

IfU Institute of Environmental Engineering

Validating a ship detector based on the notch filter with RADARSAT-2 Fine quadpol data

Armando Marino⁽¹⁾, Irena Hajnsek⁽¹⁻²⁾, Nick Walker⁽³⁾

(1) ETH Zürich, Institute of Environmental Engineering, Switzerland (2) DLR, HR, Wessling, Germany

(3) eOsphere, Newbury, UK

(presented by Stefan V. Baumgartner⁽²⁾)

Motivations

The past:

- We developed a ship (maritime features) detector using SAR polarimetry (dual or quad), called the Notch Filter [1]
- The **theoretical performance** of the detector was tested with simulations [2]

The present:

• Here, we would like to provide a more exhaustive real data validation

[1] Armando Marino, Nick Walker & Iain H. Woodhouse (2010), Ship Detection using SAR Polarimetry. The Development of a New Algorithm Designed to Exploit New Satellite SAR Capabilities for Maritime Surveillance, *Proceedings on SEASAR'10, Frascati, Italy, January 2010.*

[2] Armando Marino & Nick Walker (2011), Ship Detection in Variable Sea States and Depolarised Sea Clutter: a Polarimetric Notch Filter, *Proceedings on POLinSAR'11, Frascati, Italy, 24th-28th January 2011*

Polarimetric Detector

Earth Observation and Remote Sensing

Radar Polarimetric Observations

Partial vs single targets

Notch Filter

The algorithm is based on the Partial Target Detector however here, it is reversed and focused on the complementary space.

The sea is the clutter and the rest is target of interest

In this way we detect everything is not sea: ship, iceberg, oil spills etc.

Adaptive Notch Filter

- For different sea states the backscattering from the sea will influence the SCR used to set the RedR.
- To give independence of the sea state, the sea backscattering is extracted locally, as well as its polarimetric signature

1 + RedR

 $\frac{\left|\underline{t} \quad \underline{t}_{sea}\right|}{\underline{t}^{*T} \underline{t} - \left|t^{*T} \widehat{t}\right|^{2}}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Earth Observation and Remote Sensing

 γ_n

The Portsmouth Experiment: ships

Earth Observation and Remote Sensing

Test site: Portsmouth (Google Earth)

Radarsat-2 Fine Quad-pol

FQ 18 18/08/2011

max. sea intensity = 0.035 (Pauli 1) inc. angle \cong 38°

Detection

FQ 18
18/08/2011

FQ 14 01/08/2011

Detection

FQ 9 17/03/2011

Detection

FQ 9 17/03/2011

FQ 5 24/03/2011

FQ 5 24/03/2011

Detection

The Portsmouth Experiment: buoys

Earth Observation and Remote Sensing

Nautical Chart: buoys

20 Buoys/ **Beacons**

The one in black is spherical: invisible to radar!

HV K-DISTR. CFAR

10 over 20

RGB INSPECTION

18 over 20

DETECTOR

17 over 20

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

O \bigcirc $\bigcirc \bigcirc$ 0000 • • \mathbf{O} 00 $\overline{\mathbf{\cdot}}$ $\overline{\mathbf{\cdot}}$

HV K-DISTR. CFAR

9 over 20

RGB INSPECTION

18 over 20

18 over 20

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

00 00000 \bigcirc $\overline{}$ • \bigcirc 0 • • · • $\overline{}$ •

9 over 20

RGB INSPECTION

15 over 20

15 over 20

 $\bigcirc \bigcirc$ \bigcirc 00000 • 00 $\bigcirc \bigcirc$ 0 0 0 $\bigcirc \bigcirc$

HV K-DISTR. CFAR

8 over 20

RGB INSPECTION

12 over 20

DETECTOR

11 over 20

FQ 5

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Summary of results

VESSELS			
Detector	PNF	CFAR HV	
FQ18	11/11	10/11	
FQ14	12/12	11/12	
FQ9	10/10	10/10	
FQ5	16/16	14/16	
Total	49/49 100%	45/49 91.8%	

BUOYS

Detector	PNF	CFAR HV
FQ18	17/20	10/20
FQ14	18/20	11/20
FQ9	15/20	9/20
FQ5	11/20	8/20
Total	61/80 76%	38/80 48%

Conclusions

- A negative filter was developed for marine target detection
- The filter is able to detect the features different from the sea
- An adaptive processing makes the algorithm suitable for different sea states
- The validation over Portsmouth data shows:
 - All the vessels listed in the AIS were detected
 - The 76% of small buoys were detected
 - The Notch Filter performs better than the HV CFAR

Thank you for your attention.

Earth Observation and Remote Sensing