IDEAS-QAHE®

DEVELOPMENT OF ADVANCED NON-LINEAR MODEL FOR OCEAN COLOR APPLICATIONS

Constant Mazeran sol $\sqrt{0}$

C esa IDEAS-QA4EO Cal/Val workshop #2 – 02.12.2020

OBJECTIVE AND STATUS OF THE WORK-PACKAGE 2120

Objective: revisit the inverse problem of ocean colour, outside operational constraints (R&D)

- QA4EO: uncertainty formalism as a tool to develop algorithm (+ provide output uncertainties)
- Robust algorithmic method to the ill-posed Atmospheric Correction problem: physical model, choice of bands, multipixel, a priori knowledge ...
- Develop a prototype, document in ATBD

Status since Cal/Val workshop #1:

- Litterature review
- Analysis of the ill-posed inversion for some "linear" atmospheric models (PCA analysis)
- New non-linear atmospheric model investigated, tested on RTM simulations
- Prototype started to be implemented
- Documentation in a first version of ATBD: on-going, delayed to end 2020

UNCERTAINTY PROPAGATION: STD VS NON-STD ATM. CORR.

- Standard Atmospheric Correction (MERIS/OLCI baseline AC)
 - Two bands in the NIR only to detect aerosol, then extrapolate to the VIS
 - Strong uncertainty propagation to the VIS: radiometric noise, possibly overcorrection (negative marine signal)...
 - Modelling not totally physically justified: aerosol mixing from NIR to VIS, impossibility to detect absorbing aerosol
 - Method not robust for actual remote-sensing conditions (variable gaseous absorption, residual Sun glint, absorbing aerosols, complex waters...)

- Alternative: use a spectral model over the full spectrum for aerosol detection; no extrapolation
 - Introduce a coupled ocean-atmosphere problem, due to non-negligible marine signal in the VIS
 - Least-square minimisation adapted to uncertainty formalism: input/output uncertainties
 - Example of spectral model widely used in the OC community (OC-CCI...): POLYMER (Steinmetz et al., 2011)

 $\rho_a^{mod}(\lambda) = c_0 * T(\lambda) + c_1 * \left(\frac{\lambda}{\lambda_0}\right)^{-1} + c_2 * \left(\frac{\lambda}{\lambda_0}\right)^{-4} : \text{linear with respect to three unknowns } c_0, c_1, c_2$

INVERSION ERROR WITH "LINEAR" ATMOSPHERIC MODEL

Simulated TOA signal $\rho_{RC}(\lambda)$ pre-corrected for Rayleigh:

- Ocean: various spectra $\rho_w^{mod}(\lambda)$ from clear blue to strongly scattering or absorbing waters
- Atmosphere: $\rho_a(\lambda)$ from RTM for various aerosol models, AOTs, geometries
- Inversion by spectral fitting (least-square minimisation)

AMBIGUITY BETWEEN "LINEAR" ATM. MODEL AND OCEAN

Principal Component Analysis on marine spectra

Three linear components allow to construct very well the various marine spectra

AMBIGUITY BETWEEN "LINEAR" ATM. MODEL AND OCEAN

Principal Component Analysis on marine spectra

Three linear components allow to construct very well the various marine spectra

- 2^{nd} component of the marine signal is very close to POLYMER λ^{-4} term
 - "Linear" atmospheric model may absorb some marine components \rightarrow ambiguity
- Ideally, the eigenvectors of atmospheric and ocean linear decompositions should be orthogonal IDEAS-QA4EO CAL/VAL WS#2 - 02.12.2020

INTRODUCING A NON-LINEAR SPECTRAL MODEL: MSA

- Requirements: 3 degrees of freedom, multiple-scattering, relevant for all aerosol types including absorbing
- Starting from Single Scattering Approximation (SSA) → Multiple-Scattering Approximation (MSA)

$$\rho_{a}(\lambda) = \rho_{a}(\lambda_{0}) * \left(\frac{\lambda}{\lambda_{0}}\right)^{\alpha} \left(\frac{1 + k * \left(\frac{\lambda}{\lambda_{0}}\right)^{\alpha}}{1 + k}\right)$$

- Coefficient k is negative and adjust for multiple scattering and absorption (~single scattering albedo)
- Smooth function reaching a maximum at λ_L :

$$\rho_{a}(\lambda) = \rho_{a}(\lambda_{0}) * \left(\frac{\lambda}{\lambda_{0}}\right)^{\alpha} \left(\frac{1 - \frac{1}{2}\left(\frac{\lambda}{\lambda_{L}}\right)^{\alpha}}{1 - \frac{1}{2}\left(\frac{\lambda_{0}}{\lambda_{L}}\right)^{\alpha}}\right)$$

Degrees of freedom $\rho_a(\lambda_0)$, α , λ_L have now a physical meaning and are bounded \rightarrow constraint on the inversion

INVERSION ERROR: LINEAR VS MSA MODEL

CONCLUSION: ON-GOING & FUTURE WORK OF WP2120

On-going

- Document current status (draft ATBD, deliverable D.2.1.3-2)
- Further work on the algorithmic inversion of the new model (speed up inversion of the 3 unknowns, first guess...).
 Model proposed to HYGEOS for POLYMER evolution, undergoes parallel investigation at EUMETSAT
- Keep implementing the prototype: processing of OLCI scenes

Next step

- Select the most useful bands for ocean/atm decoupling with statistical approach & weight accordingly (uncertainty)
- Study more robust inversion with multi-pixel processing (cf. GRASP)
- Validation