

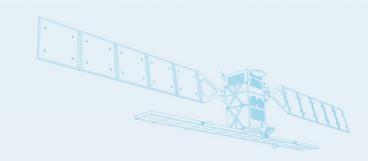
→ **SEASAR 2012**

The 4th International Workshop on Advances in SAR Oceanography

Sentinel-1 Instrument Overview

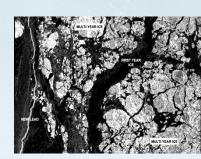
Paul Snoeij, Ramon Torres, Dirk Geudtner, Michael Brown, Patrick Deghaye, Ignacio Navas-Traver, Allan Østergaard, Bjorn Rommen, Nicolas Floury, Malcolm Davidson

European Space Agency



Outline

- Introduction
- Sentinel-1 System
- Acquisition modes and performance
- Sentinel-1 <-> ERS/ASAR comparison
- Instrument overview
- Conclusions



Sentinel-1 Mission Objectives and Requirements

- Provide routinely and systematically SAR data to GMES Services and National services
 - ✓ Marine Monitoring (e.g. oil spill, sea ice)
 - ✓ Land Monitoring (e.g. land cover, surface deformation)
 - √ Emergency Response
 - ✓ Climate Change (e.g. Polar caps incl. ice shelves and glaciers)
 - ✓ Security (e.g. vessel detection)
- Provide C-band SAR data continuity of ERS/ENVISAT type of mission
- Greatly improved coverage and revisit (i.e. as compared to ENVISAT)
- Conflict-free operations (wide swath and dual-pol modes)
- High system availability (SAR duty cycle and data latency)
- Data quality similar or better than ERS/ENVISAT (e.g. equalized performance across the swath)

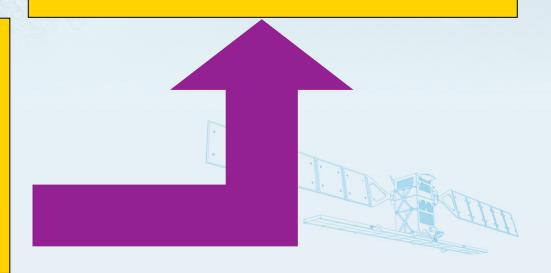
Sentinel-1 - Technical Overview

- Space Segment
 - ✓ A constellation of two satellites (same orbit with different Mean Anomaly)
 - ✓ Nominal lifetime in orbit of 7.25 years (consumables for 12 years)
 - ✓ Near-Polar Sun-Synchronous dusk-dawn orbit @ 693km, 98.6 min
 - ✓ Eclipse duration: 19 minutes during Southern Hemisphere Winter Solstice
 - ✓ Global coverage with a repeat cycle 12 days (175 orbits) or 6 days with S1A&B
 - ✓ Dual Pol C-Band (5.405GHz) Synthetic Aperture Radar Payload (CSAR)
 - ✓ On-board data compression using Flexible Dynamic Block Adaptive Quantization
 - ✓ On-board data storage capacity (mass memory) of 1410 Gbit
 - ✓ Data downlink in X-Band (2 x 260 Mbps) and laser link via GEO European Data Relay Satellite (ERDS) system (OCP)
 - ✓ Launch mass 2300 kg. Power 5900 W (EoL)
- Launch
 - Soyuz from Guiana Space Centre, Kourou in French Guiana.
 - S1A in 2013, S1B +18 months
- Ground Segment
 - Ground stations:
 3 X-band stations for SAR data, 1 S-band for TT&C, 1 EDRS station (OCP)
 - ESOC for mission control, management from ESRIN for mission planning, SAR data processing and distribution

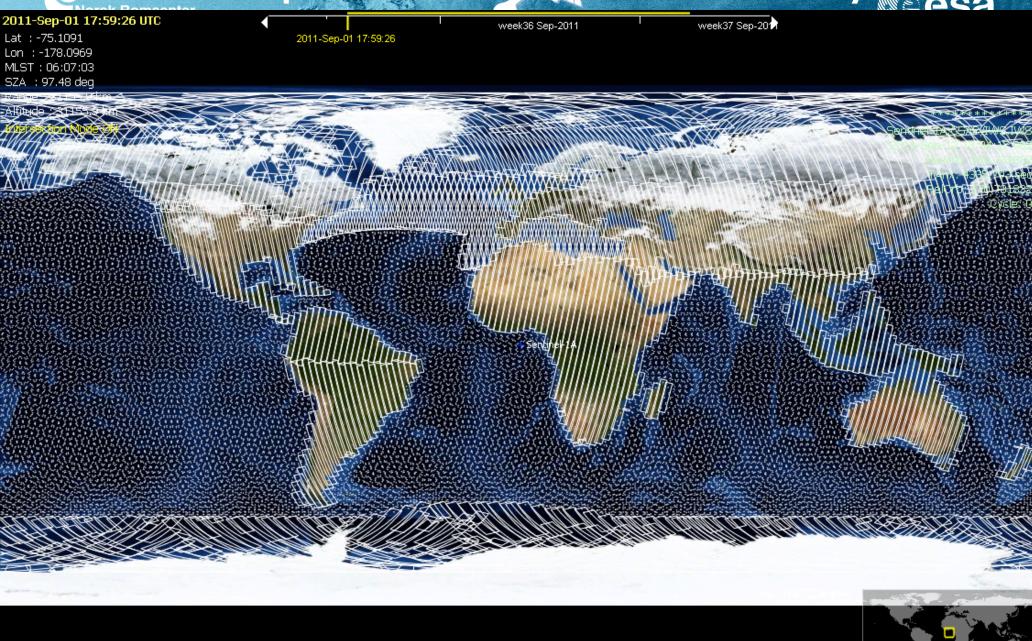
Sentinel-1 - System Sizing

SAR Duty Cycle

- Up to 25 minutes in any of the imaging modes
- Rest (74 minutes) in Wave Mode
- Acquisitions in eclipse



PDHT & Downlink Requirement


- Three X-band ground stations for payload data downlink
- No orbit without DL
- 20 minutes continuous DL
- Simultaneous SAR acquisition and downlink

On-board data latency

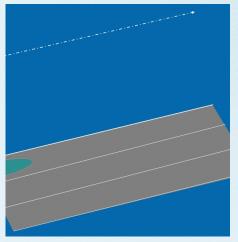
- NRT data one orbit from start of acquisition
- Non-NRT data two orbits from start of acquisition

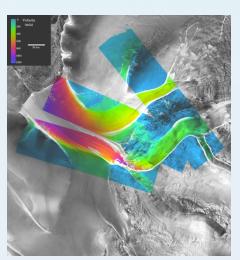
Sontinel-1A Capabilities IW and Wave mode every 12 days

Sentinel-1 **Industrial Consortium**

Prime: Thales Alenia Space Italia

Instrument: EADS Astrium





Sentinel-1 CSAR Design Drivers

- High Sensitivity (NESZ: -22 dB):
 - Peak transmit power280 H and 280 V T/R units of 15W each
 - Low loss waveguide radiators
- 1dB radiometric accuracy and 0.5dB stability (3σ):
 - Extensive on ground characterization and internal calibration
- 5 meter ground range resolution:
 - 100 MHz bandwidth
- High Sensitivity & Low Ambiguity Levels:
 - 12.3 m x 0.84 m antenna aperture

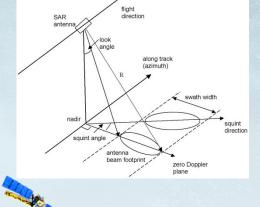
- Dual Polarisation Capability:
 - One selectable Tx Chain and two parallel Rx Chains with low cross-coupling (< -35 dB)
 - ScanSAR using TOPS Mode Implementation:
 - ±12° elevation scanning and beam shaping capability
 - ±0.8° azimuth scanning at PRI rate
- Minimise number of PRFs and SWL over the orbit:
 - Limitations to SAR Mode design
 - Roll-steering mode for S/C

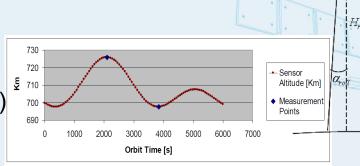
Sentinel-1 Attitude Steering Modes

Total zero-Doppler steering mode

- Yaw and pitch adjustments around the orbit to account for Earth rotation effect
- Provides Doppler centroid at about 0 Hz pointing knowledge <0.004°

Roll-steering mode

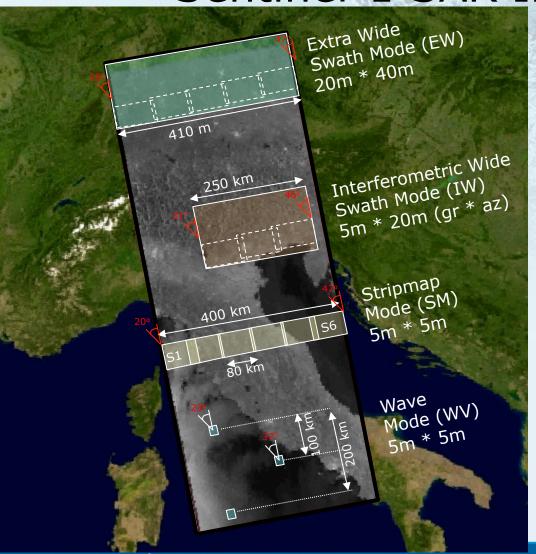

- Compensate for sensor altitude changes around the orbit
- Introduction of additional satellite *roll angle* depending on latitude to maintain a quasi "constant" slant range


at H_{min} = 697.6 km
$$\Rightarrow \theta$$
_{off-Nadir} = 30.25°

at H_{max} = 725.8 km
$$\Rightarrow \theta$$
_{off-Nadir} = 28.65°

Advantages:

- Single PRF round orbit per swath or subswath (except for S5 (S5-N and S5-S)
- Fixed set of *Elevation beam patterns*



Sentinel-1 SAR Imaging Modes

Sentinel-1 SAR to be operated in 4 exclusive imaging modes with different resolution and coverage:

Interferometric Wide Swath (IW), Extrawideswath Mode (EW) and Strip Map (SM):

- single pol: HH or VV

- dual pol: HH+HV or VV+VH

For Wave Mode (WV)

- single pol: HH or VV

IW and WV main modes of operations

Image Quality Parameters for all Modes

(worst case):

Radiometric accuracy: $1.0 \text{ dB } (3\sigma)$

Radiometric stability: $0.5 \text{ dB } (3\sigma)$

Sensitivity (NESZ): -22 dB Ambiguities (DTAR): -22 dB

CSAR		ASAR / ERS
Orbit: 12 d (06:00 LTDN) 6 day rapact \$ 14 and \$ 10		ACAD: 25 d (10:00 LTDN)

Orbit: 12 d (06:00 LTDN) 6 day repeat S-1A and S-1B ASAR: 35 a (10:00 LIDN)

much better than ERS and ASAR Maximum (continuous) imaging per orbit: 25 minutes

Stripmap Mode (SM)

Swath:

Resolution:

Resolution:

Resolution:

Swath:

80 km. $20^{\circ} - 47^{\circ}$

5x5 m (Az, GRq, 1L) (87.6 – 42.2 MHz)

410 km. 20° – 47° Swath:

Extra-Wide Swath Mode (EW) - TOPS

40x20 (Az, GRq, 1L) (22.2 – 10.4 MHz)

Wave (WV) - Leapfrog

20x20 km at 100 km interval, 23° and 37°

5x5 m (Az, GRg, 1L) (74.5 and 48.2 MHz)

Interferometric Wideswath Mode (IW) - TOPS

250 km. 31° - 46° Swath:

Resolution: 20x5 m (Az, GRq, 1L) (56.5 – 42.8 MHz) Sensitivity, Ambiguity and Radiometric Performance

No separate AP mode but dual-pol on receive capability in all imaging modes without

comparable to ERS and ASAR

better than ASAR capability ASAR - ScanSAR

same as ASAR

better than ASAR capability

BASELINE OVER THE OCEAN

better than ASAR

better than ASAR

NEW BASELINE MODE 3 times ERS

comparable to ERS

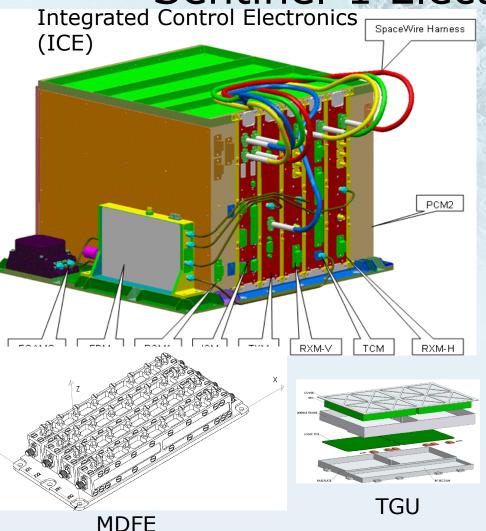
comparable to ASAR

performance reduction → SEASAR 2012 | The 4th International Workshop on Advances in SAR Oceanography

¹⁸⁻²² June 2012 | Tromsø, Norway

SAR Antenna Subsystem (SAS) Aperture: 12.3 m x 0.84 m, 14 Tiles each with 20 dual polarized resonant waveguide arrays (5 SAS Panels)

Sentinel-1 - Payload


- SAR Electronics
 - ENVISAT and RadarSAT-2 heritage
 - Real Sampling (digital I and Q demodulation)
 - High-efficient SAR data compression (FDBAQ)
 - Synchronisation of acquisitions with ground track
 - Self-standing data packets (GPS and AOCS)
- SAR Antenna (12.3 x 0.84 m) with 14 tiles in 5 deployable panels
 - Plated CFRP Waveguides (low-loss) TerraSAR-X heritage
 - T-compensated T/R modules COSMO-SkyMed heritage
 - Internal calibration for Radiometry ERS/ENVISAT heritage

Sentinel-1 Electronics Subsystem Integrated Control Electronics SnaceWire Harmon (105)

TxM:

-Direct Digital Synthesis (up to 100 MHz chirp).

TGU:

- Redundant Tx Gain Unit cross strapped for SAS.

RxM:

- Two channels (H and V)
- Real sampling
- AD Converter (300Ms/s, 10 bits)
- Digital filtering (demodulation, downconversion and decimation).
- FDBAO SAR raw data compression

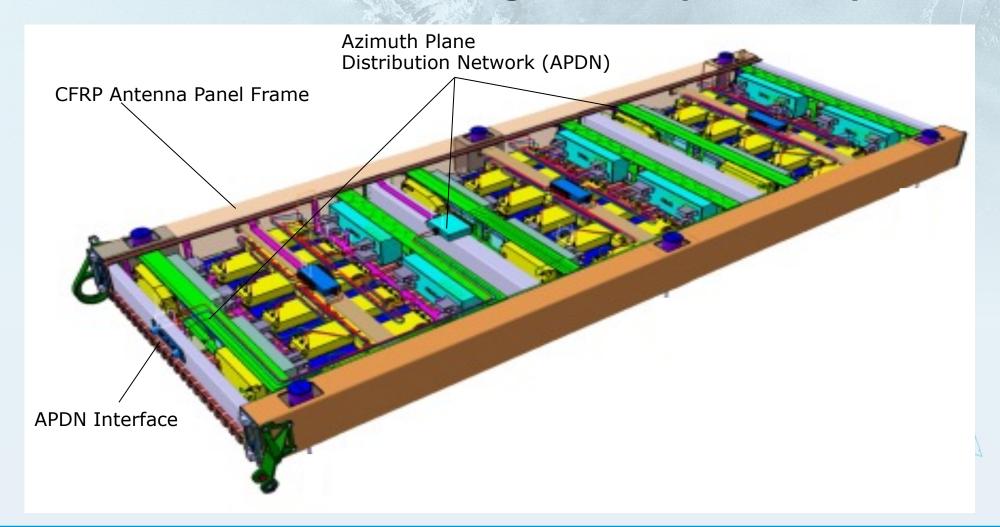
MDFE (Tx and Rx):

- Passive RF filters to control out-of-band transmission and limit interference.

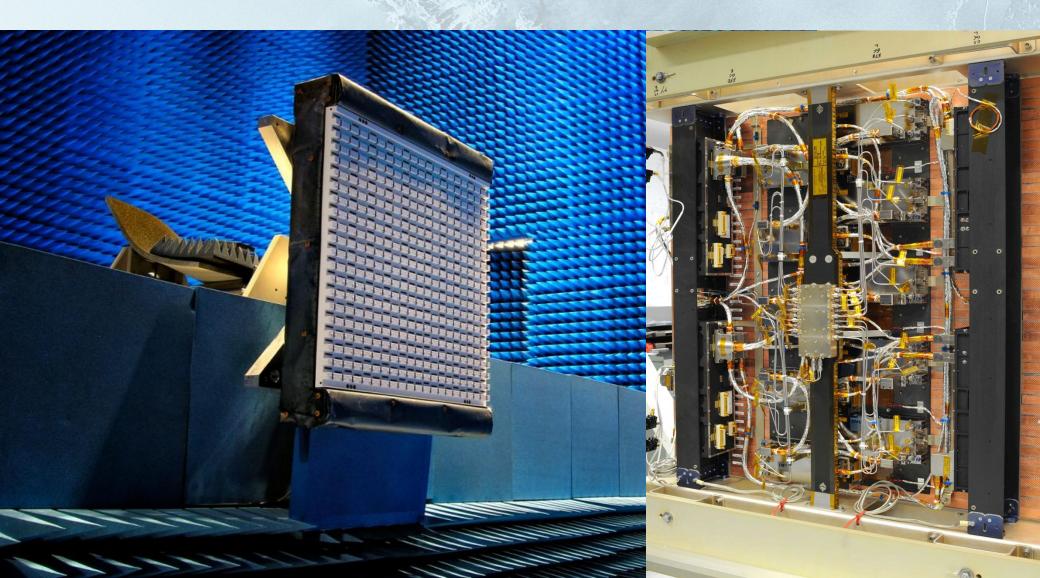
ICM/TCM:

- Instrument and Timing Control of the radar

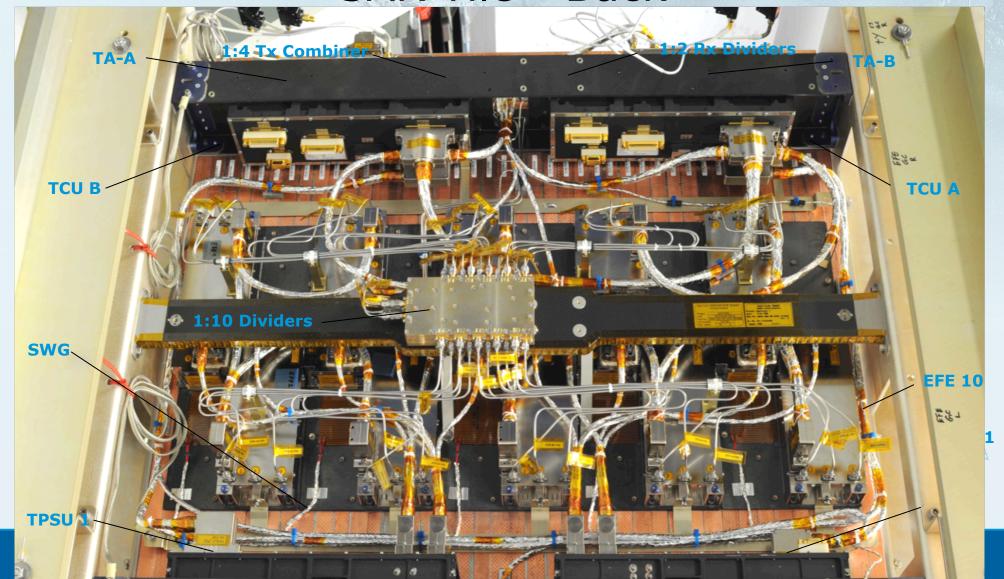
FDM/FOAMO:


- Frequency Distribution Module and STALO

SAR Antenna Wing Panel (Panel A)



SAR Tile



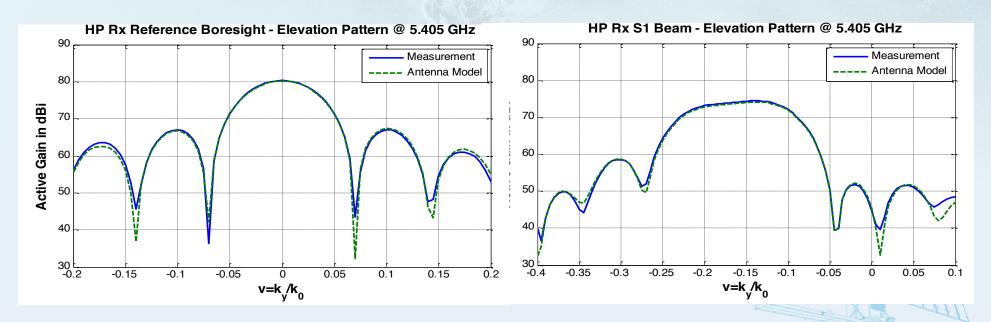
SAR Tile - Back

NERSC •

SAR Electronic Front-End - EFE

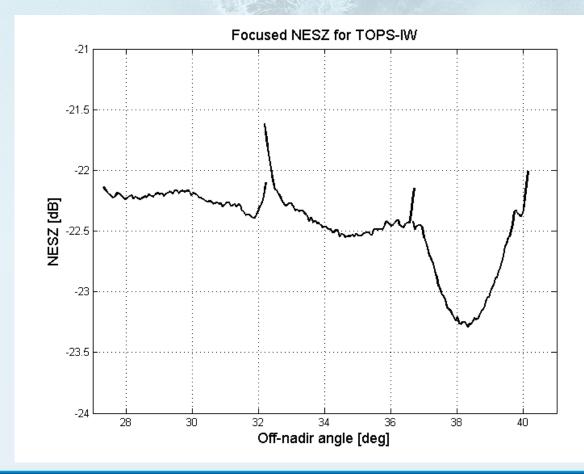
EFE features:

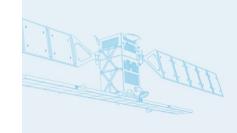
- In total 140 EFE
- 2 H and 2 V T/R modules
- 42 dBm (15.8 W) RF
 Power
- 11 dBm RF Input Power
- 3.2 dB Noise Figure
- 0.5 dB Gain (6bits)
- 5.6° Phase (6bits)
- Active/complex temperature compensation (TCU)
- Built-in calibration paths

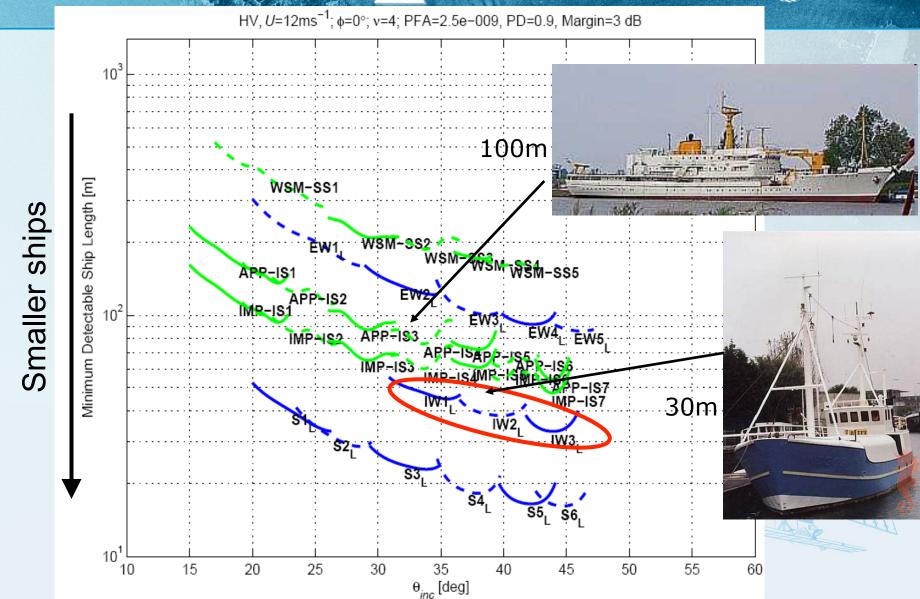


Sentinel-1 Antenna Model

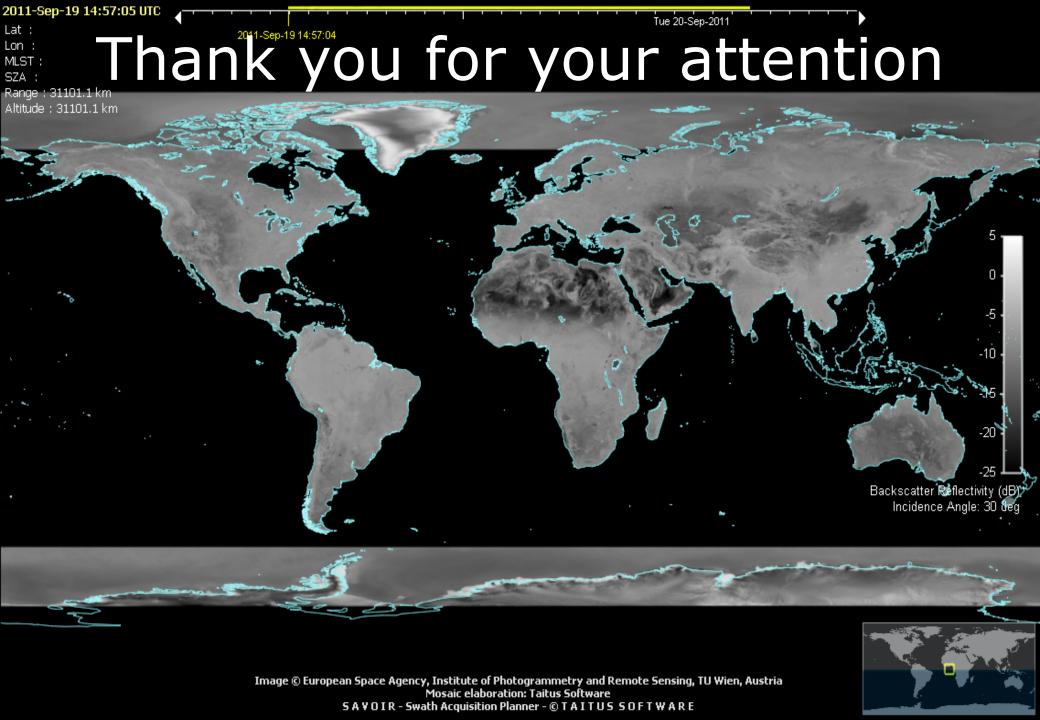
- Calculates Radiation Patterns based on Near-Field Measurements of single Sub-arrays
- RF Characterization
- Accurate Prediction of Radiation Patterns required for external Calibration (Commissioning Phase):
 0.1dB two-way@ 3σ and 0.2dB absolute gain two-way@ 3σ.
- Mutual Coupling Effects are rigorously taken into account


Preliminary Results of the Antenna Model agree well with Direct Pattern Measurements.




SAR Instrument Performance IW mode (Thermal and Quantisation Noise)

NERSC -



Summary

- Operational mission
- Maintains data quality of ESA's SAR ERS-1/-2, ENVISAT ASAR missions
- Substantial improvements
 - -Revisit frequency
 - -Coverage
 - -Timeliness and reliability of service
- C-Band SAR Instrument (5.405 GHz)
 - SAR Electronic Subsystem (SES)
 - SAR Antenna Subsystem (SES)

- C-Band Active Phased Array Antenna
- 12.3 m x 0.84 m Electrical Aperture
- 20 Rows (el.) and 14 Columns (az.)
- 4368 W RF Transmit Power
- 100 MHz Bandwidth
- Dual Polarisation Capability (HH-HV, VV-VH)
- High Sensitivity (NESZ<-22 dB)
- Low Ambiguity Levels (DTAR <-22 dB)
- Up to 410 km swath width
- Up to 5 m x 5 m resolution

