epochs
- for data after RL04: individual flags per component (complex data characteristics) additional weights (variance components) per component and segment
- ▶ RL04 period in RL05: reprocessed NEQs with RL04 setup but to d/o 280
- $4 \cdot 87 = 384$ adjusted filters for RL05

SGG lower orbit phases contain only 63 % of the data volume of RL04 period, solution is significantly better above d/o 170 \Rightarrow Low orbit impact \Rightarrow tilt of the formal errors demonstrate the effect

Combined Solution – Low Degrees

- Major SST contribution to d/o 20
- Contributions above d/o 50 visible
- GRACE error budget visible at d/o 80 for recent models

- For RL05: Kaula for near zonals and l > 200
- S/N = 1 for unconstrained solution at degree 254
- Signal is increasing for high degrees
- Noise is decreasing from RL04 to RL05

🗱 universitada 🎯 🗭 🛛 🗛 🗛

Combined Solution – Consistency

Degree variances of partial solutions w.r.t. finally combined EGM_TIM_RL05

Seg. No: 47 (01.07.2012–19.07.2012), # observations: $1.6 \cdot 10^6$, VCs not applied \Rightarrow Consistent error estimates, slightly to pessimistic (low degrees)

South Pacific

EGM2008

propagation

EGM_TIM_RL01

A (TSG APG 101 Call

cm

14.0

mGal mGal

3.6

3.9

cm

01 13.1

GUW 2014. Paris. 25.11.2014

RMS: regional accuracy w.r.t.

VCM: accuracy from variance

RL	RMS	VCM	RMS	VCM
	cm	cm	mGal	mGal
01	13.1	14.0	3.6	3.9
02	9.0	8.3	2.5	2.3

Images: Geoid to d/o 200 (m) Statistics: smooth area in South Pacific RMS: regional accuracy w.r.t. EGM2008 VCM: accuracy from variance propagation

EGM_TIM_RL02

APG 101 Call

RL	RMS	VCM	RMS	VCM
	cm	cm	mGal	mGal
01	13.1	14.0	3.6	3.9
02	9.0	8.3	2.5	2.3
03	6.5	6.5	1.8	1.8

Images: Geoid to d/o 200 (m) Statistics: smooth area in South Pacific RMS: regional accuracy w.r.t. EGM2008 VCM: accuracy from variance propagation

EGM_TIM_RL03

RL	RMS	VCM	RMS	VCM
	CIII	CIII	moai	mGai
01	13.1	14.0	3.6	3.9
02	9.0	8.3	2.5	2.3
03	6.5	6.5	1.8	1.8
04	4.1	4.1	1.1	1.2

Images: Geoid to d/o 200 (m) Statistics: smooth area in South Pacific RMS: regional accuracy w.r.t. EGM2008 VCM: accuracy from variance

propagation

EGM_TIM_RL04

RL	RMS	VCM	RMS	VCM
	cm	cm	mGal	mGal
01	13.1	14.0	3.6	3.9
02	9.0	8.3	2.5	2.3
03	6.5	6.5	1.8	1.8
04	4.1	4.1	1.1	1.2
05	2.8	2.8	0.8	0.8

Images: Geoid to d/o 200 (m) Statistics: smooth area in South Pacific RMS: regional accuracy w.r.t. EGM2008 VCM: accuracy from variance

propagation

EGM_TIM_RL05

🔜 🎯 🟴 🛛 🗛 🔜 🚽

Significant Differences to EGM2008

Ratio of rms w.r.t. EGM2008 and propagated geoid height standard deviations

- $4^{\circ} \times 4^{\circ}$ blocks, rms w.r.t. EGM08/ mean propagated standard deviation
- white means: consistency of EGM08 and TIM_RL05 within GOCE error level
- black means: difference of TIM_RL05 and EGM08 significant outside error predicted by GOCE
- orange/red it is very likely, that differences are significant

Comparison to Ocean Currents

15

Amplitudes of velocities computed from CLS09 Significant differences correlate to currents

16

Geoid heights EGM_TIM_RL05 (d/o 260) – EGM280 (d/o 280)

APG 101 C. L

🔜 🐨

17

Geoid heights EGM_TIM_RL05 (d/o 280) – EGM280 (d/o 280)

- Differences are significantly reduced
- There is geoid signal above degree 260 in EGM_TIM_RL05!

Summary on EGM_TIM_RL05:

- 5th release of GOCE time-wise gravity field model finalized
- Consistent set of spherical harmonic coefficients d/o 2-280
- Realistic covariance matrix
- ► GRACE improvement d/o 80+
- EGM08 improvement d/o 40–220
- Significant contribution from low orbit data
- Mean global accuracy at d/o 200: 0.7 mGal, 2.4 cm
- Unconstraint version available on request!
- Ready to use! Please provide feedback!

Reference: Brockmann, J. M.; Zehentner, N.; Höck, E.; Pail, R.; Loth, I.; Mayer-Gürr, T. and Schuh, W.-D.: *EGM_TIM_RL05: An Independent Geoid with Centimeter Accuracy Purely Based on the GOCE Mission*, Geophys. Res. Lett., 2014, DOI 10.1002/2014@L061904 MDT estimated only from GOCE and along track altimetry EGM_TIM_RL05:

Following: Becker, S., J. M. Brockmann, and W.-D. Schuh (2014), Mean dynamic topography estimates purely based on GOCE gravity field models and altimetry, Geophys. Res. Lett., 41, 2063–2069, doi:10.1002/2014GL059510.

Small outliers (7-15 σ) within the Last $20 \cdot 10^6$ observations (end of mission)

 \Rightarrow Individual flags for different components useful!