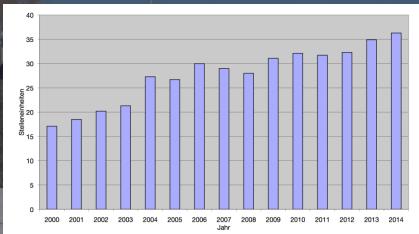
The Physikalisch Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC)

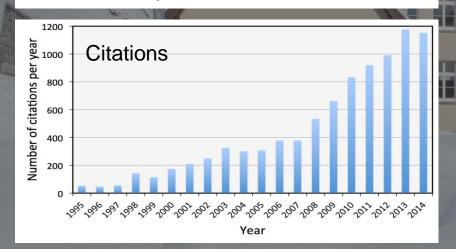
Julian Gröbner

The Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC)

1907 PMOD founded by Prof. Carl Dorno

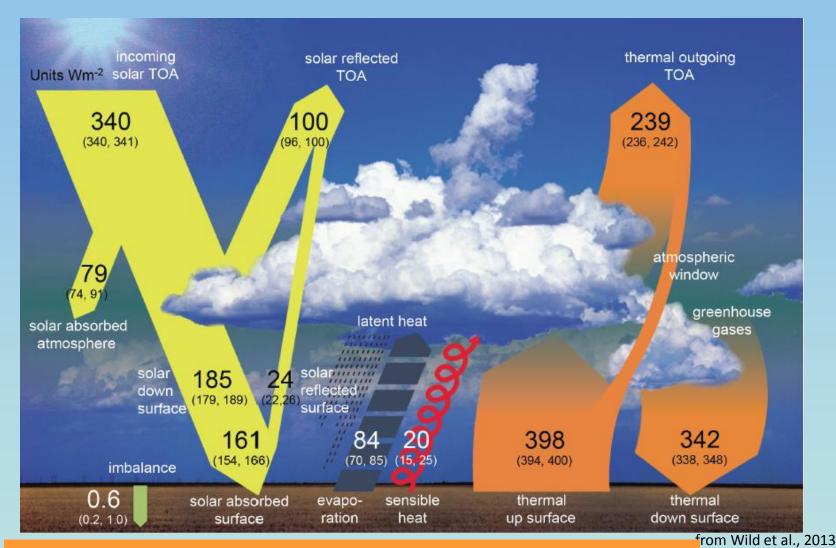
1971 WMO designates the PMOD


"World Radiation Centre" PMOD / WRC


Non profit foundation, part of the Schweizerische Forschungsinstitut für Hochgebirgsklima und Medizin Davos (SFI Davos)

The PMOD/WRC in numbers

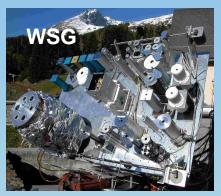
41 Employees


Figur 5. Mitarbeiterbestand per Anfang Jahr des PMOD/WRC in Stelleneinheiten. Anfang 2014 waren 41 Personen am PMOD/WRC angestellt.

Budget (2014)

- Total 5'800'000 CHF
- > 44% World Radiation Center
- > 48% Third party
- > 8% Calibrations & Instrument sales

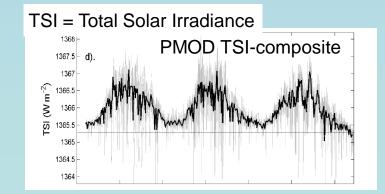
The global energy balance



The role of the PMOD/WRC is to provide reference standards to homogenise radiation measurements world-wide.

The 4 Pillars of PMOD/WRC

World Radiation Center



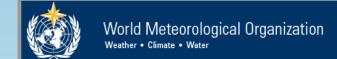
Satellite experiments

Instrument developments

Scientific Research:

Investigating the influence of the Sun on Climate

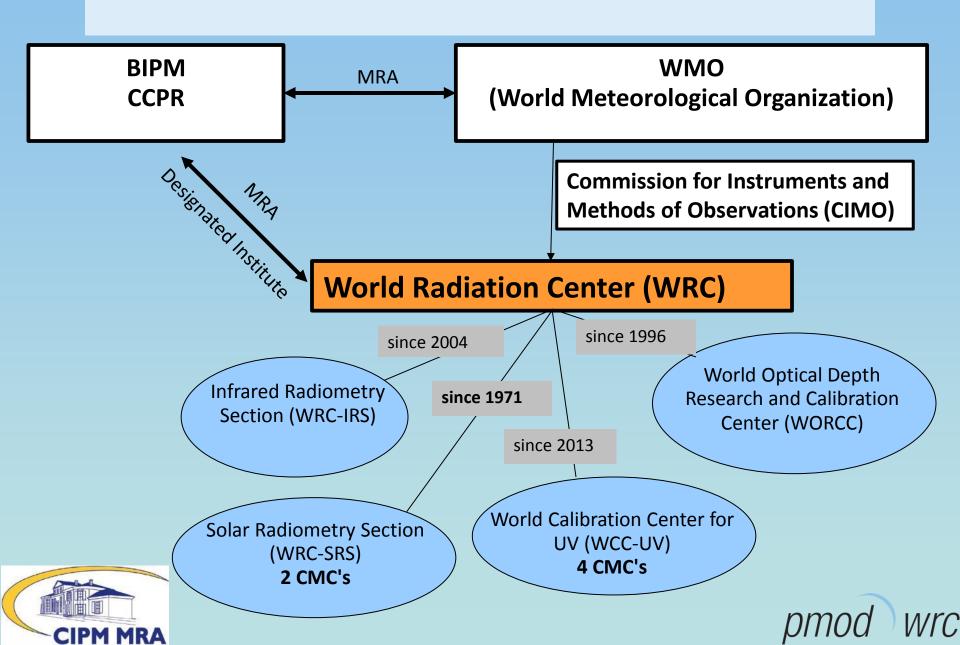
- >Past, present and future climate change
- >Climate modelling


The 2 Worlds of PMOD/WRC

The PMOD/WRC is designated Institute of METAS for solar irradiance:

- Signatory of the CIPM MRA
- ➤ Implementation of a Quality System according to ISO 17025
- ➤ Holder of 6 CMC's for solar irradiance

Metrology


The PMOD/WRC is designated World Radiation Center by the WMO:

- operates instruments representing radiation quantities accepted as world reference standards by the WMO
- Calibrates meteorological radiation instruments
- Provides traceable measurements to SI
- > PMOD/WRC represents WMO in the CIPM MRA for solar irradiance


Meteorology

PMOD/WRC as World Radiation Center

Solar Radiometry Section: World Standard Group (WSG)

Radiometric The World Reference (WRR) is determined by a group of absolute cavity radiometers named the World Standard Group (WSG). At the moment, the WSG is 6 composed of instruments:

> PMO-2 PMO-5 CROM-2L PACRAD-3 TMI-67814 HF-18748

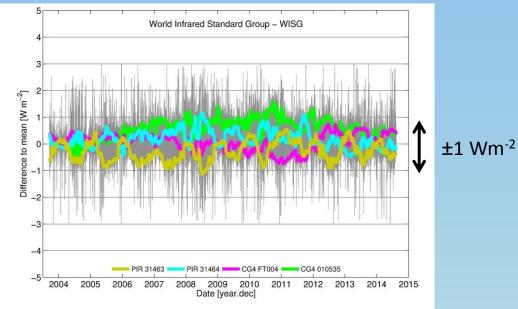
The WRR was established in 1977 as a conventional standard for solar irradiance (conventional "Wm^{-2"}).

Solar Radiometry Section: WSG as a Calibration Standard

WSG Calibration transferred to Instruments at PMOD/WRC

Intl. Pyrheliometer Comp. (IPC) Every 5 years since 1959

WSG Calibration transferred to Instruments at Regional Centres


WSG Calibration transferred to Instruments at National Centres and customers

The World Infrared Standard Group (WISG)

Consists of 4 Pyrgeometers:

- •2 modified Eppley PIR, s/n 31463, 31464
- •2 Kipp & Zonen CG4, s/n FT004, 010535

The WISG has been stable to ± 1 Wm⁻² since 2004

Pyrgeometer traceability to SI

Traceability of longwave infrared irradiance measurements require transfer standard radiometers between the irradiance reference (blackbody cavity) and outdoor measurements

Wm⁻² realisation (SI traceable)

Transfer standard Radiometer

Pyrgeometer

BB2007

- Cylindrical cavity
- •effective emissivity 0.99993(33)

Gröbner, AO 2008

IRIS

- Windowless
- •Flat Spectral Response
- Nighttime operation only

Gröbner, Metrologia, 2012 Gröbner et al., JGR, 2014

- •Si dome & Solarblind Filter
- Thermopile

The World Calibration Center for UV (WCC-UV)

GLOBAL ATMOSPHERE WATCH

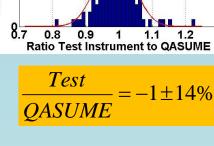
- Operational since 2002
- GAW Regional calibration Center for Europe since 2008
- World Calibration Center since 2013

QASUME Spectroradiometer

Broadband Radiometers 4 CMC's

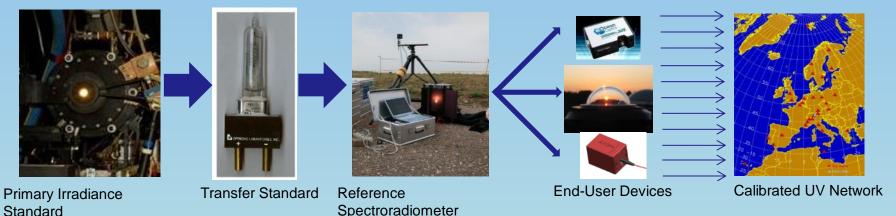
Laboratory facilities

Solar UV Quality Assurance Program


On site comparison with the portable QASUME reference spectroradiometer

Status 2002 - 2015

- •66 site visits
- •33 sites
- •> 160 spectroradiometer intercomparisons



EMRP-ENV03 "Solar UV"

http://projects.pmodwrc.ch/env03/

- Enhance the reliability of spectral solar UV radiation measured at the Earth surface
- Develop new techniques and devices for traceability better than 2% (now 5%) and for cost-effective array-spectroradiometer in UV monitoring networks
- **Intercomparison Campaigns and Workshops**

Project Coordination: DMOO

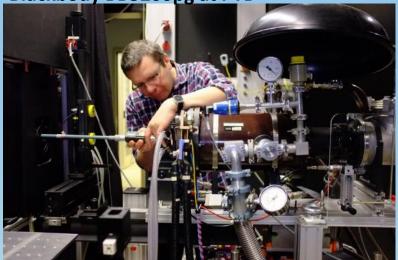
WrC

Dr. Julian Gröbner, Davos

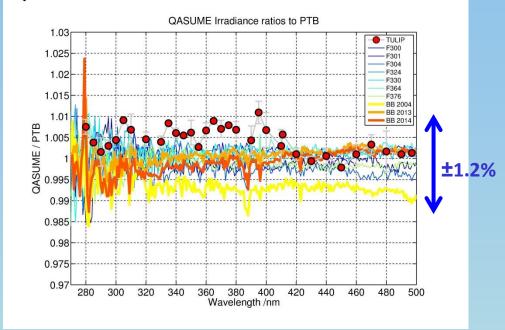
Duration: 2011 - 2014

Total Budget: 3.9 M€

8 Partners EU-NMI; 2 Industry; 2 Universities; > 5 Collaborators



Validation of the QASUME irradiance reference at PTB


Blackbody BB3200pg at PTB

Tuneable Laser facility TULIP

QASUME Validations at PTB since 2004

Gröbner J., and **P. Sperfeld**, Direct traceability of the portable QASUME irradiance scale to the primary irradiance standard of the PTB, Metrologia, **42**, 134—139, 2005.

EMRP-ENV59 "ATMOZ"

A traceable and harmonized Global Total Column Ozone Network

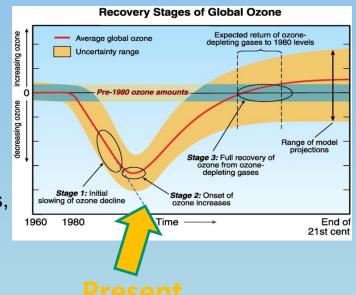
- Provide traceability of total column ozone to 1%,
- Radiometric characterisation of Dobson and Brewer spectrophotometers,
- Development of array-based solar UV spectroradiometers,
- Improved and consistent ozone absorption x-sections,
- Comprehensive uncertainty budget incorporating instrumental and atmospheric uncertainties

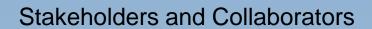
Julian Gröbner

Duration: 10/2014 – 9/2017

Total Budget: 2.5 M€

9 Partners NMI-DI, Industry, Universities





World Optical Depth Research and Calibration Center (WORCC)

1999 GAWPFR: First PFR instruments deployed to 3 GAW stations

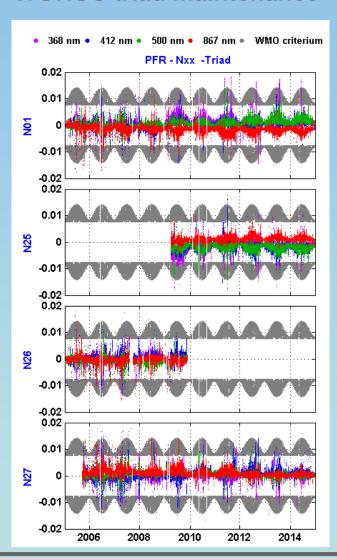
2006 CIMO XIV recommendation, approved by EC59

Recognition of WORCC as primary WMO reference center for AOD.

2007 Development of a travel standard PFR for on-site Quality Assurance within EUSAAR (8 site visits during 2007-2011)

2009 Izaña Atmospheric Research Center becomes WORCC absolute calibration facility

2014 First 2 Precision Solar Spectroradiometers are deployed


2015 4th Filter Radiometer Comparison
12 countries and 28 instruments

Triad performance 2005-2015

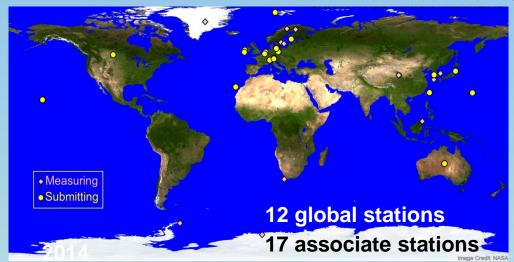
WORCC triad maintenance

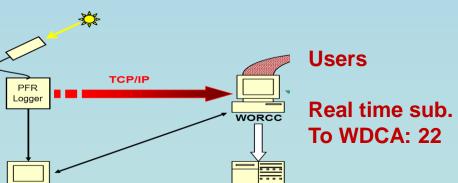
Long term stability

The PFR reference triad has been operating near continuously since early 2005.

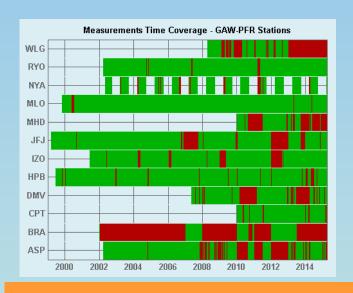
Interruptions were due to recalibrations by the Langley-plot technique at Mauna Loa, Hawaii or Izaña, Canary Islands.

The scatter of aerosol optical depth measurements at 500 nm with the triad sunphotometers is less than $0.0002 \pm 0.0011(1\sigma)$ which is well within the WMO criterion of 0.005 + 0.01/m


Yearly calibrations ~20 (2014) instruments

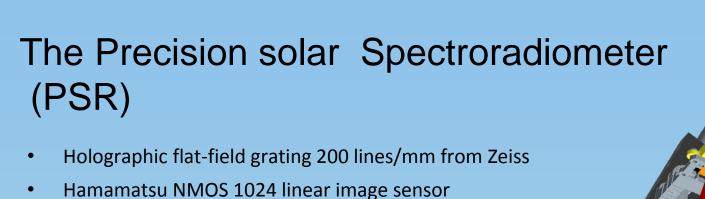

Global Atmospheric Watch PFR Network 1999-

GAW-PFR Network


GAW Station

- Has uniform instrumentation and procedures for AOD measurements
- Uses Precision Filter Radiometers (PFR) with 1 min measurement frequency

WDCA



Nearly 90% temporal coverage

The 4th Filter Radiometer Comparison FRC-IV

The 4" Filler Radiometer Companison FRC-IV							
PFR	CIMEL	MFRSR	PSR	POM-2	SPO2	SSIM	Microtops
WORCC Triad-CH SMHI-SE DWD-DE PMOD-CH (3) MeteoSwiss-CH	PMOD-CH AERONET-EU IZANA-ESP	DWD-DE NASA-US1 NOAA-US2 NOAA-US3	DWDa-DE DWDb-DE PMOD-CH	DWD-DE ARPA-IT JMA-JP KACARE-SA	BMa-AU BMb-AU	COFa-CA COFb-CA COFc-CA COFd-CA	MIC-GR
					Santhumber		
GAWPFR	AERONET	SURFRAD		SKYNET	AUSTRALIA		
		:-IV 28 Instrument 12 Countries 5 Networks	is				
						nmo	d

pmod wrc

Wavelength range 300 – 1020 nm

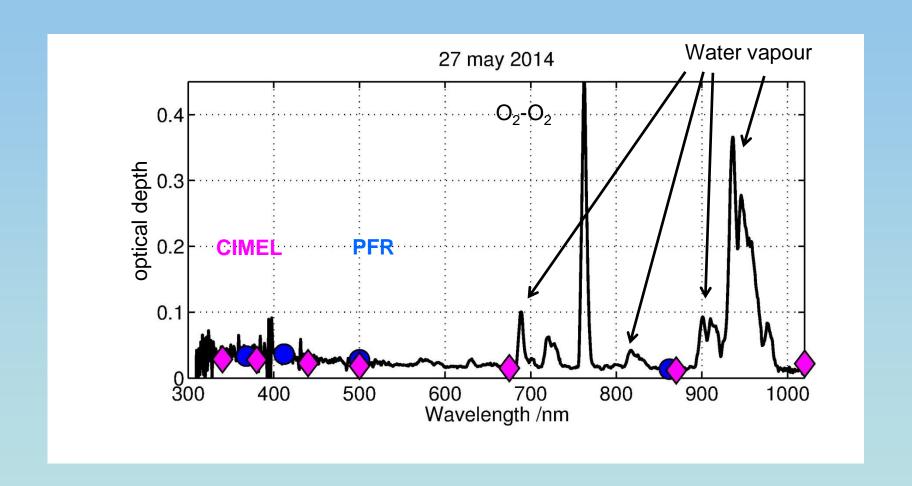
Resolution 1.5 nm to 6 nm

Wavelength step 0.7 nm per pixel

18 bit ADC (262 kcounts)

10 ms to 40 sec integration time

Temperature stabilised sensor ±0.1K (invar)


 stray-light optimised optical design with zero-order light-trap

2 entrance optics, direct irradiance and generic SMA

Spectral AOD compared to CIMEL and PFR

Spectral AOD compared to CIMEL - 10 May 2014

The PMOD/WRC

- Is signatory of the CIPM MRA & Designated Institute for Solar Radiation by METAS
- Implements a Quality Management System after ISO 17025
- Operates four sections within the World Radiation Center
 - Short & Longwave radiation (WRC-SRS & WRC-IRS)
 - Solar UV radiation (WCC-UV)
 - Aerosol optical depth (WORCC)
- Operates the Global GAW-PFR AOD Network
- Has travel Standards for Quality Assurance of
 - Solar UV Radiation
 - Spectral AOD (UV to NIR)
- Designs and sells high quality radiation sensors (Radiometers, Sunphotometers, Spectroradiometers)
- Builds and operates satellite experiments for long-term Total Solar Irradiance monitoring

