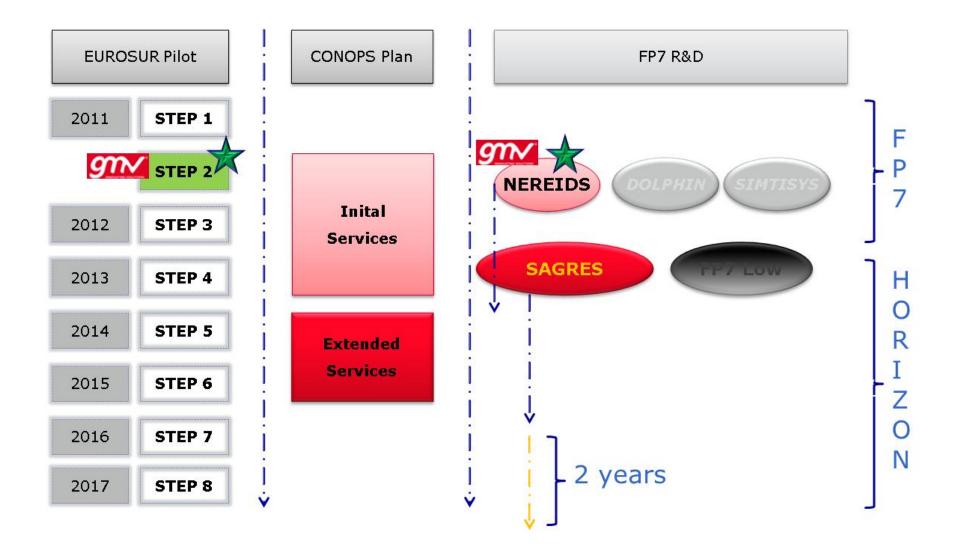
SEASAR12 WORKSHOP, TROMSO, 06-12

NEREIDS: New concepts in maritime surveillance for consolidating operational developments

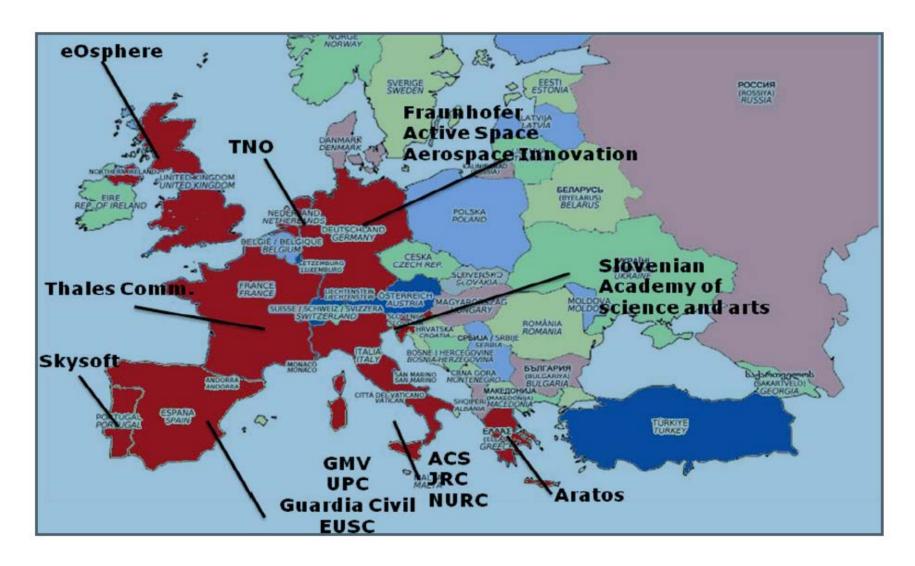
SUMMARY

- NEREIDS PROJECT
- NEREIDS CHALLENGES
- NEREIDS SYSTEM
- NEREIDS SCENARIOS



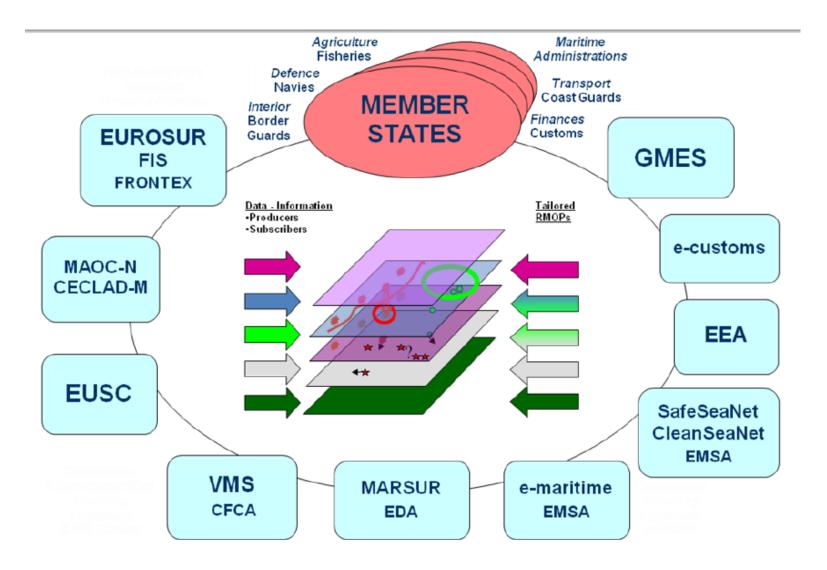
NEREIDS PROJECT: FIGURES

- CALL: 2010 Space Call,
 - SPA.2010.1.1-05 Contributing to the "S" in GMES Developing preoperational service capabilities for Maritime Surveillance.
- Customer: EC
- Duration: 36 months (01-06-2011 / 01-06-2014)
- Budget: ~6 M€.
- Requested Contribution: ~4 M€.
- Appointed effort: ~500 man/months
- Consortium of 16 partners with a proper distribution of R&D,
 SME, large companies and user segment.


NEREIDS PROJECT: FRAMEWORK

NEREIDS PROJECT: CONSORTIUM

NEREIDS PROJECT: OBJECTIVES (I)


- <u>Test new technical and technological developments</u>
 - The results shall be integrated, if possible, into EUROSUR and Space 2011 call projects.
 - Mostly devoted to enhance the detection capability in adverse conditions > Automatic Benchmark
- <u>Integrated vision for maritime policy and surveillance</u>
 - Take maritime policies and legal issues into account
 - Link user communities at regional, national and European level
 - Technological framework for interoperability (SOA, formats...)
 - Invest educational efforts to the user segment
 - User community is not homogenous and has a particular culture.
 - The proper explanation of new technologies is critical.

NEREIDS PROJECT: OBJECTIVES (II)

NEREIDS PROJECT: OBJECTIVES (III)

- GMES initiative merging
 - Best use of space assets → integrating what existing (AIS, SAR, Optic...).
 - Merge efforts among other GMES initiatives
 - Promotion of new satellite platform concepts.
 - Contribute to the definition of future maritime services within GMES.
 - Face technological challenges related to current user needs.
 Application areas
 - Open sea surveillance in a tactical way → NRT operations
 - Monitoring the coastal areas of third countries → non-NRT operations.
 - Integration with other platforms and sensors.

SUMMARY

- NEREIDS PROJECT
- NEREIDS CHALLENGES
- NEREIDS SYSTEM
- NEREIDS SCENARIOS

<u>Technical challenges:</u> Target Detection

SAR

- Ambiguity filtering:
 - Selective filtering → frequency domain nulling of ambiguities energy;
 - Matched filter → blind deconvolution;
 - Adaptive filtering → Selective filtering + Wiener filter;
 - Pixel level processing → analysis of gaps between real and ghost signal.
- Land Masking:
 - Processing of <u>shape files</u>,
 - Wavelet-based approach → wavelet + Geodesic Active Contour (GAC).
- Detection:
 - SUMO → K-distribution CFAR detector
 - EOSPHERE → CFAR detector + polarimetric analysis
 - Wavelet-based approach → Wavelet analysis.

<u>Technical challenges:</u> Target Detection

SAR

- Autofocus (reduce the effects of blurring in images):
 - Multi Aperture Mapdrift → polynomial function model of the phase error build from the shifts among a set of non-overlapping sub-aperture.

 - Phase Gradient Autofocus → Fourier Transform properties to estimate the derivative of the phase error
- Wake Detection:
 - Pre-processing → edge detectors, image segmentation
 - Transform → Radon, Radon+Wavelets, Hough
 - Detection → Wiener, Stochastic Matched, Dempster-Shafer
- Target Categorization:
 - POLSAR →
 - POLInSAR →

<u>Technical challenges:</u> Target Detection

OPTIC

- Object-based from VHR images. It accounts for four main steps
 - Coastline detection → image segmentation
 - Cloud removal → image segmentation
 - Target isolation → Feature-space thresholding, Region growing, Edge
 - Classification of candidates → Mathematical morphology.
- Multiband satellite data for detecting small ship targets.
 - Reed-Xiaoli (RX) detector→ algorithm as the benchmark anomaly detection;
 - PCA → Principal components analysis (PCA).
 - Oriented Pyramids → Oriented or steerable pyramids are efficient tools to model the spatial structure of textured backgrounds.
 - Morphological filters → top-hat transforms or toggle contrast operator.

<u>Technical challenges:</u> Data Fusion

Image Fusion

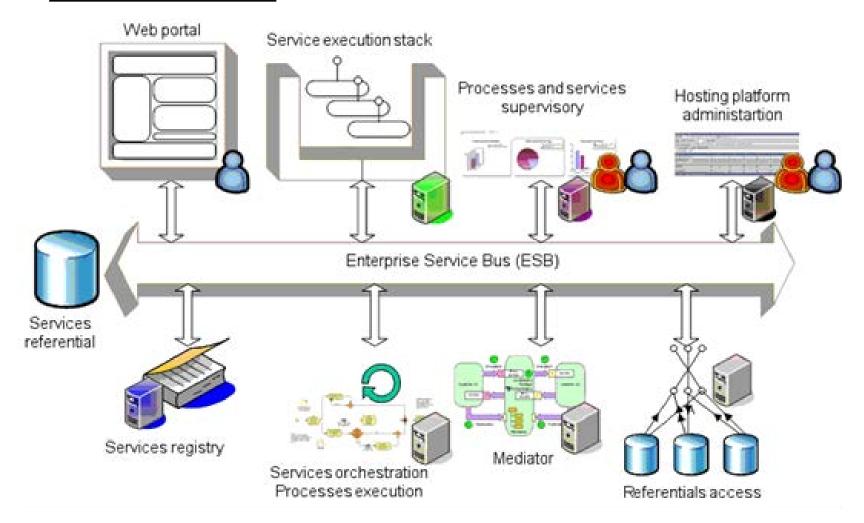
- Optical-optical fusion:
 - PCA (Principal Component Analysis)
 - IHS (Intensity-Hue-Saturation)
 - Brovey transformation
 - Multiplicative method
 - Image registration (more suited to work with ships).
- Optical- SAR fusion:
 - PCS (Principal Component Substitution)
 - IHS (Intensity-Hue-Saturation)

<u>Technical challenges:</u> Data Fusion

Report Fusion

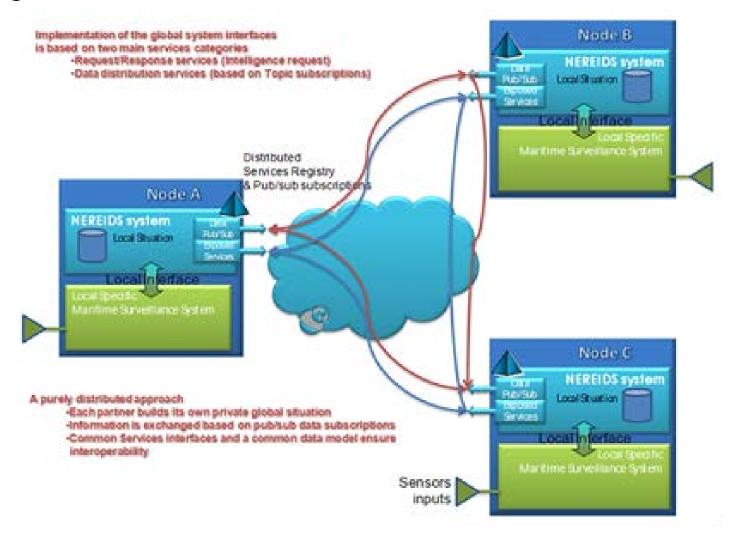
- Plot (observations from EO)-to-track Fusion:
 - Association:
 - Global Nearest Neighbour (GNN) → single-hypothesis tracking
 - Joint Probabilistic Data Association (JPDA) →
 - Tracking:
 - Extended Kalman Filter →
 - α -β (alpha-beta) filter \rightarrow Similar that before, but more focused to linear elements with two internal states: position and velocity.
- Track-to-track Fusion:
 - Association:
 - Mahalanobis distance → distance between two Gaussian distributions
 - Bar-Shalom metric → Mahalanobis distance + cross-covariance matrix
 - Tracking:
 - Extended Kalman Filter →
 - α -β (alpha-beta) filter \rightarrow Similar that before, but more focused to linear elements with two internal states: position and velocity.

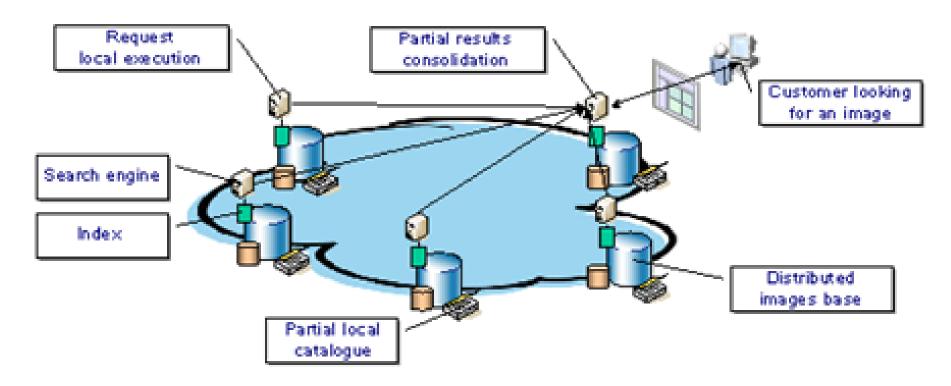
- <u>Technological challenges</u>
 - To provide a benchmark for the automatic and easy integration of external modules.
 - Adopt standardized formats that permit the intra-module link and the link with external systems.
 - To provide an efficient visualization system that permits exploiting all the available information in the most convenient way.
 - Far from operational point of view
 - Accurate enough as to permit the generation of the study.
 - To fix the areas where EO can efficiently contribute to MSA.
 - To evaluate maritime anomalies and how EO can support decision making.
 - To evaluate new platforms and satellite configurations (equatorial orbits)

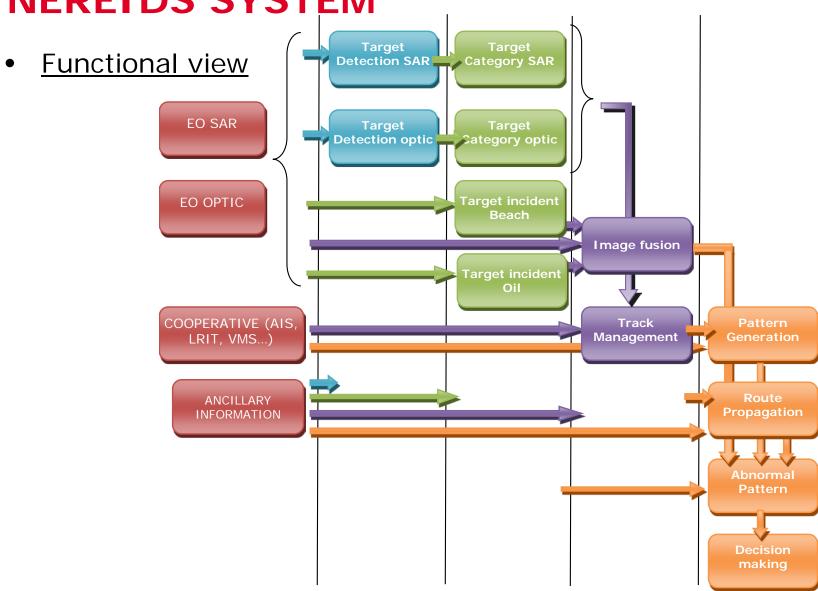

SUMMARY

- NEREIDS PROJECT
- NEREIDS CHALLENGES
- NEREIDS SYSTEM
- NEREIDS SCENARIOS

SOA architecture




Logical view


Data view

Distributed searching on local catalogues

- Interfaces view (besides imagery exchange)
- Order: For triggering the execution of the different modules
 - Internal and developed for the purpose
- Target Reporting: For exchanging reporting streams
 - CSN, SSN for interoperability
- <u>Target Detection</u>: For exchanging detection reports
 - CSN, SSN for interoperability
- Incident Reporting: For exchanging incident reports, including anomaly detection
 - CSN, SSN for interoperability

SUMMARY

- **NEREIDS PROJECT**
- NEREIDS CHALLENGES
- **NEREIDS SYSTEM**
- **NEREIDS SCENARIOS**

NEREIDS SCENARIOS: AOI(I)

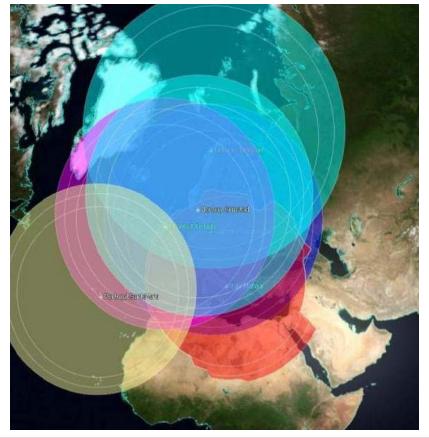
 There are four main areas of interest. If the implementation calendar is met, West Africa will be tested this year.

NEREIDS SCENARIOS: AOI (II)

 There are four main areas of interest. If the implementation calendar is met, West Africa will be tested this year.

NEREIDS SCENARIOS: ASSETS (I)

- Laboratory Testing
 - Test cases for assuring proper software functionality
- Assets.
 - In-situ sensors
 - Patrolling
 - Satellite collaborative
 - Satellite non-collaborative



NEREIDS SCENARIOS: ASSETS (I)

- Assets.
 - Ground-stations (non equatorial) for NRT experiments
 - Equatorial orbit satellites

NEREIDS SCENARIOS: CALENDAR (I)

WP	Year 1					Year 2						Year 3						
WP-500																		
WP-510																		
WP-520																		
WP-530																		
WP-540																		
WP-550																		
WP-560																		
WP-570										_^ Dem	nonstrati	on			A Den	nonstra	tion —	
WP-600											liness	J				diness		
WP-610																		
WP-620																		
WP-630																		

WP-500s will have two main deliverable versions in separated timestamps.

NEREIDS SCENARIOS: CALENDAR (II)

WP	Year 1				Year 2						Year 3						
WP-700																	
WP-710																	
WP-720																	
WP-730									Results —						Results		_
WP-740									Worksh	пор	1				Wo	rkshop	
WP-750										\							
WP-760										7							
WP-800																	
WP-810																	
WP-820																	
WP-900																	

NEREIDS SCENARIOS: USERS

Name	Country						
Ministry of Transport Slovenian Maritime Administration	Slovenia						
Port of Madeira	Portugal						
Community Fisheries Control Agency	Europe (located in Spain)						
Italian Coast Guard	Italy						
Environmental Agency of the Republic of Slovenia	Slovenia						
Administration of the Republic of Slovenia for Civil Protection and Disaster Relief	Slovenia						
France Fisheries Control Centre	France						

NEREIDS SCENARIOS: DISSEMINATION

- Project web site http://www.nereids-fp7.eu
- 2 user workshops.
- Symposia, according to the topic.
- Scientific papers will be taken into account according to the casuistic of user structure.
- There is a specific sub-WP for generating promotional material
- A step forward: regular dissemination of projects achievements through European authorities and users.

Thank you

Gerard Margarit, PhD

Remote Sensing Specialist and Project Manager

Project Manager of NEREIDS

Email: gmargarit@gmv.es

Phone: +34 93 292 24 84

www.gmv.com

